
行政院國家科學委員會補助專題研究計畫
▓ 成 果 報 告

□期中進度報告

六子棋詰棋及開局定石之自動產生系統之研究與設計

計畫類別：▓ 個別型計畫 □ 整合型計畫

計畫編號： NSC 97-2221-E-009 -126 -MY3

執行期間： 97年 8月 1日至 100年 7月 31 日

計畫主持人：吳毅成

共同主持人：

計畫參與人員：林秉宏、孫德中、林宏軒、陳柏廷、鄒忻芸、王智功、

 陳俊嶧、楊景元、蔡心迪、林正宏、康浩華、陳干越

成果報告類型(依經費核定清單規定繳交)：□精簡報告 ■完整報告

本成果報告包括以下應繳交之附件：

□赴國外出差或研習心得報告一份

□赴大陸地區出差或研習心得報告一份

■出席國際學術會議心得報告及發表之論文各一份

□國際合作研究計畫國外研究報告書一份

處理方式：除產學合作研究計畫、提升產業技術及人才培育研究計畫、

列管計畫及下列情形者外，得立即公開查詢

 □涉及專利或其他智慧財產權，□一年□二年後可公開查詢

執行單位：國立交通大學資訊工程學系

中 華 民 國 一 百 年 十 月 二十五 日

中文摘要

自我們發表全世界第一篇六子棋論文至今僅五年多，六子棋的歷史與其他

棋種如象棋、圍棋、西洋棋有數百年、甚至上千年歷史相比，仍屬相當年輕的，

因此專家的詰棋題目與開局定石的數量仍相對較為缺乏。

為了加速六子棋的推廣與普及，本計畫（目前正在執行中）除了持續研發

新的六子棋搜尋技術外，我們已發展出開局定石自動產生之系統與技術，此系

統提供 GUI介面供棋士便於建立開局庫，並可用來大量產生開局定石，提供六

子棋高段棋士研究更深入的各種開局下法。由於開局定石產生系統相當耗時，

我們使用平行處理技術來加快處理速度，並計劃將原本的 Proof Number

Search 演算法改進成適用於平行化的架構上。此結果發表於 IEEE

Transactions on Computational Intelligence and AI Games 期刊，以及本

領域最重要的國際會議 International Conference on Computers and Games

2010。

此外，為了瞭解每手棋下 p子的必勝、必敗、必和的結果，我們發展新的

技巧算出許多新的結果，例如每手棋下 2 子，則 11 子棋必和，此結果遠優於

現有結果(15子棋必和)，並發表於 Theoretical Computer Science 期刊。

關鍵字詞：六子棋、詰棋、開局定石、詰棋產生器、開局定石產生器、搜尋技

術、迫著策略。

英文摘要

When compared with other games such as Go, Chinese Chess, Chess,

the game Connect6 has still been young since we presented the first

article about Connect6 four years ago. Therefore, puzzles and

openings offered by experts are relatively insufficient.

In order to expedite the promotion of Connect6, this project

has developed automatic opening generators, in addition to the

search technology for Connect6.Also this project provides GUI

interface for Connect6 players to help building the opening. The

automatic opening generator generates a large number of openings

that players can learn how to play in the openings. Since it takes

a huge amount of time in automatic opening generator, we also

developed parallel techniques to speed it up. We are planning

modifying Proof Number Search to fit the parallel structure.

In addition, in order to understand better about the theoretical

values of general Connect games, we investigate those drawn Connect

games where p stones are placed in each move. In the case of p=2,

we obtain that Connect 11 games is a draw game. The result is far

better than the current result (15).

Keywords: Connect6, puzzles, puzzle generator, openings, opening

generator, threat-based proof search

一、計畫說明

本計畫主持人除了第一個正式提出六子棋下法，並研發許多新的六子棋搜

尋技術，及棋力強大的六子棋程式「交大六號」。除了獲得國際奧林匹亞六子

棋組賽局競賽的冠軍外，最近亦曾有擊敗某次六子棋公開賽冠軍棋士的記錄。

然而自我們發表全世界第一篇六子棋論文至今僅四年多，六子棋的歷史與

其他棋種如象棋、圍棋、西洋棋有數百年、甚至上千年歷史相比，仍屬相當年

輕的，因此專家的詰棋題目與開局定石的數量仍相對較為缺乏。

為了加速六子棋的推廣與普及，此計畫（三年期計畫，目前是第二年）除

了持續研發新的六子棋搜尋技術外，我們已發展出開局定石自動產生之系統與

技術，此系統提供 GUI介面供棋士便於建立開局庫，並可用來大量產生開局定

石，提供六子棋高段棋士研究更深入的各種開局下法。由於開局定石產生系統

相當耗時，我們使用平行處理技術來加快處理速度，並計劃將原本的 Proof

Number Search演算法改進成適用於平行化的架構上。

在六子棋搜尋技術方面，我們持續改良我們的六子棋程式「交大六號」，

其中一項是，提出一種是以關連區域(Relevance Zones)為主的搜尋技術，這

是利用對手下出的空著(Null Move)或半空著(Semi-Null Move)所獲勝後的關

連區域，來去做迫著空間搜尋(Threat Space Search)。

圖一 Null move的關連區域

例如︰盤面有黑三子如上圖圖一，很明顯是黑勝，但由於整個棋盤我們假

設是非常大或甚至是無窮大，我們無法一一搜尋來證明。於是我們需要先假設

對方不下(也就是所謂 null-move)，我們先找到一個活四追四勝（或簡稱追四

勝）如上圖，在這下法中找出一個區域（叫做 Relevance-Zone或簡稱 R-Zone）

是對手可能有機會擋住的位置；如在上圖棋譜中，陰影部份是指白若要阻擋黑

的追四勝，二子之其中一子必下的 R-Zone，詳見(Wu and Huang, 2005)。

圖二 Semi-null move的關連區域

設若白之一子下於棋譜一中 1a 的位置，則再假設其另一個子不下

(semi-null-move)，從我們追四勝的下法中找出一個 R-Zone 是對手可能有機

會擋住的位置，如圖二，陰影部份是指白若要阻擋黑勝，另一子必下的

R-Zone。

然後檢視所有擋法後，全為黑勝。這麼一來，我們可以證明出原始黑三子

的盤面，為黑必勝。這就是我們所謂的以關連區域(Relevance Zones)為主的

搜尋技術。

在圖一及圖二中，所有阻擋的位置，如白 2、白 4 等，我們都用保守下法

（一手下四子）；但有些棋型，若不是保守下法才能獲勝，關連區域會更為複

雜。甚至更複雜的是：若需要利用到死四（或稱單迫著）或無四（或稱無迫著）

的追四勝的話，則證明會是更為複雜。

圖三 TX-d21開局

圖四 Semi-null move的關連區域

例如對上圖圖三，在處理 Semi-null-move 時，若白下一子於白４的右方

一格，此時黑無法用雙迫著追四勝，必頇用單迫著追四勝才能獲勝。甚至，如

圖四中的棋型（註︰此棋型是在討論若黑５只下一子時的狀況），若黑下於白

６右上及右下一格時，白連單迫著都無法獲勝，必頇是無迫著才能得勝。然而

單迫著追四勝及無迫著追四勝的關連區域，並不容易找出。

本計畫發展出一套新的演算法稱為 Threat Proof Search (TPS)，算出這

個關連區域。此 TPS演算法對關連區域，會依照不下的子數來發展出不同的區

域。例如，若一子不下的關連區域稱為 Z1; 若二子不下的關連區域稱為 Z2; 若

三子不下的關連區域稱為 Z3。利用這些區域，我們可以證明出圖三及圖四的

棋型是黑必勝。

在開局定石產生系統方面，我們除了利用 TPS的搜尋技術外，我們亦使用

Proof Number Search (PNS)技巧來加速開局的驗證。由於我們無法預期各個

盤面是必勝或必敗或和，便使用 PNS技巧找出如何搜尋能最快達成目標。此目

標可能是驗證出必勝，也可能是驗證出必敗，甚至是某種程度上證明黑白雙方

已經接近和局。目前正在發展中，並已有初步成果。

為了配合開局定石產生系統，我們的 AI 設計出了兩個功能：alpha-beta

搜尋與 Verifier 驗證。在 alpha-beta 搜尋中會利用 AI 找出一個最佳著手，

而 Verifier則是會列出此盤面的所有可能擋法。

圖五 開局定石系統的 GUI介面

圖五是我們開局系統的 GUI 介面，此介面程式改良自 Connect6Lib，此介

面有許多基本下棋功能，如：盤面展現、記錄下棋的樹狀結構、使用者的註解

欄位與迫著的提示等等。利用此介面我們還可連結後端的 AI 程式，啟用 AI

程式的許多功能。

圖六 呼叫 NCTU6的 AI搜尋

在開局庫系統中最常使用到的 AI功能之一即是 AI搜尋。當我們在建立開

局庫的過程中遇到困難的盤面，不知道如何著手時，可以呼叫後端的 NCTU6

程式做運算，如圖六中按下 ab 按紐，此時開局庫系統會將盤面丟到 NCTU6 並

啟動 NCTU6 的 alpha-beta 搜尋，當 NCTU6 搜尋完之後會將結果傳回前端並即

時地在 GUI介面中呈現 AI搜尋的最佳著手(如圖六的第 4步驟，搜尋結果會以

樹狀方式展現)。

圖七 呼叫 Verifier做驗證

而當我們走到一個盤面，希望驗證此盤面是否已經必勝時(如圖七，黑 3

剛下完，我們希望能驗證此盤面是否是黑必勝)，則可以啟動 Verifier功能。

Verifier 會列出下一步白的所有可能擋法，若白存在有一個以上擋法則代表

此盤面黑方仍未必勝，必頇繼續深入做驗證。反之，若 Verifier 驗證完沒有

顯示任何擋法，則代表此盤面所有白色著手都擋不住，也就是此棋局黑必勝。

因此我們的自動化開局定石產生系統則是利用這兩個功能，當我們需要建

立黑方開局庫時，就利用 ab的功能找出一手黑方最佳著手，在使用 Verifier

驗證白方所有可能的擋法，黑方再針對這些所有可能的擋法，利用 ab 功能找

出最佳的一個攻擊著手。如此反覆循環，當任何白方可能的走法黑都可以必勝

時，一個黑方的開局庫已建立完成，此開局庫同時也包含了各種黑的必勝下

法。

由於建立開局系統非常費時，許多棋局需要花費數十天甚至數個月或數年

之久，因此我們使用平行化系統來加速運算。在原本的 GUI介面上，只要資源

充足，我們可以呼叫數個以上的 NCTU6 或 Verifier 程式來做運算。比如說圖

七的盤面在經過 Verifier 驗證之後產生了數個白方的擋法，我們可以在同時

間呼叫多台電腦執行 NCTU6替每種擋法都產生一個黑方的最佳著手，以達成平

行化運算的目的。

為了平行化的順利，我們初期使用的架購圖如下圖圖八所示，每當 GUI介

面(圖八中的 Connect6Lib)需要做運算時，將工作分配給後端的電腦(圖八中

的 Workers)，Work 運算完之後會將結果傳回 Connect6Lib 由 Connect6Lib 做

整合。

圖八 Desktop grid 架構圖

但是這個架構會產生一個問題，當我們有多個 Connect6Lib時，會產生如

下圖圖 9 的現象，多個 Connect6Lib 會呼叫到同樣的 Worker，也就是資源使

用不均的狀況發生。這情形當 Connect6Lib越多時越嚴重，最慘的狀況是全部

Connect6Lib 都使用到少數同樣的 Workers，而有些 Workers 則完全閒置，這

樣會嚴重影響平行化的效率。

圖九 使用到同樣的 Workers

因此最後我們的架構圖如圖十所示，在 Connect6Lib與 Workers之間加入

Broker做協調，Broker會妥善分配工作，將工作平均分配給每個 Worker運算，

這樣可以解決資源使用不均的狀況。

圖十 使用 Broker做協調

除了預設由 Broker自動分配之外，每個 Connect6Lib可以透過 Broker看

到目前 Worker的使用情形，也可以透過 Broker設定自己希望使用幾台電腦做

運算，或設定希望固定用哪幾台 Worker等等。這些設定及運作都會由 Broker

做協調，避免錯誤的發生。

由於原本的 Proof Number Search只適用在單一台電腦的運算上面，不適

用於平形化系統，因此接下來我們要研究的是如何開平行化的架構上發展出一

個類似 Proof Number Search 的演算法，來加快我們的平行化效率。

而在詰棋搜尋方面，我們首先利用我們六子棋程式「交大六號」找出大部

分必勝棋型的必勝下法。進而利用一般的 Iterative deepening 技巧找出最短

的必勝下法。此計畫亦研究分析詰棋的品質，及難易度。例如︰即使可以找出

某個棋型的必勝法則，然而還需要找出最短必勝下法；即使可以找出最短的必

勝下法，還需要找對棋友最感到艱困的必勝下法。此外，若這個棋型可能有很

多必勝下法，這樣個棋型，也不一定適合成為詰棋，必頇過濾，以確保詰棋品

質。

二、研究成果

如上所述，我們發展一套新的演算法稱為 Threat Proof Search (TPS)。

此 TPS演算法被用於提升了「交大六號」的搜尋能力，這同時也大幅提升了「交

大六號」棋力，戰績如下。

 在 2008年 10月的國際奧林匹亞賽局競賽中的六子棋程式比賽中，在眾多

隊伍中脫穎而出，獲得金牌。這為我國獲得唯一的一面金牌及獎牌。

 在 2008年第一屆人腦對電腦六子棋大賽中，以 11勝 1負，幾乎大獲全勝。

此比賽的棋士代表，均為國內一流高手，如下︰

 第三屆交通大學盃六子棋公開賽前三名：陳威翰、游智翔、林皇羽。

 CYC Online contest 第一名：林承毅。

 國際 Littlegolem.net 網站上一屆總冠軍：黃于峻。

 五子棋資深高段棋士（2003年首屆五子棋亞洲杯大賽亞軍、擔任三屆

交大盃裁判及裁判長）：張益豐。

 在 2009 年第二屆人腦對電腦六子棋大賽中，以 8 勝 0 負，大獲國內高手

如下：

 第四屆交通大學盃六子棋公開賽第一、三、四名：許紋菁、陳鎮國、

陳威翰。

 六子棋高段棋士︰李士文（六子棋聯誼會會長、五子棋高段棋士）。

以上的戰績，顯示這項研究，獲得相當明確的成果。

另外，我們正在實作一套可以自動產生開局庫的平行化系統，此系統可調

用 NCTU6與 Verifier做搜尋與驗證。透過此系統，我們已初步可證明出如圖

十一所示的幾個盤面皆為黑必勝。也就是說當黑第一手下在天元之後，白色不

能下在這幾個地方，否則黑靠第三手的下法就可以贏得棋局。這些都是過去棋

士所不能證明出的，令目前高段棋士十分震驚的六子棋開局定石。

圖十一 黑必勝盤面

在詰棋搜尋方面，我們發展一套六子棋的詰棋自動產生系統。目前，此部

份計畫仍在持續發展中，但已經收集相當多的題目約 30000多題，並已初步過

濾出 5000 多題。此計畫將持續進一步優化詰棋品質，如找出最短必勝下法、

找出最艱困的必勝下法，並避免太多重複解。在 2008, 2009 年的第三、四屆

交大盃六子棋公開賽大中，我們已經開始提出一些題庫試用。

三、結論

我們發展一套 TPS演算法，這除了對程式的搜尋能力有大幅的提升外，亦

可用於開局及詰棋自動產生系統。並設計了平行化開局庫自動產生系統，可自

動建立開局庫。目前的研究成果顯示此計畫的可行性及效果。我們不僅提出全

世界第一篇六子棋玩法的論文，本計畫亦對六子棋發展出許多重要的研究，如

開局及詰棋。由於六子棋的規則簡單、遊戲公平、及玩法複雜，有機會成為一

項由台灣研究發展出而普及全世界的遊戲。本計畫的成功將有助於六子棋的發

展與推廣，及提升國家形象及知名度。

四、計畫成果自評部份

從上述的研究成果，我們可以了解此計畫有相當豐碩的成果如下：

 獲得第十三屆國際奧林匹亞賽局競賽冠軍，為我國獲得唯一的一面金牌及

獎牌，同時也擊敗台灣許多六子棋高段棋士。

 我們發展出許多令目前高段棋士十分震驚的六子棋開局定石（如圖十一），

我們預期加上完全平行化的自動開局產生系統，將會有更多前所未見的開

局定石。

 許多成果發表於重要期刊與會議如: IEEE Transactions on Computational

Intelligence and AI Games 期刊, Theoretical Computer Science 期刊,

ICGA Journal 期刊 , 以及本領域最重要的國際會議 International

Conference on Computers and Games 2010.

因此，我們很確信地自評︰此計畫的執行成果相當優異。我們附上以下論文:

 I-Chen Wu and Ping-Hung, Lin, "NCTU6-Lite Wins Connect6 Tournament",

ICGA Journal (SCI), Vol.31, No.4, December 2008.

 Ping-Hung Lin and I-Chen Wu, "NCTU6 Wins in the Man-Machine Connect6

Championship 2009", ICGA Journal (SCI), vol. 32(4), 2009.

 I-Chen Wu, H.-H. Lin, P.-H. Lin, D.-J. Sun, Y.-C. Chan and B.-T. Chen,

"Job-Level Proof-Number Search for Connect6", The International Conference on

Computers and Games (CG 2010), Kanazawa, Japan, September 2010.

 I-Chen Wu and Ping-Hung Lin, "Relevance-Zone-Oriented Proof Search for

Connect6", the IEEE Transactions on Computational Intelligence and AI in

Games (SCI), Vol. 2, No. 3, pp. 191-207, September 2010.

 Sheng-Hao Chiang, I-Chen Wu, Ping-Hung Lin, "Drawn K-In-A-Row Games",

Theoretical Computer Science (SCI), Vol. 412, pp. 4558-4569, August 2011.

NCTU6-LITE WINS CONNECT6 TOURNAMENT

I-Chen Wu1 and Ping-Hung Lin1

Taiwan

The computer Connect6 tournament was held as part of the 13th Computer Olympiad, which took place in
Beijing, China, from September 29th to October 1st, 2008. Ten teams participated in the Connect6
tournament. Table 1 lists the participants and the final standings.

Ranking Program Author Organization Points

1 NCTU6-LITE
Ping-Hung Lin, Hong-Xuan
Lin, Yi-Chih Chan, Ching-Ping
Chen and I-Chen Wu

National Chiao Tung
University, Taiwan. 17

2 BITSTRONGER Liang Li, Hao Cui, Ruijian
Wang and Siran Lin

Beijing Institute of
Technology, China 16

3 NEUCONN6 Chang-Ming Xu Northeastern University,
China 13

4
BEAD CONNECT
AND CHESS
COMBINE (BCCC)

XiaoChuan Zhang Chongqing Institute of
Technology, China 9

5 KAVALAN Jung-Kuei Yang and Shi-Jim
Yen

National Dong Hwa
University, Taiwan 8

6 NEU6STAR
Xinhe Xu, Dongxu Huang,
Junjie Tao, Kang Han,
XinXing Li

Northeastern University,
China 8

7 ML Jiang Ke Guilin University of
Electronic Technology, China 6.5

8 CV6 Yao Yuping Guilin University of
Electronic Technology, China 5.5

9 DREAM 6 Siwei Liu and Zhenhua Huang Dalian Jiaotong University,
China 4

10 NTNU C6 Shih-Chieh Huang and
Yun-Ching Liu

National Taiwan Normal
University, Taiwan 3

Table 1: The participants and final standings.

The game Connect6, a kind of six-in-a-row game, was first introduced by Wu and Huang (2005) and then
described in more detail by Wu, Huang, and Chang (2005). The rules of Connect6 are very simple. Two
players, henceforth represented as B (designated as the first player) and W, alternately place two stones,
black and white respectively, on one empty intersection of an 19×19 board, except for that B places one
stone initially. The player who first obtains six consecutive stones (horizontally, vertically or diagonally) of
his own wins the game. Unlike Renju, a professional variation of five-in-a-row, no extra prohibition rules
are imposed on Connect6. When all intersections on the board are occupied without connecting six, the
game draws.

In the tournament, the games were played according to a round-robin system in which one program played
twice against all the other programs. In each game, every program had to complete all of its moves in 30
minutes. For each game, the winner scored 1 point and the loser scored nothing. However, for a draw game,
both scored 0.5.

NCTU6-LITE, a light weight version of NCTU6 that won the gold of the 11th Computer Olympiad, won 17

1 Dept. of Computer Science, National Chiao Tung University, Hsinchu, Taiwan, Email: icwu@csie.nctu.edu.tw and
bhlin@csie.nctu.edu.tw

points and the gold of the 13th Computer Olympiad. BITSTRONGER, the second in 2007 Chinese Computer
Games Championship, won 17 points and the silver. NEUCONN6, the first in 2007 Chinese Computer Games
Championship, won 13 points and the bronze. Both programs, NCTU6-LITE and BITSTRONGER, were close
and won one game against each other. However, BITSTRONGER lost one more game to ML. Hence,
NCTU6-LITE obtained one more point, winning the gold. The cross table is listed in Table 2. In the
tournament, eight games in total drew. Note that the two games between NTNU C6 and CV6 are both drew.

Program NCTU BIT NEUC BCCC KAV NEUS ML CV6 DRM NTNU
NCTU6-LITE - 1 2 2 2 2 2 2 2 2
BITSTRONGER 1 - 2 2 2 2 1 2 2 2
NEUCONN6 0 0 - 2 1 2 2 2 2 2
BCCC 0 0 0 - 1 1.5 1.5 1.5 2 1.5
KAVALAN 0 0 1 1 - 0.5 2 1 1 1.5
NEU6STAR 0 0 0 0.5 1.5 - 1 2 1 2
ML 0 1 0 0.5 0 1 - 1 2 1
CV6 0 0 0 0.5 1 0 1 - 2 1
DREAM 6 0 0 0 0 1 1 0 0 - 2
NTNU C6 0 0 0 0.5 0.5 0 1 1 0 -

Table 2: The cross table.

This report comments the two games between NCTU6-LITE and BITSTRONGER, as well as the game that
BITSTRONGER lost to ML. Since Connect6 is draw-ish due to balancing, strong Connect6 programs should
play aggressive in the sense that they do not want to draw too many games to get high points in a
tournament. Therefore, both NCTU6-LITE (the gold) and BITSTRONGER (the silver) played aggressively.
However, on the other hand, playing aggressively also takes high risks of exposing weakness. Figure 1
shows the record of the first game, NCTU6-LITE (B) vs. BITSTRONGER (W). In this game, NCTU6-LITE made
a blunder at 5 and BITSTRONGER immediately caught the blunder by playing at 6, verified as a winning
move by NCTU6. Interestingly, the situation was reversed for the second game, BITSTRONGER (B) vs.
NCTU6-LITE (W), shown in Figure 2. BITSTRONGER also made a blunder at 5 and NCTU6-LITE immediately
caught the blunder by playing at 6, also verified as a winning move by NCTU6. Subsequently, NCTU6-LITE
made no similar blunders and won all of the rest of games. In contrast, while playing aggressively,
BITSTRONGER sometimes offered some chances for opponents’ winning. Figure 3 shows the record of the
game that BITSTRONGER lost to ML. In this game, ML defended well without blunders and grew stronger
potential outside. For Move 46, W should have played at (E11, L15) to win. On the other hand, for Move
47, B should have played at (E11, G11) to defend. E11 was the key place for both players. Since 47, B had
been losing. A similar situation happened in the game, BITSTRONGER played against BCCC. However, BCCC
was not able to find some winning moves in that game and lost to BITSTRONGER finally.

Figure 1: Black: NCTU6-LITE, White:
BITSTRONGER, Moves 1 – 20.

Figure 2: Black: BITSTRONGER, White:
NCTU6-LITE, Moves 1 – 16.

Figure 3: Black: BITSTRONGER, White: ML, Moves 1 – 64.

F.l.t.r. B. H. Lin, I-C. Wu, and H.J. van den Herik.

F.l.t.r. L. Lee (BITSTRONGER) and B. H. Lin
(NCTU6-LITE).

References

Wu, I-C. and Huang, D.-Y. (2006) A New Family of k-in-a-row Games. The 11th Advances in Computer
Games (ACG11) Conference, Taipei, Taiwan. (to be published)

Wu, I-C., Huang, D.-Y., and Chang., H.-C. (2006) Connect6, ICGA Journal, Vol. 28, No.4, pp. 234-242.

Wu, I-C., and Yen., S.-J. (2006) NCTU6 Wins Connect6 Tournament, ICGA Journal, Vol. 29, No.3, pp.
157-158.

NCTU6 Wins in the Man-Machine Connect6 Championship 2009

Ping-Hung Lin
1
 and I-Chen Wu

1

Taiwan

The Man-Machine Connect6 Championship 2009, sponsored by some organizations and industrial

companies, was held in Hsinchu, Taiwan, on October 11, 2009. Four of top Connect6 players from Taiwan,

listed in Table 1 below, attended this contest and played against NCTU6, the program developed by the team

led by I-Chen Wu, including Ping-Hung Lin and Hung-Hsuan Lin.

Player Player Points NCTU6 Points

Round 1 Round 2 Total Round 1 Round 2 Total

Wen-Ching Hsu 0 0 0 2 2 4

Cheng-Guo Chen 0 0 0 2 2 4

Wei-Han Chen 0 0 0 2 2 4

Shi-Wen Lee 0 0 0 2 2 4

Table 1: The participants and final standings.

The game Connect6, a kind of six-in-a-row game, was first introduced by Wu and Huang (Wu and Huang,

2005) and then described in more detail by Wu, Huang, and Chang (Wu, Huang, and Chang, 2005). The

rules of Connect6 are very simple. Two players, henceforth represented as Black (designated as the first

player) and White, alternately place two stones, black and white respectively, on one empty intersection of

an 1919 board, except for that Black places one stone initially. The player who first obtains six

consecutive stones (horizontally, vertically or diagonally) wins the game. When all intersections on the

board are occupied without connecting six, the game is drawn.

In this contest, four of top Connect6 players from Taiwan, Wen-Ching Hsu, Cheng-Guo Chen, Wei-Han

Chen and Shi-Wen Lee, were invited to play against NCTU6. The first three are the top four in the Fourth

Annual NCTU-Cup Connect6 Open Tournament (whose web pages are in www.connect6.org), which were

held on August 23, in 2009. NCTU-Cup Connect6 Open Tournament is the most important annual

Connect6 tournament held in Taiwan that usually attracts about a hundred players each year. The winners

in this tournament are usually ones of the top players in Taiwan. Shi-Wen Lee is the head of Taiwan

Connect6 Club, who could also be the first player who posted Connect6 openings and puzzles over the

Internet (namely posted in November, 2005).

The Connect6 program, NCTU6, attended the 11
th

 and 13
th

 Computer Olympiad in both 2006 (Wu and Yen,

2006) and 2008 (Wu and Lin, 2008), and won gold both. NCTU6 also beat Chou Chun-Hsun (also

transliterated as Zhou Junxun), an ever Go Champion, in invited competition events between NCTU6 and

Chou, sponsored by National Science Council in Taiwan and some other organizations.

In this championship, the games were played in two rounds. NCTU6 played first against each human player

in the first round, while playing second in the second round. In each game, every player freely played

during the initial 80 minutes. After the period, each player had at most 10 times to play moves that took

more than one minute, or lost the game. For each game, the winner scored 2 points and the loser scored

nothing. For a draw game, both scored 1. NCTU6 won all games and the final points for human players are

listed in Table 1. The winner was awarded NT$6000, roughly US$180.

This report comments four games between NCTU6 and human players. First, two of the games in the first

round are commented. Figure 1 shows the record of the game, NCTU6 (Black) vs. Shi-Wen Lee (White).

Moves 2 to 5 are a popular opening that is also played in the game shown in Figure 2. Lee made a good

shape at Move 8. However, NCTU6 also successfully made a counter move at 9 that forced White back to

1
 Dept. of Computer Science, National Chiao Tung University, Hsinchu, Taiwan, Email: bhlin@csie.nctu.edu.tw and

icwu@csie.nctu.edu.tw.

defend. After Move 9, NCTU6 continuously played aggressively, but Lee also defended well and grew better

outside. Finally, NCTU6 won the game when Lee made a blunder at Move 26. Figure 2 shows the record of

the game, NCTU6 (Black) vs. Wei-Han Chen (White), in the same round. In this game, Moves 2 to 5 are the

same opening. Chen made a very good shape at Move 14. Fortunately, NCTU6 played well at Moves 15, 17

and 19 to resolve the good shape. NCTU6 won the game after Chen made a blunder at Move 22 which

should have defended at G9 and H10.

Figure 1: Black: NCTU6, White: Shi-Wen Lee,

Moves 1 – 29.

Figure 2: Black: NCTU6, White: Wei-Han Chen,

Moves 1 – 31.

Figure 3: Black: Wen-Ching Hsu, White: NCTU6,

Moves 1 – 24.

Figure 4: Black: Cheng-Guo Chen, White:

NCTU6, Moves 1 – 28.

For the two games in the second round, we first comment the record of the game, Wen-Ching Hsu (Black)

vs. NCTU6 (White), as shown in Figure 3. Although the opening played by White is not common and

slightly better for Black, NCTU6 still chose this opening since this opening was more robust if opponents

did not play starting at the center. From Move 3 to Move 19, Hsu played very aggressively and controlled

this game. However, Hsu made a blunder at Move 21 that should have defended at L6, and NCTU6 thus won

this game. In another game, Cheng-Guo Chen (Black) vs. NCTU6 (White) shown in Figure 4, NCTU6 made a

bad shape at Move 18. NCTU6 still fortunately won when Chen neglected a winning move by White at

Move 24.

In general, human players are good at making good shapes to win games. NCTU6 still needs to be improved

to make better shapes. On the other hand, human players do not search winning moves as accurately as

NCTU6 does, especially under time pressures. NCTU6 can easily catch any blunders made by human players.

Unanimously, the four players thought that they might be able to win some games, if played with more

times. After the games, a common agreement that was reached is to allow much more times in the

championship next year.

F.l.t.r. Ping-Hung Lin, Shi-Wen Lee, Cheng-Guo Chen, I-Chen Wu, Wei-Han Chen, Shun-Ji Guo (the

referee), and Wen-Ching Hsu.

References

Wu, I-C. and Huang, D.-Y. (2005) A New Family of k-in-a-row Games. The 11th Advances in Computer

Games (ACG11) Conference, Taipei, Taiwan.

Wu, I-C., Huang, D.-Y., and Chang, H.-C. (2005) Connect6, ICGA Journal, Vol. 28, No.4, pp. 234-241.

Wu, I-C., and Yen, S.-J. (2006) NCTU6 Wins Connect6 Tournament, ICGA Journal, Vol. 29, No.3, pp.

157-158.

Wu, I-C., and Lin, P.-H. (2008) NCTU6-Lite Wins Connect6 Tournament, ICGA Journal, Vol. 31, No. 4, pp.

244-247.

JOB-LEVEL PROOF-NUMBER SEARCH FOR

CONNECT6

I-Chen Wu
1
, Hung-Hsuan Lin

1
, Ping-Hung Lin

1
, Der-Johng Sun

1
,

Yi-Chih Chan
1
, and Bo-Ting Chen

1

1 Department of Computer Science, National Chiao Tung University,

Hsinchu, Taiwan

{icwu, bhlin, stanleylin, derjohng, nick314, qqting}@java.csie.nctu.edu.tw

Abstract. This paper proposes a new approach for proof number (PN) search,

named job-level PN (JL-PN) search, where each search tree node is evaluated

or expanded by a heavy-weight job, which takes normally over tens of seconds.

Such JL-PN search is well suited for parallel processing, since these jobs are

allowed to be performed by remote processors independently. This paper

applies JL-PN search to solving automatically several Connect6 positions

including openings on desktop grids. For some of these openings, none of

human experts had been able to find the winning strategies before. Our

experiments also showed the speedups for solving these positions are roughly

linear, fluctuated from sublinear to superlinear. Hence, JL-PN search appears

to be a very promising approach to solving games.

Keywords: Connect6, proof-number search, job-level proof-number search,

threat-space search, desktop grids.

1 Introduction

Proof-number (PN) search, proposed by Allis et al. [1,3], is a kind of best-first search

algorithm that was successfully used to prove or solve theoretical values [9] of game

positions for many games [1,2,3,8,17,18,19,23], such as Connect-Four, Gomoku,

Renju, Checkers, Lines of Action, Go, Shogi. Like most best-first search, PN search

has a well-known disadvantage, the requirement of maintaining the whole search tree

in memory. Therefore, many variations [5,11,14,15,19,23] were proposed to avoid

this problem, such as PN
2
, DF-PN, PN*, PDS, and parallel PN search [10,17] were

also proposed. For example, PN
2
 used two-level PN search to reduce the size of the

maintained search tree.

This paper proposes a new approach, named job-level proof-number (JL-PN)

search, where the PN search tree is maintained by a process, the client in this paper,

and search tree nodes are evaluated or expanded by heavy-weight jobs, which can be

executed remotely in a parallel system. Heavy-weight jobs take normally tens of

seconds or more (perhaps up to one day).

In JL-PN search, we leverage the well-written programs as the heavy-weight jobs.

In this paper, NCTU6 and NCTU6-Verifier (abbr. Verifier) are used as the heavy-

weight jobs for Connect6. NCTU6 is a Connect6 program which won the gold of

Connect6 Tournaments in Computer Olympiad [26,27,30] in 2006 and 2008 and also

won 8 games and lost nothing against top Connect6 players [12] in Taiwan in 2009,

and is used to generate a move (a node) and also evaluate the generated node. Verifier

is a verifier modified from NCTU6, and is used to generate all the defensive moves

(on the other hand, the moves not generated are proved to be losing). The JL-PN

approach has the following advantages.

 Develop jobs (well-written programs) and the JL-PN search independently,

except for a few efforts required to support JL-PN search from these jobs. As

described in this paper, these required efforts are relatively low.

 Dispatch jobs to remote processors in parallel. Such JL-PN search is well suited

for parallel processing, since these jobs are allowed to be performed by remote

processors independently.

 Maintain the JL-PN search tree inside the client memory without much problem.

Since well-written programs also support accurate domain-specific knowledge

to a certain extent, the search trees require less nodes to solve the game

positions (when compared with PN search). In our experiments for Connect6,

the search tree usually contains no more than one million nodes, which can fit

process (client) memory well. Assume that it takes one minute (60 seconds) to

run NCTU6. Then, a parallel system with 60 processors takes about 11 days to

build a tree up to one million nodes. In such cases, we can manually split one

JL-PN search into two.

 Easily monitor the search tree. Since the maintenance cost for the search tree is

relatively low when compared with the heavy-weight jobs, the client that

maintains the JL-PN search tree can support more GUI utilities to let users

easily monitor the running of the whole JL-PN search tree real time. For

example, let users look into the search tree during the running time.

Using JL-PN search with the two jobs NCTU6 or Verifier on desktop grids, a kind

of volunteer computing systems [4,7,20,25], this paper solved several Connect6

positions including several 3-move openings as shown in Figure 6 (below). For some

of these openings, none of professionals had been able to find the winning strategies

before. These solved openings include the popular one as shown in Figure 6 (i),

named Mickey-Mouse Opening [21] (since White 2 and Black 1 together look like a

face of the Mickey Mouse).

This paper is organized as follows. Section 2 reviews Connect6 applications

including the jobs for Connect6. Section 3 describes JL-PN search and discusses some

related issues. Section 4 does experiments for JL-PN search. Section 5 makes

concluding remarks.

2 Connect6 Applications

Connect6 [28,29] is a kind of six-in-a-row game that was introduced by Wu et al.

Two players, named Black and White in this paper, alternately place two black and

white stones respectively on empty intersections of a Go board (a 1919 board) in

each turn. Black plays first and places one stone initially. The player who gets six

consecutive stones of his own first horizontally, vertically or diagonally wins.

One issue for Connect6 is that the game lacks openings for players since the game

is still young when compared with other games such as Chess, Chinese Chess and Go.

Hence, it is important for Connect6 player community to investigate more openings

quickly. For this issue, Wu et al. in [25] designed a desktop grid to help human

experts build and solve openings. The desktop grid is also used as our parallel system

for JL-PN search. Processors in the grid are called workers.

In the desktop grid, two programs, NCTU6 and Verifier, are embedded as jobs.

NCTU6 is a Connect6 program, written by some of the authors, as also described in

Section 1. According to [27], NCTU6 included a solver that was able to find Victory

by Continuous Four (VCF), a common term for winning strategies in the Renju

community. More specifically, VCF for Connect6, also called VCST in [27], is to win

by making continuously moves with at least one four (that threat the opponent to

defend) and ending with connecting up to six in all subsequent variations.

From the viewpoint of lambda search [22,27], VCF or VCST is a winning strategy

in the second order of threats according to the definition in [27], that is, a a
2
-tree

(similar to a a
2
-tree in [22]) with value 1. Lambda search defined by Thomson [22] is

a threat-based search method, formalized to express different orders of threats. Wu

and Lin [27] modified the definition to fit Connect6 as well as a family of k-in-a-row

games and changed the notation from a
i
 to a

i
.

Verifier is a verifier modified from NCTU6, and is used to verify whether the

player to move loses in the position, or list all the defensive moves that may prevent

from losing in the order a
2
. If a move is not listed, Verifier is able to prove that the

move is losing [27]. In some extreme cases, Verifier may report up to tens of

thousands of moves. Generating such a large number of moves in PN search is

resource-consuming (either computation or memory resources).

NCTU6 jobs usually take about one minute and NCTU6-Verifier jobs take a wide

variety of times, from one minute up to one day, depending on the number of

defensive moves. In the research [25], human experts solve positions by submitting

jobs to free workers (in a desktop grid) manually. This paper is to use JL-PN search to

submit jobs automatically. In order to support the automation, two additional

functionalities are also added into NCTU6 as follows.

1. Given a list of exclusive moves as input, NCTU6 generates the best move

among all the non-exclusive moves (those not in the list).

2. For the above functionality, if all the non-exclusive moves cannot prevent from

losing, NCTU6 needs to report a sure loss message. After supporting this

functionality, NCTU6 is able to replace Verifier in some cases. This

functionality is critical in JL-PN search, described in Section 3.

3 Job-Level Proof Number (JL-PN) Search

This section presents job-level proof number (JL-PN) search that is used to solve

Connect6 positions automatically. For simplicity of discussion about proof-number

(PN) search, we follow in principle the definitions and algorithms in [1,3]. PN search

is based on an AND/OR search tree where each node n is associated with

proof/disproof numbers, p(n) and d(n), which represent the minimum numbers of

nodes to be expanded to prove/disprove n. The values p(n)/d(n) are 0/ if the node n

is proved, and /0 if it is disproved. PN search repeatedly chooses a leaf called the

most-proving node (MPN) to expand, until the root is proved or disproved. The details

of choosing MPN and maintaining the proof/disproof numbers can be found in [1,3]

and therefore is omitted in this paper. If the selected MPN is proved (disproved), the

proof (disproof) number of the root of the tree is decreased by one.

Our JL-PN search is parallel PN search with the following two features. First, well-

written programs such as NCTU6 and Verifier are used to expand and generate MPNs.

These programs are viewed as jobs, sent to and done by free workers in a desktop grid.

Second, multiple MPNs are allowed to be chosen simultaneously and therefore can be

done by different workers in parallel.

In the rest of this section, Subsection 3.1 briefly describes the initializations of the

proof/disproof numbers that help guide the search. Subsection 3.2 discusses the first

feature, node expansion and generation, using NCTU6 and Verifier. Subsection 3.3

describes a very important algorithm of choosing the next MPN for parallelism for the

second feature.

3.1 Proof/Disproof Number Initialization

This subsection briefly describes how to apply the domain knowledge given by

NCTU6 to initialization of the proof/disproof numbers. Since it normally takes one

minute or even more to execute a NCUT6 or Verifier job, it becomes critical to

choose a good MPN carefully to expand, especially when there are many candidates

with 1/1 as the standard initialization. In [1], Allis suggested several methods such as

the use of the number of nodes to be expanded, the number of moves to the end of

games, or the depth of a node.

 Status Bw B4 B3 B2 B1 W1 W2 W3 W4 Ww stable unstable1 unstable2

p(n)/d(n) 0/∞ 1/18 2/12 3/10 4/8 8/4 10/3 12/2 18/1 ∞/0 6/6 5/5 4/4

Table 1: Game status and the corresponding initializations.

Our approach is simply to trust NCTU6 and use its evaluations on nodes (positions)

to initialize the proof/disproof numbers in JL-PN search as shown in Table 1. The

status Bw indicates that Black has a sure win, so the proof/disproof numbers of a node

with Bw are 0/∞. The status B1 to B4 indicates that the game favors Black with

different levels, where B1 indicates to favor Black least and B4 most (implicitly

Black has a very good chance to win for B4) according to the evaluation by NCTU6.

Similarly, the status W* are for White. The status stable indicates that the game is

stable for both players, while both unstable1 and unstable2 indicate unstable, where

unstable2 is more unstable than unstable1.

Surely, there are many different kinds of initializations other than those in Table 1.

Our philosophy is simply to pass the domain-specific knowledge from NCTU6 to JL-

PN search. Different programs or games surely have different policies on

initializations from practical experiences.

3.2 Node Expansion and Generation

In JL-PN search, NCTU6 and Verifier are used to expand and generate nodes.

Given a node (a position) n and a list of its children (exclusive moves), NCTU6

expands n by generating from n a new child (the best among all the moves outside the

list) and evaluating the new child. Given a node n, Verifier expands n by generating

all the children (that may prevent from losing in the order a
2
). In our current version,

Verifier does not evaluate these children (as described above), and provides no

domain-specific knowledge (about how good these moves are).

In our earliest scheme of JL-PN search, we assumed in advance whom to win and

then used NCTU6 to expand OR nodes and Verifier to expand AND nodes

asymmetrically. Although it seems straightforward to prove positions in this scheme,

this scheme has the following three drawbacks.

1. When expanding an AND node n, Verifier may generate a large number of

moves as mentioned above. In the case that n is not proved but one sibling of n

is proved, it may waste resources to generate all the children of n, especially

when the number of children is very large. The dilemma is that it is hard to

decide when Verifier should terminate node expansion.

2. Verifier provides no domain-specific knowledge so that these moves are not

ordered for search. When Verifier generates a large number of moves from an

AND node, this problem is even more serious. It is hard to choose which child

to select for MPNs.

3. In many cases, it is hard to decide whom to win in advance. For example, White

wins at 4 in Figure 6 (f). However, at the first glance, we and even some human

experts thought that Black won or had an advantage at 3, and therefore spent

time in proving whether Black wins, but unfortunately failed to prove at 4.

In order to cope with the above drawbacks, we developed several techniques and

also successfully solved several positions and openings based on this scheme.

However, since these techniques are too complicated and this scheme outperforms the

next scheme in a few cases only, the above scheme is discussed no longer in this

paper.

This paper uses the following scheme, instead: NCTU6 is used to expand all nodes.

However, one issue raised from this scheme is when to generate siblings of nodes.

Since chosen MPNs must be leaves, expanding chosen MPNs alone implies

expanding leaves only. For this issue, we propose a method called postponed sibling

generation as follows.

Figure 1: Expanding n (to generate n4) and n3 simultaneously.

 Assume that for a node n NCTU6 already generates the i-th move, ni, but not

yet for the (i+1)-st, ni+1. When the node ni is chosen as the MPN for expansion,

expand ni and generate ni+1 simultaneously. For generating ni+1, NCTU6

expands n with an exclusive list of moves, n1, n2, …, ni (using the first

functionality as described in Section 2). For example, when the node n3 is

chosen as the MPN, expand n3 and expand n (to generate n4) simultaneously.

On the other hand, if the branch n1 or n2 is chosen, do not generate n4 yet. In

addition, assume that the move to n4 is a sure loss, reported by NCTU6. From

the second functionality as described in Section 2, all the moves except for n1,

n2 and n3 lose. Then, the node n is no longer expanded. In this case, n4 behaves

as a stopper.

The postponed sibling generation method fits parallelism well, since both

generating n4 and expanding n3 can be performed simultaneously. Some more issues

are described as follows.

One may ask what if we choose to generate n4 before expanding n3. Assume that

one player, say Attacker, is to move in the OR node n. Let Defender indicate the

opponent. From the first additional functionality described in Section 2, the move n3

is supposed to be better for Attacker than n4 (according to the evaluation of NCTU6).

Assume that it is indeed. Then, the condition p(n3)  p(n4) holds. Thus, the node n3

must be chosen as the MPN to expand earlier than n4. Thus, it becomes insignificant

to generate n4 before expanding n3. In addition, the above condition also implies that

the proof numbers of all the ancestors of node n remains unchanged. As for the

disproof numbers of all the ancestors of n, these values are the same as or higher.

Unfortunately, higher disproof numbers discourage the JL-PN search to choose n3 as

MPNs to expand. Thus, the behavior becomes awkward, especially if the node n3 will

be proved eventually.

One may also ask what if we expand n3, but generate n4 later. In such a case, it

may make the proof number of n fluctuated. An extreme situation is that the value

becomes infinity when all nodes, n1, n2 and n3, are disproved.

3.3 Most Proving Nodes in Parallelism

This subsection discusses the key issue, choosing the MPNs to expand in parallel.

When no MPNs are being expanded yet, we simply follow the traditional PN search

to find an MPN and then use the method of postponed sibling generation (described in

the previous subsection) to expand the MPN and generate its new sibling, if necessary.

The node expansion and sibling generation form jobs which are respectively

dispatched to free workers in the desktop grid. Whenever jobs are completed in

workers, the results are returned back to the client. Then, the client updates the

proof/disproof numbers of all nodes in the tree accordingly.

When some more free workers in the desktop grid are available, more MPNs are

chosen for execution on these workers. However, if we do not change the

proof/disproof numbers of the chosen MPNs being expanded, named the active MPNs

in this paper, we would choose the same node obviously, as shown in Figure 2 (a)

below. The issue is solved by the following policies.

 (a) (b) (c)

Figure 2: (a) Remaining unchanged. (b) Virtual win. (c) Virtual loss.

One policy of preventing from choosing the same node is to assume a virtual win

[6] on the active MPNs. The idea of the virtual-win policy is to assume that the active

are all proved. Thus, their proof/disproof numbers are all set to 0/∞, as illustrated in

Figure 2 (b). When the proof number of the root is zero, we stop choosing more

MPNs. The reason is that the root is already proved if the active are all proved.

Another policy is to assume a virtual loss on the active MPNs. Thus, the

proof/disproof numbers of these nodes are set to ∞/0 as shown in Figure 2 (c).

Similarly, when the disproof number of the root is zero, we stop choosing more

MPNs. Similarly, the root is disproved, if all the active are disproved.

We also propose another policy, named a greedy policy, which chooses virtual-

loss when the chosen nodes favor the disproof according to the evaluation of NCTU6,

and chooses virtual-win otherwise. As described above, we may not be able to decide

whom to win in advance in some cases such as the one in Figure 6 (f). This policy is

used to see whether it makes differences.

4 Experiments

In our experiments of JL-PN search, the benchmark included 35 Connect6

positions (available in [31]), among which the last 15 positions are won by the player

to move, while the first 20 are won by the other. The first 20 and the last 15 are

ordered according to the computation time in the desktop grid [25] with 8 workers,

actually 8 cores on four Intel Core2 Duo 3.33 GHz machines. In our experiments, the

client is located on another host. Note that the time for maintaining the JL-PN search

tree is negligible, since it is relatively low when compared with those of NCTU6 and

Verifier (normally taking 1 minute or more).

Figure 3 (below) shows the speedups and the speedup efficiencies of the 35

positions using JL-PN search with the virtual-loss policy and with 1, 2, 4 and 8 cores

respectively. Let the speedup Sk = T1/Tk, where Tk is the computation time for solving

a position with the virtual-loss policy with k cores. Also, let the speedup efficiency Ek

= Sk/k. The efficiencies are one for ideal linear speedups.

From Figure 3, the speedups for our JL-PN search are roughly linear, but are

fluctuated from sublinear to superlinear due to the high uncertainty of parallel state-

space search [13,16]. The phenomenon of superlinear speedups for parallel state-

space search has been discussed in [16] in greater detail. Since PN search is a kind of

state-space search, it fits the phenomenon. Although fluctuated, the speedups are

close to linear speedups. Such a result shows that JL-PN search is a very promising

approach to solving games.

 (a)

(b)

Figure 3: (a) Speedups Sk and (b) efficiencies Ek of the 35 positions for k = 1, 2, 4 or 8.

 (a)

 (b)

Figure 4: Normalized logarithmic time scales with 8 cores (a) for the first 20

positions and (b) for last 15.

Our next experiment is to investigate the three policies, virtual-win, virtual-loss

and greedy policies, as proposed in Subsection 3.3. For these policies, we measured

their computation times with 8 cores only, normalized to those for the virtual-loss

policy in the following way. Let Ti,vwin, Ti,vloss and Ti,grd be the times for solving the ith

position in the benchmark with virtual-win, virtual-loss and greedy policy. The

normalized logarithmic time scales are Ni,type = log (Ti,type /Ti,vloss), where type is vwin,

vloss or grd. Clearly, the scales for the virtual-loss policy are all zeros. Figure 4

shows all Ni,vwin, Ni,vloss and Ni,grd. The higher the scales are, the less efficient the

performances are with respect to the virtual-loss policy.

(a) (b) (c)

Figure 5: (a) A JL-PN search tree. (b) The virtual-win policy. (c) The virtual-loss

policy.

From Figure 4, the normalized logarithmic time scales are fluctuated due to the

same reason, the high uncertainty of parallelizing a search tree. In general, none of the

policies has clear advantages over any others, except that we observe the following

phenomenon: The virtual-loss policy seems slightly better in the positions where the

tree size is relatively smaller. These positions are in the left hand side of dashed lines

in Figure 4 (note that the positions are ordered according to the computation times as

mentioned above).

The phenomenon is explained and illustrated in the following example. Consider a

JL-PN search tree in Figure 5 (a). After choosing e as MPN, the virtual-win policy

sets the proof/disproof numbers of both b and a (the root) to 0/∞ as shown in Figure 5

(b), and therefore chooses no more MPNs until the job for e is completed. In contrast,

the virtual-loss policy sets the proof/disproof numbers of b to ∞/0, sets those of a to

6/11, and therefore chooses f and d as next MPNs, as shown in Figure 5 (c).

From the above observation, the virtual-win policy tends to choose MPNs from

the first (or the first several) branch of the root, while the virtual-loss policy tends to

choose MPNs from all branches. Thus, the virtual-loss policy tends to spread

computations better and utilize parallelism better at the early stage. However, in the

case that the tree size is large, the above advantage of the virtual-loss policy becomes

less significant.

As for the greedy policy, it is in-between. If it follows the virtual-win policy at the

very beginning, then the above phenomenon is also observed (see the left hand side of

Figure 4 (b)). Otherwise, it is similar to the virtual-loss policy.

All in all, since the speedups are fluctuated seriously, it is hard to conclude which

policy is the best, especially when the search tree is large. In our real experiences, we

tend to use the virtual-loss policy due to the above phenomenon.

(a) (b) (c) (d) (e)

 (f) (g) (h) (i) (j)

Figure 6: Ten openings in our benchmark.

Now, re-investigate the 35 positions in the benchmark. Among them, ten are 3-

move openings shown in Figure 6. The winning strategies for the first three were also

found in [27]. In these openings, White wins in the sixth one, while Black wins in

others. For many of them, their winning strategies were not found before. Especially,

the Mickey-Mouse Opening (the ninth one) had been one of popular openings before

we solved it. The tenth one, also called Straight Opening, is another difficult one.

5 Conclusion

The contributions of this paper are summarized as follows.

 This paper proposes a new approach, JL-PN (job-level proof-number) search, to

help solve the openings of Connect6. In this approach, some techniques are

used, such as the method of postponed sibling generation and the policies of

choosing MPNs. In this paper, JL-PN search was successfully used to solve

several positions of Connect6 automatically, including several 3-move openings,

such as Mickey-Mouse Opening and Straight Opening, which none of Connect6

human experts had been able to solve before.

 Our experiments also demonstrated roughly linear speedup, even superlinear

speedups in some cases. Based on JL-PN search, we expect to solve and

develop more Connect6 openings.

 From our experiments, we observed that the virtual-loss policy seemed slightly

better for small tree sizes. However, for large tree sizes, we observed that none

of the policies had clear advantages over any others.

In addition, the approach of JL-PN search has several advantages as indicated in

Section 1. We expect to apply it to many other games in the near future.

Acknowledgments.

The authors would like to thank anonymous reviewers for their valuable comments,

and thank the National Science Council of the Republic of China (Taiwan) for

financial support of this research under contract numbers NSC 95-2221-E-009-122-

MY2 and NSC 97-2221-E-009-126-MY3.

References

[1] Allis, L.V., Searching for solutions in games and artificial intelligence, Ph.D. Thesis,
University of Limburg, Maastricht, The Netherlands, 1994.

[2] Allis, L.V., Herik, H. J. van den, and Huntjens, M. P. H., Go-Moku Solved by New
Search Techniques. Computational Intelligence, Vol. 12, pp. 7-23, 1996.

[3] Allis, L.V., Meulen, M. van der, and Herik, H. J. van den, Proof-number search,
Artificial Intelligence, Vol. 66(1), pp. 91-124, 1994.

[4] Anderson, D. P. Boinc: A system for public-resource computing and storage. In
Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing
(GRID'04), IEEE CS Press, Pittsburgh, USA, pp. 4-10, 2004.

[5] Breuker, D. M., Uiterwijk, J., and Herik, H. J. van den, The PN2-search algorithm, in H.
J. van den Herik, B. Monien (Eds.), Advances in Computer Games, Vol. 9, IKAT,
Universiteit Maastricht, Maastricht, The Netherlands, pp. 115-132, 2001.

[6] Chaslot, G. M., Winands, M. H. M., and Herik, H. J. van den, Parallel Monte-Carlo Tree
Search. The 6th International Conference on Computers and Games (CG2008), Beijing,
China, 2008.

[7] Fedak, G., Germain, C., Neri, V., and Cappello, F., Xtremweb: A generic global
computing system. In Proceedings of the 1st IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGRID 2001): Workshop on Global Computing on
Personal Devices, IEEE CS Press, Brisbane, Australia, pp. 582-587, 2001.

[8] Herik, H. J. van den, and Winands, M. H. M., Proof-Number Search and its Variants. In
Oppositional Concepts in Computational Intelligence, pp. 91-118, 2008.

[9] Herik, H. J. van den, Uiterwijk, J. W. H. M., and Rijswijck, J. V., Games solved: Now
and in the future. Artificial Intelligence, Vol. 134, pp. 277-311, 2002.

[10] Kishimoto, A., and Kotani, Y., Parallel AND/OR tree search based on proof and disproof
numbers. In 5th Games Programming Workshop, Vol. 99(14) of IPSJ Symposium Series,
pp. 24-30, 1999.

[11] Kishimoto, A., and Müller, M., Search versus Knowledge for Solving Life and Death
Problems in Go, Twentieth National Conference on Artificial Intelligence (AAAI-05),
pp. 1374-1379, 2005.

[12] Lin, P.-H., and Wu, I.-C., NCTU6 Wins Man-Machine Connect6 Championship 2009,
ICGA Journal, Vol. 32(4), pp. 230–232, 2009.

[13] Manohararajah, V. Parallel alpha-beta search on shared memory multiprocessors.
Master’s thesis, Graduate Department of Electrical and Computer Engineering,
University of Toronto, Canada, 2001.

[14] Nagai, A., Df-pn Algorithm for Searching AND/OR Trees and Its Applications. PhD
thesis, University of Tokyo, Japan, 2002.

[15] Pawlewicz, J., and Lew, L., Improving depth-first pn-search: 1+ε trick. In H. J. van den
Herik, P. Ciancarini, and H.H.L.M. Donkers, editors, 5th International Conference on
Computers and Games, Vol. 4630 of LNCS, pp. 160-170. Computers and Games,
Springer, Heidelberg, 2006.

[16] Rao, V. N., and Kumar, V., Superlinear Speedup in State-space Search. In Proceedings
of the 1988 Foundation of Software Technology and Theoretical Computer Science,
number 338 of LNCS, pp. 161-174, Springer-Verlag, 1988.

[17] Saito, J. T., Winands, M. H. M., and Herik, H. J. van den, Randomized Parallel Proof-
Number Search. Advances in Computer Games Conference (ACG'12), Lecture Notes in
Computer Science (LNCS 6048), pp. 75-87, Palacio del Condestable, Pamplona, Spain,
2009.

[18] Schaeffer, J., Burch, N., Björnsson, Y., N., Kishimoto, A., Müller, M., Lake, R., Lu, P.,
and Sutphen, S., Checkers is solved. Science, Vol. 5844(317), pp. 1518-1552, 2007.

[19] Seo, M., Iida, H., and Uiterwijk, J., The PN*-search algorithm: Application to
Tsumeshogi. Artificial Intelligence, Vol. 129(1-2), pp. 253-277, 2001.

[20] SETI@home Project. available at http://setiathome.ssl.berkeley.edu.
[21] Taiwan Connect6 Association, Connect6 homepage, available at

http://www.connect6.org/.
[22] Thomsen, T., Lambda-search in game trees - with application to Go. ICGA Journal, Vol.

23(4), pp. 203-217, 2000.
[23] Winands, M. H. M., Uiterwijk, J. W. H. M., and Herik, H. J. van den, PDS-PN: A new

proof-number search algorithm: Application to Lines of Action. In J. Schaeffer, M.
Müller, and Y. Björnson, editors, Computers and Games 2002, Vol. 2883 of LNCS, pp.
170-185. Computers and Games, Springer, Heidelberg, 2003.

[24] Wu, I-C., Hsu, S.-C., Yen, S.-J., Lin, S.-S., Kao, K.-Y., Chen, J.-C., Huang, K.-C.,
Chang, H.-Y., and Chung, Y.-C., A Volunteer Computing System for Computer Games
and its Applications, an integrated project proposal submitted to National Science
Council, Taiwan, 2010.

[25] Wu, I.-C., Chen, C.-P., Lin, P.-H., Huang, K.-C., Chen, L.-P., Sun, D.-J., Chan, Y.-C.,
and Tsou, H.-Y., “A Volunteer-Computing-Based Grid Environment for Connect6
Applications”, the 12th IEEE International Conference on Computational Science and
Engineering (CSE-09), August 29-31, Vancouver, Canada, 2009.

[26] Wu, I.-C., and Lin, P.-H., NCTU6-Lite Wins Connect6 Tournament, ICGA Journal, Vol.
31(4), pp. 240–243, 2008.

[27] Wu, I.-C., and Lin, P.-H., Relevance-Zone-Oriented Proof Search for Connect6, to
appear in the IEEE Transactions on Computational Intelligence and AI in Games, 2010.

[28] Wu, I.-C., Huang, D.-Y., and Chang, H.-C., Connect6. ICGA Journal, Vol. 28(4), pp.
234-242, 2006.

[29] Wu, I.-C., and Huang, D.-Y., A New Family of k-in-a-row Games. The 11th Advances in
Computer Games Conference (ACG'11), pp. 180-194, Taipei, Taiwan, 2005.

[30] Wu, I.-C., and Yen, S.-J., NCTU6 Wins Connect6 Tournament, ICGA Journal, Vol.
29(3), pp. 157-158, September 2006.

[31] Wu, I.-C., et al. Benchmark for Connect6, available at
http://www.connect6.org/articles/JL-PNS/.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 3, SEPTEMBER 2010 191

Relevance-Zone-Oriented Proof Search for Connect6
I-Chen Wu, Member, IEEE, and Ping-Hung Lin

Abstract—Wu and Huang (Advances in Computer Games, pp.
180–194, 2006) presented a new family of -in-a-row games,
among which Connect6 (a kind of six-in-a-row) attracted much
attention. For Connect6 as well as the family of -in-a-row games,
this paper proposes a new threat-based proof search method,
named relevance-zone-oriented proof (RZOP) search, developed
from the lambda search proposed by Thomsen (Int. Comput.
Games Assoc. J., vol. 23, no. 4, pp. 203–217, 2000). The pro-
posed RZOP search is a novel, general, and elegant method of
constructing and promoting relevance zones. Using this method
together with a proof number search, this paper solved effectively
and successfully many new Connect6 game positions, including
several Connect6 openings, especially the Mickey Mouse opening,
which used to be one of the popular openings before we solved it.

Index Terms—Board games, Connect6, -in-a-row games,
lambda search, threat-based proof search, threat-space search.

I. INTRODUCTION

A generalized family of -in-a-row games, named Con-
nect [30], [31], was introduced and

presented by Wu et al. Two players, named Black and White,
alternately place stones on empty squares1 of an board
in each turn. Black plays first and places stones initially. The
player who first gets consecutive stones of his own horizon-
tally, vertically, and diagonally wins. Both players tie the game
when the board is filled up with neither player winning. Games
in this family are also called Connect games2 in this paper. For
example, Tic-tac-toe is Connect(3,3,3,1,1), Go-Moku in the free
style (a traditional five-in-a-row game) is Connect(15,15,5,1,1),
and Connect6 played on the traditional Go board is Con-
nect(19,19,6,2,1). For simplicity, let Connect denote
the game Connect , played on infinite boards. For
example, when played on infinite boards, Go-Moku becomes
Connect(5,1,1) and Connect6 becomes Connect(6,2,1).

Among these Connect games, Connect6 attracted much atten-
tion due to three merits: fairness, simplicity of rules, and high
game complexity as described in [30] and [31]. Since Connect6

Manuscript received February 11, 2010; revised June 11, 2010; accepted July
12, 2010. Date of publication July 23, 2010; date of current version September
15, 2010. This work was supported in part by the National Science Council of
the Republic of China (Taiwan) under contract numbers NSC 95-2221-E-009-
122-MY2 and NSC 97-2221-E-009-126-MY3.

The authors are with the Department of Computer Science, National Chiao
Tung University, Hsinchu 30050, Taiwan (e-mail: icwu@csie.nctu.edu.tw;
bhlin@csie.nctu.edu.tw).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCIAIG.2010.2060262

1Practically, stones are placed on empty intersections of Renju or Go boards.
In this paper, by squares, we mean intersections.

2The term of connect games defined in [10] covers the games such as Hex,
Connect Four, etc. In this paper, Connect are capitalized to indicate all the games
in the family of Connect����� �� �� ��.

was introduced, hundreds of thousands of Connect6 games have
been played on web sites, such as littlegolem.net [14] and cy-
cgame.com [21]. Since 2006, several Connect6 open tourna-
ments [20] for human players have been held, such as NCTU
Open, ThinkNewIdea Open, Russian Open, and World Open.
Connect6 has also been included as one of the computer game
tournaments at the Computer Olympiad [24] and Chinese Com-
puter Games Contest [9], since 2006 and 2007, respectively.

For Connect6, researchers in [30] and [31] mentioned a
simple threat-based proof search method for solving Con-
nect(6,2,3). Section II shows that many more winning positions
cannot be solved by such a method. This paper proposes a new
threat-based proof search method, named relevance-zone-ori-
ented proof (RZOP) search, developed from the lambda search
proposed by Thomsen [22]. Section IV presents this novel,
general, and elegant method of constructing and promoting
relevance zones for Connect6. The proposed method is also
generalized to all Connect games in the Appendix. Together
with a proof number search [3], [28], it solved effectively and
successfully many new Connect6 game positions, including
several Connect6 openings, especially the Mickey Mouse
opening, as described in Section V. This opening used to be one
of the popular openings before we solved it. All definitions and
notations used in this paper are given in Section III. Concluding
remarks are made in Section VI.

II. MOTIVATION

When Connect6 was first introduced by Wu et al. [30], [31],
they mentioned that threats are the key to winning Connect6
as well as other Connect games, like Renju. According to the
definitions by [30] and [31], one player has and only threats,
if and only if is the smallest number of stones that the opponent
needs to place to prevent from losing the game in the next move.
A move is called a single-threat move if the player who makes
the move has one and only one threat after the move, a double-
threat move if two, a triple-threat move if three, and a nonthreat
move if none. In Connect6, one player clearly wins by a triple-
threat-or-more move (a move with at least three threats).

In [30] and [31], Wu et al. showed a type of winning strategy,
called victory by continuous double-threat-or-more moves
(VCDT) in this paper. It is similar to victory by continuous
four (VCF), a common term for winning strategies in the Renju
community [15]. More specifically, the type of VCDT strategy
is to win by making continuously double-threat moves and
ending with a triple-or-more-threat move or connecting up to
six in all variations, for example, in Fig. 1, White’s VCDT
12–18 (18 is a triple-threat move) moves.

Soon after the introduction of Connect6, many experts found
another type of winning strategy in which additional single-
threat moves are involved, i.e., single-threat and double-threat

1943-068X/$26.00 © 2010 IEEE

192 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 3, SEPTEMBER 2010

Fig. 1. Sequence of winning moves by White.

Fig. 2. (a) Black’s winning move in Connect(6,2,3). (b) VCDT for a null move
in (a). (c) VCDT for a seminull move 2.

moves are mixed (before ending with a triple-or-more-threat
move). This type of winning strategy is herein called victory by
continuous single-threat-or-more moves (VCST). For example,
Lee [13], a Renju 3-dan player, found and claimed in late
2005 that White won starting from move 8 (both 8 and 10 are
single-threat moves) in the game as shown in Fig. 1. Similarly,
the type of winning strategy with additional non-threat moves
involved is called victory by continuous nonthreat-or-more
moves (VCNT).

Although VCST was unknown then, Wu et al. [30], [31] were
already able to solve a simple VCNT case, when Black wins
Connect(6,2,3). This clearly is a case of VCNT, since Black’s
first winning move, as shown in Fig. 2(a), must be a nonthreat
move. To solve it, they used a simple threat proof search method
involving null or seminull moves and relevance zones, as briefly
described in the following. Let White place no stones, called a
null move in [30] and [31]. Obviously, Black wins by VCDT 3–9
as shown in Fig. 2(b). Then, a relevance zone , the area of gray
squares in Fig. 2(b), can be derived to indicate that White must
place at least one of the two stones inside this zone, or Black

Fig. 3. (a) Position with Black winning. (b) VCDT for the null move in (a). (c)
Winning single-threat move 9 for the seminull move 8.

wins by simply replaying the same VCDT. Next, all squares
in are verified as follows. Let White place one stone on only,
called a seminull move in [30] and [31]; for example, move 2 in
Fig. 2(c). Again, Black is able to win by another VCDT 3–11.
Thus, another relevance zone , the gray area in Fig. 2(c), can
be derived again to indicate that White must place another stone
inside , or Black wins by replaying the same VCDT. Finally,
all are verified such that Black wins over all moves placed at
and , where is in the corresponding to the seminull move
at . Hence, Black was proved to win.

In the above search method for solving the case Con-
nect(6,2,3) with VCNT, both winning strategies for the null
move [3–9 in Fig. 2(b)] and the seminull move [3–11 in
Fig. 2(c)] must be VCDT. However, with more and more win-
ning Connect6 positions investigated, we found that winning
strategies for null and seminull moves may be VCSTs or even
VCNTs, thus making these positions much more difficult to
solve.

For example, consider the two winning nonthreat moves
(proved in this paper): moves 7 in Fig. 3(a) and 6 in Fig. 4(a),
respectively. The former, found in 2006 [20], was the key used
to help prove that Black wins at move 3 in Fig. 3 [see also the
opening in Fig. 22(a)]; that is, the opening move 2 is solved. In
this case, for the null move in Fig. 3(a), Black wins by a VCDT
as shown in Fig. 3(b). However, for the seminull move 8 in
Fig. 3(c), Black has no double-threat moves to win by a VCDT,
though Black wins by a VCST starting at 9 in Fig. 3(c).

The latter, the position in Fig. 4(a) found by Huang [11],
was investigated to see whether the seminull move 5 was safe
enough, since the position at 5 was popular in the following
sense. Among all the first-five-move positions of Connect6
games played by the players ranked above 1800 in [14], about
2% covered (or superset) the position according to the statistics
discussed in [20]. The proof for this position is extremely
complicated. Even for a null move by Black, White has no

WU AND LIN: RELEVANCE-ZONE-ORIENTED PROOF SEARCH FOR Connect6 193

Fig. 4. (a) Position with White winning. (b) Winning single-threat move 8 for
a null move in (a). (c) Winning nonthreat move 8 for a seminull move 7.

double-threat moves to win by a VCDT, but can actually win
by a VCST starting at 8 as shown in Fig. 4(b). In addition, if a
seminull move is made at 7 in Fig. 4(c), White cannot win by
a VCDT or even a VCST, thus making the position in Fig. 4(a)
much more complicated to solve.

In order to solve these as well as other positions shown in
Section V, this paper proposes a new threat-based proof search
method, named relevance-zone-oriented proof (RZOP) search,
developed from the lambda search proposed by Thomsen [22].
In the past, many researchers [1]–[3], [6], [7], [22] have pro-
posed threat-based search methods. Lambda search is to for-
malize the search trees with null moves and to solve positions of
games such as Go and Chess. In lambda search, null moves are
involved with different orders of threat sequences, also called
lambda trees.

From the viewpoint of lambda search, a VCDT is a typical
-tree with value 1 (cf., [22]). However, the definition of

lambda search cannot be directly applied to Connect6 or Con-
nect games with . For Connect games, this paper modifies
the definition of lambda search in Section III-D, and replaces
the notation by . Under the new definition, a VCST is a

-tree with value 1, the winning strategy for the position in
Fig. 3(a) is a -tree with value 1, while that in Fig. 4(a) is a

-tree with value 1. The search formalized in this paper is
able to solve -trees to -trees with value 1 for Connect6.

III. DEFINITIONS AND NOTATION

This section gives definitions and notation related to Connect
game positions, search trees, threats, lambda search, and rele-
vance zones in Sections III-A–III-E, respectively.

A. Game Positions

In Connect games, a game position includes the informa-
tion of all the stones and their occupied squares on the board and
the turn of whom to play. The player to be proved to win, either
Black or White, is called the attacker and the other defender
in this paper. Let denote the information of an attacker
stone placed on the unoccupied square , and denote
the position after placing an attacker stone on in position
without changing the turn. and are similarly
defined for the defender. From the strategy stealing argument by
Nash (cf., [4] and [30]), we obtain the following. If the attacker
wins in , he wins in as well; and if the attacker
wins in , he wins in as well.

In this paper, denotes the position after one player
makes move and before the other makes the next move. In
Connect6, let denote an attacker move where two
attacker stones are placed on both unoccupied squares and

. and are similarly defined for
the defender. Note that in contrast to , the
position indicates changing the turn from the
attacker to the defender.

In Connect6, one player, say an attacker, is allowed to make
a null move, , that is, to place no stones; and a seminull
move, , that is, to place one stone only on square
in . Thus, the position is equivalent to

and . From
another viewpoint, null or seminull moves are to place some null
stones while placing normal stones. In Connect ,
we place null stones for a null move, while placing one to

null stones for seminull moves.
In Connect6, a segment is defined to be a set of six consecu-

tive squares horizontally, vertically, or diagonally on the board,
while in Connect , a segment is a set of consec-
utive squares. A segment is called an empty segment if all the
squares on it are unoccupied yet. A segment is called an active
segment of one player, if none of the squares are occupied by the
opponent’s stones. An active segment of one player is called a
win segment of the player, if all the squares on it are occupied
by the player. Obviously, one player wins if the player makes
a win segment. From the definition of Connect games, a game
ends when one makes some win segment or all the squares of
the board are already occupied. According to this definition, it
is impossible for both players to have win segments simultane-
ously.

B. Search Trees

This paper basically follows the definitions of search trees in
[5] and [17]. A search tree is shown in Fig. 5(a), where rec-
tangle and circle nodes indicate the positions in the attacker’s
and defender’s turns,3 respectively. The value of a leaf is 1, if
the attacker makes a win segment, and 0, otherwise. The value
of a search tree is the minimax value of the tree. The attacker
wins in the root position if the search tree has value 1 and all the
internal circles expand all defender’s legal moves.

3When we say that a position� is in the attacker’s (defender’s) turn, we mean
that the attacker (defender) is to move next in � .

194 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 3, SEPTEMBER 2010

Fig. 5. (a) Search tree. (b) Solution tree.

Fig. 6. (a) Marking squares of moves by inserting small boxes. (b) Combining the same edges from (a).

A strategy of the attacker is viewed as a move-generating
function of positions that are in the attacker’s turn. Namely,

indicates the move that the attacker chooses to make ac-
cording to the strategy . In a search tree following , each
position expands at most one move . A strategy of an
attacker is called a winning strategy for position , if and only
if the value of the search tree rooted at is 1 following and
all defender’s legal moves are generated in the tree. Thus, we
obtain Corollary 1. A tree as shown in Fig. 5(b) is called a solu-
tion tree in [5] and [17].

Corollary 1: The attacker wins in a position if and only if
there exists at least one winning strategy of the attacker in .

In order to investigate more closely squares of defensive
moves, insert small rectangles onto the corresponding edges
that are broken into two, marked and , respectively, as

shown in Fig. 6(a). Furthermore, the edges are combined with
the same , as shown in Fig. 6(b). Note that null stones are
marked as and the corresponding edges are indicated by
dashes.

A verifier (for the attacker) is to verify whether the at-
tacker wins in a position by following a strategy . Specifi-
cally, if returns the value 1, then the attacker wins in

and is a winning strategy for . A straightforward verifier
is to verify it by traversing exhaustively the whole solution tree.
Clearly, it is infeasible in most cases, especially in case of very
large boards or even infinite boards. Fortunately, in Connect
games, the traversal of the search tree for proof can be greatly
reduced according to threats, as described in Section III-C. The
traversed search tree for proof by a verifier is called a proof
search tree.

WU AND LIN: RELEVANCE-ZONE-ORIENTED PROOF SEARCH FOR Connect6 195

Fig. 7. (a) Normal critical defense. (b) Relaxed critical defense.

Fig. 8. Proof search tree for solving Connect(6,2,3).

C. Threats

In Connect6 (other Connect games are similar), threats are
the key to great reduction of the proof search tree. An active
segment in which the attacker occupied four or five squares is
called a threat segment of the attacker. The segment poses a
threat and the defender has to block it, or the attacker wins by
making a win segment in the next move.

Section I has already presented the definition of threat num-
bers. Examples of the line patterns with one, two, and three
threats can be found in [30] and [31]. The defensive moves that
block all the threats are called critical defenses, while removing
any stones in the moves unblocks some threats. For example,
White’s seminull moves and moves in
Fig. 7(a) and (b) are critical defenses, while moves
are not, because the threats are still blocked without . (Note
that null moves are also critical defenses in positions without
any threats according to the above definition.) Critical defenses
are said to be normal if the numbers of stones in the defenses
are the same as the numbers of threats; and relaxed, otherwise.
For example, in Fig. 7, seminull moves are normal,
while moves are relaxed. In Connect6, relaxed crit-
ical defenses are not played frequently due to their inefficiency
(using two stones to block only one threat).

As described above, threats are the key to great reduction of
the proof search tree without going through the entire defensive
search tree. For example, for double-threat moves, there are at
most four defensive moves. In addition, even for a nonthreat
move such as the game Connect(6,2,3) described in Section I,
Wu et al. [30], [31] were able to solve it by using a much
smaller proof search tree through considering those defenses in
the gray areas shown in Fig. 2. Fig. 8 shows the proof search
tree [for solving Connect(6,2,3)] that expands first, then

for all , and for all , where
is the zone derived from .

Fig. 9. A � -tree.

D. Lambda Search

In [22], Thomsen proposed using the lambda search to
express how a direct attacker can achieve a goal. In Connect
games, the goal is normally to make a win segment. The for-
malization of lambda search is modified for Connect games as
follows.

Definition 1: In Connect games, a -tree is a search tree
which comprises all legal -moves. If a -move is an attacker
move, the following condition holds. For all subsequent null
moves or seminull moves made by the defender, if
have exactly null stones, where , there exists
at least one subsequent -tree with value 1, where

or if . If a -move is a defender move, the
following condition holds. There exist no subsequent -trees
with value 1, where . In a -tree, a node is a
leaf (without any children) if there are no -moves following
it. The value of a leaf is 1 if the defender is to move, and 0
if the attacker is to move. The value of a -tree is either 1
(indicating that the attacker wins) or 0 (otherwise), derived using
minimax calculation. The value of a -tree (where the attacker
is to move) is simply 1 if the attacker makes a win segment in
the next move.

In case of , the definition of is the same as that of
(the goal is to win) in [22]; that is, a -tree is a -tree

and a -move is a -move, and vice versa. In case of ,
such as Connect6, a -tree is illustrated in Fig. 9 and move

in the tree is a -move, since the values of -tree and all
-trees in the left box are all 1. In addition, moves , ,
, and are -moves, if the attacker has no subsequent

-moves, -moves, or -moves. By following the proof of
Theorem 1 in [22], we derive the following theorem (whose
proof is omitted).

Theorem 1: For a -tree rooted in a position , if a minimax
search on it returns value 1, the attacker wins in .

Definition 2: A winning strategy is called a -strategy for
a position , if the subsequent nonnull moves following the
strategy are all -moves, where .

From the above definition, a VCDT is a -strategy, while a
VCST is a -strategy. For example, there exists a -strategy
for winning position 7 in Fig. 1 (the attacker is White), where
moves 8–10 are all -moves. VCNTs are -strategies or
strategies of higher orders, as illustrated in the following. In
Fig. 2(a), move is a -move, and the rest of the attacker

196 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 3, SEPTEMBER 2010

Fig. 10. A � -strategy.

moves are -moves, so it is a -strategy for Connect6(6,2,3).
In Fig. 3(a), move 7 is a -move, and the rest of the attacker
moves are -moves or -moves, so it is a -strategy. Fig. 10
shows a general -strategy. However, it is more complicated
in Fig. 4(a), where move 6 is a -move. Section V shows that
it is a -strategy.

From Definition 2, a -strategy, , also implies that
for a move with null stones the attacker has a -strategy.
For example, in the -strategy in Fig. 10, the attacker has
a -strategy for the null move and -strategies for all the
seminull moves.

E. Relevance Zones

As seen in Section III-E, the lambda search is a powerful
method for proving the winning positions with different orders
of threat sequences. The next important issue for lambda search
is to construct relevance zones to reduce greatly the search
space. In general, different applications construct relevance
zones in different ways. In Connect games, it is critical to
construct relevance zones in order to propagate relevance zones
across different orders of threat sequences. For example, in
Fig. 10, the relevance zones derived in the VCDT (-strategy)
or VCSTs (-strategies) can be used in the whole search tree
(-strategy).

This section defines such relevance zones, which are ele-
gantly employed to solve Connect games. A set of squares
on the board is called a zone. A sequence of zones with size
, , is incremental, if the condition

holds. In the rest of this paper, sequences
of zones with different sizes are all incremental and are thus not
explicitly specified. In addition, these zones usually indicate
the squares to be chosen for stones to be placed on, so only
unoccupied (or empty) squares are of interest.

In a position , its unoccupied zone, denoted by ,
is the zone that comprises all the unoccupied squares. That
is, , where is the zone for
the whole board and is the set of all occupied squares
in . Let denote and indicate the set of
unoccupied squares outside . Consider a sequence of zones

in . A sequence of unoccupied squares
, where , is said to be outside

or irrelevant to , if all or . Let
denote the relation that is irrelevant to in .

Fig. 11. Sequence of zones �� �� � � �.

Fig. 12. Sequence of relevance zones � � �� �� � for the winning position
in Fig. 2(a).

Implicitly, denotes .
For example, in Fig. 11, , , , ,

, and even the empty sequence are all irrelevant to
, while , , , ,

, and are not. For simplicity, let denote
. Similarly,

.
Definition 3: A sequence of zones is called a sequence

of relevance zones for the attacker in a position , if and only
if the attacker wins in for all irrelevant ; that is,

. Let denote the set of all the sequences of
relevance zones for the attacker in . (Use the notation
instead of , since only relevance zones for the attacker
are discussed in this paper).

From Definition 3, if is not empty, there must exist
some in . This implies that the attacker wins in by
choosing the empty sequence of squares for , since is ir-
relevant to as described above. Thus, Corollary 2 is obtained.

Corollary 2: If there exists at least one sequence of zones
in , then the attacker wins in .

For the winning sequence in Fig. 2(b), Fig. 12 illustrates rele-
vance zones , where is the set of empty squares
marked with a small “1,” and marked “1” and “2.” Note that
in the rest of this paper, a sequence of zones is shown in this
manner. Interestingly, is the same as in Fig. 2(b). From

WU AND LIN: RELEVANCE-ZONE-ORIENTED PROOF SEARCH FOR Connect6 197

observation, Black still wins over all irrelevant .
That is, if White places one in and the other in ,
Black still wins by replaying the winning sequence in Fig. 2(b).
The result is slightly stronger than that in [30] and [31].

Lemma 1 shows an important property that appending extra
to a sequence of relevance zones is still in . Note

that we use , instead of , in order to be indepen-
dent of the position , for simplicity. For example, in Fig. 12,

is also in .
Lemma 1: Assume that is in .

Then, is also in .
Proof: Consider all irrelevant . For this

lemma, it suffices to prove that the attacker wins in .
Since is empty, must not have the th item.
From the definition, we also obtain . Since is
assumed to be in , the attacker wins in due
to .

From Lemma 1, two sequences of relevance zones with dif-
ferent sizes can be adjusted to those with the same size by ap-
pending extra or removing at the end. For sim-
plicity of the discussion, this paper uses some more notations
for operations on sequences of zones with the same size in ,
say and , as fol-
lows.

• Let indicate that is contained in pairwise;
that is, over all .

• Let .
• Let and

, where is a zone.
• Let denote and indicate

promotion of the zones in (that is, shifting zones to the
left by 1) with extra . Similarly, let denote

, and denote ,
where .

From the above notation and definitions, more properties are
shown in Lemmas 2 and 3 as follows.

Lemma 2: Assume that is in and . Then,
is also in .

Proof: Let and
. Consider all irrelevant .

It suffices to prove that the attacker wins in . Since
, the condition also implies .

Since is in , the attacker wins in due to
.

Lemma 3 shows important properties that are employed to
improve the verifiers in Section IV.

Lemma 3: Assume that is in .
The following two properties are satisfied.

1) Assume that is not empty. Let the unoccupied
square be . Then, is in .

2) Let be a sequence of unoccupied squares
in , where . Then,

is in .
Proof: It suffices to prove the first property, since the first

implies the second by induction.
Let and consider all irrelevant

, where . For the first property, it
suffices to prove that the attacker wins in .

Fig. 13. Relevance zones (a) in a line and (b) in a board, upon winning with a
win segment.

Let . Then, the condition holds
due to . Since is in , the attacker wins
in due to ; that is, the attacker wins in

.

IV. RZOP SEARCH FOR CONNECT6

For solving positions in Connect6, this section investigates a
verifier that also constructs recursively a sequence of
zones with the following
property.

Property RZV: In the case that returns value 1, the
sequence of zones constructed by is in .

This section presents such a verifier, named , with
a new proof search method for Connect6. This method will be
generalized to all Connect games in the Appendix. The verifier

is described in Sections IV-B–IV-D respectively for
three distinct kinds of , namely, endgame positions, positions
in the attacker’s turn, and positions in defender’s turn. Finally,
Section IV-E concludes with Theorem 2, showing that the veri-
fier satisfies Property RZV in all cases.

A. Endgame Positions

If the attacker does not win in the endgame position , the
verifier simply returns the value 0. If the attacker wins in (i.e.,
the attacker has a win segment in), the verifier returns 1 and
constructs in the following operation.
EP-1) For each active segment of the defender containing

exactly unoccupied squares, these squares in are all
added into or higher order zones; that is,
for all . In other words, for each active segment
of the defender containing at most unoccupied squares,
add all of these squares in into .

Let us illustrate the above operation by the line shown in
Fig. 13(a), where the defender is White. Following the opera-
tion, the square marked with “1” is in , those marked with

198 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 3, SEPTEMBER 2010

“1” or “2” are in , and so on. For example, segment has
only one unoccupied square that is in or higher order zones,
while segment has two unoccupied squares that are in or
higher order zones. It is observed that placing one white stone
on the square in forms a counter win segment (e.g.,) or
an inversion that may prevent the attacker from winning. Note
that if the defender has an inversion, this position is unreach-
able since neither can have win segments simultaneously (as de-
scribed in the previous section); who wins first is thus unknown.
On the other hand, the attacker still wins if one white stone is
placed in square , where . Similarly, the attacker still
wins if one white stone is placed on , where , and the
other on , where . The above can be generalized to
higher orders, and to all lines (or segments) on a board. An ex-
ample of constructing zones on a board is illustrated in
Fig. 13(b). Note that move 10 in the figure is simply one of all
the defenses and is chosen for an illustration. In addition, since
move 9 clearly wins already, Section IV-D will describe how to
speed up the establishment of relevance zones.

From the above observation, it can be derived that the con-
structed in operation EP-1 is in . This implies that

satisfies Property RZV in the case of endgame , as
shown in Lemma 4.

Lemma 4: Assume to be an endgame position. Property
RZV is satisfied for .

Proof: Omitted.
In Connect6, all with , are nearly the same as

, except for those unoccupied squares covered by none
of the active segments of the defender. For example, if an unoc-
cupied square is surrounded by the attacker’s squares, it is clearly
covered by none of the active segments of the defender and is not
included in these . However, there are normally not many
such squares, especially when board sizes are large and only a
small number of stones are in positions. Practically, we simply
ignore all with or use whenever needed.

B. Positions in the Attacker’s Turn

In such positions, the attacker simply follows strategy to
make the move in . Let denote . This ver-
ifier first performs recursively. If re-
turns the value 0, this verifier also returns 0. On the
other hand, if returns 1, this verifier re-
turns 1 as well, and constructs in the following operation.
AT-1) Let , where .

Intuitively, placing any stones on the squares in by the de-
fender in advance may block the attacks and prevent the attacker
from winning. In this sense, the squares in are relevant and
are therefore contained in all (or).

In fact, the above operation AT-1 also implies the property
for the following reason. From the op-

eration, the condition holds for all . In
addition, since , it is clear that

or . Thus, for all , we
derive

From this property, Lemma 5 shows that this verifier
satisfies Property RZV if satisfies Property RZV.

Lemma 5: Assume a position in the attacker’s turn. From
the above, assume that satisfies Property RZV,
where . This verifier satisfies
Property RZV.

Proof: Assume that this verifier returns the
value 1. For this lemma (this verifier satisfies Property RZV), it
suffices to prove that the constructed is in . From
the above operation, must also return 1. Since

satisfies Property RZV from the lemma, is
in .

Consider all irrelevant , where . It suffices
to prove that the attacker wins in . Since the prop-
erty is satisfied as described above, the
condition holds as well. Since is in

from the above, the attacker wins in due
to . Since the attacker wins in

, the attacker wins in by
choosing the move .

C. Positions in the Defender’s Turn

For positions in the defender’s turn, Lemma 6 shows a
very important property used in this section as well as in the
Appendix.

Lemma 6: Assume a position in the defender’s turn. For a
given sequence of zones , assume that for all defender moves

there exists some such that and is in
. Then, is in .

Proof: Consider all irrelevant . For this lemma,
it suffices to prove that the attacker wins in .

Now, consider all defender moves in . From
this lemma, there exists some such that and
is in . Since , the condition
implies . Since squares in and are mu-
tually exclusive, also implies .
Since is in from the above, the attacker
wins in due to . Since

, the attacker also
wins in . From the above, since the attacker
wins in over all defender moves , the
attacker wins in .

A straightforward verifier is to verify whether the attacker
wins for all defender moves, as follows. The verifier
returns value 1, if the recursive returns 1 for all
defender moves ; otherwise, it returns 0. In the case that this
verifier returns 1, the zones are constructed in
the following operation.
DT-1) Initialize all zones in to be empty. Then, for all

defender moves , let .
From the above operation, the condition

clearly holds for all . Assume that all the recursive
satisfy Property RZV. Then, all

are in for all defender moves . From Lemma
6, we obtain that is in ; and therefore, the verifier
satisfies Property RZV. By induction, the above straightforward
verifier satisfies Property RZV in all cases.

WU AND LIN: RELEVANCE-ZONE-ORIENTED PROOF SEARCH FOR Connect6 199

Fig. 14. Relevance zones (a) in a line and (b) in a board, upon winning with
three or more threats.

However, the above straightforward verifier is apparently in-
efficient, since it searches exhaustively all defender moves, even
when the attacker moves have some threats. The situation is even
worse in the case that the board size is very large or infinite. In
this section, an efficient and elegant verifier is devised to reduce
the search space by making use of both threats and relevance
zones. In Connect6, the position (in the defender’s turn) can
be classified into the following four cases. The number of the
attacker threats in is 1) three or more, 2) two, 3) one, and 4)
zero. The four cases are discussed, respectively, in the following.

1) Three Threats or More: In this case, the attacker is sure to
win by simply following the strategy as follows. For each
defender move, since the move must leave some threat segments
unblocked, the attacker wins simply by making a win segment
from the unblocked one. Since the strategy is a sure win, the
verifier returns value 1 and constructs the zones (initialized to
be empty) in the following operations.
T3-1) Add all unoccupied squares on threat segments into all

.
T3-2) For each active segment of the defender containing

exactly unoccupied squares, all these squares in
are added into all or higher order zones. In

other words, for each active segment of the defender
containing at most unoccupied squares, add all
these squares in into .

Let us illustrate the above operations by the line shown in
Fig. 14(a), where the defender is White. Zones in the line are
marked in a way similar to that in Fig. 13(a). It is observed that
placing one white stone in or results in a counter threat
segment or an inversion that may threaten the attacker to de-
fend in some of his earlier moves and prevent the attacker from

winning. On the other hand, the attacker still wins if one white
stone is placed on other squares , where . Similarly,
the attacker still wins if one white stone is placed on , where

, and the other on , where . The above can
be generalized to higher orders, and to all lines (or segments)
on the board. An example of constructing two zones
on a board is illustrated in Fig. 14(b). Lemma 7 shows that in
this case the verifier satisfies Property RZV; that is, is in

.
Lemma 7: Assume that the defender is to move and the at-

tacker has three or more threats in . The verifier described
above satisfies Property RZV.

Proof: For this lemma, it suffices to prove that the con-
structed is in . Consider all defender moves .
The attacker simply follows a strategy to connect six from
an unblocked threat segment. Let and

. From Lemmas 4 and 5, and are
in and , respectively.

To prove that is in , it suffices to prove from
Lemma 6 that , since is already in

. From Section IV-C, , where
. From operation T3-1, all squares in

are added into . Thus, it suffices to prove that
.

Since the attacker connects six in , operation EP-1 (in
Section IV-B) is employed to construct zones . The
operation is restated as follows. For each active segment of
the defender containing at most unoccupied squares in , all
the squares in are added into . Since one move has
at most two squares, at most two occupied squares in were
occupied by move . Therefore, contains at most
unoccupied squares back in (before making move).
From operation T3-2, all these unoccupied squares are also
added into . For example, let both lines in Figs. 13(a) and
14(a) be, respectively, in positions and , where move
is placed on the two leftmost squares marked “1” in segment
in Fig. 14(a). Thus, the two squares marked “2” in segment
in Fig. 13(a) are also added into in Fig. 14(a). From the
above observation, we can derive .

Since all active segments of the defender contain at most
unoccupied squares in Connect6, all these squares

in are added into all from operation T3-2, where
. Thus, these are nearly the same as , except

for the unoccupied squares not covered by any active segments
of the defender, e.g., the unoccupied squares surrounded by all
the attacker squares. Similar to the argument in Section IV-C,
we construct zones with size three, and simply use for
those higher order zones, whenever needed.

2) Two Threats: When the attacker has two threats in , the
defender must defend by blocking the two threats. In this case,
the verifier performs the following operations.
T2-1) For each defender move that blocks the two threats,

perform the following.
a) Return value 0 if the recursive returns

value 0, where .
b) Let .

200 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 3, SEPTEMBER 2010

Fig. 15. Winning position with two threats for Black (the attacker) and the
constructed ��� �.

T2-2) Continue to construct zones by both operations T3-1 and
T3-2, and return 1.

For example, for position in Fig. 15 [the grandparent of the
position in Fig. 14(b)] where Black has two threats, White has
three defensive moves at (B,C), (A,C), and (B,D). Obviously,
since Black still wins for each of the three moves, Black wins
in . From the above operations, this verifier returns value 1
and constructs as shown in Fig. 15. Lemma 8 shows that
this verifier satisfies Property RZV if the verifier satisfies Prop-
erty RZV for all the defensive moves as well. From this lemma,

in Fig. 15 is in .
Lemma 8: From the above, assume that the defender is to

move and the attacker has two threats in . Assume that all
the recursive in operation T2-1 satisfy Property
RZV. Then, the verifier satisfies Property RZV as
well.

Proof: Assume that this verifier returns 1. For
this lemma (this verifier satisfies Property RZV), it suffices to
prove that the constructed is in . Since
returns 1, all the recursive in operation T2-1 must
return 1. Since these satisfy Property RZV from
this lemma, all constructed are in .

To prove , it suffices to prove from Lemma
6 the following. For all defender moves , there exists some

such that is in and . All
defender moves are classified into the following cases.

1) All defender moves that block both threats. From the
above, are in . In addition, since these

are merged into in operation T2-1b, we ob-
tain . Thus, is the .

2) All defender moves that leave some threat segment
unblocked. The attacker wins by connecting six on the

Fig. 16. Combining three defensive moves into one with four stones.

segment, like strategy . Since operation T2-2 follows
those steps in T3-1 and T3-2, we simply follow the proof
of Lemma 7 to prove that there exists some such that

and is in .
Assume that the subsequent winning moves of the attacker

are the same for all the defensive moves. Then, we can optimize
the construction of zones by combining these defensive moves
together. For example, in Fig. 15, the three defensive moves,
(B,C), (A,C), and (B,D), can be combined into a macromove
(A, B, C, D) as shown in Fig. 16. Since the subsequent winning
sequences of the attacker are the same, the sizes of relevance
zones are relatively smaller and the threat-based search is also
greatly reduced. However, note that the segment containing
both A and B (the same for C and D) in Fig. 15 should be
considered to have one white stone only for zone construction.
Since the winning sequences in Fig. 2(b) are the same for all
defensive moves, the relevance zones are constructed as shown
in Fig. 12.

3) One Threat: When the attacker has one threat, the de-
fender must defend by blocking the threat. In this case, the ver-
ifier performs the following operations.
T1-1) For each normal critical defense (defined in

Section III-C), , where square blocks the
threat, perform the operation of seminull-move proof
search as follows.

a) Return value 0, if the recursive returns
0 where .

b) Let .
c) For each defensive move , where

, perform both operations T2-1a and T2-1b.
T1-2) For all relaxed critical defenses , perform both

operations T2-1a and T2-1b.
T1-3) Perform both operations T3-1 and T3-2, and return 1.

WU AND LIN: RELEVANCE-ZONE-ORIENTED PROOF SEARCH FOR Connect6 201

Fig. 17. (a) VCDT for the seminull move 9. (b) Relaxed critical defense at 9.
(c) Constructed zones for the seminull move 9 in (a).

Consider a position , 8 in Fig. 17(a) (the same as 8 in
Fig. 1), and another , with a seminull move added at 9.
White (the attacker) wins in by the winning sequence
in Fig. 17(a). The above operations construct the zones

, with the first two zones
shown in Fig. 17(c). According to operation T1-1b, both zones

and are shifted and merged into and
, respectively. For all defensive moves , where

, operation T1-1c follows both T2-1a and T2-1b
to construct zones and verify whether
return 1. In addition, operation T1-2 also performs the same for
all relaxed critical defenses, such as the one in Fig. 17(b). From
Fig. 17(c), since the number of squares in is only 15,
the number of recursive is relatively small, even in very
large or infinite boards.

Lemma 9 shows that the verifier satisfies Property RZV if all
the recursive satisfy Property RZV.

Lemma 9: Fromtheabove,assumethat thedefender is tomove
and the attacker has one threat in . Assume that all the recur-
sive in both operations T1-1 and T1-2 satisfy Property RZV.
Then, the verifier satisfies Property RZV as well.

Proof: Assume that this verifier returns 1. For
this lemma, it suffices to prove that the constructed is in

. Since returns 1, all the recursive in both
operations T1-1 and T1-2 must also return 1. Since all the recur-
sive satisfy Property RZV from this lemma, all con-
structed from T1-1a are in and all from T1-1c
and T1-2 are in .

To prove , it suffices to prove from Lemma
6 the following. For all defender moves , there exists some

such that is in and . All
defender moves are classified into the following cases.

1) All defender moves where blocks the threat as
described in T1-1. Let . Furthermore,
this case is separated into the following two subcases.

a) . Let denote . The
zone is constructed in operation T1-1c, and
is in according to the first paragraph of this
proof. Since is merged into in T1-1c,
we obtain . Thus, is the .

b) . From the above, is
in . Since , Lemma 3
shows that is in ,
meaning . From operation
T1-1b, . Thus, is

.
2) All defender moves in operation T1-2 are re-

laxed critical defenses. The proof is similar to that in case
1a and therefore omitted.

3) All defender moves that do not block the threat.
The attacker wins by connecting six on some unblocked
threat segments, like strategy . Find by following
the proof of Lemma 7.

4) No Threats: When the attacker has no threats, it becomes
more complicated since the defender has much more freedom
to move. In this case, the verifier makes use of the constructed
relevance zones to minimize the search space in the following
operations.
T0-1) Return value 0 if returns 0, where

.
T0-2) Let .
T0-3) For each square in , perform the seminull move

proof search, as in operations T1-1a to T1-1c.
T0-4) Return 1.

Let us illustrate the above operations by the ex-
ample in Fig. 2. From the winning moves in Fig. 2(b),
operation T0-1 constructs relevance zones

, with only the first two zones
shown in Fig. 12. Similarly, zone is the same as
in Fig. 2(b). According to operation T0-2, zone is
shifted and merged into . Then, in operation T0-3,
one square in is chosen to perform the seminull
move proof search. In the case that 2 in Fig. 2(c) is chosen,
the seminull move proof search in T0-3 constructs the rel-
evance zones , where

. Zone is actually the same as in
Fig. 2(c). After verifying that White wins for all
and all , the verifier confirms that White wins
in , as shown in Lemma 10. For the position in Fig. 2, the
number of the recursive in T0-1–T0-3 is 2656, relatively
small when compared with the number of legal moves.

202 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 3, SEPTEMBER 2010

Lemma 10: Assume that the defender is to move and the at-
tacker has no threats in . From the above, assume that all re-
cursive in both operations T0-1 and T0-3 satisfy Property
RZV. Then, the verifier also satisfies Property RZV.

Proof: Assume that this verifier returns 1. For
this lemma, it suffices to prove that the constructed is
in . Since returns 1, all the recursive in
both operations T0-1 and T0-3 must also return 1. Since these
recursive , say for position , satisfy Property RZV from
this lemma, the constructed zones are in .

To prove , it suffices to prove from Lemma
6 the following: for all defender moves , there exists some

such that is in and . All
defender moves are classified into the following cases.

1) All defender moves where
and . From the first paragraph in this
proof, is in . Since and

, is in
from Lemma 3. Since

, is also in .
In addition, from operation T0-2.
Thus, is .

2) All defender moves where . By
following the proof for case 1 (including subcases 1a and
1b) in Lemma 9, we obtain that there exists some in

for all such that . The details
are omitted.

D. Conclusion

Theorem 2 concludes that the verifier in all cases
satisfies Property RZV. Therefore, if returns value 1,
the constructed is in , and the attacker wins in
from Corollary 2.

Theorem 2: The verifier satisfies Property RZV in
all cases.

Proof: By induction, the verifier satisfies Prop-
erty RZV in all cases from Lemma 4 to Lemma 10.

V. SOLVING CONNECT6 POSITIONS

In Section IV, we present a verifier to verify
whether the attacker wins in a Connect6 position by fol-
lowing strategy . However, in order to solve positions, we still
need to provide the verifier with winning strategies . Winning
strategies can be provided in the following three ways.

1) Let human experts offer the winning strategies manually.
2) Let programs find the winning strategies automatically.
3) Find the winning strategies by mixing the above two.
Traditionally, experts used the first way to claim that some po-

sitions are winning, e.g., Go-Moku and Renju [18]. However, it
becomes complicated and tedious for human players to traverse
all positions to prove it thoroughly. Hence, it is more feasible to
solve these positions by programs using the second way. How-
ever, programs may not be smart enough sometimes to find the
correct winning moves. Therefore, some researchers chose the
third way by following experts’ suggestions for some opening
moves and then letting programs solve the subsequent moves.
For example, Allis [1], [2] solved Go-Moku in the free style, and

Wágner and Virág [23] solved Renju. In Section V-A, we devel-
oped some assistant programs to help find the winning strategies
for Connect6. In Section V-B, we illustrate our new proof search
method in Section IV by solving the positions in Figs. 3(a) and
4(a). Finally, we give more results in Section V-C.

A. Assistant Programs

This section describes some assistant programs developed for
solvers and verifiers. Given a position in the attacker’s turn,
a solver is to return a winning move as well as the relevance
zones, if found; and, otherwise, a null move is returned to in-
dicate failure of finding a winning move. A solver of finding a
VCDT strategy, denoted by , is described as follows.

1) If there exist connect-six moves or triple-threat-or-higher
moves, simply choose one of them to win.

2) Evaluate all the double-threat moves and choose some
good ones for further expansion (according to the evalu-
ations).

3) For each chosen move , return if
returns 1.

4) Return the null move to indicate failure of finding a win-
ning move.

A solver of finding a VCST (VCNT) is similar to the above,
except that single-threat (nonthreat) moves are also evaluated
and chosen at step 2. Actual solvers are implemented in a more
complicated way to reduce the size of a search tree and control
the timing. For example, the techniques of iterative deepening
and transposition table are normally incorporated.

In this paper, we implemented a solver with VCDT,
named VCDT-Solver, and another solver with VCST, named
VCST-Solver. More accurately, the VCDT-Solver is to find a

-strategy, while the VCST-Solver is to find a -strategy.
Our VCST-Solver also tends to find VCDTs, if any, unless
some single-threat moves are evaluated to be much better.
Currently, this solver is able to find a -strategy up to depth
25 where the size of the longest path with -moves is 13.
This solver was also incorporated into our Connect6 program
NCTU6, which won the gold at the 11th and 13th Computer
Olympiads [26], [33] in 2006 and 2008, respectively; and also
won eight games and lost none against top Connect6 players
in Taiwan in 2009 [12]. From our experience, VCST-Solver is
able to find -strategies, if any, in most cases accurately.

Regarding solvers for -strategies or strategies of higher or-
ders, the time complexities become much higher, since the num-
bers of defensive moves to be verified grow much higher. There-
fore, we did not implement it directly.

First, we implemented a verifier, named NCTU6-Verifier, to
verify whether the attacker wins for all defender moves. In other
words, given a position in the defender’s turn as shown in
Fig. 18(a), the verifier uses VCDT-Solver for null moves and
VCST-Solver for all seminull moves and nonnull moves. If null
and seminull moves are all solved, then move (from the
parent of to) in Fig. 18(a) is an attacker -move. If some
nonnull moves are not solved by VCST-Solver, these moves are
reported or generated. Note that the defender -moves must
be reported. Since our VCST-Solver can find -strategies ac-
curately in most cases, most reported moves are the defender

-moves in our experiments.

WU AND LIN: RELEVANCE-ZONE-ORIENTED PROOF SEARCH FOR Connect6 203

Fig. 18. Proof search tree of (a) NCTU6-Verifier and (b) the verifier of one higher order.

When our Connect6 program NCTU6 mentioned above
cannot find -strategies (VCSTs), NCTU6 then chooses some
promising moves including nonthreat moves using heuristic
evaluations. The details of heuristic evaluations are beyond the
scope of this paper and therefore omitted.

Since NCTU6 may not be able to find winning moves all
the time, experts are allowed to help find winning moves. (As
[1], [2], and [23], expert knowledge was utilized to help solve
Go-Moku and Renju.) Hence, the above programs, such as
NCTU6 and NCTU6-Verifier, were integrated into a Connect6
editor named Connect6Lib [8], modified from Renlib [16],
in order to accommodate hints from human experts. In the
integrated system [25], [32], the users (human experts) are
allowed to suggest some attacker moves directly or let NCTU6
suggest possibly good moves in a designated position. Then,
for suggested moves, users invoke NCTU6-Verifier to verify
and report all the defensive moves (most are -moves).
Then, users repeat the above for the subsequent moves, until a

-strategy is found.
Second, for -strategies, the integrated system (on top of

the editor Connect6Lib) needs to maintain a global verifier and
modify the search by incrementing the order by one as shown
in Fig. 18(b).

B. Illustration of Solving Positions

In this section, we illustrate the proof search method in
Section IV by solving the two positions in Figs. 3(a) and 4(a).
First, consider the one in Fig. 3(a). The position is solved by
simply running NCTU6-Verifier. In the proof search tree shown
in Fig. 19, indicates the position at 7 in Fig. 3(a); , the
position at 6; , the position after a null move; , the position
after the seminull move 8 in Fig. 3(c); and , the position
after another seminull move at 10 in Fig. 3(c). As can be seen,
the attacker wins in a -strategy.

Second, consider the position in Fig. 4(a), which is much
more complicated than the previous one. This position is solved
via the integrated system supporting -trees, as described in
Section V-A. In the proof search tree shown in Fig. 20, indi-
cates this position, does the position after a null move, and

Fig. 19. Proof search tree for the position in Fig. 3(a).

does the position after a seminull move at 7 in Fig. 4(c). Ini-
tially, let NCTU6-Verifier of one higher order run in . Since
VCST-Solver is able to find the winning move for , the de-
fender (Black) should place at least one stone in zone .
Consider one square in , say square 7 in Fig. 4(c). For
the seminull move at 7, choose move 8 and then use NCTU6-
Verifier (without raising one order) to derive that the attacker
wins at 8. Thus, move 8 is a -move. By verifying all null and
seminull moves in , we show that move 6 in Fig. 4(a) is a

-move (from Definition 1).
Furthermore, the attacker is shown to win at 6 in a -strategy

as follows. In our experiment, the attacker wins for all defensive
(nonnull) moves by finding -strategies. For example, for
move 7 in Fig. 21, NCTU6-Verifier is recursively employed
to find a -strategy, where moves 8–12 are shown to be

-moves.
In the proof search tree shown in Fig. 20, we found three

seminull moves that are -moves with value 1 [like which
is also 7 in Fig. 4(c)], and 569 defender -moves in total. Move
12 in Fig. 21 is the deepest -move. In this experiment, experts

204 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 3, SEPTEMBER 2010

Fig. 20. Proof search tree for the position in Fig. 4(a).

TABLE I
STATISTICS OF SOLVING POSITIONS

Fig. 21. Sequence of � -moves starting from 7.

helped find 26 winning nonthreat moves, including move 6 dis-
covered by Huang [11].

Table I shows the number of nodes as well as the computa-
tion times used by our system to solve the positions in Figs. 2(a),
3(a), and 4(a) on an Intel Pentium Dual 2.00-GHz machine. The

positions in Figs. 2(a) and 3(a) are solved without experts’ as-
sistance, while the position in Fig. 4(a) is solved with the help
of experts, as above. All the above experiments were performed
on 19 19 boards that most current Connect6 tournaments use.
We also used a simple tool to verify that the above example is
still winning even in an infinite board. The details are omitted.

C. More Results

In addition to the two positions illustrated in Section V-B,
we investigated more positions. Initially, we had experts use the
integrated system to help us solve about ten more positions. Wu
et al. [28] had recently automated with success the proof process
by developing a new search algorithm, called job-level proof-
number (JL-PN) search. Using the JL-PN search together with
our RZOP search, we solved many more positions, up to 65
positions in total, with -strategy, within a couple of months.
The details of the 65 positions were listed in [27].

Among the 65 positions, 34 were not solved by the scheme,
called the VCDT-for-null scheme. The scheme uses VCDTs
(not VCSTs) after seminull moves in proof search trees such as
the one in Fig. 2(c). If no VCDTs were found for the seminull
moves as the one in Fig. 3(c), then the scheme failed to solve
positions. In brief, the proof search trees in our RZOP search
are as in Fig. 18(a), while those in the scheme are as in Fig. 8.

Many positions were not solved by the VCDT-for-null
scheme illustrated below. For the three openings in
Fig. 22(c), (d), and (f), the winning moves are live threes
at 3. For the seminull moves that use the only stones to block
Black’s live threes, Black has no more double-threat moves to
make. That is, Black cannot win by VCDTs. However, Black
actually wins by VCSTs for these seminull moves. Hence, it is
important that the proposed RZOP can solve them correctly.

WU AND LIN: RELEVANCE-ZONE-ORIENTED PROOF SEARCH FOR Connect6 205

Fig. 22. Six three-move openings in which Black wins at 3.

The 65 positions include 12 three-move openings, among
which ten cannot be solved by the VCDT-for-null scheme. Six
of the ten openings are shown in Fig. 22. In particular, the fifth
one, Mickey Mouse opening, used to be one of the popular open-
ings before we solved it. Mickey Mouse opening was so named
in [20], since White 2 and Black 1 together look like the face of
Mickey Mouse. The sixth one, also called straight opening, is
another difficult one.

Now, the question is whether there exist more cases requiring
-strategies like the one in Fig. 4. Since the one in Fig. 4 is the

only one that we found so far, it is still an open problem to find
some more.

VI. CONCLUSION

This paper investigates a new threat-based proof search for
Connect games. The contribution of this paper is mainly the new
search method, named RZOP search that uses relevance zones
to help solve many positions in Connect6 as well as Connect
games. In theory, this method can be applied to Connect games
with infinite boards. Practically, this paper demonstrates the
method by solving two typical winning positions in Figs. 3(a)
and 4(a) on 19 19 boards, as well as many Connect6 positions
and openings in Section V. In addition, the method can also be
easily incorporated into Connect6 program, such as NCTU6.

This paper also leaves some open problems.
1) Investigate more winning positions in Connect6 that re-

quire -strategies, such as the one in Fig. 4(a).
2) Investigate whether there exists a -strategy in Connect6.
3) Optimize the proof search tree by pruning more branches

efficiently [29].
4) Apply the new method (in the Appendix) to solving some

real positions in general Connect games.
5) Investigate whether dual lambda search [19] is useful for

Connect6 or Connect games.

Using the JL-PN search together with our RZOP search, we
successfully solved up to 65 positions with -strategy. The 65
positions include 12 three-move openings; in particular, Mickey
Mouse opening, which used to be one of the popular openings
before we solved it. One might ask whether or when Connect6
on 19 19 boards will be solved. So far, we still could not solve
tens of the common openings, many of which experts believed
to be well balanced for both players. Hence, the answer to this
question is still unknown.

APPENDIX

PROOF SEARCH FOR CONNECT GAMES

In this Appendix, the verifier is generalized to
general Connect games, Connect , while main-
taining Property RZV. The generalized verifier is denoted by

. In the case that is an endgame position or is
in the attacker’s turn (described in Sections IV-B and IV-C,
respectively), the verifier is the same as .
So, the rest of this Appendix describes the verifier only in the
case that is in the defender’s turn. Furthermore, the position

(in the defender’s turn) can be classified into the following
two: 1) the number of attacker threats in is at least ;
and 2) the number is at most . In the first case, the attacker
wins already. Therefore, the verifier returns 1 and constructs
relevance zones in the following operation.
Tp1-1) Construct relevance zones by following both operations

T3-1 and T3-2, except that the terms “ ” are replaced
by “ .”

Similar to Lemma 7, Lemma 11 shows that the verifier also
satisfies Property RZV in this case.

Lemma 11: Assume that the defender is to move and the
number of the attacker threats is at least in . The verifier
described above satisfies Property RZV.

206 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 3, SEPTEMBER 2010

Proof: The proof is similar to that of Lemma 7 and there-
fore omitted.

In the second case that the number of attacker threats is at
most , the verifier performs the following operations.
Tp-1) For each of critical defenses (both normal and re-

laxed), perform the following.
a) Return 0 if the subverifier returns

0. Note that the subverifier is described below.
b) Let .

Tp-2) Continue to construct relevance zones in operation
Tp1-1, and return 1.

In operation Tp-1a, a subverifier is used to
verify whether the attacker wins for all defender moves
dominated by in , where has squares (but
may have less than squares). By dominate, we mean that all
squares in must also be in , but not vice versa. For the
subverifier , the constructed zone is denoted by

, where
. In addition, the subverifier satisfies the following property

(proved in Lemma 12).
Property RZS: If returns 1, the following

condition holds. For all defender moves dominated by ,
there exists some such that and is in

.
The subverifier performs the following op-

erations.
Par-1) Assume that has exactly defender stones,

where is the number of null stones in and
. In the case that , move is a null or a

seminull move.
Par-2) Return 0 if returns 0, where

.
Par-3) Let .
Par-4) Return 1 if , i.e., the move is not a null or a

seminull move.
Par-5) For each of unoccupied square , per-

form the following.
a) Let the defender move be .
b) Return 0 if returns 0.
c) Let , where

.
Par-6) Return 1.

Lemma 12 shows that the subverifier satisfies Property RZS,
if all the recursive in Par-5b satisfy Property RZS and the
verifier in Par-2 satisfies Property RZV.

Lemma 12: For a subverifier as described
above, it satisfies Property RZS by assuming that all the recur-
sive in Par-5b satisfy Property RZS and that the verifier

in Par-2 satisfies Property RZV.
Proof: Assume that returns 1. Consider

all defender moves (including stones) that are dominated
by . Namely, let , where has addi-
tional unoccupied squares. For this lemma, it suffices to prove
that there exists some such that and is
in . All of these defender moves are classi-
fied into the following cases.

1) All defender moves in which all additional squares
in are in . The proof for this case is

similar to that for case 1 in Lemma 10 as follows. Since
this subverifier returns 1, the verifier in Par-2
returns 1. Since the verifier returns 1 and also satisfies
Property RZV (from this lemma), is in .
Since all additional , we obtain from
Lemma 3 that is in . Since

is also in . In addition, since
from Par-3 in , is the .

2) All defender moves where some additional square
in is in . Since this subverifier returns 1, the
recursive at Par-5b returns 1 as well,
and therefore, satisfies Property RZS. From Property RZS,
there exists some such that and is in

. Since from operation
Par-5c, we obtain . Thus, is the .

From Lemma 12, we derive Lemma 13 as follows.
Lemma 13: Assume that the defender is to move and the

number of attacker threats is at most in . The verifier de-
scribed above satisfies Property RZV by assuming that all the
recursive subverifiers in operation Tp-1a satisfy Property RZS.

Proof: Assume that this verifier returns 1. For this lemma,
it suffices to prove that the constructed is in . Since
the verifier returns 1, all the recursive subverifiers in operation
Tp-1a returns 1 as well. Assume that these subverifiers satisfy
Property RZS. For proving , it suffices to prove
from Lemma 6 the following: for all defender moves , there
exists some such that is in and

. All defender moves are classified into the following
two cases.

1) All defender moves that block all the threats. There
must exist some critical defense (either normal or re-
laxed) dominating . Since returns 1
and satisfies Property RZS from the above, there exists
some from the property such that
and is in .

2) All defender moves that leave some threat unblocked.
The attacker wins by connecting up to on some un-
blocked threat segment, like . From the proof in
Lemma 11, we obtain that there exists some such that

and is in .
Theorem 3 concludes that the verifier in all cases

satisfies Property RZV. Therefore, if returns 1, the
constructed is in , and the attacker wins in
from Corollary 2. It can also be observed that the operations
in Section IV-D are special cases of the operations described in
this Appendix.

Theorem 3: The verifier satisfies Property
RZV in all cases.

Proof: By induction, the verifier satisfies Prop-
erty RZV in all cases from the above lemmas.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers for
their valuable comments.

WU AND LIN: RELEVANCE-ZONE-ORIENTED PROOF SEARCH FOR Connect6 207

REFERENCES

[1] L. V. Allis, “Searching for solutions in games and artificial intelli-
gence,” Ph.D. dissertation, Dept. Comput. Sci., Univ. Limburg, Maas-
tricht, The Netherlands, 1994.

[2] L. V. Allis, H. J. van den Herik, and M. P. H. Huntjens, “Go-Moku
solved by new search techniques,” Comput. Intell., vol. 12, pp. 7–23,
1996.

[3] L. V. Allis, M. van der Meulen, and H. J. van den Herik, “Proof-number
search,” Artif. Intell., vol. 66, no. 1, pp. 91–124, 1994.

[4] E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for Your
Mathematical Plays, 2nd ed. Natick, MA: A K Peters. Ltd., 2003, vol.
3.

[5] A. de Bruin, W. Pijls, and A. Plaat, “Solution trees as a basis for game-
tree search,” Int. Comput. Chess Assoc. J., vol. 17, no. 4, pp. 207–219,
Dec. 1994.

[6] T. Cazenave, “Abstract proof search,” in Computers and Games, ser.
Lecture Notes in Computer Science, T. A. Marsland and I. Frank,
Eds. Berlin, Germany: Springer-Verlag, 2001, vol. 2063, pp. 39–54.

[7] T. Cazenave, “A generalized threats search algorithm,” in Computers
and Games, ser. Lecture Notes in Computer Science. Berlin, Ger-
many: Springer-Verlag, 2003, vol. 2883, pp. 75–87.

[8] C.-P. Chen, I.-C. Wu, and Y.-C. Chan, “ConnectLib – A Connect6
Editor,” 2009 [Online]. Available: http://www.connect6.org/Con-
nect6Lib_Manual.htm

[9] Chinese Association for Artificial Intelligence, “Chinese Computer
Games Contest,” (in Chinese) [Online]. Available: http://www.caai.cn/

[10] H. J. van den Herik, J. W. H. M. Uiterwijk, and J. V. Rijswijck, “Games
solved: Now and in the future,” Artif. Intell., vol. 134, no. 1–2, pp.
277–311, 2002.

[11] Y.-C. Huang, Private Communication. 2008.
[12] P.-H. Lin and I.-C. Wu, “NCTU6 wins man-machine Connect6

championship 2009,” Int. Comput. Games Assoc. J., vol. 32, no. 4, pp.
230–232, 2009.

[13] T. W. Lee, “One of early Tsumegos for Connect6,” 2005 [On-
line]. Available: http://www.connect6.org/web/index.php?op-
tion=com_tsumego&task=loadTsumegoHistoryList&class_id=32

[14] Littlegolem, “Online Connect6 Games,” 2006 [Online]. Available:
http://www.littlegolem.net/

[15] Renju International Federation, “The International Rules of Renju,”
1998 [Online]. Available: http://www.renju.net/study/rifrules.php

[16] Renlib, Renju—A Ranju Editor [Online]. Available: http://www.
renju.se/renlib/

[17] W. Pijls and A. de Bruin, “Game tree algorithms and solution trees,”
in Computers and Games, ser. Lecture Notes in Computer Science.
Berlin, Germany: Springer-Verlag, 1999, vol. 1558, pp. 195–204.

[18] G. Sakata and W. Ikawa, Five-in-a-Row. Tokyo, Japan: The Ishi
Press, 1981.

[19] S. Soeda, T. Kaneko, and T. Tanaka, “Dual lambda search and its appli-
cation to Shogi endgames,” in Advances in Computer Games, ser. Lec-
ture Notes in Computer Science. Berlin, Germany: Springer-Verlag,
2006, vol. 4250, pp. 126–139.

[20] Taiwan Connect6 Association, Connect6 Homepage, [Online]. Avail-
able: http://www.connect6.org/

[21] ThinkNewIdea Inc., CYC Game, (in Chinese) 2005 [Online]. Avail-
able: http://cycgame.com/

[22] T. Thomsen, “Lambda-search in game trees – with application to Go,”
Int. Comput. Games Assoc. J., vol. 23, no. 4, pp. 203–217, 2000.

[23] J. Wagner and I. Virag, “Solving Renju,” Int. Comput. Games Assoc.
J., vol. 24, no. 1, pp. 30–34, 2001.

[24] I.-C. Wu, “Proposal for a New Computer Olympiad Game—Con-
nect6,” 2005 [Online]. Available: http://ticc.uvt.nl/icga/news/
Olympiad/Olympiad2006/connect6.pdf, or http://www.connect6.
org/articles/RZOP/connect6.pdf

[25] I.-C. Wu, C.-P. Chen, P.-H. Lin, K.-C. Huang, L.-P. Chen, D.-J. Sun,
Y.-C. Chan, and H.-Y. Tsou, “A Volunteer-computing-based grid en-
vironment for Connect6 applications,” in IEEE Int. Conf. Comput. Sci.
Eng., Vancouver, BC, Canada, Aug. 29–31, 2009, pp. 110–117.

[26] I.-C. Wu and P.-H. Lin, “NCTU6-lite wins Connect6 tournament,” Int.
Comput. Games Assoc. J., vol. 31, no. 4, pp. 240–243, 2008.

[27] I.-C. Wu and P.-H. Lin, “Benchmark for RZOP search,” [Online].
Available: http://www.connect6.org/articles/RZOP/

[28] I.-C. Wu, H.-H. Lin, P.-H. Lin, D.-J. Sun, Y.-C. Chan, and B.-T. Chen,
“Job-level proof-number search for Connect6,” presented at the Int.
Conf. Comput. Games Kanazawa, Japan, 2010.

[29] I.-C. Wu, H.-H. Lin, and P.-H. Lin, “A more efficient proof search for
Connect6,” 2010, in preparation.

[30] I.-C. Wu, D.-Y. Huang, and H.-C. Chang, “Connect6,” Int. Comput.
Games Assoc. J., vol. 28, no. 4, pp. 234–242, 2006.

[31] I.-C. Wu and D.-Y. Huang, “A new family of �-in-a-row games,” in Ad-
vances in Computer Games, ser. Lecture Notes in Computer Science.
Berlin, Germany: Springer-Verlag, 2006, vol. 4250, pp. 180–194.

[32] I.-C. Wu, D.-J. Sun, H.-H. Lin, P.-H. Lin, C.-P. Chen, L.-P. Chen, and
H.-Y. Tsou, “A volunteer computing system for Connect6 Applica-
tions”, National Chiao Tung Univ., Hsinchu, Taiwan, Tech. Rep., 2010.

[33] I.-C. Wu and S.-J. Yen, “NCTU6 wins Connect6 tournament,” Int.
Comput. Games Assoc. J., vol. 29, no. 3, pp. 157–158, Sep. 2006.

I-Chen Wu (M’10) received the B.S. degree in elec-
tronic engineering and the M.S. degree in computer
science from the National Taiwan University (NTU),
Taipei, Taiwan, in 1982 and 1984, respectively, and
the Ph.D. degree in computer science from Carnegie
Mellon University, Pittsburgh, PA, in 1993.

Currently, he is with the Department of Computer
Science, National Chiao Tung University, Hsinchu,
Taiwan. His research interests include artificial intel-
ligence, Internet gaming, volunteer computing, and
cloud computing.

Dr. Wu introduced the new game Connect6, a kind of six-in-a-row game, and
presented this game at the 2005 11th Advances in Computer Games Conference
(ACG’11). Since then, Connect6 has become a tournament item at the Computer
Olympiad. He led a team developing a Connect6 program, named NCTU6. The
program won the gold twice at the Computer Olympiad in both 2006 and 2008.

Ping-Hung Lin is currently working towards the
Ph.D. degree at the Department of Computer Sci-
ence, National Chiao Tung University, Hsinchu,
Taiwan.

He is the Current Chief Designer of the Connect6
program NCTU6 that won the gold twice at the Com-
puter Olympiad in both 2006 and 2008. His research
interests include artificial intelligence and grid and
cloud computing.

Theoretical Computer Science 412 (2011) 4558–4569

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Drawn k-in-a-row games
Sheng-Hao Chiang a, I-Chen Wu b,∗, Ping-Hung Lin b

a National Experimental High School at Hsinchu Science Park, Hsinchu, Taiwan
b Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan

a r t i c l e i n f o

Article history:
Received 12 July 2009
Received in revised form 20 January 2011
Accepted 21 April 2011
Communicated by G. Ausiello

Keywords:
k-in-a-row games
Connect6
Hypergraphs

a b s t r a c t

Wu and Huang (2005) [12] and Wu et al. (2006) [13] presented a generalized family of
k-in-a-row games, called Connect(m, n, k, p, q). Two players, Black and White, alternately
place p stones on anm×n board in each turn. Black plays first, and places q stones initially.
The player who first gets k consecutive stones of his/her own horizontally, vertically, or
diagonally wins. Both tie the gamewhen the board is filled upwith neither player winning.
A Connect(m, n, k, p, q) game is drawn if neither has any winning strategy. Given p, this
paper derives the value kdraw(p), such that Connect(m, n, k, p, q) games are drawn for all
k ≥ kdraw(p), m ≥ 1, n ≥ 1, 0 ≤ q ≤ p, as follows. (1) kdraw(p) = 11. (2) For all
p ≥ 3, kdraw(p) = 3p + 3d − 1, where d is a logarithmic function of p. So, the ratio
kdraw(p)/p is approximately 3 for sufficiently large p. The first result was derived with the
help of a program. To our knowledge, our kdraw(p) values are currently the smallest for all
2 ≤ p < 1000.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

A generalized family of k-in-a-row games, called Connect(m, n, k, p, q), [12,13], was introduced and presented by Wu
et al. Two players, Black andWhite, alternately place p stones on empty squares1 of anm × n board in each turn. Black plays
first, and places q stones initially. The player who first gets k consecutive stones of his/her own horizontally, vertically, or
diagonally wins. Both players tie the game when the board is filled up with neither player winning. For example, Tic-tac-toe
is Connect(3, 3, 3, 1, 1), Go-Moku in the free style (a traditional five-in-a-row game) is Connect(15, 15, 5, 1, 1), and Connect6
[13], played on the traditional Go board, is Connect(19, 19, 6, 2, 1).

In the past, many researchers have been engaged in solving Connect(m, n, k, p, q) games. One player, either Black orWhite,
is said to win a game, if he/she has a winning strategy such that he/she wins for all the subsequent moves. Allis et al. [1,2]
solved Go-Moku with Black winning. Herik et al. [9] and Wu et al. [12,13] also mentioned several k-in-a-row games with
Black winning.

A game is said to be drawn if neither player has anywinning strategy. For simplicity of discussion in this paper, Connect(k,
p) refers to the collection of Connect(m, n, k, p, q) games for all m ≥ 1, n ≥ 1, 0 ≤ q ≤ p. Connect(k, p) is said to be
drawn if all Connect(m, n, k, p, q) games in Connect(k, p) are drawn. Given p, this paper derives the value kdraw(p), such that
Connect(kdraw(p), p) games are drawn. Since drawn Connect(k, p) games also imply drawn Connect(k+1, p), the value kdraw(p)
should be as small as possible.

In the past, Zetters [15] derived that Connect(8, 1) is drawn. Pluhar [11] derived tight bounds kdraw(p) = p + Ω(log2 p)
for all p ≥ 1000 (see Theorem 1 in [11]). However, the requirement that p ≥ 1000 is unrealistic in real games. Thus, it is

∗ Corresponding author. Tel.: +886 3 5731855; fax: +886 3 5733777.
E-mail addresses: jiang555@ms37.hinet.net (S.-H. Chiang), icwu@csie.nctu.edu.tw, icwu@cs.nctu.edu.tw (I.-C. Wu), bhlin@csie.nctu.edu.tw (P.-H. Lin).

1 Practically, stones are placed on empty intersections of Renju or Go boards. In this paper, when we say squares, we mean intersections.

0304-3975/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2011.04.033

http://dx.doi.org/10.1016/j.tcs.2011.04.033
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:jiang555@ms37.hinet.net
mailto:icwu@csie.nctu.edu.tw
mailto:icwu@cs.nctu.edu.tw
mailto:bhlin@csie.nctu.edu.tw
http://dx.doi.org/10.1016/j.tcs.2011.04.033

S.-H. Chiang et al. / Theoretical Computer Science 412 (2011) 4558–4569 4559

important to obtain tight bounds when p < 1000. Hsieh and Tsai [10] have recently derived that kdraw(p) = 4p + 7 for all
positive p. The ratio R = kdraw(p)/p is approximately 4 for sufficiently large p.

In this paper, Theorem 1 (below) shows that kdraw(2) = 11, while the result in [10] is 15. Theorem 2 derives a general
bound kdraw(p) = 3p + 3d − 1 for all p ≥ 1, where d is a logarithmic function of p, namely P(d − 1) < p ≤ P(d) and
P(d) = 2d

− d − 2. When compared with [10], our kdraw(p) values are smaller for all positive p, but they are the same
for kdraw(4). The ratio R = kdraw(p)/p = 3 + (3d − 1)/p is approximately 3 for sufficiently large p. Section 2 modifies
the games slightly into those in a different version, named Maker–Breaker. Both Sections 3 and 4 will use this version to
prove Theorems 1 and 2, respectively. When compared with a preliminary version [6], this paper derives a tighter bound for
kdraw(3) and a more general result, specifically as follows. For all the drawn games, Connect(∞, ∞, k, p, p), derived in [6],
this paper also shows that all games in Connect(k, p) are also drawn, based on the Maker–Breaker argument.

Theorem 1. Connect(11, 2) is drawn. �

Theorem 2. Consider all p ≥ 1. Let d be an integer and P(d−1) < p ≤ P(d), where P(d) = 2d
−d−2. Then, Connect(3p+3d−1,

p) games are drawn. �

2. Maker–Breaker version

According to the strategy-stealing argument raised by Nash (see [5]), White has no winning strategy in Connect(m, n, k,
p, p), that is, when q = p. Therefore, for Connect(m, n, k, p, p), either Black wins orWhite ties. For simplicity of combinatorial
analysis, many researchers [3,7,11] followed an asymmetric version of rules, called Maker–Breaker, where White does not
win in all cases (e.g., even if White connects up to k consecutive stones). So, all White can do is to break, that is, to prevent
Black from winning (connecting up to k consecutive stones). In contrast to Maker–Breaker, the version with the original
rules is called Maker–Maker. Obviously, if White has a strategy to tie a Connect game in the Maker–Breaker version, White
can tie the game in the original version (Maker–Maker) by simply following the same strategy. For simplicity of discussion
in this paper, let MBConnect(k, p) denote the game Connect(∞, ∞, k, p, p) in the Maker–Breaker version. Corollary 1 shows
an important property forMBConnect(k, p).

Corollary 1. Assume that MBConnect(k, p) is drawn. Then, Connect(k, p) is drawn. That is, for all m ≥ 1, n ≥ 1, 0 ≤ q ≤ p,
Connect(m, n, k, p, q) games are drawn. �

The reasons why Corollary 1 is satisfied are as follows.

1. According to the strategy-stealing argument (also mentioned in [13]), if Black has a winning strategy in Connect(m, n, k,
p, q), then Black simply follows the strategy to win in Connect(m, n, k, p, q+1). On the other hand, if Black has nowinning
strategy in Connect(m, n, k, p, q+1), then Black has no winning strategy in Connect(m, n, k, p, q) either. Similarly, if White
has no winning strategy in Connect(m, n, k, p, q), White has no winning strategy in Connect(m, n, k, p, q + 1).
Assume that Connect(m, n, k, p, p) is drawn. Then, Black has nowinning strategy in Connect(m, n, k, p, p). From the previous
paragraph, we derive that, for all 0 ≤ q ≤ p, Black has no winning strategy in Connect(m, n, k, p, q). On the other hand,
since White in Connect(m, n, k, p, 0) is equivalent to Black in Connect(m, n, k, p, p), White does not win in Connect(m, n, k,
p, 0) either. From the previous paragraph, we derive that, for all 0 ≤ q ≤ p, White has no winning strategy in Connect(m,
n, k, p, q). Thus, since neither has any winning strategy, Connect(m, n, k, p, q) games are drawn for all 0 ≤ q ≤ p.

2. If Black has a winning strategy in Connect(m, n, k, p, q) in the Maker–Breaker version, then Black simply follows the
strategy to win in Connect(m+1, n, k, p, q), Connect(m, n+1, k, p, q), or even Connect(∞,∞, k, p, q) in theMaker–Breaker
version. On the other hand, if Black has no winning strategy in Connect(∞,∞, k, p, q) in theMaker–Breaker version, then
Black does not win in Connect(m, n, k, p, q) in the Maker–Breaker version for allm ≥ 1, n ≥ 1, either.

Assume thatMBConnect(k, p) is drawn. For the second reason, for allm ≥ 1, n ≥ 1, Connect(m, n, k, p, p) games are drawn
in the Maker–Breaker version, as well as in the original version. For the first reason, Connect(m, n, k, p, q) games are drawn
for allm ≥ 1, n ≥ 1, 0 ≤ q ≤ p. Thus, Connect(k, p) is drawn and Corollary 1 is satisfied.

On the basis of Corollary 1, Sections 3 and 4 both simply derive drawn MBConnect(k, p) from Theorems 1 and 2,
respectively, instead of deriving drawn Connect(k, p) directly. Moreover, to prove both theorems, we also need to define
new Maker–Breaker games for smaller boards B, named MBBoard(B, p), in Definition 1.

Definition 1. MBBoard(B, p) is a Maker–Breaker game defined as follows.

1. The game board B is composed of a set of squares and a set of lines, each of which covers a subset of squares. For simplicity
of discussion, all lines are (vertically, horizontally, or diagonally) straight and solid in all figures in the rest of this paper,
as illustrated in Fig. 1.

2. In Move 2i − 1, where i ≥ 1, Black is allowed to place p′ stones on the game board B, where p′
≤ p. In Move 2i, White

places p′ or fewer stones.
3. Black wins when occupying some line. Note that Black is said to occupy a line if all the squares covered by the line are

occupied by black stones. �

4560 S.-H. Chiang et al. / Theoretical Computer Science 412 (2011) 4558–4569

Fig. 1. The game board B2 .

Fig. 2. (a) Partitioning the infinite board into disjoint B2 . (b) Covering one complete solid line for each segment of 11 consecutive squares.

The game MBBoard(B, p) is said to be a drawn game if Black has no winning strategy, that is, White has some strategy to
prevent Black from winning in all cases.

In the above game, the game board B can be viewed as a kind of hypergraph G [4,8]. All squares in B are vertices in G, while
all (solid) lines in B are edges, or so-called hyperedges in G, covering a set of vertices. For example, the board in Fig. 1 includes
6 × 4 squares with 4 horizontal, 3 vertical, and 6 diagonal lines (from the lower left to the upper right). The corresponding
hypergraph includes 24 vertices and 13 (i.e., 4 + 3 + 6) edges, accordingly. In the rest of this paper, we still use the terms
game boards, lines, and squares, instead of graphs, edges, and vertices.

3. Proof of Theorem 1

The infinite board is partitioned into an infinite number of disjoint B2 (without overlap and vacancy) as shown in Fig. 2(a),
where B2 is the game board shown in Fig. 1. From Lemma 1 (below), sinceMBBoard(B2, 2) is drawn,White has some strategy
S such that none of the solid lines are occupied by Black. LetWhite follow S to play inside each B2. Observed from Fig. 2(b), all
segments of 11 consecutive squares vertically, horizontally, and diagonally must cover entirely one solid line among these
B2. Since none of these solid lines are occupied by Black from Lemma 1, none of the segments contain all 11 black stones.
Thus,MBConnect(11, 2) is drawn. From Corollary 1, Connect(11, 2) is drawn. �

Lemma 1. MBBoard(B2, 2) is drawn.

Proof. A program was written to verify that none of the solid lines in B2 are occupied by Black. The program is briefly
described in Section 3.2. An intuition is given in Section 3.1. �

3.1. Intuition for Lemma 1

This subsection gives an intuition for the correctness of Lemma 1. Move 1 (by Black) is classified into the following cases.

1. Black only places one stone in the board, as illustrated in Fig. 3(a).
2. Black places two stones.

2.1 Both are placed on the two squares marked ‘‘1’’ in Fig. 3(b), calledmiddle squares for this game board.
2.2 One of the two stones is placed on either of the two middle squares.
2.3 Neither of the two stones is placed on the two middle squares.

In Case 2.1, White replies by placing two stones, as shown in Fig. 3(b); and in all the other cases, White replies by placing
one stone on one of the twomiddle squares. Here, only Case 1 in Fig. 3(a) and Case 2.1 in Fig. 3(b) are illustrated. Intuitively,
it is hard for Black to occupy a horizontal line, since the horizontal lines contain two more squares than the vertical and
diagonal lines. Therefore, let us ignore and remove the horizontal lines for simplicity of analysis.

After Move 2 (by White), Fig. 4 shows the boards with active vertical and diagonal lines only. Let an active line be a line
that does not yet contain a white stone. Since Black is never able to cover all the squares of some inactive line (not active),

S.-H. Chiang et al. / Theoretical Computer Science 412 (2011) 4558–4569 4561

Fig. 3. The first two moves: (a) in Case 1, and (b) in Case 2.1.

Fig. 4. The active vertical and diagonal lines after Move 2 (by White) in (a) Case 1, and (b) Case 2.1.

inactive lines are irrelevant to the results of games. Hence, the inactive lines can be removed from a board. In Fig. 4(a), the
middle vertical line and the third diagonal line (from the left) become inactive and get removed afterMove 2. In Fig. 4(b), the
rightmost two vertical lines and the second and fourth diagonal lines (from the left) also become inactive and get removed,
similarly.

A game board is called a tree if all the lines form no cycles in the board, as illustrated in both cases in Fig. 4. Lemma 2
(below) shows that a game is drawn if its game board is a tree which contains at most one black stone and in which each
line covers at least four squares. Thus, from Lemma 2, the two games in Fig. 4 are drawn.

Lemma 2. In a tree BT , assume that there exists at most one black stone on BT and that each line in BT covers at least four squares.
Then, MBBoard(BT , 2) is drawn.

Proof. Assume that there exists one black stone on some square s. Black cannot win in his/her next move for the following
reason. Since Black can place at most two stones in a move, one line contains at most three stones (together with the one
on s). Since each line covers at least four squares, Black cannot win in the next move.

Let Black place one stone on another square s′ in the next move. Since the game board is a tree, we find at most one path
(a sequence of lines) from s to s′, and then let White place one stone on one of these lines in the path, if any. (Note that, if
both sand s′ are on the same line, White simply places a stone on that line.) Thus, BT is broken into some trees, each of which
contains atmost one black stone. If Black places two stones in the nextmove, simply use two stones to break the game board
as above. Thus, this lemma holds by induction. �

To prove Lemma 1 rigidly, we also need to consider the case that some horizontal linemay be occupied by Black. Thus, the
proof for this unfortunately becomes tedious. In practice, wewrote a program to prove it by searching all cases exhaustively,
as briefly described in the next subsection.

3.2. Program description for Lemma 1

The program to prove Lemma 1 uses a recursive search routine to search the game space and to find a strategy for White
to tie the game. When it is Black’s turn, the search routine searches all possible Black moves exhaustively, and verifies that
Black does not win in any of the moves and any of their subsequent moves recursively. For each of these Black moves, the
search routine chooses aWhite move to play such that Black does not win subsequently. The search routine does not search
deepermoves when Black occupies some line, or when it is provable that Black has nowinningway subsequently, e.g., there
are no more active lines.

After running the above program, it was proved that White is able to tie the game. The program searched 1291,140,480
game positions in 17,104 s on a PC with AMD AthlonTM 64 × 2 Dual Processor with 5200 + 2.70 GHz. However, for the
purpose of publishing the search tree, a method described in [14] was employed to optimize the size of the search tree.
Then, under the optimization, the program ran in 37 s and searched 844,618 game positions. The search tree was published
in [14].

4. Proof of Theorem 2

In this proof, similar to that of Theorem 1, the infinite board is partitioned into an infinite number of disjoint game boards
BZ (L) and B−Z (L) vertically interleaved without overlap and vacancy, as shown in Fig. 6. The game board2 BZ (L) is shown

2 The game board BN (L) is so named in this paper since the board shape consists of many Ns, while the game board BZ (L) is so named since the parts
different from BN (L) look like Zs.

4562 S.-H. Chiang et al. / Theoretical Computer Science 412 (2011) 4558–4569

(a) BZ (L).

(b) BN (L).

Fig. 5. Two game boards: (a) BZ (L) and (b) BN (L).

Fig. 6. Partitioning the infinite board into disjoint BZ (L).

in Fig. 5(a), where each (solid) line covers L squares and the game board extends infinitely to both sides. The game B−Z (L)
is a horizontal mirror of BZ (L). Fig. 5(b) also shows another similar game board BN(L), which will be used in this section.
Let MBBoardZ(L, p) denote the game MBBoard(BZ (L), p), and MBBoardN(L, p) denote MBBoard(BN(L), p), for simplicity of
discussion. This proof will show that the following three properties are satisfied.

Property 1. If MBBoardZ(L, p) is drawn, then MBConnect(3L − 1, p) is drawn.

Property 2. If MBBoardN(L, p) is drawn, then MBConnect(3L − 1, p) is drawn.

Property 3. Consider all p ≥ 1. Let P(d − 1) < p ≤ P(d), where P(d) = 2d
− d − 2. Then, MBBoardN(p + d, p) games are

drawn.

First, Property 1 is satisfied for the following reason. As observed in Fig. 6, all segments of 3L − 1 consecutive squares
vertically, horizontally, and diagonally must contain one whole solid line among these BZ (L) and B−Z (L). Assume that the
game MBBoardZ(L, p) is drawn. Then, White has some strategy S such that Black cannot occupy any solid lines inside each
BZ (L) and B−Z (L). Thus, by following the strategy S inside each BZ (L) and B−Z (L), White prevents Black from occupying any
segment of 3L − 1 consecutive squares completely. Thus,MBConnect(3L − 1, p) is drawn.

Then, both Properties 2 and 3 are shown in Sections 4.1 and 4.2, respectively. Section 4.1 shows that the game board
BZ (L) is isomorphic to BN(L), in the sense of hypergraphs [4,8], and that Property 2 is satisfied from the isomorphism and
Property 1. Section 4.2 proves that Property 3 is satisfied for all MBBoardN games listed in Property 3. Thus, Theorem 2 is
satisfied from Corollary 1, Property 2 and Property 3. �

S.-H. Chiang et al. / Theoretical Computer Science 412 (2011) 4558–4569 4563

(a) BZ (4).

(b) BN (4).

Fig. 7. Coordinate mapping between BZ (4) and BN (4).

4.1. Isomorphism

Both game boards BZ (L) and BN(L) are hypergraph isomorphic [4,8] according to the following mapping. Let every L
neighboring vertical or horizontal solid lines be grouped into one zone in both BZ (L) and BN(L), as shown respectively in
Fig. 7(a) and (b). In both game boards, each square has a coordinate (x, y, z), where the square is in the xth column (from the
left) and in the yth row (from the top) in zone z. Let each square at (x, y, z) on BZ (L) be mapped into the one at (x, y, z) on
BN(L) when z is even, and at (y, x, z) on BN(L) when z is odd. All solid lines (or hyperedges) on BZ (L) are mapped into those
on BN(L) accordingly, except that the ith horizontal line (from the top) of BZ (L) is mapped to the ith vertical line (from the
left) of BN(L) in zone z, where z is odd.

Lemma 3. Consider bothMBBoardZ(L, p) andMBBoardN(L, p) games over all L and p. Then, MBBoardZ(L, p) is drawn if and only
if MBBoardN(L, p) is drawn.

Proof. According to the above mapping from BZ (L) to BN(L), placing one stone at (x, y, z) in BZ (L) is equivalent to placing
one stone at (x, y, z) in BN(L) when z is even, and at (y, x, z) when z is odd, and vice versa. Since both BZ (L) and BN(L) are
hypergraph isomorphic for the mapping, one solid line of BZ (L) is occupied by Black if and only if the mapped solid line of
BN(L) is. Therefore,MBBoardZ(L, p) is drawn if and only ifMBBoardN(L, p) is drawn. �

From Lemma 3 and Property 1, Property 2 is satisfied.

4.2. Drawn MBBoardN games

This section will prove that Property 3 is satisfied. First, we introduce the concept of exclusive squares in Section 4.2.1,
which is used in the remaining subsections. In order to prove that all MBBoardN games are drawn in Property 3, we derive
some initial drawnMBBoardN games in Section 4.2.2, and derive induction rules forMBBoardN games in Section 4.2.3. Finally,
Section 4.2.4 concludes that Property 3 is satisfied.

4.2.1. Game boards with exclusive squares
In this subsection, we introduce the concept of exclusive squares, on which Black is not allowed to place stones. The game

boards with exclusive squares are defined in Definition 2 (below).

Definition 2. MBBoardX(B, b) is a Maker–Breaker game defined as follows.

1. The game board B is the same as that in Definition 1, except for the following. For each line, one extra square is added as
an exclusive square, as illustrated with solid bullets in Fig. 8(a)–(c).

2. In Move 2i − 1, where i ≥ 1, Black is allowed to place any (positive) number of black stones, say p′ (≥1) black stones, on
the game board B. However, Black is not allowed to place stones on these exclusive squares. In Move 2i, White is allowed
to place p′ or fewer white stones on any squares (including exclusive squares).

3. Black wins if the following condition holds. An active line contains more than b black stones at time t2i (when Black is
to play), where i ≥ 0. Time tj indicates the moment after Move j and before Move j + 1, and t0 indicates the initial
moment. �

4564 S.-H. Chiang et al. / Theoretical Computer Science 412 (2011) 4558–4569

Fig. 8. Three game boards with exclusive squares (solid bullets). (a) BrecX (m, n). (b) BrecX−(m, n). (c) BNX (L).

Fig. 9. An illustration. (a) The original game board. (b) Partitioned game boards with exclusive squares.

The gameMBBoardX(B, b) is said to be a drawn game if White has some strategy to prevent Black winning in all cases.
The motivation of using exclusive squares is to partition a game board into two or more game boards with exclusive

squares and then to use Lemma 4 (below) to derive some properties from the partitioned game boards. Let us illustrate it by
a simple gameMBBoard(B, 9) as follows. Let the board B contain disjoint lines each with 10 squares (which are not covered
by any other lines), as shown in Fig. 9(a). Then, partition the board B into two, one named Bleft containing 5 squares of each
line and the other Bright containing the other 5, and add exclusive squares to all lines as shown in Fig. 9(b). Clearly, both
games MBBoardX(Bleft , 0) and MBBoardX(Bright , 0) are drawn, for the following reason. Whenever Black places one or more
stones on some line, White places one stone on the exclusive square of the line to defend. From Lemma 4, we obtain that
MBBoard(B, 10 − (0 + 0) − 1) is drawn; that is, MBBoard(B, 9) is drawn. Obviously, it is true that MBBoard(B, 9) is drawn,
from the following observation. Whenever Black places one or more stones on some active line, White places one stone on
that line in the next move to make it inactive. Note that Black must leave one square unoccupied in an active line, so White
is allowed to place a stone on that line.

Lemma 4. Consider a game board B, where each line covers at least L squares. Partition3 the game board B into two disjoint game
boards, B1 and B2. Assume that both games MBBoardX(B1, b1) and MBBoardX(B2, b2) are drawn and that L − (b1 + b2) > 1.
Then, White has some strategy in MBBoard(B, L − (b1 + b2) − 1) such that each active line in B contains at most b1 + b2 black
stones at all times t2i (when Black is to play), where i ≥ 0. Implicitly, MBBoard(B, L − (b1 + b2) − 1) is drawn.

Proof. It suffices to prove by induction thatWhite has some strategy such that each active line in B contains at most b1 + b2
black stones at all times t2i, where i ≥ 0. This implies thatMBBoard(B, L− (b1 +b2)−1) is drawn, since Black cannot occupy
any active line (at most b1 + b2 black stones) in the next move (at most L− (b1 + b2)− 1 black stones), and each line covers
at least L (≥(b1 + b2) + L − (b1 + b2) − 1 = L − 1) squares.

It is trivial that the induction hypothesis is true initially.
Assume that the induction hypothesis is true at t2i, when Black is to move. Consider Black’s next move. Since Black can

place atmost L−b1−b2−1 stones in amove, each active linemust leave one square unoccupied. Now, investigate the black
stones of this move in B1. Since MBBoardX(B1, b1) is drawn according to the assumption, White must has some strategy for
the game such that each active line contains at most b1 black stones in B1 at t2i+2. Thus, White simply follows the strategy to
place stones at the edge of B1. In the case that White needs to place a stone on the exclusive square in one active line in B1,
White uses the following strategy. If the corresponding line in B is inactive (e.g., the line contains a white stone at the edge
of B2), simply ignore this line. Otherwise, if it is active, White simply places one stone on the unoccupied square of the line

3 In the partitioning, we assume that each square belongs to either B1 or B2 and that each pair of squares in either B1 or B2 is covered by one line if they
are also covered by the same line in B.

S.-H. Chiang et al. / Theoretical Computer Science 412 (2011) 4558–4569 4565

Fig. 10. Two cases for BrecX (m, n).

as described above. Note that it does not matter even if the unoccupied square is at the edge of B2. Thus, White ensures that
each active line contains at most b1 black stones at the edge of B1 at t2i+2. Similarly, White also ensures that each active line
contains at most b2 black stones in B2 at t2i+2. Thus, the induction hypothesis is true at t2i+2. �

In this paper, we consider three game boards with exclusive squares, as shown in Fig. 8. The first game board, denoted
by BrecX (m, n) and shown in Fig. 8(a), consists of m horizontal lines and n vertical lines, each of which contains one extra
exclusive square. The second, denoted by BrecX−(m, n) and shown in Fig. 8(b), is the same as BrecX (m, n) except that the square
at the lower-left corner is removed. The third, shown in Fig. 8(c), is the original BN(L) extended with one exclusive square
for each line. For simplicity, let MBBoardNX(L, b) denote the game MBBoardX(BN(L), b) and BNX (L) denote the game board
BN(L) with extra exclusive squares. Three properties related to the above three boards are shown respectively in Lemma 5,
Lemma 6, and Lemma 7 (below).

Lemma 5. MBBoardX(BrecX (m, n), 1) is drawn over all m and n.

Proof. Let variables σ R(r) and σ C (c) respectively be the number of black stones in the rth horizontal line and that in the
cth vertical line, if still active, and be 0, otherwise. Let variable σ = ΣR σ R(r) + ΣC σ C (c). For this proof, it suffices to prove
that White has a strategy such that σ ≤ 1 at all times t2i (when Black is to play), where i ≥ 0.

Assume by induction that σ ≤ 1 at some t2i. Assume that, in Move 2i + 1, Black places only one stone on square s at row
r and column c. Obviously, Move 2i+ 1 increases σ by at most two (one for the vertical line and the other for the horizontal
line). That is, σ ≤ 3. White uses the following strategy to make Move 2i + 2 such that σ ≤ 1 at t2i+2.

1. When σ ≤ 1, simply place a stone randomly on one empty square, if any.
2. When σ ≤ 2, simply choose one active line containing a black stone and block it by placing one white stone on the

exclusive square in that line. Then, σ is at most 1.
3. When σ = 3 and an active line contains two black stones, simply block the active line by placing one white stone on the

exclusive square in that line. Then, σ is at most 1.
4. In the remaining case that σ = 3 and none of the active lines contains two black stones, assume some σR(r ′) = 1,

where r ′
≠ r , without loss of generality. Thus, the square s′ at row r ′ and column c (both lines are active) must be empty

(otherwise, we are in Case 3, since two black stones are in the same column). Therefore, simply place one white stone on
s′. Since the stone blocks the two active lines in row r ′ and column c , σ is back to 1. This is illustrated by Moves 3 and 4
in Fig. 10(a).

However, if Black places several black stones, say p′ black stones, in Move 2i+1, we separate themove into p′ submoves,
each with one stone only. Then, White pretends that Black makes submoves one by one, and therefore follows the above
strategy to place stones, except for the following case. If White is to place one stone on an empty square s′ in some submove
M as in Case 4, but one of the subsequent submovesM ′ places one black stone on s′ too, the strategy needs to be changed as
follows.

5. Place two white stones respectively on the exclusive squares of the two active lines in row r ′ and column c containing s′.
Thus, σ is back to 1 too. Thus, forM ′, White replies by placing nomore stones. In this case, the twowhite stones together
are viewed as a reply to the two black stones at submovesM andM ′. This case is illustrated by the example in Fig. 10(b).
For Move 3, Black places two stones at 3 and 3’. Assume Black to make submoves in the sequence 3 and then 3’. For 3,
White cannot reply by placing a stone on 3’, since it will be occupied by Black. Therefore, White places stones on 4 and
4’ to make σ back to 1, instead.

From the above strategy, σ ≤ 1 is maintained at all times t2i. Thus, this lemma holds. �

Lemma 6. MBBoardX(BrecX−(m, n), 1) is drawn over all m and n.

Proof. This proof is the same as that in Lemma 5, except for the first black stone and White’s reply. The first black stone
is placed on the board in the following three positions: (1) in the leftmost vertical line, (2) in the bottom horizontal line,
and (3) in the rest of the rectangle. In Case 1, let White reply by placing one white stone on the leftmost vertical line as
shown in Fig. 11(a), thusmaking this vertical line inactive. Now, the variable σ is only 1. Then, we simply follow the strategy
described in Lemma 5 to maintain σ ≤ 1. Similarly, in Case 2, let White reply by placing one on the bottom horizontal line.
In Case 3, let White place one on the leftmost vertical line without loss of generality, while blocking the first black stone in

4566 S.-H. Chiang et al. / Theoretical Computer Science 412 (2011) 4558–4569

Fig. 11. (a) and (b): Two cases for BrecX−(m, n) in and (c) another case for the board missing two corner squares.

Fig. 12. The case that Black already occupies L − p stones on an active line.

the same horizontal line as shown in Fig. 11(b). Similarly, since the variable σ is only 1, simply follow the strategy described
in Lemma 5 to maintain σ ≤ 1. Thus, White is able to maintain σ ≤ 1 in all cases. That is, MBBoardX(BrecX−(m, n), 1) is
drawn. (Note that we may not maintain σ ≤ 1 when two corner squares are missing, as illustrated in Fig. 11(c).) �

Lemma 7. As described above, assume that the game MBBoardN(L, p) is drawn. Then, MBBoardNX(L, L − p − 1) is drawn.

Proof. SinceMBBoardN(L, p) is drawn, White has a strategy S such that all active lines have at most L − p − 1 black stones
at all times t2i (when Black is to play). Otherwise, if an active line contains at least L − p black stones, Black wins by simply
placing p stones on this line, as illustrated in Fig. 12.

In the gameMBBoardNX(L, L − p − 1), assume that Black still places at most p black stones in Move 2i + 1, where i ≥ 0.
Then, White simply follows strategy S (without placing stones on exclusive squares) such that all active lines in BNX (L)
contain at most L − p − 1 black stones at all times t2i+2 (when Black is to play).

Assume that Blackmakes amovewithmore than p black stones.We separate themove into several submoves, eachwith
at most p black stones. Then, White pretends that Black makes submoves one by one, and for each submove simply follows
S to play, but with the following exceptional case. By following S, assume that White needs to make a submove on some
empty squares, but some subsequent Black submoves will place stones on these empty squares. Without loss of generality,
assume that White makes a submove M on an empty square s, but some subsequent Black submove M ′ will place a stone
on s. Then, the strategy is changed as follows.

1. Place two white stones respectively on the exclusive squares of the two lines containing s, instead. The reason is similar
to that in Case 5 in Lemma 5. Both lines containing s are no longer active. Let the black stone at s be added into M and
removed from M ′. Thus, the reply to M still prevents Black from having active lines with more than L − p − 1 black
stones. Although the reply toM uses one more stone,M has one more stone on s too.

Thus, all active lines in the gameMBBoardNX(L, L− p− 1) have at most L− p− 1 black stones at all t2i (when Black is to
play). That is,MBBoardNX(L, L − p − 1) is drawn. �

4.2.2. Initial drawn games
In this subsection, initial MBBoardN(4, 1), MBBoardNX(2, 1) and MBBoardNX(3, 2) games are shown to be drawn in

Lemma 8, Lemma 9, and Lemma 10 respectively.

Lemma 8. MBBoardN(4, 1) is drawn.

Proof. Let us transform BN(4) into BN−(4) by shortening the solid lines, as shown in Fig. 13. Since BN−(4) is a tree and there
are no black stones initially, BN−(4) is drawn, from Lemma 2. Obviously, this implies that BN(4) with extra longer lines is
drawn too. �

Lemma 9. MBBoardNX(2, 1) is drawn.

S.-H. Chiang et al. / Theoretical Computer Science 412 (2011) 4558–4569 4567

Fig. 13. (a) BN (4). (b) BN−(4), the same as BN (4) except that all the solid lines are shortened.

Fig. 14. (a) BNX (2). (b) The tree broken by White, Move 2. (c) The tree broken by White, Move 4.

Fig. 15. (a) BNX (3). (b) BNX (3) occupied by some black stones initially.

Fig. 16. Partitioning BN (2L + 1) into dark gray and light gray zones.

Proof. The game board BNX (2) is a tree, as shown in Fig. 14(a). First, we assume that Black places one stone for each move.
It suffices to prove that White has a strategy such that at all times t2i (when Black is to play) each of the trees (formed by all
the active lines) satisfies that only the leftmost (active) line, if it exists, contains one black stone. For example, in Fig. 14(b),
for Move 1 (by Black), Move 2 (by White) blocks the diagonal line on Move 1; and in Fig. 14(c), for Move 3, Move 4 blocks
the vertical line containing the stone of Move 3. Thus, it is easy to see that no active lines contain two black stones at all
times t2i. If Black places several stones in one move, we simply pretend that Black places stones one at a time. White simply
follows the above strategy without being disturbed by Black’s multi-stone moves, since White replies by placing stones on
exclusive squares where Black cannot place stones. Thus,MBBoardNX(2, 1) is drawn. �

Lemma 10. MBBoardNX(3, 2) is drawn.

Proof. For game board BNX (3) as shown in Fig. 15(a), assume that all squares above the bottomexclusive squares are initially
occupied by black stones, as shown in Fig. 15(b). By ignoring these squares with black stones, the game board becomes
BNX (2). From Lemma 9, at all times t2i (when Black is to play), Black occupies at most one of the remaining two squares plus
the one already shown in Fig. 15(b), that is, at most two. Thus,MBBoardNX(3, 2) is drawn. �

4.2.3. Induction rules
In this subsection, four induction rules are shown in Lemma 11, Lemma 12, Lemma 13, and Lemma 14 respectively.

Lemma 11. Assume that MBBoardNX(L, b) is drawn, where 0 < b < L. Then, MBBoardN(2L + 1, 2L − b − 1) is drawn too.

Proof. Partition the game board BN(2L + 1) into dark gray and light gray game boards, as shown in Fig. 16. Half of the dark
gray board can be squeezed into BN(L), as shown in Fig. 17. The light gray game board is the union of disjoint BrecX (L + 1,
L + 1). SinceMBBoardNX(L, b) is drawn from the assumption andMBBoardX(BrecX (L + 1, L + 1), 1) is drawn from Lemma 5,
MBBoardN(2L + 1, (2L + 1) − (b + 1) − 1) = MBBoardN(2L + 1, 2L − b − 1) is drawn from Lemma 4. �

Lemma 12. Assume that MBBoardNX(L, b) is drawn, where 0 < b < L. Then, MBBoardN(2L + 2, 2L − b) is drawn too.

4568 S.-H. Chiang et al. / Theoretical Computer Science 412 (2011) 4558–4569

Fig. 17. (a) Half of the dark gray game board. (b) Squeezing the game board in (a) into a BN (L).

Fig. 18. Partitioning BN (2L + 2) into light gray and dark gray zones.

Table 1
List of drawnMBBoardN games derived from Property 4, where 2 ≤ p ≤ 4.

Drawn games Drawn games derived from Lemma 11 or Lemma 12.

MBBoardNX(2, 1) → MBBoardN(5, 2) andMBBoardN(6, 3)
MBBoardNX(3, 2) → MBBoardN(7, 3) andMBBoardN(8, 4)

Table 2
List of drawnMBBoardN games derived from Property 5, where 5 ≤ p ≤ 13.

Drawn games Drawn games derived from Lemmas 13 and 14.

MBBoardN(4, 1) → MBBoardN(9, 5) andMBBoardN(10, 6)
MBBoardN(5, 2) → MBBoardN(11, 7) and MBBoardN(12, 8)
MBBoardN(6, 3) → MBBoardN(13, 9) andMBBoardN(14, 10)
MBBoardN(7, 3) → MBBoardN(15, 10) and MBBoardN(16, 11)
MBBoardN(8, 4) → MBBoardN(17, 12) and MBBoardN(18, 13)

Proof. This proof is similar to that in Lemma 11, except that BrecX−(L + 2, L + 2) is used (instead of BrecX) and some lines
marked in dashed boxes in Fig. 18 are covered by two BrecX−(L+ 2, L+ 2). For the lines covered by two BrecX−(L+ 2, L+ 2),
since each active line in BrecX−(L + 2, L + 2) contains at most one black stone, each of these lines, if active, contains at most
two black stoneswhen Black is to play. For the other lines, we can still use Lemma4 to derive that each line, if active, contains
at most b + 1 black stones when Black is to play. Since b + 1 ≥ 2, all lines contain at most b + 1 black stones when Black is
to play. Thus, the gameMBBoardN(2L + 2, (2L + 2) − (b + 1) − 1) = MBBoardN(2L + 2, 2L − b) is drawn. �

Lemma 13. Assume that MBBoardN(L, p) is drawn. Then, MBBoardN(2L + 1, L + p) is drawn too.

Proof. SinceMBBoardN(L, p) is drawn,MBBoardNX(L, L−p−1) is drawn from Lemma 7. From Lemma 11,MBBoardN(2L+1,
2L − (L − p − 1) − 1) = MBBoardN(2L + 1, L + p) is drawn. Thus, this lemma holds. �

Lemma 14. Assume that MBBoardN(L, p) is drawn. Then, MBBoardN(2L + 2, L + p + 1) is drawn too.

Proof. SinceMBBoardN(L, p) is drawn,MBBoardNX(L, L−p−1) is drawn from Lemma 7. From Lemma 12,MBBoardN(2L+2,
2L − (L − p − 1)) = MBBoardN(2L + 2, L + p + 1)) is drawn. Thus, this lemma holds. �

4.2.4. The proof for Property 3
This subsection concludes in Lemma 15 that Property 3 is satisfied.

Lemma 15. Property 3 is satisfied.

Proof. Initially, the three games, MBBoardN(4, 1), MBBoardNX(2, 1) and MBBoardNX(3, 2), are shown to be drawn in
Lemma 8, Lemma 9, and Lemma 10, respectively. From Lemma 11 or Lemma 12, we obtain the drawn MBBoardN games,
for all 2 ≤ p ≤ 4, as shown in Table 1. Then, from Lemmas 13 and 14, we obtain the drawn MBBoardN games, for all
5 ≤ p ≤ 13, as shown in Table 2. By induction, all the remaining drawnMBBoardN games in Property 3 can be derived from
Lemmas 13 and 14. �

S.-H. Chiang et al. / Theoretical Computer Science 412 (2011) 4558–4569 4569

5. Conclusion

The contributions of this paper are listed as follows.

• With the help of a program, this paper shows that Connect(11, 2) is drawn. Note that drawn Connect(k, p) implies drawn
Connect(m, n, k′, p, q) for all k′

≥ k,m ≥ 1, n ≥ 1, 0 ≤ q ≤ p. In contrast, the best known result [10] in the past was
drawn Connect(15, 2).

• This paper shows that Connect(kdraw(p), p) games are drawn for all p ≥ 3, where kdraw(p) = 3p + 3d − 1 and d is a
logarithmic function of p. Specifically, d is an integer such that P(d − 1) < p ≤ P(d) and P(d) = 2d

− d − 2. The values
kdraw(p) derived in this paper are currently the smallest for all 2 ≤ p < 1000 (the value is the same as that in [10] when
p = 4).

Although this paper presents tighter bound for k, many interesting problems are still open. The following are two
examples.

• Derive lower kdraw(p) for p < 1000, especially for small p, e.g., 1 ≤ p ≤ 10. These problems are more realistic in real
games. For example, Connect(5, 1) favors Black [1,2], while Connect(8, 1) is drawn [17]. There is still a gap between 5 and
8.
When p = 2, the gap is evenwider. Currently, the conjecture bymost Connect6 players are that Connect6, Connect(19, 19,
6, 2, 1), is drawn, and that Black wins in Connect(19, 19, 6, 2, 2). Both are still open problems. A search approach similar to
those in [15,16] is perhaps helpful to solve the latter. However, from our experiences, it is very difficult to use the search
approach to solve the former. It is also an important open problem to solve all Connect(n, 2), where 7 ≤ n ≤ 10.

• Derive general tighter bounds than those in this paper and those in [11] simultaneously.

Acknowledgements

The authors would like to thank the National Science Council of the Republic of China (Taiwan) for financial support of
this research under contract numbers NSC 95-2221-E-009-122-MY2 and NSC 97-2221-E-009-126-MY3. The authors would
also like to thank Po-Ting Chen for his assistance with the program in Theorem 1 and the anonymous referees for their
valuable comments.

References

[1] L.V. Allis, Searching for solutions in games and artificial intelligence. Ph.D. Thesis, University of Limburg, Maastricht, the Netherlands, 1994.
[2] L.V. Allis, H.J. van den Herik, M.P.H. Huntjens, Go-moku solved by new search techniques, Computational Intelligence 12 (1996) 7–23.
[3] J. Beck, On positional games, Journal of Combinatorial Theory Series A 30 (1981) 117–133.
[4] C. Berge, Graphs and Hypergraphs, North Holland, Amsterdam, 1973.
[5] E.R. Berlekamp, J.H. Conway, R.K. Guy, Winning Ways for your Mathematical Plays, vol. 3, 2nd ed., A K Peters. Ltd, Canada, 2003.
[6] S.-H. Chiang, I-C. Wu, P.-H. Lin, On drawn k-in-a-row games, in: The 12th Advances in Computer Games Conference, ACG12, Pamplona, Spain, May

2009.
[7] L. Csirmaz, On a combinatorial game with an application to Go-moku, Discrete Mathematics 29 (1980) 19–23.
[8] R. Diestel, Graph Theory, 2nd edition, Springer, New York, 2000.
[9] H.J. van den Herik, J.W.H.M. Uiterwijk, J.V. Rijswijck, Games solved: now and in the future, Artificial Intelligence 134 (2002) 277–311.

[10] M.-Y. Hsieh, S.-C. Tsai, On the fairness and complexity of generalized k-in-a-row games, Theoretical Computer Science 385 (2007) 88–100.
[11] A. Pluhar, The accelerated k-in-a-row game, Theoretical Computer Science 270 (1–2) (2002) 865–875.
[12] I-C. Wu, D.-Y. Huang, A new family of k-in-a-row games, in: The 11th Advances in Computer Games, ACG11, Conference, Taipei, Taiwan, 2005.
[13] I-C. Wu, D.-Y. Huang, H.-C. Chang, Connect6, ICGA Journal 28 (4) (2006) 234–242.
[14] I-C. Wu, P.-H. Lin, Search tree for drawn Connect(11, 2). Available at http://www.connect6.org/articles/drawn-connect-games/.
[15] I.-C. Wu, P.-H. Lin, Relevance-zone-oriented proof search for Connect6, IEEE Transactions on Computational Intelligence and AI in Games 2 (3) (2010)

191–207.
[16] I-C. Wu, H.-H. Lin, P.-H. Lin, D.-J. Sun, Y.-C. Chan, B.-T. Chen, Job-Level Proof-Number Search for Connect6. in: The International Conference on

Computers and Games 2010, CG2010, Kanazawa, Japan, September 2010.
[17] T.G.L. Zetters, 8(or more) in a row, American Mathematical Monthly 87 (1980) 575–576.

http://www.connect6.org/articles/drawn-connect-games/

	Drawn k -in-a-row games
	Introduction
	Maker--Breaker version
	Proof of Theorem 1
	Intuition for Lemma 1
	Program description for Lemma 1

	Proof of Theorem 2
	Isomorphism
	Drawn MBBoardN games
	Game boards with exclusive squares
	Initial drawn games
	Induction rules
	The proof for Property 3

	Conclusion
	Acknowledgements
	References

