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Abstract

The problem of detecting changes in the distribution of alarmed sensors is
considered. Under a nonparametric change detection framework, we present an
algorithm based on the Rao test. We also partition sensors into small groups and
estimate their mean to perform detection. Theoretical performance guarantees are
obtained. Our approach has linear complexity, which is suitable to large number of
sensors. We also enhance change detection performance for sensors-to-fusion links
with interference.

l. Rao Test

In this part, we will introduce the method of the Rao test. The Rao test [11] has
the asymptotic detection performance as the generalized likelihood ratio test. For finite
data records, there is no guarantee that the performance will be the same. The main
benefit is that this asymptotically equivalent statistic may be easier to compute. This is
especially true of the Rao test for which it is not necessary to determine the maximum
likelihood estimator for 77, but only the maximum likelihood estimator for 7 to be
found. The PDF is denoted p(x;#). The hypothesis test is

Hy: 0 =6,

H, 0 =0,
The Rao test just only needs to know 6,, and is particularly suitable for the considered
scenario. The Rao test decides 7, if

(3.1)

T, (x) = 8lnp(x;0)T )y I_1<90) 01n p(x;0) (3.2)

>
o0 =0, 90 0 =0,

where 1(6,) denote the Fisher information matrix, and y is a threshold. In (3.2) it is
implicitly assumed that the PDFs under 7, and 77 differ only in the value of 6. The
maximum likelihood estimator for 72, need not to be found for the Rao test. This is
advantageous when
A. Rao Test for Independent and Identically Distributed Sensors

In this part, we consider the simple homogeneous case, i.e., the alarming
probabilities among sensors are independent and are identically distributed. We also



assume for the moment that the channel is errorless (the cross-over probability of each
BSC is zero). Under this condition, the number of sensors that change state x between
two collections is Bernoulli distributed:

p(x;a){f ja”f(l— ), (3.3)

where « is the probability of sensor changing state between two collections from
(2.2). The composite hypothesis testing:

H, = o

H, o= a.
where a,, denotes the probability of sensor changing state between two collections
before change occurs. The Fisher information for a Bernoulli distribution is given by

I(a)=-E %In(p(w;a))}
- wz__ N!
:—E_Wln(a (1-a) mﬂ

__E %[wln(d) +(N —z)ln((1- a))]}

- _F L[E_N_xﬂ
0o la l-a«a

g2
a® (1-a)

_Na N(l-a)
d® (1-a)
B N
Call-a)’
and
N-—x
—aln(p(x;a))z—— -

Substituting above result into the formula of Rao test gives

2
TR(x):w(i—N_xj >y, (3.4)
a, 1-q
Such that
(z—Nay) >y (3.5

Thus the Rao test in our case claims change occurs if the squared difference between
the measurement x and the mean Na,, exceeds a certain threshold »'.



B. Rao Test for Independent and Different Distributed Sensors
In this part, we consider the inhomogeneous case in which the alarming
probabilities of sensors are distinct. This case arises, e.g., when the alarming
probabilities of sensors are identical but the BSC’s assume different cross-over
probabilities across the sensor-to-fusion links. We do not care the changes of
probability distribution in each sensor, but in the area. Hence, we combine sensors in
the same area to perform detection. By the central limit theorem, when the number of
sensors is large and sensors are independent, the probability distribution of the number
of sensors alarming looks like the Normal distribution. So, the PDF of number of
sensor alarming is denoted by p(x;u,az), where p is the Normal distribution, w is
the mean, and o is variance. Consider the composite hypothesis problem
2 2
Hy :u = uy,0” = o, (3.6)
H ru = u0,02 = ag.
This is a two-parameters composite hypothesis problem. The Normal distribution,
N (u, o 2) belongs to the exponential family and its log-likelihood function (6 | z) is

1 9y (x —u)?
—ZIn(2zc?) - 3.7

where 6 = (u, 02). The Fisher information matrix I = -F [Z_(Hj} where U is given

by
(ﬁ 8[)_ T—u (a;—u)z_ 1 (3.8)
ou’ 0o o 20t 207 ) '
Taking the derivative with respect to 4, we have
oU | ou  oOu |_ o’ o’ (3.9)
00 |oU, oU, z-u 1 @-w? | '
oo’ o’ o' 20t o’

So, the Fisher information matrix I is

262 0
[%)-2(s 1)
(o)

The Rao test decides 77, if



T, (x) = 8lnp(x;9)T ' )8lnp(x;9)
" ol 0= (m(],a(]) ’ ol 0= (m(],ao)
1 2
2 -
= 20, r—uy (- ) . 20¢ 0 02 (3.11)
2 4 202 (x—u )
90 ) %I 0 1 o) _
o, 20¢
4
— 1
_lemw) 1o
20, 2

The statistic (3.10) is forth moment of z — u,,. Compare (3.10) with (3.4), (3.10) is the
square of (3.4).
1. Kullback Leibler Distance

In probability theory and information theory, the Kullback Leibler distance is a
measure of the distance between two distributions. In statistics, it arises as an expected
logarithm of the likelihood ratio. The Kullback Leibler distance D(p || ¢) is a measure
of the inefficiency of incorrectly taking the distribution as g when the true distribution
is instead p. For example, if we knew the true distribution of the random variable, then
we could construct a code with average description length H(p). If, instead, we use
the code for a distribution g, we would need H(p)+ D(p || q) bits on the average to
describe the random variable.

The Kullback Leibler distance between two probability mass functions p(x) and
q(x) is defined as

D(pllg) = 3 plz)log 22
rzed Q(:E)

B | 10e P@®)
_E{l gQ(w)}'

The Kullback Leibler distance is always non-negative, it is zero if only if p=q [12].
However, it is not a true distance measure between distributions because it is not
symmetric and does not satisfy the triangle inequality,
D(p [l q) = D(q || p). (3.13)
Nonetheless, it is often useful to think of Kullback Leibler distance as a distance
between two distributions. The Kullback Leibler distance remains well-defined for
continuous distributions, and furthermore is invariant under parameter transformations.
A. Kullback Leibler Distance for Independent and Identically Distributed Sensors
In the Section 3.1, we discuss the detection problem from the viewpoint of the
Rao test. In this section, we will consider this problem from another viewpoint, the
Kullback Leibler distance. First, we discuss the homogeneous case in which the
alarming probabilities of sensors are distinct. We also assume that the error probability

(3.12)



in the binary symmetric channel is equal to zero. Under above condition, the number of
sensors that change state between two collections is a Bernoulli distribution. We
assume that p and q are the alarming probabilities before and after change occurs, and
then we have:

p(z,a) = (Nja‘”(l— a)' (3.14)
X
and
a(zier) = [N j(a Y (@-a), (3.15)
X

where N is the number of sensors, x is number of alarming sensors, « is from (2.2),
a'=a+A, and —a<A<1l-a . Because sensors have the same probability
distribution, we remove the index word i of @ . The Kullback Leibler distance
D(p || q) betweenpandqis
N (N T - Oé)N_'T
D = "(1- )V log | -2
(p||Q) Z[x]a ( a) g[(at)x(l_av)N-z]

N T N-z
a:L'(l_a)N—w IOg a (1 Oé)

2
o

|
o -

] (3.16)

=0 * (@ +A)"(1- (o +A)"
N N 1
=Y | |- ) log :
=0 z (1 + é).’l} (1 _ A )N—.’L‘
o l-«

We declare the probability distribution changed if the Kullback Leibler
distance D(p || ¢) is larger than A . Otherwise, we declare the probability distribution

non-changed. This composite hypothesis test can be written as
Hy:D(pllq) <A
versus (3.17)
H:D(p|lq)> A

Actually, this composite hypothesis problem (3.16) can be rewritten as
Hy:¢e<A<np
Versus (3.18)
H:A<gorA>n.

Hence, we decide H; if
zt—Na<e¢

or (3.19)
z—Na >n.
Compare (3.18) with (3.5), and we find that (3.5) is equivalent to (3.18) when —& = 7.



However, from (3.16) and (3.17), the values of ¢ and 7 in (3.18) is difficultly to
obtain. We have to use numerical method to get them. This is an obstruction for us to
use the composite testing from the viewpoint of the Kullback Leibler distance.
B. Kullback Leibler Distance for Independent and Different Distributed Sensors
For the inhomogeneous case the central limit theorem implies that, when the
number of sensors is large and sensors are independent, the probability distribution of
the number of sensors alarming likes the Normal distribution. So, the PDFs of
non-changed p and changed q are approximately given by

B N2
p(x) = 1 = exp _E—w) 120) }
\270o, L 20,
and (3.20)

1  (z-u) }
q(z) = exp| —~————|.
270} L 20}

The Kullback Leibler distance D(p || ¢) between p and q is

exp{ <x—uo>2}
(z-u ) :|10 o1 —20-3 d
Dirlla)= '[\/7[0'0 { 20'0 g 0'0 exp{—(x_ul)q

X

2
20,

O'g + A0'2 (321)
= Og 5
0

_[ [ (2 —uy) } o)A, _QO'SAU(w_Uo)_AU‘z(z_Uo)Q dx
\/2,[ o7 207, 207 (o-g + AU2) 7

where A, =u, —uy, and A _, = o7 —o;. This case with two variables is difficult to

analyze, and we cannot get the variance from only one data sample. Hence, we only
consider the variance invariant case. The Kullback Leibler distance D(p || q)

between p and q is

2
A SN I exl{_w}
T - o
wllo)= '[ 2o P _TQO tog (x 1(; )2 “
e 5 L o oxp| -~
xp{ 27 } (3.22)

T 1 [ (—u)? | =A (22 —2u, — A

— J' > exp _( 2()) u( 8 0 u>dl‘
w270 | 20 ) 20

We declare the probability distribution changes if the Kullback Leibler
distance D(p || q) is larger than A . Otherwise, we declare the probability distribution

does not change. The composite hypothesis test can be written as



Hy:D(pllqg)<A
Versus (3.23)

H :D(pllq)> A

Also, this composite hypothesis problem (3.22) can be rewritten as

Hy:¢<A,<n
Versus (3.24)
H A, <gorA,>n.

Hence, we decide Hj if
T — U <ég,
or (3.25)
T — Uy >n.

I11. Algorithm of Nonparametric Low Complexity Change Detection in Wireless
Sensor Networks

In this section, we propose our nonparametric low complexity change detection
algorithm based on the results of sections 3.1 and 3.2. We propose to partition sensors
into several small groups according to their position. If we find that the probability
distribution of at least one among these groups changes, we declare that the two
probability distributions are different. We also have to estimate a parameter in our
algorithm. We calculate the lower bound of the number of the data samples for
estimation. Then, we discuss the performance of our algorithm and simulations.
A. Algorithm

We are interested in the change in the geographical distribution of alarmed
sensors. Hence, we propose to partition sensors into several small groups according to
their positions to detect geographical distribution change. If we find that the
probability distribution of at least one among these groups changes, we declare that
the two probability distributions are different.

In (3.5) and (3.11), we derive the results of composite hypothesis testing by the
Rao test. Alternatively, in (3.19) and (3.25), we got the results of composite hypothesis
testing based on the Kullback Leibler distance. However, we have to use numerical
methods to find the values of & and # in (3.19) and (3.25). This increases the
difficulty of implementing our algorithm. From (3.5) and (3.11), we propose that if the
composite hypothesis testing is:

H, : m) = m(()j), forall j=1,.... K

| | (3.26)
H, : mY = m{), for some j.

where m(()J) Is the mean of distribution of jth partition under 7, and K is the number

7



of partitions, we decide H; if

‘x(j) - méj)‘ > 9. for some j, (3.27)

where z')is the number of sensor changing state and +")is a threshold in the jth
partition. We assume that the PDF under 7+, does not change during a periods of T time

instants (we call T “training number”). Since we do not know the PDF under 7, , we

have to estimate the meanm{’). We estimate m_/ as

15 o)
= 2Vt (3.28)
T i%
This estimator is a minimum variance unbiased estimator for both homogeneous and
inhomogeneous cases, and we will proof it later. Then, we design the thresholds of
partitions by Neyman-Pearson’s criterion that maximizes the detection probability
subject to that the false alarm probability is not larger than the threshold.

There are five steps in our algorithm:
Stepl. Partition sensors into K groups according to their position.
Step2.  Record the number of sensor changing state in each partition.
Step3. During T pairs of consecutive two time instants, we estimate the mean in each

partition by summing average (3.28).
Step4. According to Neyman-Person test, we set threshold in (3.27) for every
partition.

Step5.  In every two time instants, repeat the test of (3.27).
B. Lower Bound on Training Number

From previous section, we have designed the algorithm of change detection. In
our algorithm, we have to know the original probability distribution via the observe
sample sequence (a “training” process). We address the problem: how large the number
of data samples is needed for guaranteeing the estimation accuracy to be within a
prescribed level? This is an important issue in our research. We have to do a tradeoff
between the detection performance and the calculation complexity. First, for the
homogeneous case consider the set of observations

z[t] = c(t;),t =0,1,..., T — 1, (3.29)

N

where ¢(t; ) ~ Binormail distribution p(z;a) = . a"(1—a)”* and N is the

number of sensors. Then, the estimator

1 T-1
- Z% 1] (3.30)

a =



from Section 3.3 is minimum variance unbiased estimator[15]. Because

9% In p(x; )

I =-F
(@) da’?

9% | (N

da’?
_NT

Cal-0)

=-TE In| |[+z[tlna+ (N —2t])In(l —a)

and
01n p(z; )
O
A good approximation for the Binomial distribution is the Normal distribution
when Na(l—a«)>1.In our problem, N is usually large. Hence, the Normal

distribution is a good approximation for the Binomial distribution. The probability
distribution of & is approximated

LS e N[Q,M]. (3.31)
NT = NT

We want to know how large T can guarantee the probability that the deviation of the
estimated mean from the true mean N |0} - a| is less than D to be greater than e.
Toward a solution we note that

= I(a)(a —a).

a =

> [erfinv )],

N (erfinv (&)
2D?

) (by ol — ) < =), (3.32)

1
4
where erf(z) = %fe‘tz)dt is the error function and
s
0

erfinv is the inverse error function.

Now, we discuss the general inhomogeneous case. Consider the observation

z[t] = c(t;m,0®),t = 0,1,...,T — 1, (3.33)
9 . . . 2 1 (.T — m)2
where ¢(t;m,0”) ~ Normal distribution p(z;m,o”) = exp|—-——"|. The
2mo 20
estimator

1 T-1

m=—> z[t] (3.34)
T 5



is the minimum variance unbiased estimator. Because

om om 20° 0
1 T-1
== > (z[]-m) (3.35)
O =0
N .
=—(m-m)

O
So, the probability distribution of m can be written

1 o’
== a[t]~ N|m 2| 3.36
m= E)w[] ™ (3.36)
From (3.7),
Wf[m .
V202
~ 2
— T
=) T erfinu o,
20 2 (3.37)
2 .
T 20 (eré;zgw(s)) |
. 2
T N(erfm;}(e)) by ot < N
2D 4

We can find that (3.7) is the same with (3.12). Hence, we get a lower bound in the
common use.

C. Performance
In this section, we present the detection probability P, and false alarm

probability P, for our estimator. From (3.27), the detection probability Pl()j) and

false alarm probability P} in the jth partition are

10



Py =Pr{laV —mf{) > 9| 74}

and (3.38)

Py = Pr{] 7 —m0 Y ]71’0}

In the homogeneous case, the PDF Pj(x(j)) of number z”of sensor changing state in
jth partition is the Binomial distribution B(S, « ), where S is the number of sensors,
a is probability of sensor changing state. The detection probability Pjgj) and false

alarm probability P can be determined by

Py =Pr{| o —mff > 1 | 72}
:Pr{|xj — 8D [> ) |7z’1}

and (3.39)
Py = Pr{| 2V —m{) > )| 72’0}
=Pr{|a = sVaf) [> 1| 7y}
lS(J)a(()J)+T(]')
=1- > P(m;}’z’a).
. S(j)agj),r(jw
where | | is the floor function and [ 1 is the ceil function. When Na(l—a) > 1,

the Normal distribution is a good approximation for the Binomial distribution. Then
(3.39) can be approximated by

, (4) (4)
PO —ol1 )50
\/SO‘((1J)(1 - O‘(()j))
and (3.40)
b 1 Lol 00 ~af)] [+ stof —ag ol
\/Soéj)(l—a \/Sa

where @ is the CDF of the Normal distribution N(0,1) and «, denotes the alarming
probability after change occurs. From (3.40), when the number of sensors tends to
infinity, the false alarm probability approaches zero and the detection probability is

11



approaches unity. So, if we want to improve the detection performance, we have to
increase the number of sensors in a partition. However, if we increase the number of
sensors in a partition, the number of partitions is decreased (since the total number of
sensors is fixed) and this may incur geographical detection performance degradation.
There is thus a tradeoff between the number of partitions and the achievable
performance.

In the inhomogeneous case, the PDF Pj(:zz(j)) of number 2z of sensor changing

state in jth partition is the Normal distribution N(m,c?). The false alarm probability
and detection probability can be written as

, (4) ()
PY =2 1—@{—7" My H
oy
and (3.41)
PL()j) . r) + mé-’l) —mW¥) % _pld) + mé]) _ mf” |
U(J) O.(J)
1 1

From above description, we present the detection probability and the false alarm
probability in each partition. Now, we will discuss the total detection probability P,
and the false alarm probability P,.. From (3.26), we have P;:

P, =Pr{H, |H)}

—1-Pr{H, | H,) (3.42)
K
=1-TI(1-F)

We also assume A, is the jth combination of partition with distribution change, and

the set of total combinations is A = {4,, 4, A;}.We have P,

Py=1- Y Pr{A}] (1-F") TT (1-PY) (3.43)

AjeA aeAj bEQ—A]'

V. Computer Simulation

In this part, we show our simulation result by the Matlab. In Figure 3.1, we set the
number of sensors to be 4096. The (z,y) is the coordinate of sensor,
z€{0,1,...,61} and y e {0,1,...,61}. Before change occurs, sensors have identical
alarming probability equal to 0.8. The change occurs in sensors position at
z €{0,1,...,31} and y € {0,1,...,31} with alarming probability decreases to 0.7. Use
100,000 Monte Carlo runs. As our description in Section (3.3.3), if we want to improve
the detection performance, we have to increase the number of sensors in a partition.

12



In Figure 3.2, we set the number of sensors to be 3600. We partition sensors in to
nine groups. Before change occurs, sensors have identical alarming probability equal
to 0.8. The change occurs in two partitions, with alarming probability decreases to 0.7.
We simulate the training number from 11 to 24. Use 50,000 Monte Carlo runs. We
have a tradeoff between performance and complexity. In this case, we find that we
have performance similar to the optimal optimum as the training number equals 24.

—+H— 4 partitions (theorem)
—+H1 - 16 partitions (theorem) | |
—— 64 partitions (theorem)
—<— 4 partitions

—< - 16 partitions

—< - 64 partitions

| | | 1 1 1
0.4 0.5 0.6 0.7 0.8 0.9 1
Pf

Figure 0.1: Receiver operating characteristics for different partition number

03 The bule lines from inside to outside are training number
from 11 to 24.
02| Thedashlineis used the real mean.

0.1

0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1

05
Pf

Figure 0.2: Receiver operating characteristics for different training number
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The problem of detecting changes in the distribution of alarmed
sensors is considered. Under a nonparametric change detection
framework, we present an algorithm based on the Rao test. We also
partition sensors into small groups and estimate their mean to perform
detection. Theoretical performance guarantees are obtained. Our
approach has linear complexity, which is suitable to large number of
sensors. We also enhance change detection performance for
sensors-to-fusion links with interference.
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