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中文摘要 
吾人考慮感測器警報機率分佈改變偵測的問題。在無參數改變偵測的架構

下，吾人基於 Rao test 發表一套演算法。吾人也將感測器分群並且估計各群的期

望值來做檢測。我們獲得了理論上的效能。我們所提出方法的複雜度為線性，適

用於多感測器的情況之下。吾人也考慮在感測器與資料融合中心的連線上有干擾

情況時的效能增強。 

Abstract 
The problem of detecting changes in the distribution of alarmed sensors is 

considered. Under a nonparametric change detection framework, we present an 
algorithm based on the Rao test. We also partition sensors into small groups and 
estimate their mean to perform detection. Theoretical performance guarantees are 
obtained. Our approach has linear complexity, which is suitable to large number of 
sensors. We also enhance change detection performance for sensors-to-fusion links 
with interference. 

I. Rao Test 
In this part, we will introduce the method of the Rao test. The Rao test [11] has 

the asymptotic detection performance as the generalized likelihood ratio test. For finite 
data records, there is no guarantee that the performance will be the same. The main 
benefit is that this asymptotically equivalent statistic may be easier to compute. This is 
especially true of the Rao test for which it is not necessary to determine the maximum 
likelihood estimator for 1H , but only the maximum likelihood estimator for 0H to be 
found. The PDF is denoted  ( ; )p x θ . The hypothesis test is 

 0 0

1 0

:

: .

θ θ

θ θ

=

≠

H

H
 (3.1) 

The Rao test just only needs to know 0θ , and is particularly suitable for the considered 
scenario. The Rao test decides 1 H  if 

 1
0

0 0

ln ( ; ) ln ( ; )( ) ( ) ,
T

R
p pT x xx I= =

θ θθ γθ θ θ θθ θ
−∂ ∂= >

∂ ∂
 (3.2) 

where 0( )I θ  denote the Fisher information matrix, and γ  is a threshold. In (3.2) it is 
implicitly assumed that the PDFs under 0H  and 1H differ only in the value of .θ  The 
maximum likelihood estimator for 1H  need not to be found for the Rao test. This is 
advantageous when 
A. Rao Test for Independent and Identically Distributed Sensors 

In this part, we consider the simple homogeneous case, i.e., the alarming 
probabilities among sensors are independent and are identically distributed. We also 
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assume for the moment that the channel is errorless (the cross-over probability of each 
BSC is zero). Under this condition, the number of sensors that change state x between 
two collections is Bernoulli distributed: 

   x N xN
p x

x
α α α −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

( ; ) (1 ) ,  (3.3) 

where α  is the probability of sensor changing state between two collections from 
(2.2). The composite hypothesis testing: 
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H
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≠
  

where 0α denotes the probability of sensor changing state between two collections 
before change occurs. The Fisher information for a Bernoulli distribution is given by 
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and 

 ( )ln ( ; ) .x N xp x α
α α α
∂ −

= −
∂ −1

 

 
Substituting above result into the formula of Rao test gives 
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0 0

0 0

(1 )( ) .
1R

x N xT x
N

α α γ
α α
⎛ ⎞− −

= − >⎜ ⎟−⎝ ⎠
 (3.4) 

Such that 
 2

0( ) ' .x Nα γ− >  (3.5) 
Thus the Rao test in our case claims change occurs if the squared difference between 
the measurement x and the mean 0Nα  exceeds a certain threshold ' .γ  
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B. Rao Test for Independent and Different Distributed Sensors 
In this part, we consider the inhomogeneous case in which the alarming 

probabilities of sensors are distinct. This case arises, e.g., when the alarming 
probabilities of sensors are identical but the BSC’s assume different cross-over 
probabilities across the sensor-to-fusion links. We do not care the changes of 
probability distribution in each sensor, but in the area. Hence, we combine sensors in 
the same area to perform detection. By the central limit theorem, when the number of 
sensors is large and sensors are independent, the probability distribution of the number 
of sensors alarming looks like the Normal distribution. So, the PDF of number of 
sensor alarming is denoted by 2( ; , ),p x u σ  where p is the Normal distribution, u  is 
the mean, and 2σ  is variance. Consider the composite hypothesis problem 

 
2 2

0 0 0

2 2
1 0 0

: ,

: , .

u u

u u

H

H

σ σ

σ σ

= =

≠ ≠
 (3.6) 

This is a two-parameters composite hypothesis problem. The Normal distribution, 
2( , )N u σ belongs to the exponential family and its log-likelihood function ( | )l xθ  is 

 
( )22

2
1 ln(2 )
2 2

x uπσ
σ
−

− −  (3.7) 

where ( )2, .uθ σ=  The Fisher information matrix ,UE
θ

∂⎡ ⎤= − ⎢ ⎥∂⎣ ⎦
I  where U is given 

by 

 
2

2 2 4 2
( ) 1, , .

2 2
l l x u x u
u σ σ σ σ

⎛ ⎞∂ ∂ − −⎛ ⎞ = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (3.8) 

Taking the derivative with respect to ,θ  we have 
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σ σ
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− −∂ ∂ ⎛ ⎞⎛ ⎞ −⎜ ⎟⎜ ⎟∂ ∂ ∂= = ⎜ ⎟⎜ ⎟∂ ∂ − −∂ ⎜ ⎟⎜ ⎟ − −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (3.9) 

So, the Fisher information matrix I is 

 
2

4

2 01 .
2 0 1

UE
σ

θ σ

⎛ ⎞∂⎡ ⎤ ⎜ ⎟− =⎢ ⎥ ⎜ ⎟∂⎣ ⎦ ⎝ ⎠
 (3.10) 

The Rao test decides 1H , if 
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 (3.11) 

The statistic (3.10) is forth moment of 0.x u− Compare (3.10) with (3.4), (3.10) is the 
square of (3.4). 

II. Kullback Leibler Distance 
 In probability theory and information theory, the Kullback Leibler distance is a 
measure of the distance between two distributions. In statistics, it arises as an expected 
logarithm of the likelihood ratio. The Kullback Leibler distance  ( || ) D p q is a measure 
of the inefficiency of incorrectly taking the distribution as q when the true distribution 
is instead p. For example, if we knew the true distribution of the random variable, then 
we could construct a code with average description length  ( )H p . If, instead, we use 
the code for a distribution q, we would need  ( ) ( || )H p D p q+ bits on the average to 
describe the random variable. 
 The Kullback Leibler distance between two probability mass functions p(x) and 
q(x) is defined as 

 

( )( || ) ( )log
( )

( )log .
( )

x

p

p xD p q p x
q x

p xE
q x

∈
=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

∑

            

X
 (3.12) 

The Kullback Leibler distance is always non-negative, it is zero if only if p=q [12]. 
However, it is not a true distance measure between distributions because it is not 
symmetric and does not satisfy the triangle inequality, 
 ( || ) ( || ).D p q D q p≠  (3.13) 
Nonetheless, it is often useful to think of Kullback Leibler distance as a distance 
between two distributions. The Kullback Leibler distance remains well-defined for 
continuous distributions, and furthermore is invariant under parameter transformations. 
A. Kullback Leibler Distance for Independent and Identically Distributed Sensors 
 In the Section 3.1, we discuss the detection problem from the viewpoint of the 
Rao test. In this section, we will consider this problem from another viewpoint, the 
Kullback Leibler distance. First, we discuss the homogeneous case in which the 
alarming probabilities of sensors are distinct. We also assume that the error probability 



5 

in the binary symmetric channel is equal to zero. Under above condition, the number of 
sensors that change state between two collections is a Bernoulli distribution. We 
assume that p and q are the alarming probabilities before and after change occurs, and 
then we have: 

 x N xN
p x

x
α α α −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

( ; ) (1 )  (3.14) 

and 

 x N xN
q x

x
α α α −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

( ; ') ( ') (1 ') ,  (3.15) 

where N is the number of sensors, x is number of alarming sensors,αis from (2.2), 
α α= + Δ' , and α α− ≤ Δ ≤ −1 . Because sensors have the same probability 
distribution, we remove the index word i ofα . The Kullback Leibler distance 

( || ) D p q between p and q is 
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∑

 (3.16) 

We declare the probability distribution changed if the Kullback Leibler 
distance  ( || ) D p q is larger thanλ. Otherwise, we declare the probability distribution 
non-changed. This composite hypothesis test can be written as 

 
            
versus

            

0

1

: ( || )

: ( || ) .

H D p q

H D p q

λ

λ

≤

>

 (3.17) 

Actually, this composite hypothesis problem (3.16) can be rewritten as 

 
             
versus

               

0

1

:

: .

H

H or

ε η

ε η

≤ Δ ≤

Δ < Δ >

 (3.18) 

Hence, we decide H1 if 

 
      

or 

      .

x N

x N

α ε

α η

− <

− >

 (3.19) 

Compare (3.18) with (3.5), and we find that (3.5) is equivalent to (3.18) when .ε η− =  
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However, from (3.16) and (3.17), the values of ε  and η  in (3.18) is difficultly to 
obtain. We have to use numerical method to get them. This is an obstruction for us to 
use the composite testing from the viewpoint of the Kullback Leibler distance. 
B. Kullback Leibler Distance for Independent and Different Distributed Sensors 

For the inhomogeneous case the central limit theorem implies that, when the 
number of sensors is large and sensors are independent, the probability distribution of 
the number of sensors alarming likes the Normal distribution. So, the PDFs of 
non-changed p and changed q are approximately given by 

 

          

and

          

2
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22
00

2
1

22
11

1 ( )( ) exp
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 (3.20) 

The Kullback Leibler distance  ( || ) D p q between p and q is 
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=
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2
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2
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( )
,

2

x u
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 (3.21) 

where 1 0u u uΔ = − , and 2
2 2
1 0 .σ

σ σΔ = − This case with two variables is difficult to 

analyze, and we cannot get the variance from only one data sample. Hence, we only 
consider the variance invariant case. The Kullback Leibler distance  ( || ) D p q  
between p and q is 
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⎛ ⎞⎡ ⎤−
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∫
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 (3.22) 

We declare the probability distribution changes if the Kullback Leibler 
distance  ( || ) D p q is larger thanλ. Otherwise, we declare the probability distribution 
does not change. The composite hypothesis test can be written as 
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0
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≤

>

 (3.23) 

Also, this composite hypothesis problem (3.22) can be rewritten as 

 
             
versus

               

0

1

:

: .

u

u u

H

H or

ε η
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Δ < Δ >

 (3.24) 

Hence, we decide H1 if 

 
     

or
      

0

0

,

.

x u

x u

ε

η

− <

− >
 (3.25) 

III. Algorithm of Nonparametric Low Complexity Change Detection in Wireless 
Sensor Networks 
 In this section, we propose our nonparametric low complexity change detection 
algorithm based on the results of sections 3.1 and 3.2. We propose to partition sensors 
into several small groups according to their position. If we find that the probability 
distribution of at least one among these groups changes, we declare that the two 
probability distributions are different. We also have to estimate a parameter in our 
algorithm. We calculate the lower bound of the number of the data samples for 
estimation. Then, we discuss the performance of our algorithm and simulations. 
A. Algorithm 
 We are interested in the change in the geographical distribution of alarmed 
sensors. Hence, we propose to partition sensors into several small groups according to 
their positions to detect geographical distribution change. If we find that the 
probability distribution of at least one among these groups changes, we declare that 
the two probability distributions are different. 
 In (3.5) and (3.11), we derive the results of composite hypothesis testing by the 
Rao test. Alternatively, in (3.19) and (3.25), we got the results of composite hypothesis 
testing based on the Kullback Leibler distance. However, we have to use numerical 
methods to find the values of ε  and η  in (3.19) and (3.25). This increases the 
difficulty of implementing our algorithm. From (3.5) and (3.11), we propose that if the 
composite hypothesis testing is: 

 
 for all 

 for some 

( ) ( )
0 0

( ) ( )
1 0

: , 1,...,

: , .

j j

j j

m m j K

m m j

H

H

= =

≠
 (3.26) 

where ( )
0
jm  is the mean of distribution of jth partition under 0H  and K is the number 
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of partitions, we decide H1 if 

 ( ) ( ) ( )
0 ,j j jx m r− >  for some j , (3.27) 

where ( )jx is the number of sensor changing state and ( )jr is a threshold in the jth 
partition. We assume that the PDF under 0H does not change during a periods of T time 
instants (we call T “training number”). Since we do not know the PDF under 0H , we 

have to estimate the mean ( )
0
jm . We estimate ( )

0
jm as 

 
1

( ) ( )
0

0

1ˆ [ ].
T

j j

t
m x t

T

−

=
= ∑  (3.28) 

This estimator is a minimum variance unbiased estimator for both homogeneous and 
inhomogeneous cases, and we will proof it later. Then, we design the thresholds of 
partitions by Neyman-Pearson’s criterion that maximizes the detection probability 
subject to that the false alarm probability is not larger than the threshold. 
 There are five steps in our algorithm: 
Step1. Partition sensors into K groups according to their position. 
Step2. Record the number of sensor changing state in each partition. 
Step3. During T pairs of consecutive two time instants, we estimate the mean in each 

partition by summing average (3.28). 
Step4. According to Neyman-Person test, we set threshold in (3.27) for every 

partition. 
Step5. In every two time instants, repeat the test of (3.27). 
B. Lower Bound on Training Number 
 From previous section, we have designed the algorithm of change detection. In 
our algorithm, we have to know the original probability distribution via the observe 
sample sequence (a “training” process). We address the problem: how large the number 
of data samples is needed for guaranteeing the estimation accuracy to be within a 
prescribed level? This is an important issue in our research. We have to do a tradeoff 
between the detection performance and the calculation complexity. First, for the 
homogeneous case consider the set of observations 
 [ ] ( ; ), 0,1,..., 1,x t c t t Tα= = −  (3.29) 

where  Binormail distribution ( ; ) ( ; ) (1 )x N x
N

c t p x xα α α α −
⎛ ⎞⎟⎜ ⎟∼ = −⎜ ⎟⎜ ⎟⎜⎝ ⎠

 and N is the 

number of sensors. Then, the estimator  

 [ ]
1

0

1ˆ
T

t
x t

NT
α

−

=
= ∑  (3.30) 
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from Section 3.3 is minimum variance unbiased estimator[15]. Because  

 

[ ]
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2
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=
−

∂ = −
∂

 

A good approximation for the Binomial distribution is the Normal distribution 
when  (1 ) 1.Nα α− � In our problem, N is usually large. Hence, the Normal 
distribution is a good approximation for the Binomial distribution. The probability 
distribution of ˆ α is approximated 

 [ ]
1

0

1 (1 )ˆ , .
T

t
x t N

NT NT
α αα α

−

=

⎛ ⎞− ⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠∑ ∼  (3.31) 

We want to know how large T can guarantee the probability that the deviation of the 
estimated mean from the true mean ˆ  N α α− is less than D to be greater than  .ε  
Toward a solution we note that 
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where  is the error function and 

 is the inverse error function.
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 (3.32) 

 Now, we discuss the general inhomogeneous case. Consider the observation 
 [ ] 2( ; , ), 0,1,..., 1,x t c t m t Tσ= = −  (3.33) 

where  Normal distribution 
2

2 2
22

1 ( )( ; , ) ( ; , ) exp
22

x mc t m p x mσ σ
σπσ

⎡ ⎤−⎢ ⎥∼ = −⎢ ⎥⎣ ⎦
. The 

estimator 

 [ ]
1

0

1ˆ
T

t
m x t

T

−

=
= ∑  (3.34) 
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is the minimum variance unbiased estimator. Because 

 

[ ]

( )
[ ]

21

22
0

1
2

2
02 2

2

2

2

1 ( )( ; ) exp
22

1 1exp ( ) ,
2

2

ln ( ; )( )

,

T

t

T

N
t

x t mp m

x t m

p mI E
m

T

σπσ

σ
πσ

α

σ

−

=

−

=

⎡ ⎤−
= −⎢ ⎥

⎣ ⎦
⎡ ⎤

= − −⎢ ⎥
⎣ ⎦

⎡ ⎤∂
= − ⎢ ⎥∂⎣ ⎦

=

∏

∑

x

x  

 

( ) [ ]

[ ]

1
2 22

2
0

1

2
0

2

ln ( ; ) 1ln 2 ( ) .
2

1 ( )

ˆ( )

N T

t

T

t

p m x t m
m m

x t m

N m m

πσ
σ

σ

σ

−

=

−

=

⎡ ⎤⎡ ⎤∂ ∂
= − − −⎢ ⎥⎢ ⎥∂ ∂ ⎢ ⎥⎣ ⎦⎣ ⎦

= −

= −

∑

∑

x

(3.35) 

So, the probability distribution of ˆ  m can be written 

 [ ]
21

0

1ˆ , .
T

t
m x t N m

T T
σ−

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∼  (3.36) 

From (3.7), 

 

( )
( )[ ]

( )( )

( )( )

2

2
2

2

22

2

2
2

2

ˆ
,

2

ˆ
,

2
2

,  

,   .
2 4

m m T
erf

m m T
erfinv

erfinv
T

D
N erfinv NT by

D

ε
σ

ε
σ
σ ε

ε σ

⎛ ⎞− ⎟⎜ ⎟ ≥⎜ ⎟⎜ ⎟⎜⎝ ⎠

− ≥

≥

≥ ≤

 (3.37) 

We can find that (3.7) is the same with (3.12). Hence, we get a lower bound in the 
common use. 
C. Performance 
 In this section, we present the detection probability DP  and false alarm 

probability FP  for our estimator. From (3.27), the detection probability ( )j
DP  and 

false alarm probability ( )j
FP  in the jth partition are 
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{ }

{ }

          

and

          

( ) ( ) ( ) ( )
0 1

( ) ( ) ( ) ( )
0 0

Pr | | |

Pr | | | .

j j j j
D

j j j j
F

P x m r

P x m r

H

H

= − >

= − >

 (3.38) 

In the homogeneous case, the PDF ( )( )j
jP x  of number x(j)of sensor changing state in 

jth partition is the Binomial distribution B(S, α), where S is the number of sensors, 

α is probability of sensor changing state. The detection probability ( )j
DP  and false 

alarm probability ( )j
FP  can be determined by 

 

{ }
{ }

( )

{ }

          

                

                

and

          

          

( )( ) ( )
0

( )( ) ( )
0

( ) ( ) ( ) ( )
0 1

( ) ( ) ( ) ( )
0 1

( ) ( ) ( ) ( )
0 0

Pr | | |

Pr | | |

1 ; ,

Pr | | |

jj j

jj j

j j j j
D

j j j j

S r

x S r

j j j j
F

P x m r

x S r

P x

P x m r

1

H

H

H

H

α

α

α
⎢ ⎥+⎢ ⎥⎣ ⎦

⎡ ⎤= −⎢ ⎥⎢ ⎥

= − >

= − >

= −

= − >

∑

{ }

( )

      

                

( )( ) ( )
0

( )( ) ( )
0

( ) ( ) ( ) ( )
0 0Pr | | |

1 ; .

jj j

jj j

j j j j

S r

x S r

x S r

P x 0

H

H
α

α

α
⎢ ⎥+⎢ ⎥⎣ ⎦

⎡ ⎤= −⎢ ⎥⎢ ⎥

= − >

= − ∑

 (3.39) 

where ⎣ ⎦  is the floor function and ⎡ ⎤  is the ceil function. When  (1 ) 1,N �α α−  
the Normal distribution is a good approximation for the Binomial distribution. Then 
(3.39) can be approximated by 

 

        

and

        

( ) ( )
( ) 0

( ) ( )
0 0

( ) ( )( ) ( ) ( ) ( )
( ) 0 1 0 1

( ) ( ) ( ) ( )
1 1 1 1

2 1 ,
(1 )

( ) ( )1
(1 ) (1 )

j j
j

F j j

j jj j j j
j

D j j j j

r SP
S

r S r SP
S S

α
α α

α α α α
α α α α

⎛ ⎞⎧ ⎫⎪ ⎪⎟⎜ +⎪ ⎪⎟⎪ ⎪⎜ ⎟= −Φ⎜ ⎨ ⎬⎟⎜ ⎟⎪ ⎪⎜ ⎟−⎜ ⎪ ⎪⎝ ⎠⎪ ⎪⎩ ⎭

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪+ − − + −⎪ ⎪ ⎪⎪ ⎪ ⎪= − Φ −Φ⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪− −⎪ ⎪ ⎪⎪ ⎪ ⎪⎩ ⎭ ⎩
,

⎧ ⎫⎪ ⎪⎪ ⎪⎪⎪ ⎪⎪⎨ ⎬⎪ ⎪⎪⎪ ⎪⎪⎪⎭⎪ ⎪⎩ ⎭

 (3.40) 

where Φ is the CDF of the Normal distribution N(0,1) and 1α  denotes the alarming 
probability after change occurs. From (3.40), when the number of sensors tends to 
infinity, the false alarm probability approaches zero and the detection probability is 
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approaches unity. So, if we want to improve the detection performance, we have to 
increase the number of sensors in a partition. However, if we increase the number of 
sensors in a partition, the number of partitions is decreased (since the total number of 
sensors is fixed) and this may incur geographical detection performance degradation. 
There is thus a tradeoff between the number of partitions and the achievable 
performance. 

 In the inhomogeneous case, the PDF ( )( )j
jP x  of number x(j) of sensor changing 

state in jth partition is the Normal distribution 2( , )N m σ . The false alarm probability 
and detection probability can be written as 

 

        

and

        

( ) ( )
( ) 0

( )
0

( ) ( )( ) ( ) ( ) ( )
( ) 0 1 0 1

( ) ( )
1 1

2 1 ,

1 .

j j
j

F j

j jj j j j
j

D j j

r mP

r m m r m mP

σ

σ σ

⎛ ⎞⎧ ⎫⎪ ⎪+ ⎟⎜ ⎪ ⎪⎟⎜= −Φ⎨ ⎬⎟⎜ ⎟⎪ ⎪⎟⎜⎝ ⎠⎪ ⎪⎩ ⎭

⎧ ⎫⎧ ⎫ ⎧ ⎫⎪ ⎪⎪ ⎪ ⎪ ⎪+ − − + −⎪ ⎪⎪ ⎪ ⎪ ⎪= − Φ −Φ⎨ ⎨ ⎬ ⎨ ⎬⎬⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪⎪⎩ ⎭ ⎩ ⎭⎩ ⎭

 (3.41) 

From above description, we present the detection probability and the false alarm 
probability in each partition. Now, we will discuss the total detection probability DP  
and the false alarm probability FP . From (3.26), we have FP : 

 

{ }
{ }

( )

1 0

0 0

( )

1

Pr |

1 Pr |

1 1 .

F

K
j

F
j

P H H

H H

P
=

=

= −

= − −∏

 (3.42) 

We also assume jA  is the jth combination of partition with distribution change, and 

the set of total combinations is { }1 2,...,, .jA A A A= We have DP  

 { } ( ) ( )( ) ( )1 Pr 1 1 .
j j j

a b
D j D D

A A a A b A
P A P P

∈ ∈ ∈Ω−
= − − −∑ ∏ ∏  (3.43) 

IV. Computer Simulation 
In this part, we show our simulation result by the Matlab. In Figure 3.1, we set the 

number of sensors to be 4096. The ( , )x y  is the coordinate of sensor,  
{ }0,1,...,61x ∈  and { }0,1,...,61y ∈ . Before change occurs, sensors have identical 

alarming probability equal to 0.8. The change occurs in sensors position at 
{ }0,1,..., 31x ∈  and { }0,1,..., 31y ∈ with alarming probability decreases to 0.7. Use 

100,000 Monte Carlo runs. As our description in Section (3.3.3), if we want to improve 
the detection performance, we have to increase the number of sensors in a partition. 
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In Figure 3.2, we set the number of sensors to be 3600. We partition sensors in to 
nine groups. Before change occurs, sensors have identical alarming probability equal 
to 0.8. The change occurs in two partitions, with alarming probability decreases to 0.7. 
We simulate the training number from 11 to 24. Use 50,000 Monte Carlo runs. We 
have a tradeoff between performance and complexity. In this case, we find that we 
have performance similar to the optimal optimum as the training number equals 24. 
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Figure 0.1: Receiver operating characteristics for different partition number 
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Figure 0.2: Receiver operating characteristics for different training number 
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計畫成果自評 

 
一、研究內容與原計畫相符程度 

大部份相符。 
 

二、達成預期目標情況 
1. 完成演算法模擬平台，將偵測器分成幾個群組，使用 Monte Carlo 的方法以

決定最佳的 training number。  
2. 建立二元對稱通道(BSC)通訊聯結，使用 Rayleigh Fading Channel，並考慮感

測器與資料融合中心的連線上有干擾情況下，藉由模擬來驗證所採用的可適

性方法的效能。 
3. 完成演算法複雜度的分析，並將採用的演算法的複雜度與其他方法做比較。

除了一般的情況，另外也將加入了一些極端條件的情形於模擬驗證中。 
4. 計畫成果將發表於國際期刊或國際會議。 

 
三、研究成果之學術或應用價值 

應用於無線感測器網路之低複雜度變化檢測。 
 

四、是否適合在學術期刊發表或申請專利 
適合在學術期刊發表。 

 
五、主要發現或其他有關價值 

無線感測器網路起源於軍事上的用途，藉由感測器節點的佈建可以偵查戰場上所

需的敵方資訊而不需要人力去觀察，進而提升安全性和局勢的掌握。隨著科技的

進步，積體電路、微電機、無線技術的發展成果使得感測器節點更能實現低功率、

低成本、多功能的要求，也因此在近幾年間無線感測器網路的運用更加普及於商

業上、家庭上或環境應用之中，例如對聲音、溫度、震動、污染情況、壓力的監

控等等。基於 Rao test 的演算法，配合將感測器分群並且估計各群的期望值來做

檢測，可以有效降低複雜度。 
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