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Abstract

This paper studies the synchronization of complex chaotic systems in series expansion form by Lyapunov asymptot-
ical stability theorem. A sufficient condition is given for the asymptotical stability of an error dynamics, and is applied
to guiding the design of the secure communication. Finally, numerical results are studied for the Quantum-CNN oscil-
lators synchronizing with unidirectional/bidirectional linear coupling to show the effectiveness of the proposed synchro-
nization strategy.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Since the discovery of chaos synchronization [1,2], it has been a focus of intensive research [3]. A main field of syn-
chronization is the coupled identical chaotic system [4-10,13-20]. According to the condition of coupling signal, they
can be classified into bidirectional [5-7] and unidirectional [8-10] coupling. Due to the simple configuration and easy
implementation, the linearly error feedback coupling scheme can be adopted in many real fields. In practice, it is a key
problem to determine the appropriate feedback gain or coupling parameters for realizing the synchronization. So far,
there have been many specific results about determining the feedback gain or coupling parameters for particular systems
[1-9]. A generic condition of global chaos synchronization for two coupled simple chaotic systems using the unidirec-
tional linear error feedback has been studied [9,10]. In this paper, a generic criterion of the chaos synchronization is
studied for complex chaotic systems in series expansion form with unidirectional/bidirectional coupling.

As the numerical example, recently developed Quantum Cellular Neural Network (Quantum-CNN) chaotic oscilla-
tor is used. Quantum-CNN oscillator equations are derived from a Schrédinger equation taking into account quantum
dots cellular automata structures to which in the last decade a wide interest has been devoted with particular attention
towards quantum computing [11,12].

This paper is organized as follows. In Section 2, by Lyapunov asymptotical stability theorem, a synchronization
scheme is given. In Section 3 numerical simulations of the synchronization of two Quantum-CNN oscillator systems
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by unidirectional and by bidirectional linear coupling are given, respectively. Finally, some concluding remarks are
drawn in Section 4.

2. Synchronization scheme of complex chaotic systems in series expansion form

In this section, the synchronization by unidirectional/bidirectional linear coupling is studied. Based on Lyapunov
asymptotical stabilization theory, we give a generic situation for judging chaos synchronization of two complex systems
in series expansion form. The two chaos systems using bidirectional/unidirectional linear coupling can be written as
[21-29]

Xx=Ax+h(x)+ ki (y —x) (1)
and
y=Ay+hy) +k(x—y), (2)

where x,y € R" represent the state vectors of the chaotic systems, 4 € R™" is a constant matrix, 7 € R™ is a continuous
nonlinear function of x, y, k;, and k, are constant gains which represent the coupled parameters.
Let

e=x—y, (3)
then
e=[Ad+M(x(1),y(t)) — (ki + ka)]e + H(x(),¥(1), e), (4)

where M(x(¢), y(t))e + H(x(¢), (1), e) = h(x) — h(y). The elements of M(x(¢),y(t)) depend on state vectors x, y, and all of
them are bounded convergent infinite series of x,y. H(x(f),)(t),e) contains nonlinear terms of e.

In order to realize the chaos synchronization among these two chaotic systems, we should choose suitable coupled
parameter matrices k; and k, so that

lim e(r) = 0. (5)

t—+00

In the following, we give the generic criterion of local chaos synchronization of linear coupling systems using the
bidirectional linear error feedback scheme.

Theorem. If there exists a positive definite symmetric constant matrix P and a constant ¢ > 0, which satisfy

BITP+ PR < —el <0 (6)
uniformly for any x and y in the phase space, where B= A + M(x(1),y(t)) — (k| + ky) then the error dynamics system (4) is
locally asymptotically stable.

Proof. For the nonautonomous error dynamic system (4), choose the following Lyapunov function:
V(t) = e Pe, (7)
then its derivative is

V(t) = é"Pe + e"Pé = "B (r)Pe + " PB(t)e + higher order terms of e = e' (BT (t)P + PB(1))e
4+ < —gefe< 0 (®)

for all sufficient small e # 0. For sufficient small e, its higher order terms are indifferent to the sign of V(7). So, the
theorem is proved [30-37]. O

3. Numerical results of the synchronization of two Quantum-CNN oscillator systems by unidirectional and
by bidirectional linear coupling

Case 1 (The synchronization by unidirectional linear coupling). For a two-cell Quantum-CNN, the following differential
equations are obtained [11,12]:
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dy 2 o
S0 = —2a14/1 — x{sinx,,

d — Bl
aXz = —a)l(xl —X3) +2a1 \/Q COS X3,
*1

d, _ 2 o
5% = —2a34/1 — x3sinxy,
X3

%X4 = —(Uz(X3 —xl) + 2(12 \/@ COS Xy4,
3
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where x; and x3 are polarizations, x, and x4 are quantum phase displacements, @; and a, are proportional to the inter-
dot energy inside each cell and w; and w, are parameters that weigh effects on the cell of the difference of the polar-
ization of neighboring cells, like the cloning templates in traditional CNNs. Let a; = a, = 13.4, w; = 11.9, w, = 6.04.
The initial values of linear coupled Quantum-CNN systems are taken as x;(0) = 0.8, x»(0) = —0.77, x3(0) = —0.72,

x4(0) = 0.57, p1(0) = —0.2, y2(0) = 0.41, y5(0) = 0.25, and y4(0) = —0.81, respectively.

Two Quantum-CNN chaotic systems using the unidirectional linear coupling can be written as

d. _ 7 o
a0 = —2a14/1 — x7sinx;,

Lx) = —w; (%) —x3) + 2a; —2= cos Xy,

dr V-2
d. _ 7 o
%= —2a34/1 — x5 sinx,,

d,.
aiX4

X3

*(1)2()63 — X1) + 2612 ﬂ COS X4

and

4y, = =2a1\/1 — yisiny, + ki (x; —y,),
Y1

%yz = —o1(y; —y;) +2a = cos y, + ka(x2 — y,),
<1

%y3 = —2ay\/1 — y2siny, + k3 (x3 — 3),
dy, — _ )3 _
SV = —o(y3 — y) + 2a; i 08 vy + ka(xs — yy),

where the values of ki, k», k3, and k4 are to be determined.
Expand the right-hand sides of Egs. (10) and (11) into power series:

G0 = =200 (= 3600 + 520 —gxn + 0 — 0 0 ),
%xz = —oi(x1 —x3) + 2a4 (x1 - %xlxﬁ + ﬁxlxg + %x% - ixfx% + %x? + - ~),
§03 = =20 (= xdxa + 53 — e o — 4G + e ),
Sxy = —my(x3 — x1) + 2a2 (x3 — Sxax] + fax + 13—t 33+ )

and

s = =2a1 (=3 + 5 — g 0y = e+ o) H el =),
$2 = —o1 () = y3) F2a0 (v — 305 A A s ) k(= ),
3= —2ax (=303 + 15 — Vs Ty — i oy o) F (s =),
$va =~y = y) 242 (v — 1yavi T ayh 303 s s ) k(= ).
From Egs. (12) and (13), the error dynamics is
e :Be+H(X7y7e)7

where e = (Y| — X1,y — X2,¥3 — X3,V4 — x4)T and

—ki + By —2a; + By 0 0

B 2a; — wy + B,  —ky+ By w 0
0 0 —k3 4+ B33 —2a, + By
W 0 2a; — Wy + B3y —k4+ By

in which

(11)

(12)

(14)
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1 1
By =a1|2xy, —gx1y§ +Z(x1yfy2 +3x1y13,) + - },

1 1 25
Bio = ar|3nyy =y + 500 — 5107+ 26) + e + - ]

1 1 1
By =a xf + X2y, — 5 (xfx% +x1y; + 2x%y§) + Zx? - Exgyg + - ] )

S
~
)

I
K

[ 1
a1y + Xy (0 + 32) — Xy }

1 1
By = ay | 2x3y, — EXSYi + 2 (X334 + 3x3y3yy) + - } ,

1 1 25
By = ay|3x:39; — 3 +Eyj fiyﬁ(yg +242) +Zx§y§ +..4]7

1 1 1
B = ax[& - xury — g (5 xd + 209) + ot - b .

1
By = a3 | 2%y, + §X3x4y4(x4 +3y,) — X3y + - }

and H(x,y,e) contains nonlinear terms of e.
The infinite power series in the first element of By; is

1 1
2x1y, — gxlyi + 2 (xly%J/Z + 3x%)’1)’2) +oee (15)

It is well-known [38] that a necessary and sufficient condition for the convergence of the infinite series
up+uy+ -t u, A+
is that for any previously assigned positive ¢ there exists an N; such that, for any n > N and for positive p,
[t + Ui + -+ Upyp| < & (16)
From Fig. 1, we know that
x| <1, |y <1 (i=1,2,3,4), (17)
therefore, series (15) which satisfies condition (16), is convergent and has a bounded sum. For the same reason, the
other power series in Byy, B1z, B>y, B2y, B33, B34, Bas, and Byy are all convergent and have bounded sums. As an exam-
ple, the time history of By; is shown in Fig. 2.

Choose the positive definite symmetric constant matrix P = diag(py, p»,ps,pa), pi > 0, i = 1,2,3,4 and any constants
¢>0, then C = B"P+ PB + ¢l is negative definite if and only if

(-1)"4, <0, i=1,2,3,4, (18)
where 4; represents the ith order sequential subdeterminant of matrix C. Let e=0.1, p,=1,i=1,2,...,4:
—2ky + 2By +0.1 —w + By + By 0 [0
C— —w; + By + By —2k, + 2B + 0.1 (o)) 0
- 0 ) —2k3 4+ 2B3; + 0.1 —y + B3y + By
W, 0 —wy + By +Biyy —2ky + 2By +0.1

Conditions (18) become

ky >30.07, k> 109, k;>5035 and k4> 3018. (19)

We chose k; =33.07, k, =11.8, k3 =52, and k4, = 3020.
The Lyapunov asymptotical local stability theorem is satisfied. This means that the synchronization of two
Quantum-CNN systems by unidirectional linear coupling can be achieved. The numerical results are shown in Fig. 3.

Case 2 (The synchronization by bidirectional linear coupling). Two Quantum-CNN systems with bidirectional linear
coupling are given:
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Fig. 1. Phase portrait of master system (10).
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Fig. 2. Time history of B;; for Case 1.
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Fig. 3. Time histories of state errors for Case 1.
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4y, = =2a1\/1 — yisiny, +kx(x; —y,),
dy, — _ Vi _
a2 o1(y, — y3) + 2a Vi cosy, + kn(xs — y,),

%% = —2ay\/1 — yisiny, + ky(xs — y3),
d _ 3
$Ya = —0a(ys —y) +2a; \/}11—@ COS vy + kay (x4 — v4),

where the values of ki, k15, k13, k14, k21, k2o, ko3, and k4 are to be determined.
Expand the right-hand sides of Egs. (20) and (21) into power series:

d. _ 1.2 1 1.3, 1.5

$x1 = =2a1(=3xix + 5xi3 —4xixa +x — i + 5503 + ) Hhu (v —x),

d. _ 1 1.3 _1.3.2 5.5

Lxy = —w1(x1 — x3) + 2a1 (%, —§X1X2 +ﬂx1x2 +3x] —Zx x5+ 32X 4 0) + kv, —x),
do _ _ 1.2 1,23 1.4 1,3, 1

$x3 = —=2ay(—3x3%4 + 15x5%; — 8x3x4 + x4 — 6x4 + 120)64 )+ k(v —x3),

1 1,3 _1.3.2 5.5
—wy(x3 —x1) + 2ax(x; — 5x3x4 + ﬂx3x4 4303 — g 3+ ) Fh(yy —xa)

d
dzx4

and

Sy = 2a(=in+Hrl -t -t mn )+k21 X =),

Ly, = —o1(y, —y3) +2a1(y, — 33 +ayh I — B+ +- -) + ko (x2 — yy),

%ys:—202(—%y§y4+%y§y3—%y§y4+y4—éyi+1zoyi+ )+ k(o3 = p3),

$va =~y =) + 202 (ys = 5yvi + Ay 3 - DR HIR A+ -) + kaa (x4 = yy)-

From Egs. (22) and (23), the error dynamics is
é :Be+H(x7y7e)7

where e = (y; — X1,12 — X2,V3 — X3,V4 — x4)T and

— (ki 4+ ka1) + By —2a; + By 0 0
B— 2a, — o + By — (k12 + k) + B W 0
0 0 —(k13 + ka3) + B —2a, + By
@2 0 2ay —wy + By —(kiy 4 ko) + By
in which

1 1
By =ai|2x1y, — gxlyg + Z(xlyﬁ’z + 3xiyn) + - } ;

1 1 25
B = ay |3x1y; — 33 +EJ’§ - Eyg(y% +2x) + Zx%yf +- '}7

2
B>y = ay |x] +x2y,

1 1 1
~Z (xfx% +x1y§ + foyg) + Zx‘l‘ — Ex%y% +-- } ,

1
By = ay| 20y, + T30y (0 + 395) —xiyy + - } ;

[ 1 1
B3z = ay | 2x3y,4 — 6x3y‘3‘ + 2 (373vs + 3x3p304) + - } )
> Loy 1, 2, 25 5,
By = a|3x3y; — ¥, +ﬁy4 - §y4(y3 + 2x3) +Tx3y3 toels

4

1 1 1
By = as x§ + X4y — ¢ (x3x4 +X3y4 + 2x1y4) + = )cz lzxiyi + - } ,

1
By = ay| 23y, + T 53%eda (x4 + 3y4) —X3p4 + - } .
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21

(22)

(23)

(24)

Similar to Case 1, from Fig. 5, |x] <1, |[v] <1 (i=1,2,3,4), the infinite power series in B}y, B2, Ba1, By, Bs3, Bia,
Byz and By, are all convergent and have bounded sums [38]. As an example, the time history of B, is shown in Fig. 4.
Choose the positive definite symmetric constant matrix P = diag(py,p2,p3,p4), pi> 0, i =1,2,3,4 and any constant

¢>0, then C = B"P+ PB + ¢l is negative definite if and only if
(-)™'4, <0, i=1,2,34,

(25)
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where A; represents the ith order sequential subdeterminant of matrix C. Let e=0.1, p;=1,i=1,2,...,4:

—2(ky1 +ky +Byp) +0.1 —wi + B+ By 0 w;
C— —w; + By + By —2(ki2 +kn +Bxn)+0.1 w1 0
0 [N —2(k13 + ko3 +B33)+0‘1 —my + B3y + By
[0} 0 —ms + B3y + Bas —2(k14 + ks +B44) +0.1
5 r T T T T T T T

Bu
4} i i
5 1 L 1 L i [ 1 I
5 10 15 Y 25 30 35 40 45 50
Time (sec)
Fig. 4. Time history of By, for Case 2.
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Fig. 5. Time histories of state errors for Case 2.
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Conditions (25) become
ki + ky > 813, kio 4+ kp > 762, ki3 + kyy > 2011, and k4 + ky > 569. (26)

‘We chose kll = 92, k21 = 84, k12 = 76, k22 = 67, k13 = 132, k23 = 76, k14 = 284 and k24 =291.
The Lyapunov asymptotical local stability theorem is satisfied. This means that the synchronization of two
Quantum-CNN systems by bidirectional linear coupling can be achieved. The numerical results are shown in Fig. 5.

4. Conclusions

The synchronization of complex chaotic systems in series expansion form are implemented by the Lyapunov asymp-
totical stability theorem. Two Quantum-CNN systems are synchronized in two cases: unidirectional linear coupling
case and bidirectional linear coupling case. In both cases, by a theorem of convergent series, we prove that all infinite
power series in the elements of B= A4 + M(x(¢),y(t)) — (k| + k) are convergent and have bounded sums.
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