
行政院國家科學委員會補助專題研究計畫 □ 成 果 報 告   
■期中進度報告 

 

決策球模式及其運用 

Decision Ball Models and Applications 
 

計畫類別：■ 個別型計畫  □ 整合型計畫 
計畫編號：NSC 97-2221-E-009-104-MY3 
執行期間：98 年 8 月 1 日 至 99 年 7 月 31 日 
 
計畫主持人：黎漢林 
共同主持人： 
計畫參與人員：黃曜輝、邱婉瑜、車振國、王琳、林毓堂、汪彥志 
 
 
成果報告類型(依經費核定清單規定繳交)：■精簡報告  □完整報告 
 
本成果報告包括以下應繳交之附件： 
■赴國外出差或研習心得報告一份 
□赴大陸地區出差或研習心得報告一份 
□出席國際學術會議心得報告及發表之論文各一份 
□國際合作研究計畫國外研究報告書一份 
 
 
處理方式：除產學合作研究計畫、提升產業技術及人才培育研究計畫、列

管計畫及下列情形者外，得立即公開查詢 
          ■涉及專利或其他智慧財產權，□一年□二年後可公開查詢 
          
執行單位：國立交通大學資訊管理研究所 
 

中   華   民   國  99  年  10  月  31  日



 

行政院國家科學委員會專題研究計畫期中報告(第二年) 

決策球模式及其運用  

Decision Ball Models and Applications 
計 畫 編 號：97-2221-E-009-104-MY3 
執 行 期 限：98 年 8 月 1 日至 99 年 7 月 31 日 
主 持 人：黎漢林   國立交通大學資訊管理研究所    
計畫參與人員：黃曜輝、邱婉瑜、車振國、王琳、林毓堂、汪彥志 

Abstract 

Many decision-making or choice problems in Marketing incorporate preferences. 
How to assist decision makers in understanding the decision context and improving 
inconsistencies in judgments are two important issues in ranking choices. This study 
develops a decision-making framework based on the screening, ordering, and choosing 
phases. Two optimization models and a Decision Ball model are proposed to assist 
decision makers in improving inconsistencies and observing relationships among 
alternatives. By examining a Decision Ball, a decision maker can observe ranks of and 
similarities among alternatives, and iteratively adjust preferences and improve 
inconsistencies thus to achieve a more consistent and informed decision.  
Key words:  Decision Ball; Ranking; Inconsistency; Decision-making 

 
摘要 

在行銷偏好的選擇上有很多的決策擬定跟選擇的問題。如何去幫助決策者瞭解

決策問題的內容及改善不一致性是選擇性排序的兩個主要議題。本研究以檢視、排

序及選擇等步驟發展了一套決策制定的架構方法，其架構包含有兩個最佳化模型及

一個決策球模型。目的在提供使用者改善偏好的不一致性及檢視方案選擇之間的關

係。利用決策球，決策者可以看出決策方案之間的相似度及優先順序，並且透過不

斷的調整喜好程度來改善決策過中出現的偏好不一致，使得決策者能夠獲得一個更

好的決策資訊。 
關鍵字：決策球、排序、不一致性、決策擬定 
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Part I 

1. Introduction 

Many decision-making or choice problems in Marketing incorporate preferences (Liechty 

et al, 2005; Horsky et al. 2006; Gilbride and Allenby, 2006). Keeney (2002) identified 12 

important mistakes frequently made that limit one’s ability in making good value judgments, in 
which “not understanding the decision context” and “failure to use consistency checks in 

assessing value trade-offs” are two critical mistakes. Hence, how to assist decision makers in 

understanding the decision context and adjusting inconsistencies in judgments are two important 

issues in ranking choices. 
There is evidence that decision makers’ preferences are often influenced by the visual 

background information (e.g., Simonson and Tversky 1992; Tversky and Simonson, 1993; 

Seiford and Zhu, 2003). From marketing it is known from consumer choice theories that context 

impacts the choices consumers make (Seiford and Zhu, 2003). For example, a product may 
appear attractive against a background of less attractive alternatives and unattractive when 

compared to more attractive alternatives (Simonson and Tversky, 1992). Visual representations 

can simplify and aggregate complex information into meaningful pattern, assist people in 

comprehending their environment, and allow for simultaneous perception of parts as well as a 
perception of interrelations between parts (Maruyama, 1986; Meyer, 1991; Sullivan, 1998). 

Hence, how to provide visual aids to help decision makers make a more informed decision is the 

first issue addressed by this study. 

Ranking alternatives incorporating preferences is a popular issue in decision-making. One 
common format for expressing preferences is to use pairwise comparisons, which forces one to 

make a direct choice of one object over another when compariing two objects, rather than 

requiring one to comparing all objects simultaneously (Cook et al., 2005). For example, in sports 

competitions, such as tennis, football and baseball, pairwise rankings are the typical input 
(Hochbaum and Levin, 2006). Several methods have been proposed (e.g., Saaty, 1980; Jensen, 

1984; Genest and Rivest, 1994) to rank alternatives in pairwise comparisons fashion. However, 

inconsistencies are not unexpected, as making value judgments is difficult (Keeney, 2002). The 

ranks different methods yield do not vary much when the decision makers’ preferences are 
consistent.  But, if a preference matrix is highly inconsistent, different ranking methods may 

produce wildly different priorities and rankings.  Hence, how to help the decision makers to 

detect and improve those inconsistencies thus to make a more reliable decision is the second issue 

addressed here. 
Multicriteria decision makers tend to use screening, ordering and choosing phases to find 
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a preference (Brugha, 2004). They tend to make little effort in the first phase as they screen out 

clearly unwanted alternatives, use somewhat more effort in the second phase as they try to put a 

preference order on the remaining alternatives, and reach the highest effort in the final phase 
when making a choice between a few close alternatives.  

This study develops a decision-making framework based on these three phases. 

Preferences in pairwise comparison fashion are adopted in the choosing phase. Two optimization 

models and a Decision Ball model are proposed to assist decision makers in improving 
inconsistency and observing relationships among alternatives. By examining Decision Balls, a 

decision maker can iteratively adjust preferences and improve inconsistencies thus to achieve a 

more consistent decision. The proposed approach can be extensively applied in Marketing. 

Possible applications are the selection of promotion plans, decisions regarding product sourcing, 
choice of marketing channels, evaluation of advertising strategy, research of customer 

behavior …etc. 

The reasons why this study uses a sphere model instead of a traditional 2-dimensional 

plane or a 3-dimensional cube model are described as follows. A 2-dimensional plane model 
cannot depict three points that do not obey the triangular inequality (i.e. the total length of any 

two edges must be larger than the length of the third edge) neither can it display four points that 

are not on the same plane. For instance, as illustrated in Figure 1, consider three points, Q1, Q2, Q3, 

where the distance between Q1Q2, Q2Q3, and Q1Q3 are 3, 1, and 6, respectively, as shown in 
Figure 1(b). It is impossible to show their relationships by three line segments on a 2-dimensional 

plane, as shown in Figure 1(a).  If there are four points, Q1, Q2, Q3, and Q4, which are not on the 

same plane, as shown in Figure 1(c), it is impossible to present these four points on a 

2-dimensional plane too. In addition, a sphere model is also easier for a decision maker to observe 
than a 3-dimensional cube model because the former exhibits alternatives on the surface of a 

sphere rather than inside the cube. 

This paper is organized as follows. Section 2 reviews the relevant literature. Section 3 

sets the three-phase decision making framework, including the screening, ordering and choosing 
phases. Section 4 proposes a weight-approximation model and a Decision Ball model to support a 

decision maker to filter out poor alternatives in the ordering phase. Section 5 develops an 

optimization model which can assist a decision maker in improving inconsistencies in preferences, 

and provides three methods to allow a decision maker to iteratively adjust his preferences in the 
choosing phase. Sections 4 and 5 form the main theoretical part of this paper; therefore, readers 

only interested in the application of proposed approach can skip these two sections. Section 6 

uses an example to demonstrate the whole decision process. 

 

2. Relevant Literature 
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Several visualization approaches have been developed to provide visual aids to support 

decision-making process. For instance, Li (1999) used deduction graphs to treat decision 

problems associated with expanding competence sets. Jank and Kannan (2005) proposed a spatial 
multinomial model of customer choice to assist firms in understanding how their online 

customers’ preferences and choices vary across geographical markets. Kiang (2001) extended a 

self-organizing map (SOM) (Kohonen, 1995) network to classify decision groups by neural 

network techniques. Many studies (Kruskal, 1964; Borg and Groenen, 1997; Cox and Cox, 2000) 
adopted Multidimensional scaling (MDS), which is widely used in Marketing, to provide a visual 

representation of similarities among a set of alternatives. For instance, Desarbo and Jedidi (1995) 

proposed a new MDS method to spatially represent preference intensity collected over 

consumers’ consideration sets. However, most of conventional visualization approaches are 
incapable of detecting and improving the decision makers’ inconsistent preferences. Gower 

(1977), Genest and Zhang (1996) proposed a powerful graphical tool, the so-called Gower Plot, to 

detect the inconsistencies in decision maker’s preferences on a 2-dimensional plane. Nevertheless, 

the Gower plots do not provide suggestions about how to improve those inconsistencies either. 
A pairwise-comparison ranking problem can be provided with magnitude of the degree of 

preference, intensity ranking; or in terms of ordinal preferences only, preference ranking. These 

are sometimes referred to also as cardinal versus ordinal preference (Hochbaum and Levin, 2006). 

Many studies (Saaty, 1980; Saaty and Vargas, 1984; Hochbaum and Levin, 2006; etc.) use 
multicriteria decision making approaches to find a consistent ranking at minimum error. However, 

conventional eigenvalue approaches cannot treat preference matrix with incomplete judgments. 

And, most of them focus on adjusting cardinal or ordinal inconsistencies instead of adjusting both 

cardinal and ordinal inconsistencies simultaneously. Li and Ma (2006)(2007) developed goal 
programming models which can treat incomplete judgments and improve cardinal and ordinal 

inconsistencies simultaneously. However, the ranks of and similarities among alternatives can be 

displayed.  

This study cannot only improve cardinal and ordinal inconsistencies simultaneously but 
provide visual aids to decision makers. They can observe ranks of and similarities among 

alternatives, and iteratively adjust their preferences to achieve a more consistent decision. 

 

3. Setting the Decision-Making Framework 
The proposed decision-making framework is illustrated by the screening, ordering, and 

choosing phases as listed below: 

(i) The screening phase: the decision maker tries to screen out clearly unwanted alternatives. 

The decision maker specifies upper and/or lower bounds of attributes to screen out poor 
alternatives. 
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(ii) The ordering phase: the decision maker tries to put a preference order on the remaining 

alternatives.  

 The decision maker roughly specifies partial order of alternatives. 
 An optimization model and a Decision Ball model are developed to assist decision 

maker in calculating and viewing ranks of and similarities among alternatives. 

 The decision maker filters out poor alternatives according to the information 

displayed on the Decision Ball. 
(iii) The choosing phase: the decision maker tries to make a final choice among a few 

alternatives. There are four steps in this phase, including specifying pairwise-comparison 

preferences, detecting and improving inconsistencies, adjusting preferences, and 

determining the best alternatives. 
 Specifying pairwise-comparison preferences. Decision maker has to make more 

sophisticated comparisons for the remaining alternatives in this phase. 

Pairwise-comparison fashion, like analytical hierarchy process (AHP; Saaty, 1980), 

is adopted here because it is good for choosing phase (Brugha, 2004). 
 Detecting and improving inconsistencies. Because inconsistent preferences may 

result in unreliable rank order, significant inconsistencies should be modified to 

obtain a more consistent solution. An optimization model is proposed to assist 

decision maker in detecting and improving inconsistencies. After inconsistencies 
have been reduced, the ranks of and similarities among alternatives are calculated 

and displayed on a Decision Ball. 

 Adjusting preferences. According to the information displayed on the Decision Ball, 

the decision maker can iteratively adjust his preferences and see the corresponding 
changes on the Decision Ball. 

 Determining the best alternatives. Decision maker makes the final choice with the 

assistance of the Decision Ball. 

The detailed explanations about the ordering and choosing phases are illustrated in the 
following two sections. 

 

4. The models for ordering phase 
Consider a set of alternatives A = {A1, A2, …, An} for solving a choice problem, where the 

decision maker selects m criteria to fulfill. The values of criteria c1, …, cm for alternative Ai are 

expressed as ci,k, for k = 1,…, m. All criterion values are assumed to be continuous data. Denote C 

= mnkic ×][ ,  as the criterion matrix of the decision problem. Denote kc  and kc  as the lower 
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and upper bounds of the criterion value of ck, respectively. The value of kc  and kc  can be 

either given by the decision maker directly or calculated by the minimum and maximum raw 
criterion value of ck . The score function in this study is assumed to be in an additive form because 

it is the most commonly used form in practice and more understandable for the decision maker 

(Belton and Stewart, 2002). Denote Si as the score value of an alternative Ai. An additive score 

function of an alternative Ai (ci,1, ci,2, …, ci,m) is defined as below: 

∑
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k kk
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a weight vector, (ii) 1)(0 ≤≤ wiS .  In order to make sure that all weights of criteria and scores 

of alternatives are positive, a criterion ci,k with cost feature (i.e., a DM likes to keep it as small as 

possible) is transferred from ci,k to ( kik cc ,− ) in advance.  

Following the score function, the dissimilarity function of reflecting the dissimilarity 

between alternatives Ai and Aj is defined as 
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where 1)(0 , ≤≤ wjiδ  and )()( ,, ww ijji δδ = . Clearly, if ci,k = cj,k for all k then )(, wjiδ = 0.  

In the ordering phase, a decision maker has to roughly specify partial order of alternatives. 
If the decision maker prefers Ai to Aj, denoted as ji AA ; , score of Ai should be higher than that of 

Aj (Si > Sj). However, there may be some inconsistent preferences. For instance, a decision maker 
may specify ji AA ; , kj AA ; and ik AA ; . A binary variable ti,j is used to record the inconsistent 

relationship between Ai and Aj: if ji AA ;  and Si > Sj, then ti,j =0; otherwise, ti,j = 1. A weight 

approximation model for ordering phase is developed as follows: 

Model 1  (Weight approximation model for ordering phase) 
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jiji MtSS ,−+≥ ε , ji AA ;∀ ,                              (5) 

, 0,  , kwwww kkkk ∀≥≤≤                                        (6) 

}1,0{, ∈jiu , M is a large value, ε  is a tolerable error.              (7) 

The objective of Model 1 is to minimize the sum of ti,j. Expressions (3) and (4) are from 
the definition of an additive score function (1). Expression (5) indicates that if ji AA ;  
and ε+≥ ji SS , then ti,j =0; otherwise, ti,j = 1, where ε  and  M are a computational precision 

and a large value which can be normally set as 610− and 610 , respectively. Denote kw and 

kw as the lower and upper bound of wk, which could be set by the decision maker as in 

Expression (6). From (1) and (2), the score Si of alternative Ai and dissimilarity ji,δ between 

alternative Ai and Aj can be calculated based on the results of Model 1.  

A Decision Ball model is then constructed to display all alternatives Ai in A = {A1, A2, …, 

An} on the surface of a hemisphere. A non-metric multidimensional scaling technique is adopted 
here to provide a visual representation of the dissimilarities among alternatives. The arc length 

between two alternatives is used to represent the dissimilarity between them, e.g., the larger the 

difference, the longer the arc length. However, because the arc length is monotonically related to 

the Euclidean distance between two points and both approximation methods make little difference 
to the resulting configuration (Cox and Cox, 1991), the Euclidean distance is used here for 

simplification. 

In addition, the alternative with a higher score is designed to be closer to the North Pole 

so that alternatives will be located on the concentric circles in the order of score from top view. 

For the purpose of comparison, we define an ideal alternative *A , where ),...,,( 21** mcccAA =  
and  1* =S . *A is designed to be located at the north pole with coordinate ),,( *** zyx = (0, 1, 0). 

The following propositions are deduced: 
Proposition 1  The relationship between )(,* wiδ  (the dissimilarity between Ai and A*)) and 

Si(w) is expressed as )(1)(,* ww ii S−=δ . 
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Denote di,j as the Euclidean distance between Ai and Aj . Let jijid ,, 2δ= , such that if 

ji,δ  = 0 then di,j = 0 and if ji,δ  = 1 then di,j = 2 , where 2  is used because the distance 

between the north pole and equator is 2  when radius = 1. Denote the coordinates of an 
alternative Ai on a ball as (xi, yi, zi). The relationship between yi and Si is expressed as 

Proposition 2  .2 2
iii SSy −=                                   

<Proof> Since 22
,*

2222
,* )1(22)0()1()0( iiiiii Szyxd −==−+−+−= δ ,  

it is clear 22 iii SSy −= . Clearly, if Si = 1 then yi = 1; if Si = 0, then yi = 0. 

Based on the non-metric multidimensional scaling technique, denote jid ,
ˆ  as a 

monotonic transformation of ji,δ  satisfying following condition: if qpji ,, δδ < , then 

qpji dd ,,
ˆˆ < . The coordinate (xi, yi, zi) of alternative Ai all i can be calculated by the following 

Decision Ball model:  

Model 2  (A Decision Ball Model) 

},,{ iii zyx
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s.t.    iSSy iii ∀−=    ,2 2 ,                                                   (8) 

qpjiqpji dd ,,,,   , ˆˆ δδε <∀−≤ ,                                         (9) 

jizzyyxxd jijijiji ,   ,)()()( 2222
, ∀−+−+−= ,                          (10) 

izyx iii ∀=++     , 1222 ,                                              (11) 

 1,1 ≤≤− ii zx , 10 ≤≤ iy , i∀ , ε  is a tolerable error.                    (12) 

The objective of Model 2 is to minimize the sum of squared differences between di,j and 

jid ,
ˆ . Expression (8) is from Proposition 2, where the alternative with a higher score is designed 

to be closer to the North Pole. Expression (9) is the monotonic transformation from ji,δ  to jid ,
ˆ . 
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All alternatives are graphed on the surface of the northern hemisphere (11)(12). 

Model 2 is a nonlinear model, which can be solved by some commercialized optimization 

software, such as Global Solver of Lingo 9.0, to obtain an optimum solution. One restriction of 

this model is the running time that may considerably increase when the number of alternatives 

becomes large because the time complexity of Model 2 is n2. This model has good performance 

when the number of alternatives less than 10. However, in this case of alternatives more than 10, 

some classification techniques, like k-means (MacQueen,1967) for instance, can be used to 

reduce the solving time by dividing alternatives into several groups. The coordinates of group 

centers are calculated first. Then, these group centers are treated as anchor points. The coordinates 

of alternatives can be obtained by calculating dissimilarity between alternatives and anchor points. 

Thus, all alternatives can be displayed on the Decision Ball within tolerable time. 

According to the information displayed on the Decision Ball, the decision maker can 

select better alternatives into the next phase. 

 

5. The models for choosing phase 

In this phase, the decision maker has to make more sophisticated comparisons for 

the remaining alternatives. Pairwise comparisons are adopted here (Brugha, 2004). For some 

i and j pairs, assume a decision maker can specify pi,j, the ratio of the score of Ai to that of Aj, 

which is expressed as 

pi,j  = ji
j

i e
S
S

,× ,                                                 (13) 

where Si is the score of Ai and jie ,  is a multiplicative term accounting for inconsistencies, as 

illustrated in the Analytic Hierarchy Process (AHP) (Saaty, 1980). It is assumed that pi,j = 1/pj,i.  
If the decision maker cannot specify the ratio for a specific pair i and j then φ=jip , . Denote P 

= nnjip ×][ ,  as a nn×  preference matrix. P is incomplete if there is any φ=jip , . P is perfectly 

consistent if ei,j =1 for all ji,  (i.e. pi,j = Si/Sj for all i, j). P is ordinally inconsistent (intransitive) 

if for some i, j, k∈  {1, 2, 3, …, n} there exists pi,j > 1, pj,k > 1, but pi,k  < 1. P is cardinally 

inconsistent if for some i, j, k∈  {1, 2, 3, …, n} there exists kjjiki ppp ,,, ×≠  (Genest and 

Zhang, 1996). 

If P is complete and ordinal consistent, all Ai can be ranked immediately. However, if 
there is ordinal or highly cardinal inconsistency, these inconsistencies should be improved before 

ranking because significant inconsistencies may result in unreliable rank order.  
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An optimization model, developed by a goal-programming optimization technique, is 

developed to assist decision maker in detecting and improving inconsistencies. In order to reduce 

the ordinal inconsistency, a binary variable ui,j is used to record if the preference pi,j, specified by 

the decision maker, is suggested to be reversed or not. If pi,j is suggested to be reversed, then ui,j  

= 1; otherwise, ui,j = 0. A variable ji ,α , defined as the difference between pi,j and Si/Sj, is used to 

indicate the degree of cardinal inconsistency of pi,j: the larger the value of ji ,α , the higher the 

cardinal inconsistency. The inconsistencies improving model is formulated as below: 

Model 3  (Inconsistencies improving model ) 
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  ,kkk www ≤≤  , 0, kwk ∀≥                                         (19) 

      }1,0{, ∈jiu , M is a large value, ε  is a tolerable error.              (20) 

This model tries to improve ordinal and cardinal inconsistencies simultaneously. The first 

objective (Obj1) is to achieve ordinal consistency by minimizing the number of preferences 

(i.e., jip , ) being reversed. Constraint (14) means: when φ≠jip ,  and 1, ≠jip , ui,j = 0, if (i) 
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 )1( and )1( , >> ji
j

i p
S
S

or (ii)  )1( and )1( , << ji
j

i p
S
S

; and otherwise ui,j = 1. A tolerable 

positive number ε  is used to avoid 1=
j

i

S
S

. Constraint (15) means: when pi,j = 1, if Si = Sj; then 

ui,j = 0; otherwise ui,j = 1. The second objective (Obj2) is to reduce cardinal consistency by 

minimizing the ji,α  values, i.e. to minimize the difference between 
j

i

S
S

 and jip , . Since 

ordinal consistency (Obj1) is more important than cardinal consistency (Obj2), Obj1 is multiplied 

by a large value M in the objective function. Constraints (17) and (18) come from Notation 1. 

Constraint (19) sets the upper and lower bound of weights. An improved complete preference 

matrix can be obtained as  P’  = nnjip ×][ '
, , where 

j

i
ji S

S
p ='

,  if φ=jip ,  or ui,j = 1; otherwise, 

jiji pp ,
'
, = . 

Model 3 is a nonlinear model, which can be converted into the following linear mixed 0-1 

program: 
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  (17) ~ (20), 

where (21), (22) and (23) are converted from (14), (15) and (16) respectively.  

After the weight vector, (w1, w2, …, wm), is found, ∑
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Model 2.  

According to the information visualized on the Decision Ball, the decision maker can 

iteratively adjust his preferences by the following ways: 
(i)    Adjusting preference order. Since alternative with a higher score is designed to be closer 

to the North Pole so that a decision maker can see the rank order by the location of 

alternative: the higher the latitude, the higher the score. If the decision maker would like 

to adjust a preference order, from A1 ≺ A3 to A1 ; A3  for instance, a constraint 
ε+≥ 31S S  will be added into Model 3.  

(ii)    Adjusting dissimilarity. The distance between two alternatives on a Decision Ball implies 

the dissimilarity between them: the larger the dissimilarity, the longer the distance. 

Therefore, if a decision maker observes the Decision Ball and decides to adjust the 

dissimilarity relationship, from  )()( 2,13,1 ww δδ <  to  )()( 2,13,1 ww δδ > for example, 

a constraint  )()( 2,13,1 ww δδ >  (i,e. ε+
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be added into Model 3. 

(iii)   Adjusting preference matrix. A decision maker can choose to adjust the preference matrix 

directly. The value of pi,j in Model 3 will be modified according to the change in the 
preference matrix.  

Solving Model 3 yields a new set of weights, and an adjusted Decision Ball will be 

displayed. The decision maker can iteratively adjust his preferences until he feels no adjustments 

have to be made. A final choice can be made with the assistance of a resulting Decision Ball. 
 

6. Application to choice data: selection of a store location 
Example 1 (Selection of a store location) 

The choice of a store location has a profound effect on the entire business life of a retail 
operation. Suppose a manager of a convenience store in Taiwan who needs to select a store 

location from a list of 43 spots A = {A1, …, A43}. The manager sets four criteria to fulfill: (c1) 
sufficient space, (c2) high population density, (c3) heavy traffic, and (c4) low cost. Store size is 

measured in square feet. The number of people who live within a one-mile radius is used to 
calculate population density. The average number of vehicle traffic passing the spot per hour is 

adopted to evaluate the volumes of traffic. Cost is measured by monthly rent. The criteria values 

of 43 candidate locations are listed in the criterion matrix C1, as shown in Table 1.  
The manager would like to rank choices incorporating his personal preferences. The 

manager can rank these choices by the following three phases: 
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Phase 1 – the screening phase 
The manager tries to screen out clearly unwanted alternatives by setting upper or lower 

bound of each criterion. He sets the minimum space required to be 800 square feet, the minimum 
population density to be 700, the minimal traffic to be 400, and the maximum rental fee to be 

5000. That is, 1c = 800, 2c = 700, 3c = 400 and 4c = 5000. The values of 1c , 2c , 3c  and 

4c  can be set as the maximum values of c1, c2, c3 and minimum value of c4, i.e. 1c = 1500, 

2c = 1260, 3c =780, and 4c = 3100. After filtering out alternatives with criterion values 

exceeding these boundaries, only 23 choices {A3, A4, A6, A7, A8, A11, A13, A15, A17, A18, A21, A23, A24, 
A25, A26, A29, A31, A32, A34, A37, A40, A42, A43} are remaining for the next phase. 

Phase 2 – the ordering phase  
The decision maker roughly specifies partial order of alternatives. He specifies A3; A7, 

A7; A37, A15; A8, A17; A6, A31; A25 and A42; A40. The minimum weight of each criterion is set as 

kw = 0.01 for all k by the decision maker. Applying Model 1 to these                 

preference relationships yields w = {w1, w2, w3, w4} = {0.21, 0.43, 0.01, 0.35}, t15,8 =1, and the 

rest of ti,j = 0. The objective value is 1. The variable t15,8 = 1 indicates the preference relationship 
A15; A8 should be reversed. When checking criterion matrix in Table 1, all criterion values of A8 

are better than or equal to those of A15 which makes A15 ; A8 impossible; therefore, the 

relationship between A15 and A8 is reversed. 

The score of alternatives can be calculated according to Expression (1), where S3 = 0.54, 
S4 = 0.10, S6 = 0.33, S7 = 0.54, S8 = 0.71, S11 = 0.29, S13 = 0.59, S15 = 0.36, S17 = 0.53, S18 = 0.31, S21 

= 0.30, S23 = 0.30, S24 = 0.45, S25 = 0.22, S26 = 0.39, S29 = 0.23, S31 = 0.22, S32 = 0.42, S34 = 0.46, S37 

= 0.39, S40 = 0.31, S42 = 0.34, S43 = 0.24. The dissimilarity between alternatives can also be 

calculated according to Expression (2). 
Applying Model 2 to this example yields coordinates of alternatives. The resulting 

Decision Ball is displayed in Figure 2. Because the alternative with a higher score is designed to 

be closer to the North Pole, the order of alternatives can be read by the latitudes of alternative: the 

higher the latitude, the higher the score. The order of top ten alternatives is A8 ; A13 ; A3; A7 

; A17; A34; A24; A32; A37 ; A26. In addition, the distance between two alternatives represents 

the dissimilarity between them: the longer the distance, the larger the dissimilarity. For instance, 

the dissimilarity between A26 and A37 is smaller than that of between A37 and A7.  

Based on the information provided on the Decision Ball, assume the decision maker 
decides to select the top eight alternatives to make more sophisticated comparisons. That is, only 
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A8, A13, A3, A7, A17, A34, A24 and A32 are remaining for the next phase. 

Phase 3 – the choosing phase 
In the choosing phase, the manager uses pairwise comparisons to express preferences 

among pairs of choices in preference matrix R1, as listed in Table 2. Because the manager is 
unable to make comparison among some spots, the relationships p3,34, p7,17, p8,24, p13,34 are left 

blank, which means R1 is incomplete. The preference matrix R1 is ordinally inconsistent because 
there is an intransitive relationship among A3, A8 and A32. That is, A3 is preferred to A8 (p3,8 > 1), 

and A8 is preferred to A32  (p8,32 > 1); however, A32 is preferred to A3  (p3,32 < 1). R1 is also 
cardinally inconsistent. For instance, there exists p3,8 = 1.6, p8,13 = 2.5; but, p3,13 = 2 (1.6 ×  2.5 = 

4, that is 13,313,88,3 ppp ≠× ).  

Applying Model 3 to the example yields Obj1 = 1, Obj2 = 3.91, u3,8 = 1 and the rest of ui,j 

= 0, (w1, w2, w3, w4) = (0.04, 0.19, 0.06, 0.71), (S3, S7, S8, S13, S17, S24, S32, S34) = (0.55, 0.55, 0.78, 

0.27, 0.39, 0.40, 0.74, 0.51). The variable u3,8 = 1 implies that the value of p3,8 is suggested to be 

changed from p3,8 >1 to p3,8 <1 (i.e. from A3 ; A8 to A3 ≺A8) to improve ordinal inconsistency. 

The values of unspecified preferences can be computed as p3,34 = 
34

3
S
S  = 1.08, , p7,17, = 1.41,  

p8,24 = 1.93, and p13,34 = 0.76. The corresponding Decision Ball is shown in Figure 3. The order of 

alternatives is A8 ; A32 ; A3 ; A7 ; A34 ; A24 ; A17.  
According to the information observed on the Decision Ball, the decision maker can 

iteratively adjust his preferences. Suppose he would like to adjust a preference order from A7 

;A34 to A34 ;A7.  A constraint ε+≥ 734S S  is added into Model 3. Solving Model 3 yields 

Obj1 = 3, Obj2 = 3.96, u3,8 = u7,34 = u17,24 = 1 and the rest of ui,j = 0, (w1, w2, w3, w4) = (0.01, 0.13, 
0.17, 0.69), (S3, S7, S8, S13, S17, S24, S32, S34) = (0.53, 0.50, 0.76, 0.27, 0.44, 0.40, 0.71, 0.51). In 

order to satisfy the relationship A34 ;A7, the relationship between A17 and A24 has to be reversed 

(u17,24 = 1). Applying Model 2 to this result yields a new set of coordinates. An adjusted Decision 

Ball is displayed in Figure 4. On this Decision Ball, the latitude of A34 is higher than that of A7.  
By seeing the relationships of alternatives displayed on the Decision Ball in Figure 4, the 

decision maker would like to adjust some dissimilarity relationships between alternatives. His 

adjustment is that the dissimilarity between A3 and A8 is larger than that of between A7 and A8. A 

constraint ε+
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 is added into Model 3. Solving Model 3 

again yields Obj1 = 5, Obj2 = 4.33, u3,8 = u7,34 = u17,24 = u3,7 = u8,32 = 1 and the rest of ui,j = 0, (w1, 

w2, w3, w4) = (0.01, 0.04, 0.19, 0.76), (S3, S7, S8, S13, S17, S24, S32, S34) = (0.51, 0.53, 0.74, 0.19, 
0.39, 0.36, 0.78, 0.53). This result shows that in addition to rank reversal of A3 and A8, A7 and A34, 
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A17 and A24 (u3,8 = u7,34 = u17,24 =1), the relationship between A3 and A7, A8 and A32 are suggested to 

be reversed to satisfy the adjustment of dissimilarity. A corresponding Decision Ball is depicted 

in Figure 5.  
Suppose the decision maker stops further adjustment. The decision maker can make a final 

decision based on the Decision Ball in Figure 5. From the latitude of alternatives, the decision 

maker can tell the rank of choices as A32 ;A8;A34;A7 ;A3;A17;A24;A13. The best choice is 

A32. The dissimilarity between alternatives can be read by the distance between them. For instance, 
the dissimilarity between A3 and A34 is the smallest because the distance between them is the 

shortest. That is, if A32 , A8 and A34 are not available, A3 as well as A7 will be a good choice.  

It is important to notice that A3 is more similar to A34 than A7 is but A34;A7 ;A3. This kind 

of relationship is possible. For instance, comparing with three alternatives A, B, C with benefit 

criterion values (5, 5, 5), (4, 4, 6) and (3, 5, 5), given equal weight and kc  = 0 and kc  =10 for 

k = 1…3. The scores of three alternatives are SA = 0.5, SB = 0.47, and SC = 0.43. The dissimilarities 

between alternatives are A,Bδ  =0.1, C,Bδ  =0.1 and CA,δ  =0.067. It is obvious that A; B;C 

but C is more similar to A than B is because CA,δ < A,Bδ . 

Example 1 was solved by Global Solver of Lingo 9.0 [20] on a Pentium 4 personal 

computer. The running time was less than 3 minimums for three phases totally. 
 

References 
Belton, V. Stewart, T.J. 2002. Multiple Criteria Decision Analysis. An Integrated Approach. 

Kluwer Academic Publishers, Norwell, MA. 
Borg, I. Groenen, P. 1997. Modern Multidimensional Scaling, Springer, New York. 

Brugha, C.M. 2004. Phased Multicriteria Preference Finding, European Journal of Operational 

Research, 158, 308-316. 

Cook, W. D. Golany, B. Kress, M. Penn, M., Raviv, T. 2005. Optimal allocation of proposals to 
reviewers to facilitate effective ranking, Management Science, 51(4)655-661. 

Cox T.F. Cox, M.A.A. 1991. Multidimensional scaling on a sphere, Communications on 

Statistics – Theory and Methods, 20(9) 2943-2953. 

Cox, T.F. Cox, M.A.A. 2000. Multidimensional Scaling, Chapman & Hall, London. 
Desarbo, W.S. Jedidi, K. 1995. The spatial representation of heterogeneous consideration sets. 

Marketing Science 14(3) 326-342. 

Genest, C. Zhang, S.S. 1996. A graphical analysis of ratio-scaled paired comparison data, 

Management Science 42 (3) 335-349. 
Genest, C.F. Rivest, L.P. 1994. A statistical look at Saaty’s method of estimating pairwise 



      

 17

preferences expressed on a ratio scale, Mathematical Psychology 38 477-496. 
Gilbride, T.J. Allenby, G.M. 2006. Estimating heterogeneous EBA and economic screening rule 

choice models, Marketing Science, 25(5) 494-509. 
Gower, J.C. 1977. The analysis of asymmetry and orthogonality, in J.-R. Barra, F. Brodeau, G. 

Romier, and B. Van Cutsem (Eds.), Recent Developments in Statistics, North-Holland, 

Amsterdam, 109-123. 

Hochbaum, D.S. Levin, A. 2006. Methodologies and algorithms for group-rankings decision, 
Management Science, 52(9)1394-1408. 

Horsky, D. Misra, S. Nelson P. 2006. Observed and unobserved preference heterogeneity in 

brand-choice models, Marketing Science, 25(4) 322-335. 

Jank, W., Kannan, P.K. 2005. Understanding geographical markets of online firms using spatial 
models of customer choice. Marketing science 24(4) 623-634. 

Jensen, R.E. 1984. An alternative scaling method for priorities in hierarchical structures,  J. 

Mathematical Psychology 28 317-332. 
Keeney, R.L. 2002. Common mistakes in making value trade-offs. Operations research 50 (6). 
Kiang, M. Y. 2001. Extending the Kohonen self-organizing map networks for clustering analysis. 

Computations Statistics and Data Analysis 38 161-180. 

Kohonen, T. 1995. Self-Organizing Maps. Springer, Berlin. 

Kruskal, J.B.1964. Non-metric multidimensional scaling: A numerical method, Psychometrica 29 
115-129. 

Li, H.L. 1999. Incorporation competence sets of decision makers by deduction graphs, Operations 

Research 47 (2) 209-220. 

Li. H.L. Ma, L.C. 2006. Adjusting ordinal and cardinal inconsistencies in decision preferences 
based on Gower Plots, Asia-Pacific Journal of Operational Research, 23(3) 329-346. 

Li. H.L. Ma, L.C. 2007. Detecting and adjusting ordinal and cardinal inconsistencies through a 

graphical and optimal approach in AHP models, Computers and Operations Research, 34(3) 

780-198. 
Liechty, J.C. Fong, D.K.H DeSarbo, W.S. 2005. Dynamic models incorporating individual 

heterogeneity: utility evolution in conjoint analysis, Marketing Science 24 (2) 285-293. 

Lindo System Inc., Lingo 9.0. www-document http://www.lindo.com/ , 2005. 

MacQueen, J.B. 1967. Some methods for classification and analysis of multivariate observations, 
Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, 

University of California Press, 1 281-297.  
Maruyama, M.: 1986, “Toward Picture-coded Information Systems”, Futures 18, 450–452. 

Meyer, A.: 1991, “Visual Data in Organizational Research”, Organization Science 2(2), 218–236. 
Saaty, T.L. 1980. The Analytic Hierarchy Process, McGraw-Hill, New York. 



      

 18

Seiford, L.M. Zhu, J. 2003. Context-dependent data envelopment analysis – Measuring 

attractiveness and progress. OMEGA 31(5) 397-408.  

Simonson, I. Tversky, A. 1992. Choice in context: tradeoff contrast and extremeness aversion. 

Journal of Marketing Research 29, 281-95. 
Sullivan, D.: 1998, “Cognitive Tendencies in International Business Research: implications of a 

‘Narrow Vision’”, Journal of International Business Studies 29(4), 837–862. 

Tversky, A. Simonson, I. 1993. Context-dependent Preferences, Management Science 39(10) 
1179-1189. 



      

 19

Part II 

 
1. Research Motivation and Purpose 
 
The research on business school rankings appeared in the late 1970s (Hunger and 
Wheelen, 1980; Schatz, 1993) and incurred disputes in the early 1980s (Hunger and 
Wheelen, 1980; Laoria, 1984; Ball and McCulloch, 1984 and 1988; Jimenez, 1985; 
Mackay-Smith, 1985; Douglas, 1989), but received considerable and substantial 
attentions from the public until U.S. News & World Report (NWR) published its first 
America’s Best Business School Report in 1987 (Solorzano et al., 1987; Kiechel, 1989)1. 
Following, popular media began to publish their business school rankings such as 
Business Week (BW) in 1988, Financial Times (FT) in 1995, Economists (Econ) in 1996, 
Forbes in 1999, and Wall Street Journal in 2000 (Business Week, 2006 and 2009; 
Financial Times, 2006 and 2009; U.S. News & World Report, 2006, 2007, and 2009; 
Economist.com, 2009). Aside from BW and Forbes, who rank business schools every 
other year, prevailing publications release their rankings every year. 
 
Notably, whenever ranking surveys had been published during past decades, criticism in 
response to each ranking immediately occurred and the controversy (such as considerable 
variation in the number of surveyed companies, the relative size of the alumni population, 
respondents’ representation, biases related to the locations and classifications of surveyed 
firms, very different responses/opinions between people in the personnel department and 
people in line management, the fact that no respondents are familiar with all business 
schools, and so on) had continued over the years (Jimenez, 1985; Mackay-Smith, 1985; 
Nehrt, 1987; Ball and McCulloch, 1988; Douglas, 1989; Schatz, 1993; Elsbach and 
Kramer, 1996; Tracy and Waldfogel, 1997; Dichev, 1999; Corley and Gioia, 2000; Morse 
and Flanigan, 2006 and 2009; Business Week, 2006 and 2009; Financial Times, 2006 and 
2009; ; U.S. News & World Report, 2006, 2007, and 2009; Holbrook, 2007; Brady, 2007; 
Peters, 2007; Economist.com, 2009). Disputes and criticisms are amplified at each time 
the press announce their annual rankings to the world. 
 
Although the debates on business school rankings released by current media still exist 
and publishing these rankings may be considered a way for publishers to sell more 
magazines, current periodicals have already become powerful references for students, 
who use them to evaluate which schools to attend. Recruiters, in turn, use them to 
determine which schools to hire from. Therefore, it is difficult to ignore or dismiss the 
impact of current media that report business school rankings over decades. Consequently, 
AACSB, the world largest business-school accrediting association, publically called on 
media in September 2005 to rethink the way they rank business schools. AACSB 
contended that the assessment of business schools is a multifaceted concept and varies in 

                                                 
1 Although U.S. News & World Report published its first version of America’s Best Business Schools in 
1987, its first America’s Best College report was published in 1983. Similarly, other major periodicals 
usually ranked colleges earlier than started to rank business schools (source: Wikipedia.org). 
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the overriding vision of what a business education likes to be (Pringle and Michel, 2007). 
Accordingly, a business school should focus on the improvement and achievement of 
itself and the peers it likes to be or compare with. 
 
Moreover, upon entering the 2000s, the competitive pressure on the education market 
quickly and stably increase, and the rankings become widely perceived as the single most 
useful indicators of a school’s ability (or inability) to compete in this market. Unlike 
1980s and 1990s, competition among business schools is becoming normal and 
increasingly coming from worldwide peers instead of within single nation. Consequently, 
business school rankings have increasingly received prominent concerns not only from 
faculties, current and prospective students, alumni, but also gradually from school deans, 
university presidents, and even government leaders. As a result, many business schools 
recently have greater attention and interests in analyzing current rankings and finding 
clues to devise their strategies. 
 
Motivated by the aforementioned phenomena, this research aims to propose a novel 
clustering method that partition business schools with keeping ranking orders produced 
by current rankings and display significant clustering schools on a three-dimension ball 
which can help a business school visualize its position for  effectively devising 
development strategy.  
 
2. Overview of Business School Rankings 
 
The first business school ranking appeared in 1977, reported by Carter (Schatz, 1993). 
For ranking criteria, the Carter Report used the frequency of faculty publications in 
academic journals, asked the deans of the business schools to vote on the best program, 
and questioned business school faculty about which schools they thought were the best. 
In 1979, through collecting opinions from deans at business schools accredited by 
Association to Advance Collegiate Schools of Business (AACSB) and senior personal 
executives in industry, Hunger and Wheelen (1980) ranked business schools using four 
criteria: faculty reputation, academic reputation, student quality, and curriculum. 
 
Later on, Ball and McCulloch (1984) conducted a survey using ten criteria (namely, 
Faculty Quality, Internationalization, Faculty Research, Reputation, Publications, 
Competence of Graduates, Graduate Placement, Student Quality, Number of Students, 
and Foreign Study Internships) to rank business schools by collecting 212 questionnaires 
from 1286 Academy of International Business members. In the same year, Laoria (1984) 
ranked business schools in New Jersey by sending questionnaires to 83 business schools 
in New Jersey and 65 corporations that had headquarters in New Jersey. Brecker & 
Merryman Inc. (1985) ranked American business schools by surveying executives at 134 
national companies of the 250 largest industrial and service firms. 
 
Following these ranking reports, a variety of studies discussing business school rankings 
appeared. Some studies explore the impact of rankings on business school values (Petrof 
et al., 1982) when other studies criticize the business school rankings and point out their 
flaws (Schatz, 1993). Some studies summarize how business school administrators and 
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faculties respond to these rankings (Elsbach and Kramer, 1996), some discuss the 
business school rankings from a market perspective (Tracy and Waldfogel, 1997), some 
found certain insights from current ranking systems (Dichev, 1999), some attempted to 
identify core courses and concentration areas from leading business schools (Segev, 
1999), some analyze how many constituencies could influence a business school 
programs and how the school responds to its constituencies (Trieschmann et al., 2000), 
and some studies evaluated the program efficiency or performance of business school 
(Colbert and Gioia, 2000; Walker and Black, 2000). 
 
Additionally, some literature focuses on ranking and remarking certain fields of business 
schools, including research performance ranking (Baden-Fuller et al, 2000), management 
information systems ranking (Lee, 2001), technology management ranking (Linton, 
2004), and international business orientation ranking (Chan et al., 2005). Other studies 
examine the relationship between business school rankings and research productivity in 
prestigious business journals (Christie et al., 2002; Siemens et al., 2005), the relationship 
between business school rankings and business school dean turnover (Fee et al., 2005), 
and the changes that business schools make based on business school rankings (Martins, 
2005). Finally, some studies analyze the key impacts on the business school community 
due to reputation rankings released by the media (Zell, 2005), and some try to find 
indicators of business school quality and build a conceptual framework for quality and 
ranking relations (Michael, 2005). 
 
Although various business school rankings exist, popular media such as FT and Econ 
(two most recognized resources in ranking worldwide business schools) and NWR and 
BW (two oldest resources in ranking American business schools) hold dominant 
influence to the public (including school deans and corporation recruiters). The criteria 
with their weights used by NWR and BW are summarized in Table 1, while the criteria 
used in FT and Econ are listed in Table 2. Tables 1-2 reveal that some criteria were 
commonly used by NWR, BW, FT, and Econ, while each ranking system has its unique 
highlights which encourage interested students to consider using its rankings as their 
reference. That is, one magazine ranking might place more emphasis on certain criteria 
(goal or mission) while another magazine might choose to emphasize on other area. The 
aforementioned may help explain why different publications produce different rankings 
and employ different methodologies to compile their lists. The detail information 
regarding these rankings is briefed in Appendix 1.  
 

Table 1 Criteria used by NWR and BW 
NWR BW 

k Criteria (c) Weight 
(w) k Criteria (c) Weight 

(w)
1 Peer Assessment Score 0.25 1 Student Survey 0.30 
2 Recruiter Assessment Score 0.15 2 Recruiter Survey 0.20 
3 Mean Undergraduate GPA 0.075 3 Median Starting salaries 0.10 
4 Mean GMAT Score 0.1625 4 MBA feeder school measure 0.10 
5 Acceptance Rate 0.0125 5 Average SAT Scores  0.06 

6 Mean Starting Salary and 
Bonus 0.14 6 Ratio of full-time faculty to students 0.06 
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7 Employment rate at 
Graduation 0.07 7 Average class size 0.06 

8 Employment in 3 Months 0.14 8 Percentage of business majors with 
internships 0.06 

   9 Hours students spend every week on 
school work 0.06 

 
Table 2 Criteria used by FT and Econ 

FT Econ 

k Criteria (c) Weight 
(w) k Criteria (c) Weight 

(w) 
1 Salary Today 0 1 Diversity of recruiters 0.0875 
2 Weighted Salary 0.2 2 Jobs found in 3 Months 0.0875 
3 Salary Percentage Increase 0.2 3 Jobs found through the career service 0.0875 
4 Value for Money Rank 0.03 4 Student assessment 0.0875 
5 Career Progress Rank 0.03 5 Ratio of faculty to students 0.0175 
6 Aims Achieved 0.03 6 Faculty with PhD 0.0350 
7 Placement Success Rank 0.02 7 Faculty rating by students 0.0350 
8 Employment at 3 Months 0.02 8 Average GMAT score 0.0656 
9 Alumni Recommendation Rank 0.02 9 Average work experience 0.0021 
10 Women Faculty 0.02 10 International diversity score 0.0291 
11 Women Students 0.02 11 Women Students 0.0291 
12 Women Board 0.01 12 Culture and classmates rating by 

students 
0.0291 

13 International Faculty 0.04 13 Program and electives rating by 
students 

0.0021 

14 International Students 0.04 14 Overseas exchange programs 0.0021 
15 International Board 0.02 15 Number of Languages on offer 0.0021 
16 International Mobility Rank 0.06 16 Facilities and services rating by 

students 
0.0021 

17 International Experience Rank 0.02 17 Salary increased 0.1250 
18 Number of Languages on offer 0.02 18 Leaving Salary 0.1250 
19 Faculty with Doctorates 0.05 19 Breadth of alumni network 0.0999 
20 FT Doctoral Rank 0.05 20 Internationalism of alumni 0.0999 
21 FT Research Rank 0.10 21 Alumni effectiveness 0.0999 
 
 
Notably, since the current ranking systems originate to offer a student guidance about 
how to select a business school that best fits his/her needs (Business Week, 2006 and 
2009; Financial Times, 2006 and 2009; Economist, 2009; U.S. News & World Report, 
2009; Lavelle, 2009), these rankings are designed to make it easier for prospective 
students to compare institutions on a set of limited measuring criteria rather than offer a 
business school comprehensive and systematic guidance about how to devise a 
development strategy that best fits its interests. That is, current rankings do not give 
schools clear hints on their strategy developments. As a result, the goal of this research is 
to propose a novel clustering method, called cluster ranking framework, that will help 
business schools to devise development strategies by visualizing their aspirational 
schools (the upper cluster schools they wants to upgrade to in future) and competitive 
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schools (the same cluster schools they needs to compete with at present). 
 
3. Cluster Ranking Algorithm 
 
Clustering is one of the oldest and important activities of human beings, and one of most 
used techniques to partition a set of observations into a set of meaningful groups where 
observations are similar to each other if they belong to the same group while observations 
are dissimilar to each other if they belong to different groups. Clustering techniques, first 
used by Tryon in 1939 (Cooper, 1963; Sokal and Sneath, 1963; Hakimi, 1965; Tryon and 
Bailey, 1970), have been investigated over decades and applied to a wide variety of fields 
such as psychology, biology, sociology, ecology, taxonomy, medicine, culture, marketing, 
economic, and pattern recognition in various sciences (Hartigan, 1975; Can and 
Ozkarahan, 1984; Aronson and Klein, 1989; Murray, 1999; Farley and Raftery, 2002; 
Zhang et al., 2005; Gugler and Brunner, 2007; Bar-Yossef et al., 2008; Xu and Wunsch II, 
2008; Sharma and Wadhawan, 2009). 
 
Clustering is an unsupervised classification technique, has been studies extensively in 
statistics, machine learning, and data mining over decades, and can be broadly classified 
into five approaches: partition-based clustering, hierarchical clustering, density-based 
clustering, grid-based clustering, and model-based clustering (Zhang et al., 2005; Han and 
Kamber, 2006). Partition-based clustering is to partition observations into some 
pre-specified number of clusters and them evaluate them by pre-defined criteria, 
hierarchical clustering is to partition observations by creating a hierarchical 
decomposition tree via either agglomerative or divisive approach, density-based 
clustering considers clusters as regions and partition observations by judging the density 
function within a specified neighboring scope, grid-based clustering uses a grid data 
structure to quantize the data space into a finite number of cells on which clustering is 
then carried out, and model-based clustering is to partition observations by optimizing the 
fit between the data and the used model. 
 
The literature reveals that the conventional clustering methods are usually simply 
designed to classify observation into low dimension and cope with linear distance 
relationships between observations. The reason is heavily due to the curse of 
dimensionality, introduced by Bellman (1961), which describes the computational 
complexity is the explosive growth of dimensionality of the observation vector (Murtagh 
et al., 2000; Donoho, 2000). Comparing to abundant traditional clustering that partitions 
observations into two-dimension space with the coordinates of x-axis and y-axis, this 
study presents a cluster ranking framework which is able to cluster schools on a 
three-dimension space with the coordinates of x-axis, y-axis, and z-axis. Obviously, in 
one dimension, all observations are clustered very close and not easily to be visualized, 
meanwhile in two dimension, all clustered observations become more sparse but 
restricted to deal with linear distance. As shown in Fig. 1, a three-dimension sphere can 
depict three points that do not obey the triangular inequality, as depicted in Figs. 1(a) and 
1(b), and can show four points which not on the same plane, as depicted in Fig. 1(c). 
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The ‘trick’ this study use to achieve this breakthrough result is that using two axes to 
cluster observations while the third axis is predetermined to interpret the rankings of 
business schools. Accordingly, rather than simply partitioning observations into clusters, 
this proposed cluster ranking framework is to partition business schools into the 
three-dimension space positioning by 3 non-parallel vectors of x-axis, y-axis, and z-axis. 
The initial idea behind using one-axis (the vertical middle axis of the sphere) to interpreting 
school rankings is that a business school cares not only its rank, but also the “ranking tier” 
it belongs to. That is, a school needs to focus on the comparison with its aspirational 
schools (the upper tier schools it wants to be in future) and its competitive schools (the 
same tier schools it needs to compete with at present). Therefore, this study attempts to 
provide this kind of “tier” knowledge for each business school, while clustering business 
schools in terms of their homogeneity (or heterogeneity).  
 
During clustering observations, finding the optimal number of clusters is another 
challenge work and has been considered as a NP-hard problem (Rinzivillo et al., 2008). 
Since the literature reveals that k-means algorithm is well-known for its efficiency and 
widely applied in practice, particularly for observations with numerical attributes (Everitt 
et al., 2001), the k-means is employed to determine the optimal number of clusters in this 
study. That is, this work first partitions business schools into k groups where k is 
initialized as 2, and add 1 to k at each iterative procedure until the within-cluster sum of 
squares is increasing. That is, clustering observations is terminated when the 
within-cluster sum of squares is increasing, while clustering observations is continuing as 
long as the within-cluster sum of squares is decreasing 
 
Given a set of observations (x1, x2, …., xn) where n is the number of observations, the 

within-cluster sum of squares can be obtained by ∑ ∑
= ∈

μ−
K

1k GX

2
ki

kI

||x|| where K is the total 

number of cluster, ki Gx ∈ means the observation xi is partitioned into the k’th cluster 
(group), and kμ is the mean value of observations in the k’th cluster. Taken the above 
together, the algorithm of clustering business schools into three-dimension sphere with 
maintaining their ranking orders by one axis is described as follows. 
 
Cluster Ranking Algorithm 
 
Step 1:  To choose criteria (attributes) to rank schools 
Step 2:  To compute all dissimilarity (similarity) between schools  
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Step 3:  To partition schools into k clusters and obtain the means of k clusters based on 
k-means algorithms, and the process continues until the minimum of 

within-cluster sum of squares, computing by∑ ∑
= ∈

μ−
K

1k GX

2
ki

kI

||x|| , is found. 

Step 4:  To obtain the center of each cluster and allocate each school on the sphere in 
terms of three-plane coordinates. 

 
4. Proposed Cluster Ranking Method 
 
This section is organized as six subsections. The first subsection formulates the ranking 
functions, the second one briefs how to calculate the dissimilarity coefficients, the third 
describes the rule for allocating objects on three-dimension sphere, the fourth introduces 
the computation of the coordinates of business schools, the fifth describes how to 
compute centric points for k clusters, and the six subsection is to present the model for 
computing coordinates of each cluster’s group center. 
 
4.1 Ranking business schools  
Notably, it has long been recognized that not all attributes contribute equally to valuing 
objects (DeSarbo et al., 1984; Donoghue, 1990; xxxxx, 200?; Steinley and Brusco, 2008), 
while no matter which clustering technique is used, an important step is to select 
attributes to define objects. Following the tables 1-2, NWR, BW, FT and Econ employ 
two types of data to assess business schools. One is soft data collected from opinion 
surveys of deans, faculties, students, alumni, and recruiters, and the other is hard data 
gathered from publicly available resources or provided by the schools (Elsbach and 
Kramer, 1996; Martins, 2005; Zell, 2005; Lavelle and Lehman, 2006; Joyce, 2006; 
Milton, 2006; Morse and Flanigan, 2006).  
 
After extensively reviewing the reports released by the NWR, BW, FT, and Econ (Morse 
and Flanigan, 2006 and 2009; Business Week, 2006 and 2009; Financial Times, 2006 and 
2009; U.S. News & World Report, 2006, 2007, and 2009; Economist.com, 2009), this 
research found that all rankings in the media are subjective and assessed by the 
combination of different criteria with different weights suggested, modified, and 
determined by experts and survey project leaders invited by individual media over the 
time. That is, the weights on criteria every year have been discussed, debated, and 
adjusted to fit the expected awareness centered on the invited professionals, each media 
focus, and the public interests. Consequently, following Tables 1 and 2, the ranking 
functions used by NWR, BW, FT, and Econ can be formulated as the follows: 
 
NWR Ranking Function 

si = ∑∑
= =

I

i k
ikk cw

1

8

1
)(              (1) 

BW Ranking Function 

si = ∑∑
= =

I

i k
ikk cw

1

9

1

)(              (2) 
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FT Ranking Function 

si = ∑∑
= =

I

i k
ikk cw

1

21

1
)(              (3) 

Econ Ranking Function 

si = ∑∑
= =

I

i k
ikk cw

1

21

1

)(              (4) 

 
In (1)-(4), si denotes the score of i’th school, I denotes the number of surveyed business 
schools, wk represents the weight of k’th criteria, and cik is the value of k’th criteria of i’th 
school. 
 
4.2 Calculating the dissimilarity between business schools 
After using weighting attributers to rank business schools, the next important step is to 
generate the dissimilarity matrix between business schools. Accordingly, to calculate the 
similarity between schools, the dissimilarity function is formulated below: 

dij =∑
= −

−L

k kk

kjki
k cc

cc
w

1

,, ||
,                                        (5) 

where ci,k denotes the value of the attribute k for school I, kc  and kc  denote the upper 
and lower bounds of ci,k, L is the number of attributes, kw  are weights for attribute k. 
Accordingly, if ci,k = cj,k for all k then dij = 0, and if ci,k = kc  and ci,k = kc  then dij = 1. 
Besides, 0≤  dij ≤1 and dij = dji. 
 
4.3 Rule for allocating objects on three-dimension sphere 
Denote the coordinates of the i’th school as (xi, yi, zi), where 10 ≤≤ ix , 10 ≤≤ iy , and 

10 ≤≤ iz . The following proposition is presented.  
 
Proposition 1 
The relationship between zi and si (the score of the i’th school) is computed as zi=2si-si

2 
Proof: Let jijid ,, 2δ= , such that if ji,δ  = 0 then di,j = 0 and if ji,δ  = 1 then di,j = 2 , 

where 2  is used because the distance between the north pole and equator is 2  when 
radius = 1. Since 2

,*id  = 222 )1()0()0( −+−+− iii zyx  = 2
,*2 iδ  = 2(1-si)2, it is clear 

that .2 2
iii ssz −=  

 
Accordingly, the rules of allocating objects on spheres with maintaining ranking orders 
are described below. 
(i) For three objectives i, j, and k, if the dissimilarity of i and j points is higher than that 

of i and k points, then the distance of ji
�

 arc is larger than that of ki
�

 arc. This 
relationship can be expressed as: 
if dij > dik than (xi-xj)2+(yi-yj)2+(zi-zj)2 > (xi-xk)2+(yi-yk)2+(zi-zk)2  

(ii) The relationship between zi and si (the score of the i’th school) is computed as 
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 zi=2si-si
2                    

 
4.4 Computing coordinates for business schools 
Following the above rules, a point in space can be positioned by 3 non-parallel vectors. 
Therefore, all coordinates for business schools can be generated by the following model: 
 
Model for computing coordinates for business schools 

},,{ iii zyx
Min    Obj = ∑∑

= >

−
IJ

i

IJ

ij
ijij dq

1

2)(            (6) 

subject to zi = )ss2*(5.0 2
iie − , ∀  i, j,                                   (7) 

      qij
2 = jizzyyxx jijiji ,   ,)()()( 222 ∀−+−+− ,            (8) 

        i    , 1zyx 2
i

2
i

2
i ∀≤++ ,                             (9) 

        1y,x1 ii ≤≤− , 1z0 i ≤≤ , i∀ ,                 (10) 
where Obj is the objective function intending to minimize the sum of difference between 
qij and dij; IJ represents the number of clusters, qi,j denotes the distance between objects i 
and j, dij come from dissimilarity matrix generated by Formula (5), and xi, yi, and zi are 
coordinates of the school i on a sphere. Constraint (7) is to specify the relationship 
between zi and si based on Proposition 1, which provides a scale adjustment for schools. 
Constraint (8) is the Euclidian distance between i and j schools. Constraint (9) aims to 
ensure that all points must allocate on the inside or surface of a sphere. Constraint (10) is 
to ensure all schools plotted on the northern hemisphere for comparison convenience. 
Notably, the concept of monotonic increasing function is used to scale z value for all 
schools in the presented cluster ranking methodology, and si is determined by Formula of 
(1)-(4). 
 
4.5 Computing centric points for k clusters 
As we know, to determine the optimal number of clusters is one of the major challenges 
for clustering, not just for k-means (Xu and Wunsch II, 2008). Since k-means algorithm is 
well-known for its efficiency and widely applied in practice, particularly for observations 
with numerical attributes (Everitt et al., 2001), the proposed method partitions schools 
into k clusters and obtain the means of k clusters based on k-means algorithms, and the 
iterative process continues until the minimum of within-cluster sum of squares is found. 
Hence, the model for computing k centric points for k cluster is formulated as follows. 
 
Model for computing k centric points for k clusters 
Minimize ∑∑ − 2)ˆ( ijij dd                (11) 
Subject to: zi = 2si – si

2,             (12) 
         dij

2 = (xi-xj)2 + (yi-yj)2 + (zi-zj)2,          (13) 
i    , 1zyx 2

i
2
i

2
i ∀≤++ ,                            (14) 

         pqij dy ˆˆ ≤ - ε,             (15) 

         mind̂ = amin × t,             (16) 
         maxd̂ = amax × t,              (17) 
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  2t
2

22
≤≤

+                                              (18) 

where dij is dissimilarity degree between school i and school j, xi, yi, and zi are 
coordinates of the school i on a three-dimension sphere, x-axis is latitude, y-axis is 
longitude, z-axis is the vertical middle axis of the sphere to reflect school ranks, the 
constraint (12) is to determine the zi of each centric point, the constraint (15) is to 
determine the distance between school i and school j subject to their dissimilarity matrix 
created by their attributes, the constraint (16) is to determine the smallest value of the 
distance among clusters, the constraint (17) is to determine the biggest value of the 
distance among clusters, and the constraint (18) is to set the scope of allowance of the 
value t. 
 
4.6 Computing coordinates for each cluster center 
 
Following the rules of allocating objects on spheres, the model for computing coordinates 
of each cluster’s group center is presented below: 
 
Computing center’s coordinates for each cluster 
Minimize ∑ ∑

+=

−
kGGij

2
ijij )d̂d(  , ∀  g, g = 1, 2, …., k      (19) 

Subject to: zi = 2si – si
2,             (20) 

         dij
2 = (xi-xj)2 + (yi-yj)2 + (zi-zj)2,        (21) 

         ijd̂  = aijk × t,            (22) 
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2
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2
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          xi = Gi, yi = Gy, i = 1, 2, …, k                     (24) 

  2t
2

22
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+                                             (25) 

where the constraint (22) is to set the value of ijd̂  being the power of t of aijk which is 
the dissimilarity coefficient between clusters i and j in the dissimilarity matrix created 
from the k’th clusters’ attributes coming from Model of (11)-(18), and the values of xi and 
yi for center’s coordinates of each cluster i is determined by the constraint (24) and the 
value of zi is determined by the constraint (20). 
 
 
5. Numerical Analysis  
 
The first part of this section is to analyze the current business ranking results, while the 
second part is to analyze the results generated by the proposed cluster ranking method.  
 
5. 1 Analysis of Current Business School Ranking Results 
 
Following Tables 1-2 and Ranking Functions (1)-(4) used by NWR, BW, FT, and Econ, 
the scores of worldwide business schools can be generated. However, for the purpose of 
simplifying illustration, this work use top 50 American business schools ranking data 
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during the last five-year period produced by NWR and FT. Since FT ranked worldwide 
business schools, the rankings listed in the columns of FT are renumbered after removing 
non-American business schools (as shown in Table 3). Besides, the “i” (from 1 to 50) 
appearing in the first column of Table 3 is numbered by the order of NWR ranks in 2009. 
Accordingly, the scores of the top 50 American business schools during 2005-2009, 
ranking by NWR and FT by their respective ranking function (1) and (3), are displayed in 
Tables 3 and 4. 
 

Table 3 Top American business schools ranked by NWR and FT during 2008-2009 

i Abbreviation of 
School Name 

2009 2008 

NWR FT NWR FT 

Rank(Score) Rank*(Score) Rank(Score) Rank* (Score) 

1 Harvard University 1 (0.9122) 2 (0.7387) 1 (0.9313) 4 (0.6718) 
2 Stanford University 2 (0.8987) 4 (0.6631) 2 (0.9273) 3 (0.6803) 
3 University of Penn 3 (0.8293) 1 (0.7912) 3 (0.8604) 1 (0.6955) 
4 Northwestern University 3 (0.8293) 10 (0.5854) 4 (0.8503) 10 (0.6211) 
5 MIT 5 (0.8108) 5 (0.6542) 4 (0.8503) 5 (0.6544) 
6 University of Chicago 5 (0.8108) 7 (0.6157) 4 (0.8503) 6 (0.6517) 
7 University of California – Berkeley 7 (0.7890) 16 (0.5172) 7 (0.7958) 15 (0.5846) 
8 Dartmouth University 8 (0.7625) 8 (0.6090) 7 (0.7958) 8 (0.6359) 
9 Columbia University 9 (0.7270) 3 (0.6812) 9 (0.7626) 2 (0.6887) 

10 Yale University 10 (0.7182) 9 (0.5874) 13 (0.6630) 9 (0.6310) 
11 NYU 11 (0.6877) 6 (0.6322) 10 (0.7137) 7 (0.6398) 
12 Duke University 12 (0.6724) 11 (0.5766) 14 (0.6529) 14 (0.5933) 
13 University of M. – Ann Arbor 13 (0.6302) 12 (0.5665) 12 (0.6871) 13 (0.5984) 
14 UCLA 14 (0.6278) 15 (0.5215) 11 (0.6981) 11 (0.6153) 
15 University of Virginia 15 (0.6268) 14 (0.5403) 14 (0.6529) 16 (0.5831) 
16 Carnegie Mellon University 15 (0.6268) 24 (0.4148) 17 (0.6341) 23 (0.5522) 
17 Cormell University 17 (0.6138) 17 (0.5002) 14 (0.6529) 17 (0.5802) 
18 University of Texas – Austin 18 (0.5465) 23 (0.4207) 18 (0.5798) 43 (0.4365) 
19 Georgetown University 19 (0.5392) 18 (0.4886) 22 (0.5208) 19 (0.5737) 
20 University of North Carolina 20 (0.5232) 21 (0.4449) 19 (0.5486) 20 (0.5684) 
21 University of South California 21 (0.4869) 32 (0.3517) 21 (0.5228) 30 (0.5333) 
22 Emory University 22 (0.4761) 13 (0.5478) 24 (0.4818) 12 (0.6077) 
23 Indiana U. – Kelley 22 (0.4761) 31 (0.3589) 20 (0.5391) 31 (0.5236) 
24 GIT     
25 Washington U. in St. Louis 22 (0.4761) 33 (0.3476) 25 (0.4795) 39 (0.4718) 
26 Ohio State University 26 (0.4718) 47 (0.2582) 27 (0.4480)  
27 University of Washington 26 (0.4718) 38 (0.3178) 34 (0.4016) 21 (0.5661) 
28 U. of Wisconsin – Madison     
29 Arizona State University 29 (0.4083) 44 (0.2745)   
30 Brigham Young University   29 (0.4441) 48 (0.3862) 
31 University of Rochester 29 (0.4083) 22 (0.4287) 25 (0.4795) 22 (0.5618) 
32 Purdue University 32 (0.3928) 46 (0.2660) 33 (0.4237) 34 (0.5084) 
33 Texas A&M University 33 (0.3648) 30 (0.3726) 29 (0.4401) 32 (0.5196) 
34 U. of Minnesota – Twin Cities 33 (0.3648) 42 (0.2935)   
35 University of Notre Dame 33 (0.3648) 45 (0.2682) 34 (0.4016) 45 (0.4176) 
36 Vanderbilt University 33 (0.3648) 28 (0.3913) 44 (0.3268) 44 (0.4222) 
37 University of. Florida 37 (0.3428) 34 (0.3432) 34 (0.4016) 36 (0.4936) 
38 Rice University 38 (0.3303) 25 (0.4025) 40 (0.3507) 35 (0.4988) 
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39 U. of Illinois – Urbana Champaign 38 (0.3303) 27 (0.3966) 38 (0.3902) 37 (0.4876) 
40 Michigan State University 40 (0.3186) 35 (0.3384) 40 (0.3507) 24 (0.5507) 
41 Penn State University 40 (0.3186) 37 (0.3219) 40 (0.3507) 28 (0.5436) 
42 University of California – Davis   44 (0.3268) 29 (0.5412) 
43 U. of Maryland –College Park 40 (0.3186) 20 (0.4467) 39 (0.3574) 18 (0.5765) 
44 Boston College 44 (0.3095) 50 (0.2344) 34 (0.4016) 50 (0.3368) 
45 University of Iowa 44 (0.3095) 36 (0.3355) 49 (0.2679) 25 (0.5623) 
46 Boston University 46 (0.2893) 29 (0.3885) 40 (03507) 40 (0.4667) 
47 Southern Methodist University 47(0.2735) 41 (0.2958)   
48 Tulane University     
49 Babson College   48 (0.2986) 49 (0.3411) 

* The ranking is renumbered after removing non-American business schools. 
 
Table 4 Top American business schools ranked by NWR and FT during 2005-2007 

i Abbreviation of 
School Name 

2007 2006 2005 

NWR FT NWR FT NWR FT 

Rank(Score) Rank*(Score) Rank(Score) Rank* 
(Score) Rank(Score) Rank* 

(Score) 
1 Harvard 1 (0.9465) 3 (0.5863) 1 (0.9517) 2 (0.7320) 1 (0.9400) 1 (0.7655) 
2 Stanford 2 (0.9357) 3 (0.5863) 2 (0.9308) 3 (0.7288) 2 (0.9156) 4 (0.6917) 
3 U. of Penn 3 (0.8823) 1 (0.5946) 3 (0.9227) 1 (0.7599) 2 (0.9038) 1 (0.7655) 
4 Northwestern 5 (0.8430) 11 (0.4973) 4 (0.8447) 11 (0.6168) 4 (0.8481) 9 (0.5893) 
5 MIT 4 (0.8597) 9 (0.5218) 4 (0.8447) 8 (0.6725) 4 (0.8481) 10 (0.5661) 
6 Chicago 5 (0.8430) 5 (0.5796) 6 (0.8360) 5 (0.6820) 8 (0.7642) 5 (0.6793) 
7 UC – Berkeley 8 (0.8084) 14 (0.4802) 7 (0.7846) 11 (0.6343) 6 (0.7880) 10 (0.5661) 
8 Dartmouth 7 (0.8300) 7 (0.5535) 9 (0.7680) 7 (0.6728) 6 (0.7880) 6 (0.6773) 
9 Columbia 9 (0.7372) 2 (0.5902) 7 (0.7846) 4 (0.7184) 9 (0.7529) 3 (0.7381) 

10 Yale 14 (0.6633) 8 (0.5391) 15 (0.6162) 9 (0.6502) 15 (0.5947) 7 (0.6514) 
11 NYU 10 (0.7143) 6 (0.5668) 13 (0.6676) 6 (0.6793) 13 (0.7086) 7 (0.6514) 
12 Duke 12 (0.6673) 13 (0.4819) 11 (0.6997) 13 (0.5547) 11 (0.7154) 14 (0.5485) 
13 U. of M. – Ann Arbor 11 (0.6689) 11 (0.4973) 11 (0.6997) 10 (0.6378) 10 (0.7205) 12 (0.5625) 
14 UCLA 16 (0.6469) 10 (0.4301) 10 (0.7133) 13 (0.6098) 11 (0.7154) 17 (0.4737) 
15 U. of Virginia 12 (0.6673) 15 (0.4726) 13 (0.6676) 12 (0.5703) 14 (0.5947) 15 (0.5148) 
16 Carnegie Mellon 17 (0.6356) 24 (0.4158) 16 (0.5953) 23 (0.5075) 17 (0.5705) 22 (0.4503) 
17 Cormell 14 (0.6633) 16 (0.4698) 16 (0.5953) 18 (0.5303) 15 (0.5947) 16 (0.4896) 
18 U. of Texas – Austin 18 (0.5706) 35 (0.3509) 18 (0.5402) 36 (0.4299) 18 (0.4751) 34 (0.3483) 
19 Georgetown 25 (0.4211) 20 (0.4322) 34 (0.3784) 19 (0.5141) 27 (0.3652) 22 (0.4503) 
20 U. of North Carolina 18 (0.5706) 18 (0.4467) 20 (0.4914) 16 (0.5379) 21 (0.4491) 13 (0.5597) 
21 U. of South California 21 (0.4976) 40 (0.3217) 29 (0.4142) 29 (0.4577) 26 (0.3744) 25 (0.4407) 
22 Emory 20 (0.5369) 19 (0.4359) 18 (0.5402) 24 (0.5065) 18 (0.4751) 18 (0.4670) 
23 Indiana U. – Kelley 24 (0.4301) 37 (0.3497)     
24 G. I. T. 25 (0.4211) 49 (0.2134) 34 (0.3784) 44 (0.3979) 32 (0.3356) 44 (0.2348) 
25 Washington U. in St. 

Louis 
29 (0.4165) 39 (0.3232) 26 (0.4187) 28 (0.4643) 32 (0.3356) 37 (0.3210) 

26 Ohio State 22 (0.4819) 46 (0.2418) 22 (0.4650) 39 (0.4118) 21 (0.4491) 42 (0.2630) 
27 U. of Washington 29 (0.4165) 31 (0.3814) 29 (0.4142) 35 (0.4340)   
28 U. of Wisconsin – 

Madison 
29 (0.4165) 47 (0.2225) 31 (0.3921) 44 (0.3979)   

29 Arizona State 41 (0.3408) 31 (0.3814) 34 (0.3784) 38 (0.4158) 31 (0.3610) 37 (0.3210) 
30 Brigham Young 41 (0.3408) 31 (0.3814) 34 (0.3784) 26 (0.4870) 40 (0.2726) 30 (0.4037) 
31 U. of Rochester 36 (0.3769) 21 (0.4234) 26 (0.4187) 22 (0.5080) 23 (0.4267) 18 (0.4670) 
32 Purdue 22 (0.4819) 29 (0.3910) 21 (0.4697) 41 (0.4052)   
33 Texas A&M 29 (0.4165) 43 (0.2671) 31 (0.3921) 47 (0.3878) 32 (0.3356) 45 (0.2051) 
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34 U. of Minnesota – 
Twin Cities 

25 (0.4211) 26 (0.4086) 23 (0.4562) 32 (0.4401) 23 (0.4267) 32 (0.4029) 

35 U. of Notre Dame 39 (0.3424) 37 (0.3497) 31 (0.3921) 33 (0.4359) 32 (0.3356) 26 (0.4248) 
36 Vanderbilt U. 34 (0.3815) 34 (0.3737) 49 (0.2398) 34 (0.4356) 45 (0.2565) 21 (0.4529) 
37 U. of. Florida   41 (0.3291) 48 (0.3866)   
38 Rice U. 48 (0.2531) 28 (0.4049) 44 (0.3105) 37 (0.4220) 49 (0.2169) 28 (0.4162) 
39 U. of I.– Urbana 

Champaign 
37 (0.3722) 21 (0.4234) 28 (0.4130) 21 (0.5171) 27 (0.3652) 29 (0.4151) 

40 Michigan State 29 (0.4165) 21 (0.4234) 23 (0.4562) 17 (0.5359) 32 (0.3356) 30 (0.4037) 
41 Penn State 34 (0.3815) 25 (0.4122) 38 (0.3357) 25 (0.4987) 37 (0.3289) 33 (0.3911) 
42 UC – Davis 46 (0.2985) 41 (0.3129) 46 (0.2945) 43 (0.4008) 42 (0.2714) 41 (0.2525) 
43 U. of Maryland 

-College Park 
25 (0.4211) 17 (0.4547) 38 (0.3357) 20 (0.5244) 27 (0.3652) 20 (0.4618) 

44 Boston College 39 (0.3424) 30 (0.3826) 41 (0.3291) 27 (0.4667)   
45 U. of Iowa 50 (0.2160) 26 (0.4086)   37 (0.3289) 22 (0.4503) 
46 Boston U. 41 (0.3408) 35 (0.3509) 44 (0.3105) 31 (0.4489) 48 (0.2344) 27 (0.4190) 
47 Southern Methodist   41 (0.3291) 40 (0.4078)   
48 Tulane 45 (0.3114) 48 (0.2178)   45 (0.2565) 39 (0.3050) 
49 Babson College 41 (0.3408) 45 (0.2585) 49 (0.2398) 41 (0.4052)   

* The ranking is renumbered after removing non-American business schools. 
 
 
Since the top 50 American business schools in each press (i.e., NWR and FT) are not 
same, for the purpose of demonstration convenience, Tables 3 and 4 only shows the 
schools ranked within the top 50 schools in both FT and NWR from 2005-2009. For 
example, NWR consecutively ranked Georgia Institute of Technology (GIT) and 
University of Wisconsin (Madison) in the Top 30, but these schools were consecutive 
ranked out of Top 50 by FT. Similarly, University of Arizona, Thunderbird University, 
University of South Carolina, and George Washington University were consecutively 
ranked in Top 50 in FT, but these four universities never appeared in the Top 50 of NWR 
rankings. These findings also confirm that ranking inconsistency does exist among 
dominant ranking systems. 
 
In contrast, both tables also indicate that forty American business schools were 
consecutively ranked in top 50 in both FT and NWR ranking systems during 2005-2009. 
Looking at specific schools during 2008-2009, both FT and NWR consecutively ranked 
University of Pennsylvania superior to Massachusetts Institute of Technology (MIT), 
MIT superior to University of California (Berkeley), University of California (Berkeley) 
superior to Carnegie Mellon University, Carnegie Mellon University superior to 
University of South California, University of South California superior to Washington 
University (in St. Louis), and Washington University (in St. Louis) superior to University 
of North Dame. Many other consistent ranking orders during 2005-2009 can be also 
found in Tables 3-4. These findings reveal that common superior ranking relations (or 
called inferior ranking relations) do exist in dominant ranking systems. 
 
Tables 3-4 also indicate that even within the same ranking system, some schools’ ranks 
changed significantly between years. For example, in only one year, Purdue University 
fell from 22 in 2007 down to 33 in 2008 under the same ranking system (NWR). Take the 
University of Texas (Austin) as another example: the University of Texas (Austin) was 
ranked 43 in 2008 and up to 23 in 2009 under the same ranking system (FT). How did a 
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university regress or advance so quickly within one year? Particularly, during the same 
years 2008-2009, the University of Texas (Austin) was ranked at the same position (the 
18th place) in the NWR ranking system. Similarly, when NWR ranked Purdue University 
as the 32-33th place in 2008-2009, Purdue University fell from 34 in 2008 down to 46 in 
2009 under the FT ranking system. Accordingly, this study re-computed the business 
schools rankings based on Functions (1) and (3) by randomly selecting ten schools from 
Tables 3-4, meanwhile a 5% change was made in the weight on Salary Percentage 
Increase for FT and a 5% percent change in the weight on Mean Starting Salary and 
Bonus for NWR. In doing so, this research found the average difference in rank change 
was 11.3 places, which reveals that a little change in a school’s input data may cause a 
big difference in its score and rank. That is, school rank is sensitive to collected data. 
 
Looking at FT and NWR rankings during 2005-2007, this work found that Indiana 
University was not ranked in the Top 50 by FT in 2005-2006 and the University of 
Washington was not ranked in the Top 50 by FT in 2005, but these two schools were 
continuously ranked in the top 50 by NWR during 2005-2009. The University of 
California (Irvine) was only ranked in the top 50 by NWR in 2008, but this school was 
consecutively ranked in the top 50 by FT during 2005-2009. Besides, some schools’ ranks 
such as Harvard University, University of California (Berkeley), and University of Texas 
(Austin) in NWR were always better than them in FT during 2005-2009. Similarly, 
during 2005-2009, some schools’ ranks such as University of Pennsylvania, Yale 
University, New York University (NYU), and Rice University in FT were always better 
than them in NWR. According to the above observation, this research substituted a NWR 
system’s criterion (i.e., Average Starting Salary) by a FT system’s criterion (e.g., Aims 
Achieved), and then re-computed the business schools via Functions (1) and (3). Such a 
doing, the paper found that around 63% of school ranks across 2005-2009 were altered, 
which reveals that one magazine ranking might place more emphasis on certain area 
while another magazine might choose to emphasize on other area. That is, the ranks of 
schools heavily depend on from which angles to view the schools.  
 
Following the above discussion, this research subsequently decreased 0.01 of the weights 
of the top half of criterion except for criterion 1 because its weight is zero (which means 
the criterion 1 not used to assess the schools in FT system) as shown in Table 2, and 
increased 0.01 of the weights of the bottom half of criterion. After using Functions (1) 
and (3) to re-calculate the business schools scores, this work found that approximate 54% 
of school ranks across 2005-2009 are changed. This phenomenon is similarly occurred in 
NWR system. Nevertheless, empirical results generated by Functions of (1) and (3) 
reveal that any little changes on the weights of specific criteria will significantly alter the 
ranks of business schools. As a result, school rank is sensitive to weights on evaluation 
criteria because the weights on criteria play critical roles of generating the scores for 
specific business schools. 
 
Although slight changes in criterion selection or weights on criteria, the school ranks are 
significantly impacted, this research also noticed that approximate 80% of schools in the 
top tier (ranked 1-15) and around 60% of schools in the second tier (ranked 16-30) or in 
the third tier (ranked 30-49) stay in the same tier via the weights or criteria simulation. 
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Taking the data in 2007 listed in Table 4 for instance, after examining results of the 
weights or criteria simulation, 14 of the top 15 schools were same in NWR and FT, and 
only one debate is to take Cornell or UCLA into the Top 15. For the schools belonging to 
ranked 16-30 or 30-49, after examining results of the weights or criteria simulation in 
NWR and FT, 14 schools of 33 schools were changed between the second tier and third 
tier. Consequently, change in ranking place is easier than in ranking tier when few 
changes occur in the school data, which reveals that the rank tier of a school is more 
stable than the rank position of a school. 
 
5.2 Analysis of Cluster Ranking Business Schools 
 
Building in the above, the proposed Cluster Ranking Framework works in five phases: 
ranking business schools, generating dissimilarity matrix, determining the number of 
cluster by k-means algorithm, calculating the coordinates of business schools and centers 
of k clusters, and plotting business schools on three-dimension sphere with keeping their 
ranking orders.  
 
5.1 Ranking business schools  
Without losing the generality, this study randomly NWR and FT as resource data from 
prevailing business school ranking systems such as NWR, FT, BW, and Econo. The 
reason may be attributed to NWR is the oldest medium in ranking American business 
schools and FT is the first medium in ranking worldwide business schools. Accordingly, 
the top American business schools’ rankings during the last five-year are summarized as 
Tables 3 and 4, based on NWR and FT. 
 
5.2 Generating dissimilarity matrix 
 
Take ranking data of NWR and FT during 2005-2009 (shown in Tables 3-4), the 
similarity coefficients between business schools can be calculated by Formula of (5). The 
dissimilarity matrixes among top American business schools are then formed as Tables 5 
and 6 for NWR and FT systems, respectively. The value of dissimilarity coefficient 
between schools represents the degree of dissimilarity. That is, the smaller the value of 
dissimilarity coefficient, the more similar two business schools are. For example, d12 = 
0.0646 and d13 = 0.1310 express that the dissimilarity degree between the schools 1 and 3 
is double that between the schools 1 and 2. 
 

Table 5 Part of Dissimilarity Matrix for NWR system at 2009 

i 
j 

……….……………

…….. 7 8 9

0  0.0646 0.1310  0.1610 0.1582   …………………………     0.6579  0.6486  0.5781  



      

 34

      0  0.1287  0.1494 0.1193    ……………………………  0.6463  0.6530  

0.5697 

            0   0.1438 0.1476   ……………………………   0.6324  0.6350   

0.5697 

                 0    0.0608    ……………………………  0.5331  0.5238  

0.4566 

                        0     ……………………………   0.5427  0.5495   

0.4661 

                            ……… 

                                …………        

                                     ………… 

…………     0     0.1627   0.2519 

                                                                0     

0.2724 

                                                                         

0 

4

7 

4

8 

4

9 

 

Table 6 Part of Dissimilarity Matrix a for FT system at 2009 

i ……….………………….

. 7 8 9

0    0.065  0.1373  0.1662  0.1553    ………………………              0.6495    0.6461   0.5754 
       0      0.1315  0.1488  0.1198       ………………                  0.6347    0.6410   0.5676 

              0     0.1479  0.1440          ………………               0.6354    0.6289   0.5536 
                         0      0.0663         ………………                0.5266    0.5159   0.453 
                                     0               ………………             0.5341   0.5274   0.4361 

                            
                          …… 
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                                                    ………  
                                                             ………. 

….…             0       0.1823   0.2429 
                                                   0      0.235  

  0  

 

5.3 Determine the optimal number of cluster  
 

Following k-means algorithms, the following table is generated.  

 

Table 7 The total variance within-cluster observations 

Number of 
Cluster 

NWR FT 
the within-cluster sum of squares the within-cluster sum of squares 

2 252.745 324.76 
3 212.47 289.45 
4 178.56 254.13 
5 145.67 206.76 
6 167.43 233.54 
7 192.33 267.77 
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5.4 Calculating the coordinates of business schools and centers of k clusters 
 

Following the cluster ranking framework, the coordinates of business schools are 
computed, where the x-axis and y-axis are used to gauge the differences between schools 
while z-axis (the vertical middle axis of the sphere) is to reflect school ranks. 
 
 
5.5 Calculating the coordinates of business schools and centers of k clusters 
 
After computing the coordinates for business schools and centroid for five clusters, all 
business schools are displayed in the following Figs 2-6 and Figs. 7-11 for NWR and FT, 
respectively. 
 

Take Figs 2-6 and 7-11 
 
 
 
6. Conclusion and Future Research Discussion 
 
Since the assessment of business school is a multifaceted concept shaped by a wider 
range of elements (Rogers, 1988; Schatz, 1993; Elsbach and Kramer, 1996; Tracy and 
Waldfogel, 1997; Trieschmann et al., 2000; AACSB, 2002, 2005, and 2007; Fee et al., 
2005), it is better to cover a wide range of elements such as course content, teaching 
methods, faculty and research features, school environment and mission, and so forth to 
evaluate the homogeneity (heterogeneity) between business schools. However, it is 
difficult for a single research or a school affording such a huge cost to obtain all data 
from worldwide business schools. Since prevailing ranking systems have put large 
manpower and budget to gather a large scale of data and create highly visible metrics, this 
study select attributes offered and used by current ranking systems to assess schools. 
However, in the future study, if one can get more data in terms of characteristics of 
business schools to cluster schools, the clustered information will be enriched.  
 
Appendix 1  
 
NWR started to rank business schools in 1987. The methodology adopted by NWR is 
first to standardize collected data under each criterion by weighting the standardized 
scores, secondly to rescale the scores so that the top school received 100 and others 
received their percentages of the top scores (NWR, April, 22 2009). Since late 1990s, 
NWR assessed business schools from three aspects of Quality Assessment (weighted by 
0.40), Place Success (weighted by 0.35), and Student Selectivity (weighted by 0.25). 
Under Quality Assessment, there are two criteria named Peer Assessment and Recruiter 
Assessment; Under Place Success, there are three criteria labeled Mean Starting Salary 
and Bonus, Employment rate at Graduation, and Employment in 3 Months; Under 
Student Selectivity, there are three criteria called Mean Undergraduate GPA, Mean 
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GMAT Score, and Acceptance Rate. In 2009, the Peer Assessment Scores for each school 
come from 381 business school deans via sending the survey to 426 deans, revealing 
89.43% of the response rate. 
 
BW began to rank business schools in 1988. The methodology adopted by BW centers on 
business school’s customer satisfaction and concerns, and considers business school’s 
customers are graduation students and corporate recruiters who hire these students. Hence, 
in contrast to NWR collecting data from students, recruiters, and school deans, BW 
gathered data from graduation students and corporate recruiters (BW, October 23, 2006). 
Since 2000, BW scored business schools from aspects of Student Survey (weighted by 
0.3), Recruiter Survey (weighted by 0.2), Average Starting Salaries (weighted by 0.1), the 
MBA Feeder School Measure (weighted by 0.1), and Academic Quality (weighted by 0.3). 
Under Academic Quality, there are five criteria named Average SAT Scores, Ratio of 
Full-Time Faculty to Students, Average Class Size, Percentage of Business Majors with 
Internships, and Hours Students Spend Every Week on School Work. Regarding Student 
Survey, BW sent a 50-question survey from the quality of teaching to recreational 
facilities to more than 85,000 business school graduates, and the response rate of graduate 
survey is 27%. Regarding Recruiter Survey, BW polled 580 corporate recruiters asking 
them to rate which programs turn out the best graduates, which schools have the most 
innovative curriculums, and which schools have most effective career services, and the 
response rate of recruiter survey is about 33%. 
 
FT conducted business school ranking in 1995. In contrast to other media, FT survey data 
is audited and provided by a Swiss-based global professional service firm named KPMG 
(Financial Times, 2006). In contrast to NWR and BW, the methodology originally set by 
FT is to rank global business schools and highlight on strong international orientation, 
high research reputation, alumni satisfaction, and gender diversity on faculty. Accordingly, 
FT employs 21 criteria and associated weights to rank business schools as shown in Table 
2. Noteworthy, where FT Doctoral Rank is rated by number of doctoral graduates taking 
up a faculty position at one of the top 50 business schools, while FT Research Rank is 
assessed by faculty publications in 40 international journals, points are accrued by the 
business school at which the author is presently employed, and adjustment is made for 
faculty size. Although the FT rankings are mostly global in its scope, its global view may 
be heavily from European and English-speaking nations. Which may explain why 
salary-related criteria occupy 40% of the weight, and the research reputation is only 
evaluated by a selected group of 40 English language journals (10% of the weight). Due 
to cultural biases embedded in the ranking methodology, FT rankings are dominated by 
English-speaking business schools (Financial Times, December 23, 2009). 
 
Econ is another main resource in global business school ranking. Comparing with FT, 
Econ takes a two-stage survey and uses data over a three-year period to give students and 
schools a more rounded picture. To quantify and score the business schools, Econ ranking 
is made up of four categories: Open New Career Opportunities (weighted by 35%), 
Personal Development and Educational Experience (weighted by 35%), Increase in 
Salary (weighted by 20%), and Potential to Network (weighted by 10%), and each of the 
categories is made up of individual criteria. For example, Open New Career 
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Opportunities contain four criteria named Diversity of Recruiters, Jobs Found in 3 
Months, Jobs Found through the Career Service, and Student Assessment. Notably, unlike 
other rankings, Econ does not include any “equal” schools (even the difference between 
schools might be very slight), and gives each business school a unique score known to 
statisticians as a z-score (Economist, September 25, 2009). 
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2010 年出國報告心得（出國類別：研習） 

會議主題：Asia Summer Institute in Behavioral 
Economics 

出國成果報告書 
計畫編號 NSC 97-2221-E-009-104-MY3 執行單位 交大資管所 

出國人員 黃曜輝(博士生) 出國日期
99 年 7 月 26 日至 99

年 8 月 6 日，共 12 日

出國地點 Singapore-NUS 出國經費 國科會 

一、目的： 

With my advisor Prof. Li, I try to enhance the algorithm of branch-and-bound 

and let the bound of problems be as tight as possible. Therefore, the resolving time 

can be accelerated and the solutions will be guaranteed to reach optimum. 

For this summer institute in behavior economics, I got 

1. Some behavioral economics models have been used in different areas (i.e., 

price reactions for the marketing and forecasting). In my study, I try to enhance 

the whole model to reach global optimum with approximate algorithm. 

2. Clearly defining an optimal method for solving management science problems 

such as behavior economics, psychology, social preference and risk 

management. 

3. Finally, develop and formulate strong models for the management science 

problem and solve it by proposed algorithm to reach the global optimal 

solution. 

 

二、預期成果 

1. 提升學生的能見度 

2. 獲取不同的應用議題 

3. 尋合適合的研究夥伴 
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4. 與各國著名學者互動，掌握研究發展趨勢。 

二、行程 

1. 開會時間：99 年 7 月 26-99 年 8 月 6 

2. 開會地點：Singapore-國立新加坡大學 

三、心得 

1. 參與國際重要學術會議研討，不僅可提升我國的能見度，亦能增加本校的

知名度、更能提昇博士生的競爭力。 

2. 參與各國學者互動的機會，增加研究主題的靈感並能掌握國際研究趨勢。 

3. 參與國際重要學術會議有助於推動跨國合作研究計畫。 

4. 最後，學生正積極發展幾何規劃方法之應用性議題，利用最佳化技術對管

理的解析，學生藉這次的參與的機會，多方面嘗試結合最佳化方法，以期

許能夠全方法解決管理性的議題。 

 

 


