3 % 4 4
FRRATHELR §RAMERFALR ElﬁF"):;F’*

%,

WER BT pdAdd 32 By 2ks

G

gt

Phue W REAYE O FEUVE
s+ % 0 NSC 97-2221-E-009 -126 -MY3
S EHPH: 97TE 80 1px 100& 70 31p

FEFEAR DA I R Bp s BRTE
MG~ A - Eew s HRE 2 BRERTA

FEFLFUREF P UFE RO L BRFHE2

A RIFL 2T O RER Z uﬁfi :

[RARA LAY o« @RE - B
(AL A MR RN LAY S EEL -
NRAREENERCETHRLZF L2 H -5
OR% & TRy P HRAFLFEE - 5
ROLS AR L E I REAFHE AARTALFE
;J?;J—%;T;'”if])P ko BB 43
(2 82w FEMAE (- a[J- 287 2B 43

SRR EE R S ER LY
3“ e

2|
|
-
1N
.
[
.
(RN}
ant

F 3

PAPFELXERS - B3 B I 40TES 2 T BB
W d i - FIE T F P g E I F LA EARE ElEa
FIMLE RO BB A TR i E AP HR S L

o

0 i SR B d 2 ;1\?% (para®yEe) KT M= P
Frens 3 HIEF Fpe > AP F R NE b LE P B AL 2 L SREHA B
e R A RER T RS

SR EGUL A e L Q2 B %:E » I
+ B ﬁi’ﬁi—}_ﬁﬂz" LR i fal b T2 TLAG LR P
AR or T ﬁ/* wJE R e e B IR i R 0 34 & e Proof Number
Search /& & iz sz & i * > T 7 it e £ b o g 5 % 5 & 3 [EEE
Transactions on Computational Intelligence and Al Games # ¥] » 2 2 %

A & & PR Y% € 3k International Conference on Computers and Games
2010 -

Bk BB fRE ST p I ch sk s S pr s &freni koo AR B T
S Glde® LT 23 5 P 11 3 e B R R R

.
o
7 5 (15 F @& qr) » I3 %3t Theoretical Computer Science #f 7| o

MaEze - T PR -RLhEr FHALET -RHATFALE 5

Ee R

When compared with other games such as Go, Chinese Chess, Chess,
the game Connectb has still been young since we presented the first
article about Connectb four years ago. Therefore, puzzles and
openings offered by experts are relatively insufficient.

In order to expedite the promotion of Connect6, this project
has developed automatic opening generators, 1n addition to the
search technology for Connect6.Also this project provides GUI
interface for Connectb players to help building the opening. The
automatic opening generator generates a large number of openings
that players can learn how to play in the openings. Since it takes
a huge amount of time in automatic opening generator, we also
developed parallel techniques to speed it up. We are planning
modifying Proof Number Search to fit the parallel structure.

Inaddition, inorder to understand better about the theoretical
values of general Connect games, we investigate those drawn Connect
games where p stones are placed in each move. In the case of p=2,
we obtain that Connect 11 games is a draw game. The result is far
better than the current result (15).

Keywords: Connectb, puzzles, puzzle generator, openings, opening
generator, threat-based proof search

AP RAHE AR o BE RN T RS R S
FPO o AL e S e TR g o % RERE R T L S
i p ke B b RS f R A2 S AR S L ey o

fen

‘57 El 2\ lfaiﬁ, Z iL ES Lﬁ = 3 ’fﬁ;{—ﬁ? é\ fﬁi:\Zf A ’}ﬁﬁ’))ﬁ'% L;IE’
B FE IR ECH I VS EREU DAY E
P T B REIE AL D SR R LTl AP A L o

]

ﬁf; g

s SRR EY 2 0P F (ZEPTE O PRLF - E) %
BFFEgEitas S E et N e B EIBE TR AL 2 ks
gt R EGUL T BRI ANE 2R AE TV KA Z A F LT
},i@ﬁ;ﬁ$gﬁipzi%»ﬁ*ﬁw%1éoﬂ*%%i A2

: e L
A0 H AL SR T T R IR HE R A PR R Xt Rk A 0 Proof
Number Search i & i seig =g * 30T {7 i chjEfr b o

A FHIEFHM S G o AP rea AP e T2
B

He - g > - AT % (Relevance Zones) 5 2 endf & Hjiv > i
A1+ 2 7 Dy F(Null Move) & £ 7 ¥ (Semi-Null Move) #1 & 2% {4 enid
@ %E K4 il F 7 F0F (Threat Space Search) °

Bl- Null move & : % &

z’ﬂjar:f,g‘@js 2= Fdet BB 0 P AR 2 Rk e d YA AR A R
HEAFANAT L RBE A APRE - - FREP LA P TR LRK

>4 T (s ﬁﬁ{b’ﬁﬁ null-move) > AP AP F|- Birw o2 (NFGHEr
TP B A - B % (7 kRelevance-Zone # i A R-Zone)

AHET RGP EIHANEE S RIS ISP 0 PRI

g %> - F 2. 2P - 3% 7T gR-Zone 0 382 (Wu and Huang, 2005) -

5]
|

Bl- Semi—null move =i idt ¥ &

KFpv 22— FTHFE-F la izl o PILEBEXEY - BFAT
(semi-null-move) » &% e if w 25 en™ 2 ¢ 9}5 ' — 1 R-Zone E 4+ ¥ & 3 4
gLy » 4Bl P ERING 5;3; EFREFER R ¥ - F % T g
R-Zone -

RIS TF IpiEe » 25 2% o g - k> APFT UEP D R42

/

G 0 5 2% o g AN P AR el B g F 5 (Relevance Zones) & A h

“B- 2Rz o ""Li’”ﬁ FEFEeni= % > 4w 29 4 F 5 3N FB‘%””’ B2 Tk
(- £Tm)i Al ¥ LRI TR AES HAREE LA
S 83 LA FER Y M (REEGF) AR (S LREF)

! 1_'i:;. A

000
0

i E :I

B= TX-d21 % &

Blz Semi-null move =hf & % &

Pl4c¥t P BB = 0 a2 Semi-—null-move FF > F v T - F3td 4 et
—RMERREY FUFE e o P HEFE e S i E% T e

mmémﬁé J(F—" ‘AR aitwmE L OR T - S ‘E"’/*’HJ\:‘/‘E)’%.%T 2]

Tl ELT oo i BE G F RS LR REF A R
HuFige 2 g FleBola R 2 5550

AFFEFE - 2RTeg B2 4% Threat Proof Search (TPS) > ¥ iz

%%@aﬁoﬁﬂEﬁﬁmﬁﬁﬁﬁﬁ’g&WZTméﬁkﬁﬁmzkwa
Bobldo F- F 3 THOMAFRAL Il FoFF TOMARRAL 12, F
ZF AT REFS L3 T pL R APT UEP NFZ 2 Bl o

B S

é__g,?g L}'é_'_ /:z :‘jb—% ‘i) 4—\.]Fa KT ?IJ’}” TPS é‘f");}f’_—éé a[i/ﬁﬁ:f’]‘ ’ ;1\; TFB 7T f% £
f Number Search (PNS)#:77 &k 4vig B B ehZh 3 o o 03\ ¢ /2 77)

e
=

BAL RS S pr e foo i@ PNSH I Do 0 i A P R o gt P
T e A %GTBEILE s Vo A E%E Ly H i};—-’r?fﬁﬁi}i FEM 20 B

SRk c PRI AFEEY e fAH AR

TS

:}f'zzel;’i? Verifier %% - 2 alpha-beta & ? € f1* Al - BHREFL
@m Verifier | %_

TRERAETEAL R AP m Al RS Bt alpha-beta

CWikegin: 20090708 113620, 0404
VS ABR 2208

€ 1%

- e A s =

ABDCOLE TGN I JKLMNDR OGNS

Commm plen

el e NN

oo A m AN ec 2 g ConnectbLib @ #t A
B3RS AT ’Jszr:ﬁé‘afgm%ﬁﬂ% bt S~ T aRLE
%&“’i—i’i’ﬁ%ﬁ?ﬁ,‘iﬁioﬁ'ﬂ* P m N PR T S s AT 2N 0 Er AT
4
4

[—
by

1

i 12:;. A A

DT M)A
\ .‘:u-vunu‘ - s

=232 882283

FLISL Sy TRy 110y ¥
' -~ l‘n. I-m Lty ety kn
"

Return good moves

- . . s " e

LR I B R I ’w
‘-

- e
- ar
e

Generate good moves.

B> et NCTUG e Al 0=

AR AR FHARY RF R DAl # iz - T AIFF - g APLESR

LAY BIIRIEDE G o A el F o e i NCTUG
FNEIFEE > 4Bl P T abfrle s WER AR X gﬁfa—jggm = 3] NCTU6 ¥
HﬁNﬂ%ﬁmmM%ﬂaﬁa éMﬂMfﬂmié§%4%®WW%T%
ey GUL /6 ¥ BRI AL 405 chd 2 ¥ £ (ol h % 4 H BT L5 ¢ 1
Bk S S ER) o

click "ew" button

s NPT soanine

- ’

ol Ll Ll

R 1”24 4 4

. 1] -

" * 1

- $-e ‘ e (=

™ ! : 4

v —)

» ' N

. 44 Y" .-

. 0

. - e L

' . T L 1

o HA Ao

ol [1 Thy.-3 \Verifier
+ t .

3 !]

‘4 + . .

. B0 0 0 Results for all

L R R A B

defensive moves & -

- -

P e e

Generate defensive
moves based on
rosults

Bl - rftrd Verifier i3

M iz A A ECENEEFEArR - 0 23
BT o NP F Y kES,A e £ A2 BT EE Verifier # 4t o
f

ler € 7| - g 975 T A iR ’%’é EEN IR B FE RS

PR 2R & FMYIE S o F 20 F Verifier ERILTF
SRRl EREIEE NS TR AR A i R ARE S P T

¥ t‘*fkff“ﬁﬂél iR B TEA ;4_ ,Z‘s APIEAI A B FAPT RS
R 2 N M ,T**} | % ab e w35 —‘1% S hiEFL o i Verifier
,56};’5{51 > 5'1"4 ¥ AL E’”&%/z ’ ,Et > -F-ffj‘éf_eﬁ AT W Em«'}'ng "f ’# ab # Hb«‘b
m&&ﬁ—%ﬁ?%io%&ﬁéﬁ%’égﬁé%?uﬁiﬁﬁﬁﬁu%%
BT B R R LB AR £ 50 LR hY ST

N

Ee
L0

1k’ﬂ&£m@?iﬁﬂ%ﬁ%%ﬁﬁﬁ @%mmnﬁ
ke geip 2 b en NCTUG 2
i Verifier 2 (s A4 7 Hcipo 2 m:}'#;/é » NPT A B

|

3
£
'F_k-m

Rred et 5 5% % 17 NCTUG F 2+ fidgi2 3R A2 - BR 2 ehh g F & g T
FiLEE p e

20T F A avE] s A4 * BT BB Yo 0 & § GUIL A

% (B~ ¢ 5 ConnectbLib) § & w8 & pF » -1 T fe bt 2B ey "G (R~ ¢

s Workers) » Work i& & = 2 {5 ¢ #-% % @ % ConnectbLib ¢ Connect6Lib

ConnectbLib

Our Desktop
Grid System

B~ Desktop grid 7

R REBFEHEEAL - BRI F 275 5B ConnectbLib p* > ¢ & 2 4o
TRIE 9 % > 5 % ConnectbLib ¢ #* ¢ ¥ 4% 9 Worker » » ,T*%L'g‘ T e
A @R 4 o in A5 § Connectblib A% § prAR B E o B ek i B2 30
Connect6Lib #8# * 3|> #le #k ch Workers » @ 3 & Workers RI= > & > i&
BeBRERET A e o

Connectélib A Connecté6lib B

OurDesktop
Grid System

Overlapped: Not
the best scheduling.

B4 & * 3k Workers

Ft B {8 20 enZE Bl 4o Bl 7m0 % ConnectbLib £ Workers 2. ¥ 4¢ »
Broker #4431 »Broker ¢ < ¥ & fie 1 15> #-1 (T 154 fe 55 B Workeri# & >
EHRT R TRE Y A kR

Connectélib A Connectélib B

Dynamically dispatch

Broker | .
'Jobs to desktops

Our Desktop
Grid Systom

Worker

B+ i * Broker tafh:

"7 TR d Broker p g 4 e % i Connect6Lib ¥ 14 i% i Broker 5

31 p m Worker emvig * f5-25> 4 ¥ 1153 Broker 3k @ p ¢ # @ * B 53 Fak

FE o ARTHA AT S L Worker ¥ ¥ o B X A FIFHE J Broker
WD EABEE S

d R & i Proof Number Search ¥ if * &8 - ST 5@ X ta > 2 3§
FATT AL G FL AT RA PR e BT F I e g R

® %8 1 Proof Number Search ejf & 72 > R4v sV ipen {7 v s o

M oA HEAEEF S R o AP E A A S et T g A
Al B A G BT Ox o i@ I % — & [terative deepening 3735 d R
S EE T E o L3 F A T ST DS 0 2L R o Bilde D iR F gy
EBEA DB ER AR BITESNEKEIHBTFTRET P N REne
T2 BT LS HE AR DEF e BT E o b FAR BHAIT A %
Pams T gt BRA 0 L 3 - W e S S iR AR
B o
P31~ E

EEd SUSRIESN A 8 i%‘rrﬁ/ 5245 Threat Proof Search (TPS) -

B TPS G B AL v 0 TR A 5L & G 4 ek PR g TR

=7 %iJ A R AeT o

® % 2008 & 10 " en*E Rk ?} iy L & E RS AR
e sigiam o R WM e AREFE- -G 22 g .

® 2008 % - BEAMGHEHTNS FHAFI OIS oSS Ak
> k“%ﬁﬂ#ﬁfi@% =N N A R
B 5- B FiF B RN LR EFS 2
B CYC Online contest # - ¥ @ 4f&E o
B X% Littlegolem. net Hezbt - ERFE @ 5 7% o
B TSRS AL (20034’%‘5&14%&;%’4-'#1«' P E IR

RIR R AR R AR E AP -
® 2009 &% EAGHTN FHEAFY > 8% 0 CERPFSL

Foho AP AT 2PN HALBERRESTF kA)L kBT
%

o P B 5 R A R R T AR
e T RS REES T E'J%jL”‘E. LT ERY U R FHA i%,iﬁ{@é H
LR P s £ PR R ERL A R TR LT
O
o +
Q0 L 30) Q0 < -
¥ b Ty v
¥ 4 3 : Ly
v
Bl+-- 2e%ia

BEEE S G AP EE i%éﬁﬁ%ﬁé@éi}@ogﬁ,yg
PR E O ABEFEY > me Sy AR 530 9 30000 A X C 4 B
5000 5T o it degE - ﬁ%ﬂif&?’%ﬁ*&mwéf .
BB FIF AL T 2 > TR AL S EAFIE o & 2008, 2009 & 0¥ =
LAFAFHIBFAY o AP G AED - BAEE o

N
¥

AmgEE- 2 TPSiHE 2o & f O SR VN 27 <E N L B 2 272 S N
Fro R EEFEL Ega‘wﬁa‘}‘»wvé
CERBT MR T FEE ok o AR g
ERhE - FHRZI Y > AP R SR NF I ER Y o A
3 3 fﬁf’ﬂ"&?—*’fﬁmlﬁ.‘ﬁ ME R T s 2 T4 e G-
7 d r;ff‘xz‘ﬂ Bdim 32 2 Fandsph o A2 chal B -g BAAY A S e
#a%’iﬁﬁfWﬂ?J EATLR e

P
4
|4
)
=
@ W
fpas!
1‘_\
9
o
o+
3
3«»&

\v

DANETE JENE R 1IN

b ik mp R IR PR3 e 4 AE BRI Ao ol

o EF% ;ﬁﬁ%iﬁ*ﬁ%pﬁ%vﬁ’B%WE@@—m—mﬁﬁi
B ey FRrow i S HEHIEHEL .

® APFRIFILPRRIEBPLLLRE A I HRHLE(IrWL-)
APFH 22T FLnpERAEAES 3 RE73 { §99A Ll
hEE o

® F5 A EFLINLEPAE ERAo IEEE Transactions on Computational
Intelligence and Al Games # ¥], Theoretical Computer Science],
ICGA Journal # #|, 2 #4833 & € & hE%E € 3 International
Conference on Computers and Games 2010.

B NP RFEG R P M EOREIEPE RE o AR TS

® |-Chen Wu and Ping-Hung, Lin, "NCTU®6-Lite Wins Connect6 Tournament",
ICGA Journal (SCI), Vol.31, No.4, December 2008.

® Ping-Hung Lin and I-Chen Wu, "NCTUG6 Wins in the Man-Machine Connect6
Championship 2009", ICGA Journal (SCI), vol. 32(4), 2009.

® |-Chen Wu, H.-H. Lin, P.-H. Lin, D.-J. Sun, Y.-C. Chan and B.-T. Chen,
"Job-Level Proof-Number Search for Connect6"”, The International Conference on
Computers and Games (CG 2010), Kanazawa, Japan, September 2010.

® |-Chen Wu and Ping-Hung Lin, "Relevance-Zone-Oriented Proof Search for
Connect6", the IEEE Transactions on Computational Intelligence and Al in
Games (SCI), Vol. 2, No. 3, pp. 191-207, September 2010.

® Sheng-Hao Chiang, I-Chen Wu, Ping-Hung Lin, "Drawn K-In-A-Row Games",
Theoretical Computer Science (SCI), Vol. 412, pp. 4558-4569, August 2011.

NCTUG-LITE WINS CONNECT6 TOURNAMENT
I-Chen Wu* and Ping-Hung Lin®
Taiwan
The computer Connect6 tournament was held as part of the 13"™ Computer Olympiad, which took place in

Beijing, China, from September 29" to October 1%, 2008. Ten teams participated in the Connect6
tournament. Table 1 lists the participants and the final standings.

Ranking | Program Author Organization Points
Ping-Hung Lin, Hong-Xuan National Chiao Tung

1 NCTU6-LITE Lin, Yi-Chih Chan, Ching-Ping | University, Taiwan. 17
Chen and I-Chen Wu
Liang Li, Hao Cui, Ruijian Beijing Institute of

2 BITSTRONGER Wang and Siran Lin Technology, China 16

3 NEUCONNG Chang-Ming Xu lc\:lﬁirr:r;eastem University, 13

BEAD CONNECT XiaoChuan Zhang Chongging Institute of
4 AND CHESS Technology, China 9

COMBINE (Bccc)

Jung-Kuei Yang and Shi-Jim National Dong Hwa

> KAVALAN Yen University, Taiwan 8
Xinhe Xu, Dongxu Huang, Northeastern University,

6 NEUGSTAR Junjie Tao, Kang Han, China 8
XinXing Li
Jiang Ke Guilin University of

! ML Electronic Technology, China 6.5
Yao Yuping Guilin University of

8 Cve Electronic Technology, China 55

g DREAM 6 Siwei Liu and Zhenhua Huang gﬁ:g Jiaotong University, 4
Shih-Chieh Huang and National Taiwan Normal

10 NTNU C6 Yun-Ching Liu University, Taiwan 3

Table 1: The participants and final standings.

The game Connect6, a kind of six-in-a-row game, was first introduced by Wu and Huang (2005) and then
described in more detail by Wu, Huang, and Chang (2005). The rules of Connect6 are very simple. Two
players, henceforth represented as B (designated as the first player) and W, alternately place two stones,
black and white respectively, on one empty intersection of an 19x19 board, except for that B places one
stone initially. The player who first obtains six consecutive stones (horizontally, vertically or diagonally) of
his own wins the game. Unlike Renju, a professional variation of five-in-a-row, no extra prohibition rules
are imposed on Connect6. When all intersections on the board are occupied without connecting six, the
game draws.

In the tournament, the games were played according to a round-robin system in which one program played
twice against all the other programs. In each game, every program had to complete all of its moves in 30
minutes. For each game, the winner scored 1 point and the loser scored nothing. However, for a draw game,
both scored 0.5.

NCTU6-LITE, a light weight version of NcTus that won the gold of the 11" Computer Olympiad, won 17

! Dept. of Computer Science, National Chiao Tung University, Hsinchu, Taiwan, Email: icwu@csie.nctu.edu.tw and
bhlin@csie.nctu.edu.tw

points and the gold of the 13" Computer Olympiad. BITSTRONGER, the second in 2007 Chinese Computer
Games Championship, won 17 points and the silver. NEuCONNS, the first in 2007 Chinese Computer Games
Championship, won 13 points and the bronze. Both programs, NCTU6-LITE and BITSTRONGER, were close
and won one game against each other. However, BITSTRONGER lost one more game to ML. Hence,
NCTU6-LITE obtained one more point, winning the gold. The cross table is listed in Table 2. In the
tournament, eight games in total drew. Note that the two games between NTNU c6 and Cvs are both drew.

Program NcTU | BIT NEuc | Bccc | Kav | NEus | ML Cveé DRM | NTNU
NCTU6-LITE - 1 2 2 2 2 2 2 2 2
BITSTRONGER 1 - 2 2 2 2 1 2 2 2
NEUCONN6 0] 0 - 2 1 2 2 2 2 2
Bccc 0 0 0 - 1 15 15 15 2 15
KAVALAN 0 0 1 1 - 0.5 2 1 1 15
NEUGSTAR 0 0 0 0.5 1.5 - 1 2 1 2
ML 0] 1 0 0.5 0 1 - 1 2 1
Cve 0] 0 0 0.5 1 0 1 - 2 1
DREAM 6 0 0 0 0 1 1 0 0 - 2
NTNU C6 0 0 0 0.5 0.5 0 1 1 0 -

Table 2: The cross table.

This report comments the two games between NcTue-LITE and BITSTRONGER, as well as the game that
BITSTRONGER lost to ML. Since Connect6 is draw-ish due to balancing, strong Connect6 programs should
play aggressive in the sense that they do not want to draw too many games to get high points in a
tournament. Therefore, both NCTus-LITE (the gold) and BITSTRONGER (the silver) played aggressively.
However, on the other hand, playing aggressively also takes high risks of exposing weakness. Figure 1
shows the record of the first game, NCTU6-LITE (B) vs. BITSTRONGER (W). In this game, NCTUe-LITE made
a blunder at 5 and BITSTRONGER immediately caught the blunder by playing at 6, verified as a winning
move by NCTUS. Interestingly, the situation was reversed for the second game, BITSTRONGER (B) vs.
NcTUe6-LITE (W), shown in Figure 2. BITSTRONGER also made a blunder at 5 and NcTue-LITE immediately
caught the blunder by playing at 6, also verified as a winning move by NCTU6. Subsequently, NCTu6-LITE
made no similar blunders and won all of the rest of games. In contrast, while playing aggressively,
BITSTRONGER sometimes offered some chances for opponents’ winning. Figure 3 shows the record of the
game that BITSTRONGER lost to ML. In this game, ML defended well without blunders and grew stronger
potential outside. For Move 46, W should have played at (E11, L15) to win. On the other hand, for Move
47, B should have played at (E11, G11) to defend. E11 was the key place for both players. Since 47, B had
been losing. A similar situation happened in the game, BITSTRONGER played against Bccc. However, Bccc
was not able to find some winning moves in that game and lost to BITSTRONGER finally.

12

mn a—

o - ‘l-;q

9 wlﬂ_‘l.z_

. X! X0

I -314.

6

5 \5‘__

a1

3

2

1
b Y = R - T AT A S S RN I R N T - R R R . L I Rl DO e WA © Tt | e B
Figure 1: Black: NcTus-LITE, White: Figure 2: Black: BITSTRONGER, White:

BITSTRONGER, Moves 1 — 20. NcTuUe-LITE, Moves 1 — 16.

X LRy $

13 12) 0 EERGEIRD D) 55

. > -d
NE & Py

(o

el KSR M LN R OAELE R E B O RIEE RIS

Figure 3: Black: BITSTRONGER, White: ML, Moves 1 — 64.

F.l.t.r. B. H. Lin, I-C. Wu, and H.J. van den Herik. Fltr. L. Lee (BITSTRONGER) and B. H. Lin
(NCTU6-LITE).

R CHESS CHAMPIONSHIP
HHE
PIP NMES ANPI(

nw

References

Wau, I-C. and Huang, D.-Y. (2006) A New Family of k-in-a-row Games. The 11th Advances in Computer
Games (ACGL11) Conference, Taipei, Taiwan. (to be published)

Wu, I-C., Huang, D.-Y., and Chang., H.-C. (2006) Connect6, ICGA Journal, Vol. 28, No.4, pp. 234-242.

Wu, I-C., and Yen., S.-J. (2006) NCTUG6 Wins Connect6é Tournament, ICGA Journal, Vol. 29, No.3, pp.
157-158.

NCTU6 Wins in the Man-Machine Connecté Championship 2009
Ping-Hung Lin* and 1-Chen Wu*
Taiwan
The Man-Machine Connecté Championship 2009, sponsored by some organizations and industrial
companies, was held in Hsinchu, Taiwan, on October 11, 2009. Four of top Connect6 players from Taiwan,

listed in Table 1 below, attended this contest and played against NCTus, the program developed by the team
led by I-Chen Wu, including Ping-Hung Lin and Hung-Hsuan Lin.

Player Player Points NCTU6 Points

Round 1 | Round 2 Total Round 1 Round 2 Total
Wen-Ching Hsu 0 0 0 2 2 4
Cheng-Guo Chen 0 0 0 2 2 4
Wei-Han Chen 0 0 0 2 2 4
Shi-Wen Lee 0 0 0 2 2 4

Table 1: The participants and final standings.

The game Connect6, a kind of six-in-a-row game, was first introduced by Wu and Huang (Wu and Huang,
2005) and then described in more detail by Wu, Huang, and Chang (Wu, Huang, and Chang, 2005). The
rules of Connect6 are very simple. Two players, henceforth represented as Black (designated as the first
player) and White, alternately place two stones, black and white respectively, on one empty intersection of
an 19x19 board, except for that Black places one stone initially. The player who first obtains six
consecutive stones (horizontally, vertically or diagonally) wins the game. When all intersections on the
board are occupied without connecting six, the game is drawn.

In this contest, four of top Connect6 players from Taiwan, Wen-Ching Hsu, Cheng-Guo Chen, Wei-Han
Chen and Shi-Wen Lee, were invited to play against NcTus. The first three are the top four in the Fourth
Annual NCTU-Cup Connect6 Open Tournament (whose web pages are in www.connect6.org), which were
held on August 23, in 2009. NCTU-Cup Connect6 Open Tournament is the most important annual
Connect6 tournament held in Taiwan that usually attracts about a hundred players each year. The winners
in this tournament are usually ones of the top players in Taiwan. Shi-Wen Lee is the head of Taiwan
Connect6 Club, who could also be the first player who posted Connect6 openings and puzzles over the
Internet (namely posted in November, 2005).

The Connect6 program, NCTUs, attended the 11™ and 13™ Computer Olympiad in both 2006 (Wu and Yen,
2006) and 2008 (Wu and Lin, 2008), and won gold both. NcTue also beat Chou Chun-Hsun (also
transliterated as Zhou Junxun), an ever Go Champion, in invited competition events between NcTue and
Chou, sponsored by National Science Council in Taiwan and some other organizations.

In this championship, the games were played in two rounds. NcTue played first against each human player
in the first round, while playing second in the second round. In each game, every player freely played
during the initial 80 minutes. After the period, each player had at most 10 times to play moves that took
more than one minute, or lost the game. For each game, the winner scored 2 points and the loser scored
nothing. For a draw game, both scored 1. NcTus won all games and the final points for human players are
listed in Table 1. The winner was awarded NT$6000, roughly US$180.

This report comments four games between NCTu6 and human players. First, two of the games in the first
round are commented. Figure 1 shows the record of the game, NcTue (Black) vs. Shi-Wen Lee (White).
Moves 2 to 5 are a popular opening that is also played in the game shown in Figure 2. Lee made a good
shape at Move 8. However, NCTUs also successfully made a counter move at 9 that forced White back to

! Dept. of Computer Science, National Chiao Tung University, Hsinchu, Taiwan, Email: bhlin@csie.nctu.edu.tw and
icwu@csie.nctu.edu.tw.

defend. After Move 9, NCTus continuously played aggressively, but Lee also defended well and grew better
outside. Finally, NcTus won the game when Lee made a blunder at Move 26. Figure 2 shows the record of
the game, NcTus (Black) vs. Wei-Han Chen (White), in the same round. In this game, Moves 2 to 5 are the
same opening. Chen made a very good shape at Move 14. Fortunately, NcTue played well at Moves 15, 17
and 19 to resolve the good shape. NCTu6 won the game after Chen made a blunder at Move 22 which
should have defended at G9 and H10.

19 19
18 18
17 17
16 16
15 15
14 8} 24
13 T‘/ y
12
n
10 16}
Y \
8 18}
; ‘
; 20D
; 202D
4
3
2
1
A B CDETFGH 1 JKLMNMNDOPIQGQRS A B CDETFGH 1 JKLMNMNDOPIQGQRS
Figure 1: Black: NcTus, White: Shi-Wen Lee, Figure 2: Black: NcTus, White: Wei-Han Chen,
Moves 1 — 29. Moves 1 —31.
19 19
18 18
17 17
16 16
15 15
14 14
13 13
12 12
" n
10 10
9 9
8 8
7 i 7
6 é?w 22 10— @) 6
5 T 5
4 Z_y 4
3 3
2 2
1 1
A B CDETFGH 1 JKLMNDOGPIGOGRS A B CDETFGH 1 JKLMNMNDOPIQGQRS
Figure 3: Black: Wen-Ching Hsu, White: NCTus, Figure 4: Black: Cheng-Guo Chen, White:
Moves 1 — 24, NcTus, Moves 1 — 28.

For the two games in the second round, we first comment the record of the game, Wen-Ching Hsu (Black)
vs. NcTus (White), as shown in Figure 3. Although the opening played by White is not common and
slightly better for Black, NcTus still chose this opening since this opening was more robust if opponents
did not play starting at the center. From Move 3 to Move 19, Hsu played very aggressively and controlled
this game. However, Hsu made a blunder at Move 21 that should have defended at L6, and NCTU6 thus won
this game. In another game, Cheng-Guo Chen (Black) vs. NcTus (White) shown in Figure 4, NCTU6 made a
bad shape at Move 18. NcTus still fortunately won when Chen neglected a winning move by White at
Move 24.

In general, human players are good at making good shapes to win games. NCTUs still needs to be improved
to make better shapes. On the other hand, human players do not search winning moves as accurately as
NCTU6 does, especially under time pressures. NCTU6 can easily catch any blunders made by human players.
Unanimously, the four players thought that they might be able to win some games, if played with more
times. After the games, a common agreement that was reached is to allow much more times in the
championship next year.

F.l.t.r. Ping-Hung Lin, Shi-Wen Lee, Cheng-Guo Chen, I-Chen Wu, Wei-Han Chen, Shun-Ji Guo (the
referee), and Wen-Ching Hsu.

References

Wau, I-C. and Huang, D.-Y. (2005) A New Family of k-in-a-row Games. The 11th Advances in Computer
Games (ACGL11) Conference, Taipei, Taiwan.

Wau, I-C., Huang, D.-Y., and Chang, H.-C. (2005) Connect6, ICGA Journal, Vol. 28, No.4, pp. 234-241.

Wau, I-C., and Yen, S.-J. (2006) NCTU6 Wins Connect6 Tournament, ICGA Journal, Vol. 29, No.3, pp.
157-158.

Wau, I-C., and Lin, P.-H. (2008) NCTU®6-Lite Wins Connect6 Tournament, ICGA Journal, Vol. 31, No. 4, pp.
244-247.

JOB-LEVEL PROOF-NUMBER SEARCH FOR
CONNECT6

I-Chen Wu', Hung-Hsuan Lin', Ping-Hung Lin', Der-Johng Sun’,
Yi-Chih Chan', and Bo-Ting Chen'

! Department of Computer Science, National Chiao Tung University,
Hsinchu, Taiwan
{icwu, bhlin, stanleylin, derjohng, nick314, qqting} @java.csie.nctu.edu.tw

Abstract. This paper proposes a new approach for proof number (PN) search,
named job-level PN (JL-PN) search, where each search tree node is evaluated
or expanded by a heavy-weight job, which takes normally over tens of seconds.
Such JL-PN search is well suited for parallel processing, since these jobs are
allowed to be performed by remote processors independently. This paper
applies JL-PN search to solving automatically several Connect6 positions
including openings on desktop grids. For some of these openings, none of
human experts had been able to find the winning strategies before. Our
experiments also showed the speedups for solving these positions are roughly
linear, fluctuated from sublinear to superlinear. Hence, JL-PN search appears
to be a very promising approach to solving games.

Keywords: Connect6, proof-number search, job-level proof-number search,
threat-space search, desktop grids.

1 Introduction

Proof-number (PN) search, proposed by Allis et al. [1,3], is a kind of best-first search
algorithm that was successfully used to prove or solve theoretical values [9] of game
positions for many games [1,2,3,8,17,18,19,23], such as Connect-Four, Gomoku,
Renju, Checkers, Lines of Action, Go, Shogi. Like most best-first search, PN search
has a well-known disadvantage, the requirement of maintaining the whole search tree
in memory. Therefore, many variations [5,11,14,15,19,23] were proposed to avoid
this problem, such as PN? DF-PN, PN*, PDS, and parallel PN search [10,17] were
also proposed. For example, PN? used two-level PN search to reduce the size of the
maintained search tree.

This paper proposes a new approach, named job-level proof-number (JL-PN)
search, where the PN search tree is maintained by a process, the client in this paper,
and search tree nodes are evaluated or expanded by heavy-weight jobs, which can be
executed remotely in a parallel system. Heavy-weight jobs take normally tens of
seconds or more (perhaps up to one day).

In JL-PN search, we leverage the well-written programs as the heavy-weight jobs.
In this paper, NCTU6 and NCTUG6-Verifier (abbr. Verifier) are used as the heavy-

weight jobs for Connect6. NCTUG6 is a Connect6 program which won the gold of
Connect6 Tournaments in Computer Olympiad [26,27,30] in 2006 and 2008 and also
won 8 games and lost nothing against top Connect6 players [12] in Taiwan in 2009,
and is used to generate a move (a node) and also evaluate the generated node. Verifier
is a verifier modified from NCTUG6, and is used to generate all the defensive moves
(on the other hand, the moves not generated are proved to be losing). The JL-PN
approach has the following advantages.

® Develop jobs (well-written programs) and the JL-PN search independently,
except for a few efforts required to support JL-PN search from these jobs. As
described in this paper, these required efforts are relatively low.

® Dispatch jobs to remote processors in parallel. Such JL-PN search is well suited
for parallel processing, since these jobs are allowed to be performed by remote
processors independently.

® Maintain the JL-PN search tree inside the client memory without much problem.
Since well-written programs also support accurate domain-specific knowledge
to a certain extent, the search trees require less nodes to solve the game
positions (when compared with PN search). In our experiments for Connect6,
the search tree usually contains no more than one million nodes, which can fit
process (client) memory well. Assume that it takes one minute (60 seconds) to
run NCTUG. Then, a parallel system with 60 processors takes about 11 days to
build a tree up to one million nodes. In such cases, we can manually split one
JL-PN search into two.

® FEasily monitor the search tree. Since the maintenance cost for the search tree is
relatively low when compared with the heavy-weight jobs, the client that
maintains the JL-PN search tree can support more GUI utilities to let users
easily monitor the running of the whole JL-PN search tree real time. For
example, let users look into the search tree during the running time.

Using JL-PN search with the two jobs NCTU6 or Verifier on desktop grids, a kind
of volunteer computing systems [4,7,20,25], this paper solved several Connect6
positions including several 3-move openings as shown in Figure 6 (below). For some
of these openings, none of professionals had been able to find the winning strategies
before. These solved openings include the popular one as shown in Figure 6 (i),
named Mickey-Mouse Opening [21] (since White 2 and Black 1 together look like a
face of the Mickey Mouse).

This paper is organized as follows. Section 2 reviews Connect6 applications
including the jobs for Connect6. Section 3 describes JL-PN search and discusses some
related issues. Section 4 does experiments for JL-PN search. Section 5 makes
concluding remarks.

2 Connect6 Applications

Connect6 [28,29] is a kind of six-in-a-row game that was introduced by Wu et al.
Two players, named Black and White in this paper, alternately place two black and
white stones respectively on empty intersections of a Go board (a 19x19 board) in

each turn. Black plays first and places one stone initially. The player who gets six
consecutive stones of his own first horizontally, vertically or diagonally wins.

One issue for Connect6 is that the game lacks openings for players since the game
is still young when compared with other games such as Chess, Chinese Chess and Go.
Hence, it is important for Connect6 player community to investigate more openings
quickly. For this issue, Wu et al. in [25] designed a desktop grid to help human
experts build and solve openings. The desktop grid is also used as our parallel system
for JL-PN search. Processors in the grid are called workers.

In the desktop grid, two programs, NCTU6 and Verifier, are embedded as jobs.
NCTU6 is a Connect6 program, written by some of the authors, as also described in
Section 1. According to [27], NCTU6 included a solver that was able to find Victory
by Continuous Four (VCF), a common term for winning strategies in the Renju
community. More specifically, VCF for Connect6, also called VCST in [27], is to win
by making continuously moves with at least one four (that threat the opponent to
defend) and ending with connecting up to six in all subsequent variations.

From the viewpoint of lambda search [22,27], VCF or VCST is a winning strategy
in the second order of threats according to the definition in [27], that is, a Aj2-tree
(similar to a A,>-tree in [22]) with value 1. Lambda search defined by Thomson [22] is
a threat-based search method, formalized to express different orders of threats. Wu
and Lin [27] modified the definition to fit Connect6 as well as a family of k-in-a-row
games and changed the notation from A,' to A,

Verifier is a verifier modified from NCTU6, and is used to verify whether the
player to move loses in the position, or list all the defensive moves that may prevent
from losing in the order A2 If a move is not listed, Verifier is able to prove that the
move is losing [27]. In some extreme cases, Verifier may report up to tens of
thousands of moves. Generating such a large number of moves in PN search is
resource-consuming (either computation or memory resources).

NCTUG6 jobs usually take about one minute and NCTU6-Verifier jobs take a wide
variety of times, from one minute up to one day, depending on the number of
defensive moves. In the research [25], human experts solve positions by submitting
jobs to free workers (in a desktop grid) manually. This paper is to use JL-PN search to
submit jobs automatically. In order to support the automation, two additional
functionalities are also added into NCTUG6 as follows.

1. Given a list of exclusive moves as input, NCTU6 generates the best move
among all the non-exclusive moves (those not in the list).

2. For the above functionality, if all the non-exclusive moves cannot prevent from
losing, NCTUG6 needs to report a sure loss message. After supporting this
functionality, NCTU6 is able to replace Verifier in some cases. This
functionality is critical in JL-PN search, described in Section 3.

3 Job-Level Proof Number (JL-PN) Search

This section presents job-level proof number (JL-PN) search that is used to solve
Connect6 positions automatically. For simplicity of discussion about proof-number
(PN) search, we follow in principle the definitions and algorithms in [1,3]. PN search

is based on an AND/OR search tree where each node n is associated with
proof/disproof numbers, p(n) and d(n), which represent the minimum numbers of
nodes to be expanded to prove/disprove n. The values p(n)/d(n) are 0/ if the node n
is proved, and /0 if it is disproved. PN search repeatedly chooses a leaf called the
most-proving node (MPN) to expand, until the root is proved or disproved. The details
of choosing MPN and maintaining the proof/disproof numbers can be found in [1,3]
and therefore is omitted in this paper. If the selected MPN is proved (disproved), the
proof (disproof) number of the root of the tree is decreased by one.

Our JL-PN search is parallel PN search with the following two features. First, well-
written programs such as NCTU6 and Verifier are used to expand and generate MPNs.
These programs are viewed as jobs, sent to and done by free workers in a desktop grid.
Second, multiple MPNs are allowed to be chosen simultaneously and therefore can be
done by different workers in parallel.

In the rest of this section, Subsection 3.1 briefly describes the initializations of the
proof/disproof numbers that help guide the search. Subsection 3.2 discusses the first
feature, node expansion and generation, using NCTU6 and Verifier. Subsection 3.3
describes a very important algorithm of choosing the next MPN for parallelism for the
second feature.

3.1 Proof/Disproof Number Initialization

This subsection briefly describes how to apply the domain knowledge given by
NCTUS to initialization of the proof/disproof numbers. Since it normally takes one
minute or even more to execute a NCUT6 or Verifier job, it becomes critical to
choose a good MPN carefully to expand, especially when there are many candidates
with 1/1 as the standard initialization. In [1], Allis suggested several methods such as
the use of the number of nodes to be expanded, the number of moves to the end of
games, or the depth of a node.

Status Bw B4 B3 B2 B1 Wl w2 w3 w4 Ww stable unstablel unstable2

pmydm)y | 00 118 212 310 48 84 103 122 18/1 /0 6/6 5/5 4/4

Table 1: Game status and the corresponding initializations.

Our approach is simply to trust NCTUG6 and use its evaluations on nodes (positions)
to initialize the proof/disproof numbers in JL-PN search as shown in Table 1. The
status Bw indicates that Black has a sure win, so the proof/disproof numbers of a node
with Bw are 0/oc. The status B1 to B4 indicates that the game favors Black with
different levels, where B1 indicates to favor Black least and B4 most (implicitly
Black has a very good chance to win for B4) according to the evaluation by NCTUG.
Similarly, the status W* are for White. The status stable indicates that the game is
stable for both players, while both unstablel and unstable2 indicate unstable, where
unstable2 is more unstable than unstablel.

Surely, there are many different kinds of initializations other than those in Table 1.
Our philosophy is simply to pass the domain-specific knowledge from NCTU6 to JL-
PN search. Different programs or games surely have different policies on
initializations from practical experiences.

3.2 Node Expansion and Generation

In JL-PN search, NCTU6 and Verifier are used to expand and generate nodes.
Given a node (a position) n and a list of its children (exclusive moves), NCTU6
expands n by generating from n a new child (the best among all the moves outside the
list) and evaluating the new child. Given a node n, Verifier expands » by generating
all the children (that may prevent from losing in the order A,%). In our current version,
Verifier does not evaluate these children (as described above), and provides no
domain-specific knowledge (about how good these moves are).

In our earliest scheme of JL-PN search, we assumed in advance whom to win and
then used NCTU6 to expand OR nodes and Verifier to expand AND nodes
asymmetrically. Although it seems straightforward to prove positions in this scheme,
this scheme has the following three drawbacks.

1. When expanding an AND node n, Verifier may generate a large number of
moves as mentioned above. In the case that n is not proved but one sibling of n
is proved, it may waste resources to generate all the children of n, especially
when the number of children is very large. The dilemma is that it is hard to
decide when Verifier should terminate node expansion.

2. Verifier provides no domain-specific knowledge so that these moves are not
ordered for search. When Verifier generates a large number of moves from an
AND node, this problem is even more serious. It is hard to choose which child
to select for MPNSs.

3. Inmany cases, it is hard to decide whom to win in advance. For example, White
wins at 4 in Figure 6 (f). However, at the first glance, we and even some human
experts thought that Black won or had an advantage at 3, and therefore spent
time in proving whether Black wins, but unfortunately failed to prove at 4.

In order to cope with the above drawbacks, we developed several techniques and
also successfully solved several positions and openings based on this scheme.
However, since these techniques are too complicated and this scheme outperforms the
next scheme in a few cases only, the above scheme is discussed no longer in this
paper.

This paper uses the following scheme, instead: NCTUG is used to expand all nodes.
However, one issue raised from this scheme is when to generate siblings of nodes.
Since chosen MPNs must be leaves, expanding chosen MPNs alone implies
expanding leaves only. For this issue, we propose a method called postponed sibling
generation as follows.

OR node.
Artackerto move,

AND node.
Defenderto move.

Figure 1: Expanding n (to generate ny) and n; simultaneously.

® Assume that for a node n NCTUG already generates the i-th move, n;, but not
yet for the (i+1)-st, ni+;. When the node n; is chosen as the MPN for expansion,
expand n; and generate nj.; simultaneously. For generating n;.;, NCTUG6
expands n with an exclusive list of moves, ny;, n,, ..., n; (using the first
functionality as described in Section 2). For example, when the node nj is
chosen as the MPN, expand nz and expand n (to generate n,) simultaneously.
On the other hand, if the branch ny or n, is chosen, do not generate n, yet. In
addition, assume that the move to n, is a sure loss, reported by NCTUG6. From
the second functionality as described in Section 2, all the moves except for ny,
n, and n3 lose. Then, the node n is no longer expanded. In this case, n, behaves
as a stopper.

The postponed sibling generation method fits parallelism well, since both
generating n, and expanding nz can be performed simultaneously. Some more issues
are described as follows.

One may ask what if we choose to generate n, before expanding ns. Assume that
one player, say Attacker, is to move in the OR node n. Let Defender indicate the
opponent. From the first additional functionality described in Section 2, the move n;
is supposed to be better for Attacker than n, (according to the evaluation of NCTUG).
Assume that it is indeed. Then, the condition p(ns) < p(n,) holds. Thus, the node ny
must be chosen as the MPN to expand earlier than n,. Thus, it becomes insignificant
to generate n, before expanding ns. In addition, the above condition also implies that
the proof numbers of all the ancestors of node n remains unchanged. As for the
disproof numbers of all the ancestors of n, these values are the same as or higher.
Unfortunately, higher disproof numbers discourage the JL-PN search to choose n; as
MPNs to expand. Thus, the behavior becomes awkward, especially if the node ns will
be proved eventually.

One may also ask what if we expand ns, but generate n, later. In such a case, it
may make the proof number of n fluctuated. An extreme situation is that the value
becomes infinity when all nodes, n, n, and ns, are disproved.

3.3 Most Proving Nodes in Parallelism

This subsection discusses the key issue, choosing the MPNs to expand in parallel.
When no MPNs are being expanded yet, we simply follow the traditional PN search
to find an MPN and then use the method of postponed sibling generation (described in
the previous subsection) to expand the MPN and generate its new sibling, if necessary.
The node expansion and sibling generation form jobs which are respectively
dispatched to free workers in the desktop grid. Whenever jobs are completed in
workers, the results are returned back to the client. Then, the client updates the
proof/disproof numbers of all nodes in the tree accordingly.

When some more free workers in the desktop grid are available, more MPNs are
chosen for execution on these workers. However, if we do not change the
proof/disproof numbers of the chosen MPNs being expanded, named the active MPNs
in this paper, we would choose the same node obviously, as shown in Figure 2 (a)
below. The issue is solved by the following policies.

Ny: The current MPN
(being expanded)
N2 Next chosen MPN

N

\\ y

(& %)
AN /N
» O0°0° B O
(@) (b) ©

Figure 2: (a) Remaining unchanged. (b) Virtual win. (c) Virtual loss.

One policy of preventing from choosing the same node is to assume a virtual win
[6] on the active MPNs. The idea of the virtual-win policy is to assume that the active
are all proved. Thus, their proof/disproof humbers are all set to 0/c, as illustrated in
Figure 2 (b). When the proof number of the root is zero, we stop choosing more
MPNs. The reason is that the root is already proved if the active are all proved.

Another policy is to assume a virtual loss on the active MPNs. Thus, the
proof/disproof numbers of these nodes are set to «/0 as shown in Figure 2 (c).
Similarly, when the disproof number of the root is zero, we stop choosing more
MPNs. Similarly, the root is disproved, if all the active are disproved.

We also propose another policy, named a greedy policy, which chooses virtual-
loss when the chosen nodes favor the disproof according to the evaluation of NCTUS,
and chooses virtual-win otherwise. As described above, we may not be able to decide
whom to win in advance in some cases such as the one in Figure 6 (f). This policy is
used to see whether it makes differences.

4 Experiments

In our experiments of JL-PN search, the benchmark included 35 Connect6
positions (available in [31]), among which the last 15 positions are won by the player
to move, while the first 20 are won by the other. The first 20 and the last 15 are
ordered according to the computation time in the desktop grid [25] with 8 workers,
actually 8 cores on four Intel Core2 Duo 3.33 GHz machines. In our experiments, the
client is located on another host. Note that the time for maintaining the JL-PN search
tree is negligible, since it is relatively low when compared with those of NCTU6 and
Verifier (normally taking 1 minute or more).

Figure 3 (below) shows the speedups and the speedup efficiencies of the 35
positions using JL-PN search with the virtual-loss policy and with 1, 2, 4 and 8 cores
respectively. Let the speedup Sy = T,/Ty, where T, is the computation time for solving
a position with the virtual-loss policy with k cores. Also, let the speedup efficiency Ey
= Si/k. The efficiencies are one for ideal linear speedups.

From Figure 3, the speedups for our JL-PN search are roughly linear, but are
fluctuated from sublinear to superlinear due to the high uncertainty of parallel state-
space search [13,16]. The phenomenon of superlinear speedups for parallel state-
space search has been discussed in [16] in greater detail. Since PN search is a kind of
state-space search, it fits the phenomenon. Although fluctuated, the speedups are
close to linear speedups. Such a result shows that JL-PN search is a very promising
approach to solving games.

SpeedUp

14 = -

12 ¥ ,' ?\

10 > il —\ - pO% corel
A S W N T\ o
6 + cesde s cored
4 y - cored
2
0 LI B B s e

1234567 8 91011121314151617181920212223242526272829303132333435 Pposition

(@)

Efficiency of speedup
2

- cored

L e o e B 5 e S AN S

1234567 8 91011121314151617181920212223242526272829303132333435 Position
(b)
Figure 3: (a) Speedups S, and (b) efficiencies E; of the 35 positions for k=1, 2, 4 or 8.

«e«@ - Greedy

0s e e J A=A \ —@— VirtualLoss
-U. i) -
N '-‘-'g = <h— = VirtualWin
-1 "1
-1.5 T T T T T T T T T T T T | T T T T T T 1
12 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Position
(a)
2 ; *
15 % o
- T
- ® ! 7 »
1 > SR P o o SR S PR T
P i\ - st e 4 JOPP
0.5 x Y ; Y ’,‘ O = 7 ‘\ ” .- Greedy
07 —— VirtualLoss

il

-0.5 =
Y7 | * = === VirtualWin
1 i |
-1.5 T T T T T T T T i T T T T T 1

21 22 23 24 25 26 27 28 29°30 31 32 33 34 35 Position

(b)

Figure 4: Normalized logarithmic time scales with 8 cores (a) for the first 20
positions and (b) for last 15.

Our next experiment is to investigate the three policies, virtual-win, virtual-loss
and greedy policies, as proposed in Subsection 3.3. For these policies, we measured
their computation times with 8 cores only, normalized to those for the virtual-loss

policy in the following way. Let Tiwin, Tivioss aNd Tigrg be the times for solving the ith
position in the benchmark with virtual-win, virtual-loss and greedy policy. The
normalized logarithmic time scales are Njype = 109 (Tiype /Tivioss), Where type is vwin,
vloss or grd. Clearly, the scales for the virtual-loss policy are all zeros. Figure 4
shows all Njywin, Niviess and Nigq. The higher the scales are, the less efficient the
performances are with respect to the virtual-loss policy.

Active MPN Active MPN
(b) (c)
Figure 5: (a) A JL-PN search tree. (b) The virtual-win policy. (c¢) The virtual-loss
policy.

From Figure 4, the normalized logarithmic time scales are fluctuated due to the
same reason, the high uncertainty of parallelizing a search tree. In general, none of the
policies has clear advantages over any others, except that we observe the following
phenomenon: The virtual-loss policy seems slightly better in the positions where the
tree size is relatively smaller. These positions are in the left hand side of dashed lines
in Figure 4 (note that the positions are ordered according to the computation times as
mentioned above).

The phenomenon is explained and illustrated in the following example. Consider a
JL-PN search tree in Figure 5 (a). After choosing e as MPN, the virtual-win policy
sets the proof/disproof numbers of both b and a (the root) to 0/e0 as shown in Figure 5
(b), and therefore chooses no more MPNSs until the job for e is completed. In contrast,
the virtual-loss policy sets the proof/disproof numbers of b to /0, sets those of a to
6/11, and therefore chooses f and d as next MPNSs, as shown in Figure 5 (c).

From the above observation, the virtual-win policy tends to choose MPNs from
the first (or the first several) branch of the root, while the virtual-loss policy tends to
choose MPNs from all branches. Thus, the virtual-loss policy tends to spread
computations better and utilize parallelism better at the early stage. However, in the
case that the tree size is large, the above advantage of the virtual-loss policy becomes
less significant.

As for the greedy policy, it is in-between. If it follows the virtual-win policy at the
very beginning, then the above phenomenon is also observed (see the left hand side of
Figure 4 (b)). Otherwise, it is similar to the virtual-loss policy.

All in all, since the speedups are fluctuated seriously, it is hard to conclude which
policy is the best, especially when the search tree is large. In our real experiences, we
tend to use the virtual-loss policy due to the above phenomenon.

— 1 R \ T
@ (b)ﬂ} © | (‘Ol)I (?).
FEoHeE eegh 1o
BRI e
T oo ; 1195
T e e o
U] (9 (h) () @

Figure 6: Ten openings in our benchmark.

Now, re-investigate the 35 positions in the benchmark. Among them, ten are 3-
move openings shown in Figure 6. The winning strategies for the first three were also
found in [27]. In these openings, White wins in the sixth one, while Black wins in
others. For many of them, their winning strategies were not found before. Especially,
the Mickey-Mouse Opening (the ninth one) had been one of popular openings before
we solved it. The tenth one, also called Straight Opening, is another difficult one.

5 Conclusion

The contributions of this paper are summarized as follows.
® This paper proposes a new approach, JL-PN (job-level proof-number) search, to
help solve the openings of Connect6. In this approach, some techniques are
used, such as the method of postponed sibling generation and the policies of
choosing MPNSs. In this paper, JL-PN search was successfully used to solve
several positions of Connect6 automatically, including several 3-move openings,
such as Mickey-Mouse Opening and Straight Opening, which none of Connect6
human experts had been able to solve before.
® Our experiments also demonstrated roughly linear speedup, even superlinear
speedups in some cases. Based on JL-PN search, we expect to solve and
develop more Connect6 openings.
® From our experiments, we observed that the virtual-loss policy seemed slightly
better for small tree sizes. However, for large tree sizes, we observed that none
of the policies had clear advantages over any others.
In addition, the approach of JL-PN search has several advantages as indicated in
Section 1. We expect to apply it to many other games in the near future.

Acknowledgments.

The authors would like to thank anonymous reviewers for their valuable comments,
and thank the National Science Council of the Republic of China (Taiwan) for

financial support of this research under contract numbers NSC 95-2221-E-009-122-
MY2 and NSC 97-2221-E-009-126-MY 3.

References

(1]
(2]
(3]
(4]

(5]

(6]

(7]

(8]

(9]
(10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

Allis, L.V., Searching for solutions in games and artificial intelligence, Ph.D. Thesis,
University of Limburg, Maastricht, The Netherlands, 1994.

Allis, L.V., Herik, H. J. van den, and Huntjens, M. P. H., Go-Moku Solved by New
Search Techniques. Computational Intelligence, Vol. 12, pp. 7-23, 1996.

Allis, L.V., Meulen, M. van der, and Herik, H. J. van den, Proof-number search,
Artificial Intelligence, VVol. 66(1), pp. 91-124, 1994,

Anderson, D. P. Boinc: A system for public-resource computing and storage. In
Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing
(GRID'04), IEEE CS Press, Pittsburgh, USA, pp. 4-10, 2004.

Breuker, D. M., Uiterwijk, J., and Herik, H. J. van den, The PN2-search algorithm, in H.
J. van den Herik, B. Monien (Eds.), Advances in Computer Games, Vol. 9, IKAT,
Universiteit Maastricht, Maastricht, The Netherlands, pp. 115-132, 2001.

Chaslot, G. M., Winands, M. H. M., and Herik, H. J. van den, Parallel Monte-Carlo Tree
Search. The 6th International Conference on Computers and Games (CG2008), Beijing,
China, 2008.

Fedak, G., Germain, C., Neri, V., and Cappello, F., Xtremweb: A generic global
computing system. In Proceedings of the 1st IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGRID 2001): Workshop on Global Computing on
Personal Devices, IEEE CS Press, Brisbane, Australia, pp. 582-587, 2001.

Herik, H. J. van den, and Winands, M. H. M., Proof-Number Search and its Variants. In
Oppositional Concepts in Computational Intelligence, pp. 91-118, 2008.

Herik, H. J. van den, Uiterwijk, J. W. H. M., and Rijswijck, J. V., Games solved: Now
and in the future. Artificial Intelligence, Vol. 134, pp. 277-311, 2002.

Kishimoto, A., and Kotani, Y., Parallel AND/OR tree search based on proof and disproof
numbers. In 5th Games Programming Workshop, Vol. 99(14) of IPSJ Symposium Series,
pp- 24-30, 1999.

Kishimoto, A., and Miiller, M., Search versus Knowledge for Solving Life and Death
Problems in Go, Twentieth National Conference on Artificial Intelligence (AAAI-05),
pp. 1374-1379, 2005.

Lin, P.-H., and Wu, 1.-C., NCTU6 Wins Man-Machine Connect6 Championship 2009,
ICGA Journal, VVol. 32(4), pp. 230-232, 2009.

Manohararajah, V. Parallel alpha-beta search on shared memory multiprocessors.
Master’s thesis, Graduate Department of Electrical and Computer Engineering,
University of Toronto, Canada, 2001.

Nagai, A., Df-pn Algorithm for Searching AND/OR Trees and Its Applications. PhD
thesis, University of Tokyo, Japan, 2002.

Pawlewicz, J., and Lew, L., Improving depth-first pn-search: 1+€ trick. In H. J. van den
Herik, P. Ciancarini, and H.H.L.M. Donkers, editors, 5th International Conference on
Computers and Games, Vol. 4630 of LNCS, pp. 160-170. Computers and Games,
Springer, Heidelberg, 2006.

Rao, V. N., and Kumar, V., Superlinear Speedup in State-space Search. In Proceedings
of the 1988 Foundation of Software Technology and Theoretical Computer Science,
number 338 of LNCS, pp. 161-174, Springer-Verlag, 1988.

Saito, J. T., Winands, M. H. M., and Herik, H. J. van den, Randomized Parallel Proof-
Number Search. Advances in Computer Games Conference (ACG'12), Lecture Notes in
Computer Science (LNCS 6048), pp. 75-87, Palacio del Condestable, Pamplona, Spain,
2009.

(18]
[19]

[20]
[21]

[22]

(23]

[24]

[25]

[26]
[27]
(28]
[29]
[30]

[31]

Schaeffer, J., Burch, N., Bjornsson, Y., N., Kishimoto, A., Miiller, M., Lake, R., Lu, P.,
and Sutphen, S., Checkers is solved. Science, Vol. 5844(317), pp. 1518-1552, 2007.

Seo, M., lida, H., and Uiterwijk, J., The PN*-search algorithm: Application to
Tsumeshogi. Artificial Intelligence, Vol. 129(1-2), pp. 253-277,2001.

SETI@home Project. available at http://setiathome.ssl.berkeley.edu.

Taiwan Connect6 Association, Connect6 homepage, available at
http://www.connect6.org/.

Thomsen, T., Lambda-search in game trees - with application to Go. ICGA Journal, Vol.
23(4), pp. 203-217, 2000.

Winands, M. H. M., Uiterwijk, J. W. H. M., and Herik, H. J. van den, PDS-PN: A new
proof-number search algorithm: Application to Lines of Action. In J. Schaefter, M.
Miiller, and Y. Bjornson, editors, Computers and Games 2002, Vol. 2883 of LNCS, pp.
170-185. Computers and Games, Springer, Heidelberg, 2003.

Wu, I-C., Hsu, S.-C., Yen, S.-J., Lin, S.-S., Kao, K.-Y., Chen, J.-C., Huang, K.-C.,
Chang, H.-Y., and Chung, Y.-C., A Volunteer Computing System for Computer Games
and its Applications, an integrated project proposal submitted to National Science
Council, Taiwan, 2010.

Wau, 1.-C., Chen, C.-P., Lin, P.-H., Huang, K.-C., Chen, L.-P., Sun, D.-J., Chan, Y.-C.,
and Tsou, H.-Y., “A Volunteer-Computing-Based Grid Environment for Connect6
Applications”, the 12th IEEE International Conference on Computational Science and
Engineering (CSE-09), August 29-31, Vancouver, Canada, 2009.

Wau, 1.-C., and Lin, P.-H., NCTU®6-Lite Wins Connect6 Tournament, ICGA Journal, VVol.
31(4), pp. 240-243, 2008.

Wu, 1.-C., and Lin, P.-H., Relevance-Zone-Oriented Proof Search for Connect6, to
appear in the IEEE Transactions on Computational Intelligence and Al in Games, 2010.
Wau, I.-C., Huang, D.-Y., and Chang, H.-C., Connect6. ICGA Journal, Vol. 28(4), pp.
234-242, 2006.

Wu, I.-C., and Huang, D.-Y., A New Family of k-in-a-row Games. The 11th Advances in
Computer Games Conference (ACG'11), pp. 180-194, Taipei, Taiwan, 2005.

Wu, 1.-C., and Yen, S.-J., NCTU6 Wins Connect6 Tournament, ICGA Journal, Vol.
29(3), pp. 157-158, September 2006.

Wu, |.-C., et al. Benchmark for Connect6, available at
http://www.connect6.org/articles/JL-PNS/.

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AIIN GAMES, VOL. 2, NO. 3, SEPTEMBER 2010 191

Relevance-Zone-Oriented Proof Search for Connect6

I-Chen Wu, Member;, IEEE, and Ping-Hung Lin

Abstract—Wu and Huang (Advances in Computer Games, pp.
180-194, 2006) presented a new family of k-in-a-row games,
among which Connect6 (a kind of six-in-a-row) attracted much
attention. For Connect6 as well as the family of k-in-a-row games,
this paper proposes a new threat-based proof search method,
named relevance-zone-oriented proof (RZOP) search, developed
from the lambda search proposed by Thomsen (Int. Comput.
Games Assoc. J., vol. 23, no. 4, pp. 203-217, 2000). The pro-
posed RZOP search is a novel, general, and elegant method of
constructing and promoting relevance zones. Using this method
together with a proof number search, this paper solved effectively
and successfully many new Connect6 game positions, including
several Connect6 openings, especially the Mickey Mouse opening,
which used to be one of the popular openings before we solved it.

Index Terms—Board games, Connect6, k-in-a-row games,
lambda search, threat-based proof search, threat-space search.

1. INTRODUCTION

generalized family of k-in-a-row games, named Con-
nect(m,n, k,p,q) [30], [31], was introduced and
presented by Wu er al. Two players, named Black and White,
alternately place p stones on empty squares! of an m x n board
in each turn. Black plays first and places g stones initially. The
player who first gets & consecutive stones of his own horizon-
tally, vertically, and diagonally wins. Both players tie the game
when the board is filled up with neither player winning. Games
in this family are also called Connect games? in this paper. For
example, Tic-tac-toe is Connect(3,3,3,1,1), Go-Moku in the free
style (a traditional five-in-a-row game) is Connect(15,15,5,1,1),
and Connect6 played on the traditional Go board is Con-
nect(19,19,6,2,1). For simplicity, let Connect(k,p,q) denote
the game Connect(co, 0o, k, p,), played on infinite boards. For
example, when played on infinite boards, Go-Moku becomes
Connect(5,1,1) and Connect6 becomes Connect(6,2,1).
Among these Connect games, Connect6 attracted much atten-
tion due to three merits: fairness, simplicity of rules, and high
game complexity as described in [30] and [31]. Since Connect6

Manuscript received February 11, 2010; revised June 11, 2010; accepted July
12, 2010. Date of publication July 23, 2010; date of current version September
15, 2010. This work was supported in part by the National Science Council of
the Republic of China (Taiwan) under contract numbers NSC 95-2221-E-009-
122-MY2 and NSC 97-2221-E-009-126-MY 3.

The authors are with the Department of Computer Science, National Chiao
Tung University, Hsinchu 30050, Taiwan (e-mail: icwu@csie.nctu.edu.tw;
bhlin@csie.nctu.edu.tw).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCIAIG.2010.2060262

IPractically, stones are placed on empty intersections of Renju or Go boards.
In this paper, by squares, we mean intersections.

2The term of connect games defined in [10] covers the games such as Hex,
Connect Four, etc. In this paper, Connect are capitalized to indicate all the games
in the family of Connect(m,n, k., p,q).

was introduced, hundreds of thousands of Connect6 games have
been played on web sites, such as littlegolem.net [14] and cy-
cgame.com [21]. Since 2006, several Connect6 open tourna-
ments [20] for human players have been held, such as NCTU
Open, ThinkNewlIdea Open, Russian Open, and World Open.
Connect6 has also been included as one of the computer game
tournaments at the Computer Olympiad [24] and Chinese Com-
puter Games Contest [9], since 2006 and 2007, respectively.

For Connect6, researchers in [30] and [31] mentioned a
simple threat-based proof search method for solving Con-
nect(6,2,3). Section II shows that many more winning positions
cannot be solved by such a method. This paper proposes a new
threat-based proof search method, named relevance-zone-ori-
ented proof (RZOP) search, developed from the lambda search
proposed by Thomsen [22]. Section IV presents this novel,
general, and elegant method of constructing and promoting
relevance zones for Connect6. The proposed method is also
generalized to all Connect games in the Appendix. Together
with a proof number search [3], [28], it solved effectively and
successfully many new Connect6 game positions, including
several Connect6 openings, especially the Mickey Mouse
opening, as described in Section V. This opening used to be one
of the popular openings before we solved it. All definitions and
notations used in this paper are given in Section III. Concluding
remarks are made in Section VI.

II. MOTIVATION

When Connect6 was first introduced by Wu et al. [30], [31],
they mentioned that threats are the key to winning Connect6
as well as other Connect games, like Renju. According to the
definitions by [30] and [31], one player has ¢ and only ¢ threats,
if and only if ¢ is the smallest number of stones that the opponent
needs to place to prevent from losing the game in the next move.
A move is called a single-threat move if the player who makes
the move has one and only one threat after the move, a double-
threat move if two, a triple-threat move if three, and a nonthreat
move if none. In Connect6, one player clearly wins by a triple-
threat-or-more move (a move with at least three threats).

In [30] and [31], Wu et al. showed a type of winning strategy,
called victory by continuous double-threat-or-more moves
(VCDT) in this paper. It is similar to victory by continuous
four (VCF), a common term for winning strategies in the Renju
community [15]. More specifically, the type of VCDT strategy
is to win by making continuously double-threat moves and
ending with a triple-or-more-threat move or connecting up to
six in all variations, for example, in Fig. 1, White’s VCDT
12-18 (18 is a triple-threat move) moves.

Soon after the introduction of Connect6, many experts found
another type of winning strategy in which additional single-
threat moves are involved, i.e., single-threat and double-threat

1943-068X/$26.00 © 2010 IEEE

192 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 3, SEPTEMBER 2010

Fig. 1. Sequence of winning moves by White.

T

©

Fig. 2. (a)Black’s winning move in Connect(6,2,3). (b) VCDT for a null move
in (a). (c) VCDT for a seminull move 2.

moves are mixed (before ending with a triple-or-more-threat
move). This type of winning strategy is herein called victory by
continuous single-threat-or-more moves (VCST). For example,
Lee [13], a Renju 3-dan player, found and claimed in late
2005 that White won starting from move 8 (both 8 and 10 are
single-threat moves) in the game as shown in Fig. 1. Similarly,
the type of winning strategy with additional non-threat moves
involved is called victory by continuous nonthreat-or-more
moves (VCNT).

Although VCST was unknown then, Wu et al. [30], [31] were
already able to solve a simple VCNT case, when Black wins
Connect(6,2,3). This clearly is a case of VCNT, since Black’s
first winning move, as shown in Fig. 2(a), must be a nonthreat
move. To solve it, they used a simple threat proof search method
involving null or seminull moves and relevance zones, as briefly
described in the following. Let White place no stones, called a
null move in [30] and [31]. Obviously, Black wins by VCDT 3-9
as shown in Fig. 2(b). Then, a relevance zone Z, the area of gray
squares in Fig. 2(b), can be derived to indicate that White must
place at least one of the two stones inside this zone, or Black

(b) (©

Fig. 3. (a) Position with Black winning. (b) VCDT for the null move in (a). (c)
Winning single-threat move 9 for the seminull move 8.

wins by simply replaying the same VCDT. Next, all squares s
in Z are verified as follows. Let White place one stone on s only,
called a seminull move in [30] and [31]; for example, move 2 in
Fig. 2(c). Again, Black is able to win by another VCDT 3-11.
Thus, another relevance zone Z’, the gray area in Fig. 2(c), can
be derived again to indicate that White must place another stone
inside Z’, or Black wins by replaying the same VCDT. Finally,
all s are verified such that Black wins over all moves placed at s
and s’, where s’ is in the Z’ corresponding to the seminull move
at s. Hence, Black was proved to win.

In the above search method for solving the case Con-
nect(6,2,3) with VCNT, both winning strategies for the null
move [3-9 in Fig. 2(b)] and the seminull move [3-11 in
Fig. 2(c)] must be VCDT. However, with more and more win-
ning Connect6 positions investigated, we found that winning
strategies for null and seminull moves may be VCSTs or even
VCNTs, thus making these positions much more difficult to
solve.

For example, consider the two winning nonthreat moves
(proved in this paper): moves 7 in Fig. 3(a) and 6 in Fig. 4(a),
respectively. The former, found in 2006 [20], was the key used
to help prove that Black wins at move 3 in Fig. 3 [see also the
opening in Fig. 22(a)]; that is, the opening move 2 is solved. In
this case, for the null move in Fig. 3(a), Black wins by a VCDT
as shown in Fig. 3(b). However, for the seminull move 8 in
Fig. 3(c), Black has no double-threat moves to win by a VCDT,
though Black wins by a VCST starting at 9 in Fig. 3(c).

The latter, the position in Fig. 4(a) found by Huang [11],
was investigated to see whether the seminull move 5 was safe
enough, since the position at 5 was popular in the following
sense. Among all the first-five-move positions of Connect6
games played by the players ranked above 1800 in [14], about
2% covered (or superset) the position according to the statistics
discussed in [20]. The proof for this position is extremely
complicated. Even for a null move by Black, White has no

WU AND LIN: RELEVANCE-ZONE-ORIENTED PROOF SEARCH FOR Connect6

e
® e
*

®

ol

I
(b) (©)

Fig. 4. (a) Position with White winning. (b) Winning single-threat move 8 for
a null move in (a). (¢) Winning nonthreat move 8 for a seminull move 7.

double-threat moves to win by a VCDT, but can actually win
by a VCST starting at 8 as shown in Fig. 4(b). In addition, if a
seminull move is made at 7 in Fig. 4(c), White cannot win by
a VCDT or even a VCST, thus making the position in Fig. 4(a)
much more complicated to solve.

In order to solve these as well as other positions shown in
Section V, this paper proposes a new threat-based proof search
method, named relevance-zone-oriented proof (RZOP) search,
developed from the lambda search proposed by Thomsen [22].
In the past, many researchers [1]-[3], [6], [7], [22] have pro-
posed threat-based search methods. Lambda search is to for-
malize the search trees with null moves and to solve positions of
games such as Go and Chess. In lambda search, null moves are
involved with different orders of threat sequences, also called
lambda trees.

From the viewpoint of lambda search, a VCDT is a typical
Al-tree with value 1 (cf., [22]). However, the definition of
lambda search cannot be directly applied to Connect6 or Con-
nect games with p > 2. For Connect games, this paper modifies
the definition of lambda search in Section III-D, and replaces
the notation * by A?. Under the new definition, a VCST is a
A2-tree with value 1, the winning strategy for the position in
Fig. 3(a) is a A3-tree with value 1, while that in Fig. 4(a) is a
A#-tree with value 1. The A search formalized in this paper is
able to solve Al-trees to A*-trees with value 1 for Connect6.

III. DEFINITIONS AND NOTATION

This section gives definitions and notation related to Connect
game positions, search trees, threats, lambda search, and rele-
vance zones in Sections III-A-III-E, respectively.

193

A. Game Positions

In Connect games, a game position P includes the informa-
tion of all the stones and their occupied squares on the board and
the turn of whom to play. The player to be proved to win, either
Black or White, is called the attacker and the other defender
in this paper. Let o 4(s) denote the information of an attacker
stone placed on the unoccupied square s, and P+ o 4 (s) denote
the position after placing an attacker stone on s in position P
without changing the turn. op(s) and P 4 op(s) are similarly
defined for the defender. From the strategy stealing argument by
Nash (cf., [4] and [30]), we obtain the following. If the attacker
wins in P, he wins in P + 04(s) as well; and if the attacker
wins in P 4 op(s), he wins in P as well.

In this paper, P & M denotes the position after one player
makes move M and before the other makes the next move. In
Connect6, let M 4(s1, s2) denote an attacker move where two
attacker stones are placed on both unoccupied squares s; and
S2. Mp(s1,s92) and P & Mp(sy, s2) are similarly defined for
the defender. Note that in contrast to P+ o 4(s1) + 04 (s2), the
position P @& M 4(s1, s2) indicates changing the turn from the
attacker to the defender.

In Connect6, one player, say an attacker, is allowed to make
a null move, M 4 ¢4, that is, to place no stones; and a seminull
move, M A74)(51), that is, to place one stone only on square s;
in P. Thus, the position P & M 4(s1, s2) is equivalent to (P @
MA7¢(81))+UA(82) and (P@MA7¢¢)+UA(81)+JA(82). From
another viewpoint, null or seminull moves are to place some null
stones while placing normal stones. In Connect(m,n, k,p,q),
we place p null stones for a null move, while placing one to
p — 1 null stones for seminull moves.

In Connect6, a segment is defined to be a set of six consecu-
tive squares horizontally, vertically, or diagonally on the board,
while in Connect(m,n, k,p, q), a segment is a set of k consec-
utive squares. A segment is called an empty segment if all the
squares on it are unoccupied yet. A segment is called an active
segment of one player, if none of the squares are occupied by the
opponent’s stones. An active segment of one player is called a
win segment of the player, if all the squares on it are occupied
by the player. Obviously, one player wins if the player makes
a win segment. From the definition of Connect games, a game
ends when one makes some win segment or all the squares of
the board are already occupied. According to this definition, it
is impossible for both players to have win segments simultane-
ously.

B. Search Trees

This paper basically follows the definitions of search trees in
[5] and [17]. A search tree is shown in Fig. 5(a), where rec-
tangle and circle nodes indicate the positions in the attacker’s
and defender’s turns,3 respectively. The value of a leaf is 1, if
the attacker makes a win segment, and 0, otherwise. The value
of a search tree is the minimax value of the tree. The attacker
wins in the root position if the search tree has value 1 and all the
internal circles expand all defender’s legal moves.

3When we say that a position P is in the attacker’s (defender’s) turn, we mean
that the attacker (defender) is to move next in P.

194 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 3, SEPTEMBER 2010

D Attacker to play
O Defender to play

Fig. 5. (a) Search tree. (b) Solution tree.

Fig. 6. (a) Marking squares of moves by inserting small boxes. (b) Combining the same edges from (a).

A strategy S of the attacker is viewed as a move-generating
function of positions P that are in the attacker’s turn. Namely,
S(P) indicates the move that the attacker chooses to make ac-
cording to the strategy S. In a search tree following S, each
position P expands at most one move S(P). A strategy S of an
attacker is called a winning strategy for position P, if and only
if the value of the search tree rooted at P is 1 following S and
all defender’s legal moves are generated in the tree. Thus, we
obtain Corollary 1. A tree as shown in Fig. 5(b) is called a solu-
tion tree in [5] and [17].

Corollary 1: The attacker wins in a position P if and only if
there exists at least one winning strategy of the attacker in P. ®

In order to investigate more closely squares of defensive
moves, insert small rectangles onto the corresponding edges
that are broken into two, marked s; and ss, respectively, as

shown in Fig. 6(a). Furthermore, the edges are combined with
the same si, as shown in Fig. 6(b). Note that null stones are
marked as ¢ and the corresponding edges are indicated by
dashes.

A verifier V' (for the attacker) is to verify whether the at-
tacker wins in a position P by following a strategy S. Specifi-
cally, if V(P, S) returns the value 1, then the attacker wins in
P and S is a winning strategy for P. A straightforward verifier
is to verify it by traversing exhaustively the whole solution tree.
Clearly, it is infeasible in most cases, especially in case of very
large boards or even infinite boards. Fortunately, in Connect
games, the traversal of the search tree for proof can be greatly
reduced according to threats, as described in Section III-C. The
traversed search tree for proof by a verifier is called a proof
search tree.

WU AND LIN: RELEVANCE-ZONE-ORIENTED PROOF SEARCH FOR Connect6

- T T - [

&t
.C

ovoiei aeeni®

-

(a) (b)

VCDT VCDT VCDT VCDT VCDT VCDT VCDT VCDT VCDT
Fig. 8. Proof search tree for solving Connect(6,2,3).

C. Threats

In Connect6 (other Connect games are similar), threats are
the key to great reduction of the proof search tree. An active
segment in which the attacker occupied four or five squares is
called a threat segment of the attacker. The segment poses a
threat and the defender has to block it, or the attacker wins by
making a win segment in the next move.

Section I has already presented the definition of threat num-
bers. Examples of the line patterns with one, two, and three
threats can be found in [30] and [31]. The defensive moves that
block all the threats are called critical defenses, while removing
any stones in the moves unblocks some threats. For example,
White’s seminull moves Mp ,(A) and moves Mp(B,C) in
Fig. 7(a) and (b) are critical defenses, while moves Mp(A, B)
are not, because the threats are still blocked without B. (Note
that null moves are also critical defenses in positions without
any threats according to the above definition.) Critical defenses
are said to be normal if the numbers of stones in the defenses
are the same as the numbers of threats; and relaxed, otherwise.
For example, in Fig. 7, seminull moves Mp 4(A) are normal,
while moves Mp (B, C) are relaxed. In Connect6, relaxed crit-
ical defenses are not played frequently due to their inefficiency
(using two stones to block only one threat).

As described above, threats are the key to great reduction of
the proof search tree without going through the entire defensive
search tree. For example, for double-threat moves, there are at
most four defensive moves. In addition, even for a nonthreat
move such as the game Connect(6,2,3) described in Section I,
Wu et al. [30], [31] were able to solve it by using a much
smaller proof search tree through considering those defenses in
the gray areas shown in Fig. 2. Fig. 8 shows the proof search
tree [for solving Connect(6,2,3)] that expands Mp 44 first, then
Mp 4(s) forall s € Z, and Mp(s,s’) forall s’ € Z', where
Z' is the zone derived from Mp 4(s).

195

Fig. 9. A A3-tree.

D. Lambda Search

In [22], Thomsen proposed using the lambda search to
express how a direct attacker can achieve a goal. In Connect
games, the goal is normally to make a win segment. The for-
malization of lambda search is modified for Connect games as
follows.

Definition 1: In Connect games, a A"-tree is a search tree
which comprises all legal A"-moves. If a A”-move is an attacker
move, the following condition holds. For all subsequent null
moves or seminull moves Mp made by the defender, if Mp
have exactly u null stones, where 1 < u < p, there exists
at least one subsequent A'-tree with value 1, where 0 < 5 <
r—uwori=0ifr < w. Ifa A"-move is a defender move, the
following condition holds. There exist no subsequent A’-trees
with value 1, where 0 < ¢ < r — 1. In a A"-tree, a node is a
leaf (without any children) if there are no A"-moves following
it. The value of a leaf is 1 if the defender is to move, and 0
if the attacker is to move. The value of a A"-tree is either 1
(indicating that the attacker wins) or O (otherwise), derived using
minimax calculation. The value of a A%-tree (where the attacker
is to move) is simply 1 if the attacker makes a win segment in
the next move. []

In case of p = 1, the definition of A" is the same as that of
A" (the goal is to win) in [22]; that is, a A"-tree is a A\"-tree
and a A"-move is a A"-move, and vice versa. In case of p = 2,
such as Connect6, a A3-tree is illustrated in Fig. 9 and move
M, in the tree is a A®-move, since the values of Al-tree and all
A2-trees in the left box are all 1. In addition, moves Ms, M,
M, and Mg are A®-moves, if the attacker has no subsequent
A%-moves, A'-moves, or A%-moves. By following the proof of
Theorem 1 in [22], we derive the following theorem (whose
proof is omitted).

Theorem 1: For a A"-tree rooted in a position P, if a minimax
search on it returns value 1, the attacker wins in P. [|

Definition 2: A winning strategy is called a A" -strategy for
a position P, if the subsequent nonnull moves following the
strategy are all A’-moves, where 0 < i < r.]

From the above definition, a VCDT is a Al-strategy, while a
VCST is a A2-strategy. For example, there exists a A2-strategy
for winning position 7 in Fig. 1 (the attacker is White), where
moves 8-10 are all A%2-moves. VCNTs are A3-strategies or
strategies of higher orders, as illustrated in the following. In
Fig. 2(a), move Mg is a A3-move, and the rest of the attacker

196 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 3, SEPTEMBER 2010

et
.....

veoT VCST Al-strategy

Fig. 10. A A3-strategy.

moves are Al-moves, so it is a A3-strategy for Connect6(6,2,3).
In Fig. 3(a), move 7 is a A2-move, and the rest of the attacker
moves are A'-moves or A2-moves, so it is a A3-strategy. Fig. 10
shows a general A3-strategy. However, it is more complicated
in Fig. 4(a), where move 6 is a A*-move. Section V shows that
it is a A*-strategy.

From Definition 2, a A"-strategy, » > 1, also implies that
for a move with u null stones the attacker has a A" “-strategy.
For example, in the A3-strategy in Fig. 10, the attacker has
a Al-strategy for the null move and A2-strategies for all the
seminull moves.

E. Relevance Zones

As seen in Section III-E, the lambda search is a powerful
method for proving the winning positions with different orders
of threat sequences. The next important issue for lambda search
is to construct relevance zones to reduce greatly the search
space. In general, different applications construct relevance
zones in different ways. In Connect games, it is critical to
construct relevance zones in order to propagate relevance zones
across different orders of threat sequences. For example, in
Fig. 10, the relevance zones derived in the VCDT (A!-strategy)
or VCSTs (A2-strategies) can be used in the whole search tree
(A3-strategy).

This section defines such relevance zones, which are ele-
gantly employed to solve Connect games. A set of squares
on the board is called a zone. A sequence of zones with size
r, UV = (Zy,Zs,...,Z,), is incremental, if the condition
Z1 C Zy C --- C Z, holds. In the rest of this paper, sequences
of zones with different sizes are all incremental and are thus not
explicitly specified. In addition, these zones usually indicate
the squares to be chosen for stones to be placed on, so only
unoccupied (or empty) squares are of interest.

In a position P, its unoccupied zone, denoted by 7, (P),
is the zone that comprises all the unoccupied squares. That
i8, Zun(P) = Zboard\Zp, Where Znoara is the zone for
the whole board and Zp is the set of all occupied squares
in P. Let —=p(Z) denote Z,,(P)\Z and indicate the set of
unoccupied squares outside Z. Consider a sequence of zones
U = (Z1,Zs,...,7Z.) in P. A sequence of unoccupied squares
¢ = (s1,82,...,84), where ' < r, is said to be outside
U or irrelevant to U, if all s; & Z;, or s; € —p(Z;). Let
¢ € —p(¥) denote the relation that ¢ is irrelevant to ¥ in P.

=
s
0,
Fig. 11. Sequence of zones (Z1, Z2, Z3).
|
2
2
2
2
el I o |
1 BRI 2 |
2
2
-1 2
— 2 2 D .

—+— 2 -2 20 -2
| | |
I I |

Fig. 12. Sequence of relevance zones ¥ = (Z;, Z,) for the winning position
in Fig. 2(a).

Implicitly, =p(¥) denotes (—p(Z1),-p(Z2),...,pr(Z,)).
For example, in Fig. 11, (s',s"”,s"), (s',s"), (s",s"), (s'),
(s""), and even the empty sequence () are all irrelevant to
<Z17 Z27 Z3>9 while <S>’ <S/7 tl>’ (8,7 3”7 t”>’ <Slv 8”7 3”/7 tHI)’
(s",s"),and (s, s', s") are not. For simplicity, let o 4 () denote
O'A(Sl) + O'A(SQ) +---4 UA(STI) = Zlgigr’UA(Si)- Similarly,
on(p) = Yi<i<ron(si).

Definition 3: A sequence of zones U is called a sequence
of relevance zones for the attacker in a position P, if and only
if the attacker wins in P 4+ op(¢p) for all irrelevant ¢; that is,
¢ € =p(V). Let RZ(P) denote the set of all the sequences of
relevance zones for the attacker in P. (Use the notation RZ(P)
instead of RZ 4(P), since only relevance zones for the attacker
are discussed in this paper). |

From Definition 3, if RZ(P) is not empty, there must exist
some U in RZ(P). This implies that the attacker wins in P by
choosing the empty sequence of squares () for ¢, since ¢ is ir-
relevant to W as described above. Thus, Corollary 2 is obtained.

Corollary 2: 1f there exists at least one sequence of zones ¥
in RZ(P), then the attacker wins in P. [|

For the winning sequence in Fig. 2(b), Fig. 12 illustrates rele-
vance zones U = (7, Z5), where 7 is the set of empty squares
marked with a small “1,” and Z> marked “1” and “2.” Note that
in the rest of this paper, a sequence of zones is shown in this
manner. Interestingly, Z» is the same as Z in Fig. 2(b). From

WU AND LIN: RELEVANCE-ZONE-ORIENTED PROOF SEARCH FOR Connect6

observation, Black still wins over all irrelevant ¢ € —p(¥).
That is, if White places one in —p(Z;) and the other in —p(Z5),
Black still wins by replaying the winning sequence in Fig. 2(b).
The result is slightly stronger than that in [30] and [31].
Lemma 1 shows an important property that appending extra
Zhoard t0 a sequence of relevance zones is still in RZ(P). Note
that we use Zpoard, instead of Z,,,,(P), in order to be indepen-
dent of the position P, for simplicity. For example, in Fig. 12,
(Z1,Z2, Zvoara) 1s also in RZ(P).
Lemma 1: Assume that ¥ = (7, Zs,...,Z,)isin RZ(P).
Then, V' = (Z1, Zs, ..., Zr, Zboard) 18 also in RZ(P).
Proof: Consider all irrelevant ¢ € -p(U’). For this
lemma, it suffices to prove that the attacker wins in P 4+ o p().
Since = p(Zboara) is empty, ¢ must not have the (r + 1)th item.
From the definition, we also obtain ¢ € —p(¥). Since U is
assumed to be in RZ(P), the attacker wins in P + op(¢) due
to p € =p(0).]

From Lemma 1, two sequences of relevance zones with dif-

ferent sizes can be adjusted to those with the same size by ap-
pending extra Zy,oa;q OF removing Zpoarq at the end. For sim-
plicity of the discussion, this paper uses some more notations
for operations on sequences of zones with the same size in P,
say U = (Z1,Z5,...,Zy and V' = (Z1,Z},...,Z!), as fol-
lows.

e Let U C U’ indicate that ¥ is contained in ¥’ pairwise;
thatis, Z; C Z/ overall 1 < i < r.

e LetQUV =(Z1UZ{,Z,UZ,...,Z.UZ).

e LetVUZ =(Z1UZ,Z,UZ,...,Z,UZ)and V\Z =
(ZAI\Z, Zo\Z, ..., Z,\Z), where Z is a zone.

o Let ¥ « 1 denote (Z3,Z3,..., 2, Zvoara) and indicate
promotion of the zones in W (that is, shifting zones to the
left by 1) with extra Zpoqarq. Similarly, let U < 2 denote
(P <1) < 1l,and ¥ < i denote (¥ < (1 —1)) <€ 1,
where 2 > 2.

From the above notation and definitions, more properties are

shown in Lemmas 2 and 3 as follows.
Lemma 2: Assume that U is in RZ(P) and ¥ C U’. Then,
U’ is also in RZ(P).
Proof: Let U = (Z1,Z2,...,7Z,) and

V' = (Z1,25,...,7Z]). Consider all irrelevant ¢ € —p(V’).
It suffices to prove that the attacker wins in P + op(y). Since
U C U, the condition ¢ € —p(¥’) also implies ¢ € —p(T).
Since ¥ is in RZ(P), the attacker wins in P + op(¢p) due to
p e ﬁp(‘I’). |

Lemma 3 shows important properties that are employed to
improve the verifiers in Section IV.

Lemma 3: Assume that O = (71, 75, ...
The following two properties are satisfied.

1) Assume that —p(Z7) is not empty. Let the unoccupied
squarebe s € = p(Z1). Then, ¥ < lisin RZ(P+op(s)).

2) Let ¢ be a sequence of unoccupied squares
(s1,82,...,sr") in —p(¥), where ' < 7. Then,
U < r'isin RZ(P + op(p)).

Proof: Tt suffices to prove the first property, since the first
implies the second by induction.

Let ¥ = ¥ <« 1 and consider all irrelevant ¢/ =

(s2,...,8) € ~p(¥'), where ' < r. For the first property, it
suffices to prove that the attacker wins in (P+op(s))+op(¢’).

. Z,)isin RZ(P).

197

H_mgﬁ
B R I
i EE
. NN
198 |
ot
B =

(b)

Fig. 13. Relevance zones (a) in a line and (b) in a board, upon winning with a
win segment.

Let ¢ = (s, $2,. .., 5). Then, the condition ¢ € = p(¥) holds
due to s € =p(Z1). Since ¥ is in RZ(P), the attacker wins
in P+ op(yp) due to ¢ € =p(V); that is, the attacker wins in
(P +o0p(s)) +op(¢)(= P +op(p)) u

IV. RZOP SEARCH FOR CONNECT6

For solving positions in Connect6, this section investigates a
verifier V (P, S) that also constructs recursively a sequence of
zones U(P) = (Z1(P), Zs(P), ..., Z.(P)) with the following
property.

Property RZV: In the case that V (P, S) returns value 1, the
sequence of zones W (P) constructed by V(P, S) isin RZ(P).

This section presents such a verifier, named Vg (P, S), with
a new proof search method for Connect6. This method will be
generalized to all Connect games in the Appendix. The verifier
Vee (P, S) is described in Sections IV-B-IV-D respectively for
three distinct kinds of P, namely, endgame positions, positions
in the attacker’s turn, and positions in defender’s turn. Finally,
Section IV-E concludes with Theorem 2, showing that the veri-
fier satisfies Property RZV in all cases.

A. Endgame Positions

If the attacker does not win in the endgame position P, the
verifier simply returns the value 0. If the attacker wins in P (i.e.,
the attacker has a win segment in P), the verifier returns 1 and
constructs ¥(P) in the following operation.

EP-1) For each active segment GG of the defender containing
exactly ¢ unoccupied squares, these squares in G are all
added into Z;(P) or higher order zones; that is, Z;(P)
for all j > 4. In other words, for each active segment G
of the defender containing at most ¢ unoccupied squares,
add all of these squares in G into Z;(P).

Let us illustrate the above operation by the line shown in
Fig. 13(a), where the defender is White. Following the opera-
tion, the square marked with “1” is in Z;, those marked with

198 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 3, SEPTEMBER 2010

“1” or “2” are in Zo, and so on. For example, segment G has
only one unoccupied square that is in Z; or higher order zones,
while segment G’ has two unoccupied squares that are in Z5 or
higher order zones. It is observed that placing one white stone
on the square in Z; forms a counter win segment (e.g., G) or
an inversion that may prevent the attacker from winning. Note
that if the defender has an inversion, this position P is unreach-
able since neither can have win segments simultaneously (as de-
scribed in the previous section); who wins first is thus unknown.
On the other hand, the attacker still wins if one white stone is
placed in square s, where s; ¢ Z;. Similarly, the attacker still
wins if one white stone is placed on s, where s; ¢ Z1, and the
other on s,, where sy € Zs. The above can be generalized to
higher orders, and to all lines (or segments) on a board. An ex-
ample of constructing zones (Z1, Z>) on a board is illustrated in
Fig. 13(b). Note that move 10 in the figure is simply one of all
the defenses and is chosen for an illustration. In addition, since
move 9 clearly wins already, Section IV-D will describe how to
speed up the establishment of relevance zones.

From the above observation, it can be derived that the con-
structed U(P) in operation EP-1 is in RZ(P). This implies that
Veeo(P, S) satisfies Property RZV in the case of endgame P, as
shown in Lemma 4.

Lemma 4: Assume P to be an endgame position. Property
RZV is satisfied for Vg (P, S).

Proof: Omitted.]

In Connect6, all Z;(P) with i > 6, are nearly the same as
Zun(P), except for those unoccupied squares covered by none
of the active segments of the defender. For example, if an unoc-
cupied square is surrounded by the attacker’s squares, it is clearly
covered by none of the active segments of the defender and is not
included in these Z;(P). However, there are normally not many
such squares, especially when board sizes are large and only a
small number of stones are in positions. Practically, we simply
ignore all Z;(P) with i > 6 or use Z,,,(P) whenever needed.

B. Positions in the Attacker’s Turn

In such positions, the attacker simply follows strategy S to
make the move S(P) in P.Let P4 denote P @ S(P). This ver-
ifier first performs Veg(Pa, S) recursively. If Veg(Pa, S) re-
turns the value 0, this verifier Vg (P, S) also returns 0. On the
other hand, if Vog(Pa, S) returns 1, this verifier Vog(P, S) re-
turns 1 as well, and constructs ¥ (P) in the following operation.
AT-1) Let U(P) = U(P4)U Zg, where Zs = {s|s € S(P)}.

Intuitively, placing any stones on the squares in Zg by the de-
fender in advance may block the attacks and prevent the attacker
from winning. In this sense, the squares in Zg are relevant and
are therefore contained in all Z;(P) (or U(P)).

In fact, the above operation AT-1 also implies the property
—pU(P) = —p, U(P,) for the following reason. From the op-
eration, the condition Z;(P) = Z;(P4) U Zg holds for all 7. In
addition, since Py = P @ S(P), it is clear that Z,,,(Ps) =
Zun(P)\Zs or Zyn(P) = Zyn(Pa) U Zg. Thus, for all 7, we
derive

pZi(P) = Zun(P)\Zi(P)
= (Zun(Pa) U Zs)\(Zi(Pa) U Zs)
=Zun(Pa)\Zi(Pa) = =p, Zi(Pa).

From this property, Lemma 5 shows that this verifier Vg (P, S)
satisfies Property RZV if Vg (Pa, S) satisfies Property RZV.

Lemma 5: Assume a position P in the attacker’s turn. From
the above, assume that Veg(Pa, S) satisfies Property RZV,
where P4 = P ¢ S(P). This verifier Veg(P,S) satisfies
Property RZV.

Proof: Assume that this verifier Vog(P,S) returns the
value 1. For this lemma (this verifier satisfies Property RZV), it
suffices to prove that the constructed ¥(P) is in RZ(P). From
the above operation, Vig(Pa,S) must also return 1. Since
Vee(Pa, S) satisfies Property RZV from the lemma, ¥(Py) is
in RZ(Py).

Consider all irrelevant ¢, where ¢ € —pVU(P). It suffices
to prove that the attacker wins in P 4+ op(¢). Since the prop-
erty ~pW(P) = -p, U(P4) is satisfied as described above, the
condition ¢ € -p, U(P4) holds as well. Since W(Py4) is in
RZ(P4) from the above, the attacker wins in P4 4+ op(¢) due
to ¢ € —p, ¥(Py4). Since the attacker wins in P4 + op(¢) =
(P + op(yp)) ® S(P), the attacker wins in P + op(p) by
choosing the move S(P). [

C. Positions in the Defender’s Turn

For positions in the defender’s turn, Lemma 6 shows a
very important property used in this section as well as in the
Appendix.

Lemma 6: Assume a position P in the defender’s turn. For a
given sequence of zones ¥, assume that for all defender moves
M there exists some ¥ p such that Vp C W and ¥p is in
RZ(P @ Mp). Then, ¥ is in RZ(P).

Proof: Consider all irrelevant ¢ € —pW. For this lemma,
it suffices to prove that the attacker wins in P + op(p).

Now, consider all defender moves Mp in P + op(¢p). From
this lemma, there exists some ¥ p such that Wp C U and ¥p
isin RZ(P & Mp). Since ¥p C ¥, the condition ¢ € —p¥
implies ¢ € —pW¥ p. Since squares in Mp and op(¢p) are mu-
tually exclusive, ¢ € —p¥p also implies ¢ € = pgr, Y.
Since Up is in RZ(P & Mp) from the above, the attacker
wins in (P & Mp) + op(p) due to ¢ € —pgrr, Up. Since
(P® Mp)+ op(e) = (P +op(p)) & Mp, the attacker also
wins in (P + op(¢)) ® Mp. From the above, since the attacker
wins in (P + op(p)) @ Mp over all defender moves Mp, the
attacker wins in P + op(¢p). [|

A straightforward verifier is to verify whether the attacker
wins for all defender moves, as follows. The verifier Vog(P, S)
returns value 1, if the recursive Vo (P@Mp, S) returns 1 for all
defender moves M p; otherwise, it returns 0. In the case that this
verifier Veg(P, S) returns 1, the zones W(P) are constructed in
the following operation.

DT-1) Initialize all zones in ¥(P) to be empty. Then, for all
defender moves Mp, let U(P) = U(P)UT(P & Mp).

From the above operation, the condition ¥(P & Mp) C
U(P) clearly holds for all Mp. Assume that all the recursive
Ves(P @ Mp, S) satisfy Property RZV. Then, all ¥(P & Mp)
are in RZ (P @® Mp) for all defender moves Mp. From Lemma
6, we obtain that U(P) is in RZ(P); and therefore, the verifier
satisfies Property RZV. By induction, the above straightforward
verifier satisfies Property RZV in all cases.

WU AND LIN: RELEVANCE-ZONE-ORIENTED PROOF SEARCH FOR Connect6

(b)

Fig. 14. Relevance zones (a) in a line and (b) in a board, upon winning with
three or more threats.

However, the above straightforward verifier is apparently in-
efficient, since it searches exhaustively all defender moves, even
when the attacker moves have some threats. The situation is even
worse in the case that the board size is very large or infinite. In
this section, an efficient and elegant verifier is devised to reduce
the search space by making use of both threats and relevance
zones. In Connect6, the position P (in the defender’s turn) can
be classified into the following four cases. The number of the
attacker threats in P is 1) three or more, 2) two, 3) one, and 4)
zero. The four cases are discussed, respectively, in the following.

1) Three Threats or More: In this case, the attacker is sure to
win by simply following the strategy Ssr as follows. For each
defender move, since the move must leave some threat segments
unblocked, the attacker wins simply by making a win segment
from the unblocked one. Since the strategy is a sure win, the
verifier returns value 1 and constructs the zones (initialized to
be empty) in the following operations.

T3-1) Add all unoccupied squares s on threat segments into all
Z;(P).

T3-2) For each active segment GG of the defender containing
exactly ¢ + 2 unoccupied squares, all these squares in
G are added into all Z;(P) or higher order zones. In
other words, for each active segment G of the defender
containing at most 4 + 2 unoccupied squares, add all
these squares in G into Z;(P).

Let us illustrate the above operations by the line shown in
Fig. 14(a), where the defender is White. Zones in the line are
marked in a way similar to that in Fig. 13(a). It is observed that
placing one white stone in G or Z; results in a counter threat
segment or an inversion that may threaten the attacker to de-
fend in some of his earlier moves and prevent the attacker from

199

winning. On the other hand, the attacker still wins if one white
stone is placed on other squares s, where s; ¢ Z;. Similarly,
the attacker still wins if one white stone is placed on s, where
s1 € Zj, and the other on s3, where sy € Z5. The above can
be generalized to higher orders, and to all lines (or segments)
on the board. An example of constructing two zones (7, Z2)
on a board is illustrated in Fig. 14(b). Lemma 7 shows that in
this case the verifier satisfies Property RZV; that is, ¥(P) is in
RZ(P).

Lemma 7: Assume that the defender is to move and the at-
tacker has three or more threats in P. The verifier described
above satisfies Property RZV.

Proof: For this lemma, it suffices to prove that the con-
structed W(P) is in RZ(P). Consider all defender moves Mp.
The attacker simply follows a strategy S to connect six from
an unblocked threat segment. Let Pp = P & Mp and Py =
Pp @ Ssr(Pp). From Lemmas 4 and 5, U(Ps) and ¥(Pp) are
in RZ(Ps) and RZ(Pp), respectively.

To prove that ¥(P) is in RZ(P), it suffices to prove from
Lemma 6 that U(Pp) C U(P), since ¥(Pp) is already in
RZ(Pp). From Section IV-C, ¥(Pp) = U(Fs) U Zg, where
Zs = {s|s € Ssr(Pp)}. From operation T3-1, all squares in
Zs are added into W(P). Thus, it suffices to prove that ¥ (Pg) C
U(P).

Since the attacker connects six in Pg, operation EP-1 (in
Section IV-B) is employed to construct zones W(Fg). The
operation is restated as follows. For each active segment G of
the defender containing at most 7 unoccupied squares in Fy, all
the squares in G are added into Z;(Ps). Since one move has
at most two squares, at most two occupied squares in G were
occupied by move Mp. Therefore, G contains at most 2 + i
unoccupied squares back in P (before making move Mp).
From operation T3-2, all these unoccupied squares are also
added into Z;(P). For example, let both lines in Figs. 13(a) and
14(a) be, respectively, in positions Fs and P, where move Mp
is placed on the two leftmost squares marked “1” in segment G
in Fig. 14(a). Thus, the two squares marked “2” in segment G’
in Fig. 13(a) are also added into Z5(P) in Fig. 14(a). From the
above observation, we can derive U(Pg) C ¥(P).]

Since all active segments G of the defender contain at most
6(= 4 + 2) unoccupied squares in Connect6, all these squares
in G are added into all Z;(P) from operation T3-2, where 7 >
4. Thus, these Z;(P) are nearly the same as Z,,(P), except
for the unoccupied squares not covered by any active segments
of the defender, e.g., the unoccupied squares surrounded by all
the attacker squares. Similar to the argument in Section IV-C,
we construct zones with size three, and simply use Z,,,, (P) for
those higher order zones, whenever needed.

2) Two Threats: When the attacker has two threats in P, the
defender must defend by blocking the two threats. In this case,
the verifier performs the following operations.

T2-1) For each defender move M, that blocks the two threats,
perform the following.
a) Return value 0 if the recursive Vg (Pp, S) returns
value 0, where Pp = P & Mp.
b) Let U(P) = ¥(P)U ¥ (Pp).

200 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 3, SEPTEMBER 2010

Fig. 15. Winning position with two threats for Black (the attacker) and the
constructed U(P).

T2-2) Continue to construct zones by both operations T3-1 and
T3-2, and return 1.

For example, for position P in Fig. 15 [the grandparent of the
position in Fig. 14(b)] where Black has two threats, White has
three defensive moves at (B,C), (A,C), and (B,D). Obviously,
since Black still wins for each of the three moves, Black wins
in P. From the above operations, this verifier returns value 1
and constructs ¥(P) as shown in Fig. 15. Lemma 8 shows that
this verifier satisfies Property RZV if the verifier satisfies Prop-
erty RZV for all the defensive moves as well. From this lemma,
¥(P) in Fig. 15 is in RZ(P).

Lemma 8: From the above, assume that the defender is to
move and the attacker has two threats in P. Assume that all
the recursive Veg(Pp, S) in operation T2-1 satisfy Property
RZV. Then, the verifier Vog(P, S) satisfies Property RZV as
well.

Proof: Assume that this verifier Vog(P, S) returns 1. For
this lemma (this verifier satisfies Property RZV), it suffices to
prove that the constructed ¥(P) is in RZ(P). Since Veg(P, S)
returns 1, all the recursive Veg(Pp, S) in operation T2-1 must
return 1. Since these Veog(Pp, S) satisfy Property RZV from
this lemma, all constructed ¥(Pp) are in RZ(Pp).

To prove U(P) € RZ(P), it suffices to prove from Lemma
6 the following. For all defender moves Mp, there exists some
Up such that Up is in RZ(P @& Mp) and ¥p C ¥(P). All
defender moves Mp are classified into the following cases.

1) All defender moves Mp that block both threats. From the
above, U(Pp) are in RZ(Pp). In addition, since these
¥ (Pp) are merged into ¥(P) in operation T2-1b, we ob-
tain ¥(Pp) C V(P). Thus, U(Pp) is the Up.

2) All defender moves Mp that leave some threat segment
unblocked. The attacker wins by connecting six on the

Fig. 16. Combining three defensive moves into one with four stones.

segment, like strategy Ssr. Since operation T2-2 follows
those steps in T3-1 and T3-2, we simply follow the proof
of Lemma 7 to prove that there exists some W p such that
Up CU(P)and ¥p isin RZ(Pp). |

Assume that the subsequent winning moves of the attacker
are the same for all the defensive moves. Then, we can optimize
the construction of zones by combining these defensive moves
together. For example, in Fig. 15, the three defensive moves,
(B,C), (A,C), and (B,D), can be combined into a macromove
(A, B, C, D) as shown in Fig. 16. Since the subsequent winning
sequences of the attacker are the same, the sizes of relevance
zones are relatively smaller and the threat-based search is also
greatly reduced. However, note that the segment containing
both A and B (the same for C and D) in Fig. 15 should be
considered to have one white stone only for zone construction.
Since the winning sequences in Fig. 2(b) are the same for all
defensive moves, the relevance zones are constructed as shown
in Fig. 12.

3) One Threat: When the attacker has one threat, the de-
fender must defend by blocking the threat. In this case, the ver-
ifier performs the following operations.

T1-1) For each normal critical defense (defined in
Section III-C), Mp 4(s), where square s blocks the
threat, perform the operation of seminull-move proof
search as follows.

a) Return value 0, if the recursive Vog(Ps, S) returns
0 where Ps = P ® Mp 4(s).

b) Let U(P) = U(P)U (¥(Ps) < 1).

¢) For each defensive move Mp(s,s’), where s’ €
Z1(Ps), perform both operations T2-1a and T2-1b.

T1-2) For all relaxed critical defenses M p (s, s), perform both
operations T2-1a and T2-1b.

T1-3) Perform both operations T3-1 and T3-2, and return 1.

WU AND LIN: RELEVANCE-ZONE-ORIENTED PROOF SEARCH FOR Connect6

(©)

Fig. 17. (a) VCDT for the seminull move 9. (b) Relaxed critical defense at 9.
(c) Constructed zones for the seminull move 9 in (a).

Consider a position P, 8 in Fig. 17(a) (the same as 8 in
Fig. 1), and another Ps, with a seminull move added at 9.
White (the attacker) wins in P, by the winning sequence
in Fig. 17(a). The above operations construct the zones
U(Ps) = (Z1(Ps), Z2(Ps), Z3(Ps)), with the first two zones
shown in Fig. 17(c). According to operation T1-1b, both zones
Z5(Py) and Z3(P) are shifted and merged into Z;(P) and
Z5(P), respectively. For all defensive moves Mp(s, s’), where
s’ € Zy(Ps), operation T1-1c follows both T2-1a and T2-1b
to construct zones and verify whether V(P @ Mp(s,s’),S)
return 1. In addition, operation T1-2 also performs the same for
all relaxed critical defenses, such as the one in Fig. 17(b). From
Fig. 17(c), since the number of squares in Z1(P) is only 15,
the number of recursive Vg is relatively small, even in very
large or infinite boards.

Lemma 9 shows that the verifier satisfies Property RZV if all
the recursive Vg satisfy Property RZV.

Lemma 9: Fromthe above, assume that the defenderis tomove
and the attacker has one threat in P. Assume that all the recur-
sive Vi in both operations T1-1 and T1-2 satisfy Property RZV.
Then, the verifier Vog(P, S) satisfies Property RZV as well.

Proof: Assume that this verifier Vog(P, S) returns 1. For
this lemma, it suffices to prove that the constructed ¥(P) is in

201

RZ(P).Since Veg (P, S) returns 1, all the recursive Vg in both
operations T1-1 and T1-2 must also return 1. Since all the recur-
sive Vg satisfy Property RZV from this lemma, all ¥(Ps) con-
structed from T1-1a are in RZ(Ps) and all ¥(Pp) from T1-1c
and T1-2 are in RZ(Pp).

To prove U(P) € RZ(P), it suffices to prove from Lemma
6 the following. For all defender moves Mp, there exists some
U p such that Up isin RZ(P & Mp) and Up C U(P). All
defender moves Mp are classified into the following cases.

1) All defender moves Mp(s, s’) where s blocks the threat as
described in T1-1. Let Py = P & Mp 4(s). Furthermore,
this case is separated into the following two subcases.

a) s € Z(Ps). Let Pp denote P & Mp(s,s’). The
zone V(Pp) is constructed in operation T1-1c, and
is in RZ(Pp) according to the first paragraph of this
proof. Since ¥(Pp) is merged into ¥(P) in TI-1c,
we obtain U(Pp) C ¥(P). Thus, ¥(Pp) is the UD.

b) ¢ € -p (Z1(Ps)). From the above, ¥(P;) is
in RZ(P,). Since s’ € -p, (Z1(Ps)), Lemma 3
shows that ¥(P;) <« 1 isin RZ(Ps + op(s’)),
meaning RZ(P @& MD(s,s’)). From operation
T1-1b, (V(Ps) < 1) C ¥(P). Thus, ¥(Ps) < 11s
Up.

2) All defender moves Mp(s,s’) in operation T1-2 are re-
laxed critical defenses. The proof is similar to that in case
la and therefore omitted.

3) All defender moves Mp(s, s’) that do not block the threat.
The attacker wins by connecting six on some unblocked
threat segments, like strategy Ssr. Find U p by following
the proof of Lemma 7. [|

4) No Threats: When the attacker has no threats, it becomes
more complicated since the defender has much more freedom
to move. In this case, the verifier makes use of the constructed
relevance zones to minimize the search space in the following
operations.

TO-1) Return value O if Vig(Py, S) returns 0, where Py =
P& MD’¢¢.

T0-2) Let U(P) = ¥(P,) < 2.

TO-3) For each square s in Z5(Py), perform the seminull move
proof search, as in operations T1-1a to T1-1c.

TO-4) Return 1.

Let us illustrate the above operations by the ex-
ample in Fig. 2. From the winning moves in Fig. 2(b),
operation TO-1 constructs relevance zones W(P;) =
(Z1(Py), Zo(Py), Z3(Py)), with only the first two zones
shown in Fig. 12. Similarly, zone Z»(Py) is the same as Z
in Fig. 2(b). According to operation TO-2, zone Zs3(P,) is
shifted and merged into Z;(P). Then, in operation TO-3,
one square s in Zy(Py) is chosen to perform the seminull
move proof search. In the case that 2 in Fig. 2(c) is chosen,
the seminull move proof search in TO-3 constructs the rel-
evance zones V(Ps) = (Z1(Ps),Z2(Ps), Z3(Ps)), where
P, = P®Mp 4(s). Zone Z1(Ps) is actually the same as Z’ in
Fig. 2(c). After verifying that White wins for all s € Z5(Py)
and all s’ € Z;(Ps), the verifier confirms that White wins
in P, as shown in Lemma 10. For the position in Fig. 2, the
number of the recursive Vg in TO-1-TO-3 is 2656, relatively
small when compared with the number of legal moves.

202 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 3, SEPTEMBER 2010

Lemma 10: Assume that the defender is to move and the at-
tacker has no threats in P. From the above, assume that all re-
cursive Vg in both operations TO-1 and TO-3 satisfy Property
RZV. Then, the verifier Vog(P, S) also satisfies Property RZV.

Proof: Assume that this verifier Vog(P, S) returns 1. For
this lemma, it suffices to prove that the constructed ¥(P) is
in RZ(P). Since Veg(P, S) returns 1, all the recursive Veg in
both operations TO-1 and T0-3 must also return 1. Since these
recursive Vg, say for position P’, satisfy Property RZV from
this lemma, the constructed zones U(P’) are in RZ(P").

To prove U(P) € RZ(P), it suffices to prove from Lemma
6 the following: for all defender moves M p, there exists some
U p such that Up is in RZ(P & Mp) and Up C U(P). All
defender moves Mp are classified into the following cases.

1) All defender moves Mp(s,s’) where s € —p, (Z2(Py))
and s’ € —p,(Z2(P;)). From the first paragraph in this
proof, W(Py) is in RZ(P;). Since s € =p, (Z2(F)) and
s’ e P, (ZQ(P¢)), \I/(P¢) <K 2isin RZ(P¢ + O'D(S) +
op(s’)) from Lemma 3. Since P¢ + op(s) + op(s’) =
POMp(s,s'), U(Py) < 2isalsoin RZ(P®&Mp(s,s')).
In addition, (¥(P,) < 2) C ¥(P) from operation TO-2.
Thus, ¥(Py) < 2is ¥p.

2) All defender moves Mp(s,s’) where s € Z(Py). By
following the proof for case 1 (including subcases 1a and
1b) in Lemma 9, we obtain that there exists some V¥ in
P & Mp(s,s') for all s’ such that U C U(P). The details
are omitted. |

D. Conclusion

Theorem 2 concludes that the verifier Vg (P, S) in all cases
satisfies Property RZV. Therefore, if Vog(P, S) returns value 1,
the constructed U(P) is in RZ(P), and the attacker wins in P
from Corollary 2.

Theorem 2: The verifier Vg (P, S) satisfies Property RZV in
all cases.

Proof: By induction, the verifier Vg (P, S) satisfies Prop-
erty RZV in all cases from Lemma 4 to Lemma 10. [|

V. SOLVING CONNECT6 POSITIONS

In Section IV, we present a verifier Vog(P, S) to verify
whether the attacker wins in a Connect6 position P by fol-
lowing strategy S. However, in order to solve positions, we still
need to provide the verifier with winning strategies S. Winning
strategies can be provided in the following three ways.

1) Let human experts offer the winning strategies manually.

2) Let programs find the winning strategies automatically.
3) Find the winning strategies by mixing the above two.

Traditionally, experts used the first way to claim that some po-
sitions are winning, e.g., Go-Moku and Renju [18]. However, it
becomes complicated and tedious for human players to traverse
all positions to prove it thoroughly. Hence, it is more feasible to
solve these positions by programs using the second way. How-
ever, programs may not be smart enough sometimes to find the
correct winning moves. Therefore, some researchers chose the
third way by following experts’ suggestions for some opening
moves and then letting programs solve the subsequent moves.
For example, Allis [1], [2] solved Go-Moku in the free style, and

Wigner and Virdg [23] solved Renju. In Section V-A, we devel-
oped some assistant programs to help find the winning strategies
for Connect6. In Section V-B, we illustrate our new proof search
method in Section IV by solving the positions in Figs. 3(a) and
4(a). Finally, we give more results in Section V-C.

A. Assistant Programs

This section describes some assistant programs developed for
solvers and verifiers. Given a position P in the attacker’s turn,
a solver is to return a winning move as well as the relevance
zones, if found; and, otherwise, a null move is returned to in-
dicate failure of finding a winning move. A solver of finding a
VCDT strategy, denoted by Sycpr, is described as follows.

1) If there exist connect-six moves or triple-threat-or-higher

moves, simply choose one of them to win.

2) Evaluate all the double-threat moves and choose some
good ones for further expansion (according to the evalu-
ations).

3) For each chosen move M, return M if Veg(P @
M, Sycpr) returns 1.

4) Return the null move to indicate failure of finding a win-
ning move.

A solver of finding a VCST (VCNT) is similar to the above,
except that single-threat (nonthreat) moves are also evaluated
and chosen at step 2. Actual solvers are implemented in a more
complicated way to reduce the size of a search tree and control
the timing. For example, the techniques of iterative deepening
and transposition table are normally incorporated.

In this paper, we implemented a solver with VCDT,
named VCDT-Solver, and another solver with VCST, named
VCST-Solver. More accurately, the VCDT-Solver is to find a
Al-strategy, while the VCST-Solver is to find a A2-strategy.
Our VCST-Solver also tends to find VCDTs, if any, unless
some single-threat moves are evaluated to be much better.
Currently, this solver is able to find a A2-strategy up to depth
25 where the size of the longest path with A%-moves is 13.
This solver was also incorporated into our Connect6 program
NCTU®6, which won the gold at the 11th and 13th Computer
Olympiads [26], [33] in 2006 and 2008, respectively; and also
won eight games and lost none against top Connect6 players
in Taiwan in 2009 [12]. From our experience, VCST-Solver is
able to find A2-strategies, if any, in most cases accurately.

Regarding solvers for A3-strategies or strategies of higher or-
ders, the time complexities become much higher, since the num-
bers of defensive moves to be verified grow much higher. There-
fore, we did not implement it directly.

First, we implemented a verifier, named NCTUG6- Verifier, to
verify whether the attacker wins for all defender moves. In other
words, given a position P in the defender’s turn as shown in
Fig. 18(a), the verifier uses VCDT-Solver for null moves and
VCST-Solver for all seminull moves and nonnull moves. If null
and seminull moves are all solved, then move M (from the
parent of P to P) in Fig. 18(a) is an attacker A®-move. If some
nonnull moves are not solved by VCST-Solver, these moves are
reported or generated. Note that the defender A®-moves must
be reported. Since our VCST-Solver can find A2-strategies ac-
curately in most cases, most reported moves are the defender
A>-moves in our experiments.

WU AND LIN: RELEVANCE-ZONE-ORIENTED PROOF SEARCH FOR Connect6

VCST

(a)

VCDT VCST VCST VCST

203

A-strategy

(b)

VCST A-strategy

Fig. 18. Proof search tree of (a) NCTUG6-Verifier and (b) the verifier of one higher order.

When our Connect6 program NCTU6 mentioned above
cannot find A2-strategies (VCSTs), NCTUG6 then chooses some
promising moves including nonthreat moves using heuristic
evaluations. The details of heuristic evaluations are beyond the
scope of this paper and therefore omitted.

Since NCTU6 may not be able to find winning moves all
the time, experts are allowed to help find winning moves. (As
[1], [2], and [23], expert knowledge was utilized to help solve
Go-Moku and Renju.) Hence, the above programs, such as
NCTUG6 and NCTUG6- Verifier, were integrated into a Connect6
editor named Connect6Lib [8], modified from Renlib [16],
in order to accommodate hints from human experts. In the
integrated system [25], [32], the users (human experts) are
allowed to suggest some attacker moves directly or let NCTU6
suggest possibly good moves in a designated position. Then,
for suggested moves, users invoke NCTUG6-Verifier to verify
and report all the defensive moves (most are A3-moves).
Then, users repeat the above for the subsequent moves, until a
A3-strategy is found.

Second, for A*-strategies, the integrated system (on top of
the editor Connect6Lib) needs to maintain a global verifier and
modify the search by incrementing the order by one as shown
in Fig. 18(b).

B. Illustration of Solving Positions

In this section, we illustrate the proof search method in
Section IV by solving the two positions in Figs. 3(a) and 4(a).
First, consider the one in Fig. 3(a). The position is solved by
simply running NCTUG6-Verifier. In the proof search tree shown
in Fig. 19, P indicates the position at 7 in Fig. 3(a); Fp, the
position at 6; Py, the position after a null move; Ps, the position
after the seminull move 8 in Fig. 3(c); and P»y, the position
after another seminull move at 10 in Fig. 3(c). As can be seen,
the attacker wins in a A3-strategy.

Second, consider the position in Fig. 4(a), which is much
more complicated than the previous one. This position is solved
via the integrated system supporting A*-trees, as described in
Section V-A. In the proof search tree shown in Fig. 20, P indi-
cates this position, P; does the position after a null move, and

Fig. 19. Proof search tree for the position in Fig. 3(a).

P5 does the position after a seminull move at 7 in Fig. 4(c). Ini-
tially, let NCTUG6-Verifier of one higher order run in P. Since
VCST-Solver is able to find the winning move for P;, the de-
fender (Black) should place at least one stone in zone Zs(Py).
Consider one square s in Zo(P;), say square 7 in Fig. 4(c). For
the seminull move at 7, choose move 8 and then use NCTU6-
Verifier (without raising one order) to derive that the attacker
wins at 8. Thus, move 8 is a A3-move. By verifying all null and
seminull moves in P, we show that move 6 in Fig. 4(a) is a
A*-move (from Definition 1).

Furthermore, the attacker is shown to win at 6 in a A*-strategy
as follows. In our experiment, the attacker wins for all defensive
(nonnull) moves by finding A3-strategies. For example, for
move 7 in Fig. 21, NCTUG6-Verifier is recursively employed
to find a A3-strategy, where moves 8—12 are shown to be
A3-moves.

In the proof search tree shown in Fig. 20, we found three
seminull moves that are A3-moves with value 1 [like P» which
is also 7 in Fig. 4(c)], and 569 defender A3-moves in total. Move
12 in Fig. 21 is the deepest A®-move. In this experiment, experts

204 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 3, SEPTEMBER 2010

Fig. 20.

Proof search tree for the position in Fig. 4(a).

TABLE I
STATISTICS OF SOLVING POSITIONS

Position Number of nodes Time (in seconds)

Fig. 2 (a) 65054 18.39
Fig. 3 (a) 498380 104.41
Fig. 4 (a) 210229668 44448.07

&
\F/

9

_0

$
o |

>

Fig. 21. Sequence of A®-moves starting from 7.

N/

S

g

helped find 26 winning nonthreat moves, including move 6 dis-
covered by Huang [11].

Table I shows the number of nodes as well as the computa-
tion times used by our system to solve the positions in Figs. 2(a),
3(a), and 4(a) on an Intel Pentium Dual 2.00-GHz machine. The

positions in Figs. 2(a) and 3(a) are solved without experts’ as-
sistance, while the position in Fig. 4(a) is solved with the help
of experts, as above. All the above experiments were performed
on 19 x 19 boards that most current Connect6 tournaments use.
We also used a simple tool to verify that the above example is
still winning even in an infinite board. The details are omitted.

C. More Results

In addition to the two positions illustrated in Section V-B,
we investigated more positions. Initially, we had experts use the
integrated system to help us solve about ten more positions. Wu
et al. [28] had recently automated with success the proof process
by developing a new search algorithm, called job-level proof-
number (JL-PN) search. Using the JL-PN search together with
our RZOP search, we solved many more positions, up to 65
positions in total, with A3-strategy, within a couple of months.
The details of the 65 positions were listed in [27].

Among the 65 positions, 34 were not solved by the scheme,
called the VCDT-for-null scheme. The scheme uses VCDTs
(not VCSTs) after seminull moves in proof search trees such as
the one in Fig. 2(c). If no VCDTs were found for the seminull
moves as the one in Fig. 3(c), then the scheme failed to solve
positions. In brief, the proof search trees in our RZOP search
are as in Fig. 18(a), while those in the scheme are as in Fig. 8.

Many positions were not solved by the VCDT-for-null
scheme illustrated below. For the three openings in
Fig. 22(c), (d), and (f), the winning moves are live threes
at 3. For the seminull moves that use the only stones to block
Black’s live threes, Black has no more double-threat moves to
make. That is, Black cannot win by VCDTs. However, Black
actually wins by VCSTs for these seminull moves. Hence, it is
important that the proposed RZOP can solve them correctly.

WU AND LIN: RELEVANCE-ZONE-ORIENTED PROOF SEARCH FOR Connect6

205

-

0
oo

{0
Ry

(a)

(b) (©)

@ﬁ%

. o

)

(d)

Fig. 22. Six three-move openings in which Black wins at 3.

The 65 positions include 12 three-move openings, among
which ten cannot be solved by the VCDT-for-null scheme. Six
of the ten openings are shown in Fig. 22. In particular, the fifth
one, Mickey Mouse opening, used to be one of the popular open-
ings before we solved it. Mickey Mouse opening was so named
in [20], since White 2 and Black 1 together look like the face of
Mickey Mouse. The sixth one, also called straight opening, is
another difficult one.

Now, the question is whether there exist more cases requiring
A*-strategies like the one in Fig. 4. Since the one in Fig. 4 is the
only one that we found so far, it is still an open problem to find
some more.

VI. CONCLUSION

This paper investigates a new threat-based proof search for
Connect games. The contribution of this paper is mainly the new
search method, named RZOP search that uses relevance zones
to help solve many positions in Connect6 as well as Connect
games. In theory, this method can be applied to Connect games
with infinite boards. Practically, this paper demonstrates the
method by solving two typical winning positions in Figs. 3(a)
and 4(a) on 19 x 19 boards, as well as many Connect6 positions
and openings in Section V. In addition, the method can also be
easily incorporated into Connect6 program, such as NCTU®6.

This paper also leaves some open problems.

1) Investigate more winning positions in Connect6 that re-

quire A*-strategies, such as the one in Fig. 4(a).
2) Investigate whether there exists a A®-strategy in Connect6.
3) Optimize the proof search tree by pruning more branches
efficiently [29].

4) Apply the new method (in the Appendix) to solving some
real positions in general Connect games.

5) Investigate whether dual lambda search [19] is useful for
Connect6 or Connect games.

() e

Using the JL-PN search together with our RZOP search, we
successfully solved up to 65 positions with A3-strategy. The 65
positions include 12 three-move openings; in particular, Mickey
Mouse opening, which used to be one of the popular openings
before we solved it. One might ask whether or when Connect6
on 19 x 19 boards will be solved. So far, we still could not solve
tens of the common openings, many of which experts believed
to be well balanced for both players. Hence, the answer to this
question is still unknown.

APPENDIX
PROOF SEARCH FOR CONNECT GAMES

In this Appendix, the verifier Vog(P,S) is generalized to
general Connect games, Connect(m,n,k,p,q), while main-
taining Property RZV. The generalized verifier is denoted by
Ve (P, S). In the case that P is an endgame position or is
in the attacker’s turn (described in Sections IV-B and IV-C,
respectively), the verifier Vo (P, S) is the same as Vg (P, S).
So, the rest of this Appendix describes the verifier only in the
case that P is in the defender’s turn. Furthermore, the position
P (in the defender’s turn) can be classified into the following
two: 1) the number of attacker threats ¢ in P is at least p + 1;
and 2) the number ¢ is at most p. In the first case, the attacker
wins already. Therefore, the verifier returns 1 and constructs
relevance zones in the following operation.

Tp1-1) Construct relevance zones by following both operations
T3-1 and T3-2, except that the terms “z 4 2” are replaced
by “c +p.”

Similar to Lemma 7, Lemma 11 shows that the verifier also
satisfies Property RZV in this case.

Lemma 11: Assume that the defender is to move and the
number of the attacker threats is at least p + 1 in P. The verifier
described above satisfies Property RZV.

206 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 2, NO. 3, SEPTEMBER 2010

Proof: The proof is similar to that of Lemma 7 and there-
fore omitted. []
In the second case that the number of attacker threats ¢ is at
most p, the verifier performs the following operations.
Tp-1) For each of critical defenses Mp (both normal and re-
laxed), perform the following.
a) Return 0 if the subverifier Vs,,(Mp, P, S) returns
0. Note that the subverifier is described below.
b) Let U(P) = V(P) U ¥'(Pp).
Tp-2) Continue to construct relevance zones in operation
Tpl-1, and return 1.

In operation Tp-1a, a subverifier Vg, (Mp, P, S) is used to
verify whether the attacker wins for all defender moves M,
dominated by Mp in P, where M/, has p squares (but Mp
may have less than p squares). By dominate, we mean that all
squares in Mp must also be in M ’D, but not vice versa. For the
subverifier Vi, (Mp, P, S), the constructed zone is denoted by
V' (Pp)=(Z1(Pp),Z4(Pp),...,Z.(Pp)), where Ph = P®
Mp. In addition, the subverifier satisfies the following property
(proved in Lemma 12).

Property RZS: 1f Vo, (Mp, P, S) returns 1, the following
condition holds. For all defender moves M, dominated by M,
there exists some U, such that U, C U/(Pp) and ¥/, is in
RZ(P ® Mp).

The subverifier Viu,(Mp, P, S) performs the following op-
erations.

Par-1) Assume that Mp has exactly p — u defender stones,
where u is the number of null stones in Mp and 0 <
u < p. In the case that . > 0, move Mp is a null or a
seminull move.
Par-2) Return O if Vo (Pp, S) returns 0, where Pp = P @
Mp.
Par-3) Let U/(Pp) = ¥(Pp) < u.
Par-4) Return 1 if v = 0, i.e., the move is not a null or a
seminull move.
Par-5) For each of unoccupied square s € —p,, (Z,(Pp)), per-
form the following.
a) Let the defender move Mp , be Mp + op(s).
b) Return 0 if Vyun(Mp s, P, S) returns 0.
¢) LetU'(Pp) =¥ (Pp)U¥'(Pp,), where Pp , =
P () M D,s-
Par-6) Return 1.

Lemma 12 shows that the subverifier satisfies Property RZS,
if all the recursive Vg, in Par-5b satisfy Property RZS and the
verifier Vo in Par-2 satisfies Property RZV.

Lemma 12: For a subverifier Vs, (Mp, P, S) as described
above, it satisfies Property RZS by assuming that all the recur-
sive Vgyp in Par-5b satisfy Property RZS and that the verifier
Ve i in Par-2 satisfies Property RZV.

Proof: Assume that V,,1,(Mp, P, S) returns 1. Consider
all defender moves M7, (including p stones) that are dominated
by Mp.Namely, let M|, = Mp + op(p), where ¢ has u addi-
tional unoccupied squares. For this lemma, it suffices to prove
that there exists some U’ such that ¥, C U’/(Pp) and ¥/, is
in RZ(P & M7},). All of these defender moves M7, are classi-
fied into the following cases.

1) All defender moves M, in which all additional squares

s in ¢ are in —p, (Z,(Pp)). The proof for this case is

similar to that for case 1 in Lemma 10 as follows. Since
this subverifier returns 1, the verifier Vo i (Pp, S) in Par-2
returns 1. Since the verifier Vo i returns 1 and also satisfies
Property RZV (from this lemma), ¥(Pp) is in RZ(Pp).
Since all additional s € —p,(Z,(Pp)), we obtain from
Lemma 3 that ¥(Pp) < wisin (Pp + op(¢p)). Since

PD+UD((,0):(P@MD)+O—D((P)
=P ® (Mp +op(p))
—P@ My, ¥(Pp) <u

isalsoin RZ(P @& Mp,). In addition, since U(Pp) < u C

V' (Pp) from Par-3 in Vi, ¥(Pp) < w is the U/,.

2) All defender moves M}, where some additional square s
in ¢ is in Z,(Pp). Since this subverifier returns 1, the
recursive Vi (Mp s, P, S) at Par-5b returns 1 as well,
and therefore, satisfies Property RZS. From Property RZS,
there exists some ¥ such that U C ¥'(Pp ;) and ¥ is in
(P & Mp). Since ¥/(Pp) C U/(Pp) from operation
Par-5c, we obtain ¥ C U’/(Pp). Thus, ¥ isthe ;. m

From Lemma 12, we derive Lemma 13 as follows.

Lemma 13: Assume that the defender is to move and the
number of attacker threats is at most p in P. The verifier de-
scribed above satisfies Property RZV by assuming that all the
recursive subverifiers in operation Tp-1a satisfy Property RZS.

Proof: Assume that this verifier returns 1. For this lemma,
it suffices to prove that the constructed ¥ (P) isin RZ(P). Since
the verifier returns 1, all the recursive subverifiers in operation
Tp-1a returns 1 as well. Assume that these subverifiers satisfy
Property RZS. For proving U (P) € RZ(P), it suffices to prove
from Lemma 6 the following: for all defender moves Mp, there
exists some U p such that Up is in RZ(P & Mp) and Up C
U (P). All defender moves Mp, are classified into the following
two cases.

1) All defender moves Mp that block all the threats. There
must exist some critical defense M7, (either normal or re-
laxed) dominating Mp. Since Vi, (M}, P, S) returns 1
and satisfies Property RZS from the above, there exists
some ¥ p from the property such that Up C V(P @ M7,)
and ¥p isin RZ(P & Mp,).

2) All defender moves M p that leave some threat unblocked.
The attacker wins by connecting up to p on some un-
blocked threat segment, like S37. From the proof in
Lemma 11, we obtain that there exists some V¥ p such that
VUp CV/(P)and ¥p isin RZ(Pp). [|

Theorem 3 concludes that the verifier Vo i (P, S) in all cases

satisfies Property RZV. Therefore, if Vo (P, S) returns 1, the
constructed ¥(P) is in RZ(P), and the attacker wins in P
from Corollary 2. It can also be observed that the operations
in Section IV-D are special cases of the operations described in
this Appendix.

Theorem 3: The verifier Vo (P, S) satisfies Property
RZV in all cases.

Proof: By induction, the verifier Vo i (P, S) satisfies Prop-
erty RZV in all cases from the above lemmas.]

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers for
their valuable comments.

WU AND LIN: RELEVANCE-ZONE-ORIENTED PROOF SEARCH FOR Connect6

REFERENCES

[1] L. V. Allis, “Searching for solutions in games and artificial intelli-
gence,” Ph.D. dissertation, Dept. Comput. Sci., Univ. Limburg, Maas-
tricht, The Netherlands, 1994.

[2] L. V. Allis, H. J. van den Herik, and M. P. H. Huntjens, “Go-Moku
solved by new search techniques,” Comput. Intell., vol. 12, pp. 7-23,
1996.

[3] L.V.Allis, M. van der Meulen, and H. J. van den Herik, “Proof-number
search,” Artif. Intell., vol. 66, no. 1, pp. 91-124, 1994.

[4] E.R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for Your
Mathematical Plays,2nded. Natick, MA: A K Peters. Ltd., 2003, vol.
3.

[5] A.de Bruin, W. Pijls, and A. Plaat, “Solution trees as a basis for game-
tree search,” Int. Comput. Chess Assoc. J., vol. 17, no. 4, pp. 207-219,
Dec. 1994.

[6] T. Cazenave, “Abstract proof search,” in Computers and Games, ser.
Lecture Notes in Computer Science, T. A. Marsland and I. Frank,
Eds. Berlin, Germany: Springer-Verlag, 2001, vol. 2063, pp. 39-54.

[7] T. Cazenave, “A generalized threats search algorithm,” in Computers
and Games, ser. Lecture Notes in Computer Science. Berlin, Ger-
many: Springer-Verlag, 2003, vol. 2883, pp. 75-87.

[8] C.-P. Chen, I.-C. Wu, and Y.-C. Chan, “ConnectLib — A Connect6

Editor,” 2009 [Online]. Available: http://www.connect6.org/Con-

nect6Lib_Manual.htm

Chinese Association for Artificial Intelligence, “Chinese Computer

Games Contest,” (in Chinese) [Online]. Available: http://www.caai.cn/

[10] H.J.vanden Herik, J. W. H. M. Uiterwijk, and J. V. Rijswijck, “Games
solved: Now and in the future,” Artif. Intell., vol. 134, no. 1-2, pp.
277-311, 2002.

[11] Y.-C. Huang, Private Communication. 2008.

[12] P.-H. Lin and I.-C. Wu, “NCTU6 wins man-machine Connect6
championship 2009,” Int. Comput. Games Assoc. J., vol. 32, no. 4, pp.
230-232, 2009.

[13] T. W. Lee, “One of early Tsumegos for Connect6,” 2005 [On-
line]. Available: http://www.connect6.org/web/index.php?op-
tion=com_tsumego&task=loadTsumegoHistoryList&class_id=32

[14] Littlegolem, “Online Connect6 Games,” 2006 [Online]. Available:
http://www littlegolem.net/

[15] Renju International Federation, “The International Rules of Renju,”
1998 [Online]. Available: http://www.renju.net/study/rifrules.php

[16] Renlib, Renju—A Ranju Editor [Online]. Available: http://www.
renju.se/renlib/

[17] W. Pijls and A. de Bruin, “Game tree algorithms and solution trees,”
in Computers and Games, ser. Lecture Notes in Computer Science.
Berlin, Germany: Springer-Verlag, 1999, vol. 1558, pp. 195-204.

[18] G. Sakata and W. Ikawa, Five-in-a-Row. Tokyo, Japan: The Ishi
Press, 1981.

[19] S.Soeda, T. Kaneko, and T. Tanaka, “Dual lambda search and its appli-
cation to Shogi endgames,” in Advances in Computer Games, ser. Lec-
ture Notes in Computer Science. Berlin, Germany: Springer-Verlag,
2006, vol. 4250, pp. 126-139.

[20] Taiwan Connect6 Association, Connect6 Homepage, [Online]. Avail-
able: http://www.connect6.org/

[21] ThinkNewldea Inc., CYC Game, (in Chinese) 2005 [Online]. Avail-
able: http://cycgame.com/

[22] T. Thomsen, “Lambda-search in game trees — with application to Go,”
Int. Comput. Games Assoc. J., vol. 23, no. 4, pp. 203-217, 2000.

[23] J. Wagner and 1. Virag, “Solving Renju,” Int. Comput. Games Assoc.
J., vol. 24, no. 1, pp. 30-34, 2001.

[9

[

207

[24] 1.-C. Wu, “Proposal for a New Computer Olympiad Game—Con-
nect6,” 2005 [Online]. Available: http://ticc.uvt.nl/icga/news/
Olympiad/Olympiad2006/connect6.pdf, or http://www.connect6.
org/articles/RZOP/connect6.pdf

[25] 1.-C. Wu, C.-P. Chen, P.-H. Lin, K.-C. Huang, L.-P. Chen, D.-J. Sun,
Y.-C. Chan, and H.-Y. Tsou, “A Volunteer-computing-based grid en-
vironment for Connect6 applications,” in IEEE Int. Conf. Comput. Sci.
Eng., Vancouver, BC, Canada, Aug. 29-31, 2009, pp. 110-117.

[26] I.-C. Wu and P.-H. Lin, “NCTU®6-lite wins Connect6 tournament,” Int.
Comput. Games Assoc. J., vol. 31, no. 4, pp. 240-243, 2008.

[27] 1.-C. Wu and P.-H. Lin, “Benchmark for RZOP search,” [Online].
Available: http://www.connect6.org/articles/RZOP/

[28] I.-C. Wu, H.-H. Lin, P.-H. Lin, D.-J. Sun, Y.-C. Chan, and B.-T. Chen,
“Job-level proof-number search for Connect6,” presented at the Int.
Conf. Comput. Games Kanazawa, Japan, 2010.

[29] I.-C. Wu, H.-H. Lin, and P.-H. Lin, “A more efficient proof search for
Connect6,” 2010, in preparation.

[30] I.-C. Wu, D.-Y. Huang, and H.-C. Chang, “Connect6,” Int. Comput.
Games Assoc. J., vol. 28, no. 4, pp. 234-242, 2006.

[31] L-C. Wuand D.-Y. Huang, “A new family of k-in-a-row games,” in Ad-
vances in Computer Games, ser. Lecture Notes in Computer Science.
Berlin, Germany: Springer-Verlag, 2006, vol. 4250, pp. 180-194.

[32] 1.-C. Wu, D.-J. Sun, H.-H. Lin, P.-H. Lin, C.-P. Chen, L.-P. Chen, and
H.-Y. Tsou, “A volunteer computing system for Connect6 Applica-
tions”, National Chiao Tung Univ., Hsinchu, Taiwan, Tech. Rep., 2010.

[33] I.-C. Wu and S.-J. Yen, “NCTU6 wins Connect6 tournament,” Int.
Comput. Games Assoc. J., vol. 29, no. 3, pp. 157-158, Sep. 2006.

I-Chen Wu (M’10) received the B.S. degree in elec-
tronic engineering and the M.S. degree in computer
science from the National Taiwan University (NTU),
Taipei, Taiwan, in 1982 and 1984, respectively, and
the Ph.D. degree in computer science from Carnegie
Mellon University, Pittsburgh, PA, in 1993.

Currently, he is with the Department of Computer
Science, National Chiao Tung University, Hsinchu,
Taiwan. His research interests include artificial intel-
ligence, Internet gaming, volunteer computing, and
cloud computing.

Dr. Wu introduced the new game Connect6, a kind of six-in-a-row game, and
presented this game at the 2005 11th Advances in Computer Games Conference
(ACG’11). Since then, Connect6 has become a tournament item at the Computer
Olympiad. He led a team developing a Connect6 program, named NCTU6. The
program won the gold twice at the Computer Olympiad in both 2006 and 2008.

Ping-Hung Lin is currently working towards the
Ph.D. degree at the Department of Computer Sci-
ence, National Chiao Tung University, Hsinchu,
Taiwan.

He is the Current Chief Designer of the Connect6
program NCTUG6 that won the gold twice at the Com-
puter Olympiad in both 2006 and 2008. His research
interests include artificial intelligence and grid and
cloud computing.

Theoretical Computer Science 412 (2011) 4558-4569

P

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Drawn k-in-a-row games
Sheng-Hao Chiang?, I-Chen Wu®*, Ping-Hung Lin"

2 National Experimental High School at Hsinchu Science Park, Hsinchu, Taiwan
b Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan

ARTICLE INFO ABSTRACT

Article history: Wu and Huang (2005) [12] and Wu et al. (2006) [13] presented a generalized family of
RECG}VEd }2JU1}’ 2009 k-in-a-row games, called Connect(m, n, k, p, q). Two players, Black and White, alternately
Received in revised form 20 January 2011 place p stones on an m x n board in each turn. Black plays first, and places q stones initially.

Accepted 21 April 2011

Communicated by G. Ausiello The player who first gets k consecutive stones of his/her own horizontally, vertically, or

diagonally wins. Both tie the game when the board is filled up with neither player winning.
A Connect(m, n, k, p, q) game is drawn if neither has any winning strategy. Given p, this

ﬁ{]v_v;_risw games paper derives the value kg4, (p), such that Connect(m, n, k, p, q) games are drawn for all
Connect6 k > kyaw(@), m > 1,n > 1,0 < q =< p, as follows. (1) kgraw(p) = 11.(2) For all

Hypergraphs p > 3, kgraw(p) = 3p + 3d — 1, where d is a logarithmic function of p. So, the ratio
karaw () /p is approximately 3 for sufficiently large p. The first result was derived with the
help of a program. To our knowledge, our kg4, (p) values are currently the smallest for all
2 < p < 1000.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

A generalized family of k-in-a-row games, called Connect(m, n, k, p, q), [12,13], was introduced and presented by Wu
et al. Two players, Black and White, alternately place p stones on empty squares' of anm x n board in each turn. Black plays
first, and places g stones initially. The player who first gets k consecutive stones of his/her own horizontally, vertically, or
diagonally wins. Both players tie the game when the board is filled up with neither player winning. For example, Tic-tac-toe
is Connect(3, 3, 3, 1, 1), Go-Moku in the free style (a traditional five-in-a-row game) is Connect(15, 15, 5, 1, 1), and Connect6
[13], played on the traditional Go board, is Connect(19, 19, 6, 2, 1).

In the past, many researchers have been engaged in solving Connect(m, n, k, p, q) games. One player, either Black or White,
is said to win a game, if he/she has a winning strategy such that he/she wins for all the subsequent moves. Allis et al. [1,2]
solved Go-Moku with Black winning. Herik et al. [9] and Wu et al. [12,13] also mentioned several k-in-a-row games with
Black winning.

A game is said to be drawn if neither player has any winning strategy. For simplicity of discussion in this paper, Connect(k,
p) refers to the collection of Connect(m, n, k, p, q) games forallm > 1,n > 1,0 < q < p. Connect(k, p) is said to be
drawn if all Connect(m, n, k, p, ¢) games in Connect(k, p) are drawn. Given p, this paper derives the value kg4, (p), such that
Connect(kgrq (p), p) games are drawn. Since drawn Connect(k, p) games also imply drawn Connect(k+1, p), the value kgyq,, (p)
should be as small as possible.

In the past, Zetters [15] derived that Connect(8, 1) is drawn. Pluhar [11] derived tight bounds kgyq,, (p) = p + $2(log, p)
for all p > 1000 (see Theorem 1 in [11]). However, the requirement that p > 1000 is unrealistic in real games. Thus, it is

* Corresponding author. Tel.: +886 3 5731855; fax: +886 3 5733777.
E-mail addresses: jiang555@ms37.hinet.net (S.-H. Chiang), icwu@csie.nctu.edu.tw, icwu@cs.nctu.edu.tw (I.-C. Wu), bhlin@csie.nctu.edu.tw (P.-H. Lin).

1 Practically, stones are placed on empty intersections of Renju or Go boards. In this paper, when we say squares, we mean intersections.

0304-3975/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2011.04.033

http://dx.doi.org/10.1016/j.tcs.2011.04.033
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:jiang555@ms37.hinet.net
mailto:icwu@csie.nctu.edu.tw
mailto:icwu@cs.nctu.edu.tw
mailto:bhlin@csie.nctu.edu.tw
http://dx.doi.org/10.1016/j.tcs.2011.04.033

S.-H. Chiang et al. / Theoretical Computer Science 412 (2011) 4558-4569 4559

important to obtain tight bounds when p < 1000. Hsieh and Tsai [10] have recently derived that kg4, (p) = 4p + 7 for all
positive p. The ratio R = kg4 (p)/p is approximately 4 for sufficiently large p.

In this paper, Theorem 1 (below) shows that kg4, (2) = 11, while the result in [10] is 15. Theorem 2 derives a general
bound kg, (p) = 3p + 3d — 1 for all p > 1, where d is a logarithmic function of p, namely P(d — 1) < p < P(d) and
P(d) = 2% — d — 2. When compared with [10], our kg4, (p) values are smaller for all positive p, but they are the same
for kgrqy (4). The ratio R = kgraw (p)/p = 3 4+ (3d — 1)/p is approximately 3 for sufficiently large p. Section 2 modifies
the games slightly into those in a different version, named Maker-Breaker. Both Sections 3 and 4 will use this version to
prove Theorems 1 and 2, respectively. When compared with a preliminary version [6], this paper derives a tighter bound for
karaw (3) and a more general result, specifically as follows. For all the drawn games, Connect(co, 0o, k, p, p), derived in [6],
this paper also shows that all games in Connect(k, p) are also drawn, based on the Maker-Breaker argument.

Theorem 1. Connect(11, 2) isdrawn. O

Theorem 2. Considerallp > 1.Letd be anintegerand P(d—1) < p < P(d), where P(d) = 2¢—d—2. Then, Connect(3p+3d—1,
p) games are drawn. [0

2. Maker-Breaker version

According to the strategy-stealing argument raised by Nash (see [5]), White has no winning strategy in Connect(m, n, k,
p, p), thatis, when q = p. Therefore, for Connect(m, n, k, p, p), either Black wins or White ties. For simplicity of combinatorial
analysis, many researchers [3,7,11] followed an asymmetric version of rules, called Maker-Breaker, where White does not
win in all cases (e.g., even if White connects up to k consecutive stones). So, all White can do is to break, that is, to prevent
Black from winning (connecting up to k consecutive stones). In contrast to Maker-Breaker, the version with the original
rules is called Maker—Maker. Obviously, if White has a strategy to tie a Connect game in the Maker-Breaker version, White
can tie the game in the original version (Maker-Maker) by simply following the same strategy. For simplicity of discussion
in this paper, let MBConnect(k, p) denote the game Connect(oo, oo, k, p, p) in the Maker-Breaker version. Corollary 1 shows
an important property for MBConnect(k, p).

Corollary 1. Assume that MBConnect(k, p) is drawn. Then, Connect(k, p) is drawn. That is, forallm > 1,n > 1,0 < q < p,
Connect(m, n, k, p, q) games are drawn. O

The reasons why Corollary 1 is satisfied are as follows.

1. According to the strategy-stealing argument (also mentioned in [13]), if Black has a winning strategy in Connect(m, n, k,

D, @), then Black simply follows the strategy to win in Connect(m, n, k, p, ¢+ 1). On the other hand, if Black has no winning
strategy in Connect(m, n, k, p, ¢+ 1), then Black has no winning strategy in Connect(m, n, k, p, q) either. Similarly, if White
has no winning strategy in Connect(m, n, k, p, q), White has no winning strategy in Connect(m, n, k, p, ¢ + 1).
Assume that Connect(m, n, k, p, p) is drawn. Then, Black has no winning strategy in Connect(m, n, k, p, p). From the previous
paragraph, we derive that, for all 0 < g < p, Black has no winning strategy in Connect(m, n, k, p, ¢). On the other hand,
since White in Connect(m, n, k, p, 0) is equivalent to Black in Connect(m, n, k, p, p), White does not win in Connect(m, n, k,
p, 0) either. From the previous paragraph, we derive that, for all 0 < g < p, White has no winning strategy in Connect(m,
n, k, p, q). Thus, since neither has any winning strategy, Connect(m, n, k, p, q) games are drawn for all0 < q < p.

2. If Black has a winning strategy in Connect(m, n, k, p, q) in the Maker-Breaker version, then Black simply follows the
strategy to win in Connect(m+ 1, n, k, p, q), Connect(m,n+ 1, k, p, q), or even Connect(co, 00, k, p, q) in the Maker-Breaker
version. On the other hand, if Black has no winning strategy in Connect(oo, 0o, k, p, q) in the Maker-Breaker version, then
Black does not win in Connect(m, n, k, p, q) in the Maker-Breaker version for allm > 1,n > 1, either.

Assume that MBConnect(k, p) is drawn. For the second reason, for allm > 1,n > 1, Connect(m, n, k, p, p) games are drawn
in the Maker-Breaker version, as well as in the original version. For the first reason, Connect(m, n, k, p, q) games are drawn
forallm > 1,n > 1,0 < q < p. Thus, Connect(k, p) is drawn and Corollary 1 is satisfied.

On the basis of Corollary 1, Sections 3 and 4 both simply derive drawn MBConnect(k, p) from Theorems 1 and 2,
respectively, instead of deriving drawn Connect(k, p) directly. Moreover, to prove both theorems, we also need to define
new Maker-Breaker games for smaller boards B, named MBBoard(B, p), in Definition 1.

Definition 1. MBBoard(B, p) is a Maker-Breaker game defined as follows.

1. The game board B is composed of a set of squares and a set of lines, each of which covers a subset of squares. For simplicity
of discussion, all lines are (vertically, horizontally, or diagonally) straight and solid in all figures in the rest of this paper,
as illustrated in Fig. 1.

2. In Move 2i — 1, where i > 1, Black is allowed to place p’ stones on the game board B, where p’ < p. In Move 2i, White
places p’ or fewer stones.

3. Black wins when occupying some line. Note that Black is said to occupy a line if all the squares covered by the line are
occupied by black stones. O

4560 S.-H. Chiang et al. / Theoretical Computer Science 412 (2011) 4558-4569

Fig. 1. The game board B,.

a _ b

7 Z @z
?

N X
7 . ,
S TR

Fig. 2. (a) Partitioning the infinite board into disjoint B,. (b) Covering one complete solid line for each segment of 11 consecutive squares.

*

The game MBBoard(B, p) is said to be a drawn game if Black has no winning strategy, that is, White has some strategy to
prevent Black from winning in all cases.

In the above game, the game board B can be viewed as a kind of hypergraph G [4,8]. All squares in B are vertices in G, while
all (solid) lines in B are edges, or so-called hyperedges in G, covering a set of vertices. For example, the board in Fig. 1 includes
6 x 4 squares with 4 horizontal, 3 vertical, and 6 diagonal lines (from the lower left to the upper right). The corresponding
hypergraph includes 24 vertices and 13 (i.e., 4 + 3 4 6) edges, accordingly. In the rest of this paper, we still use the terms
game boards, lines, and squares, instead of graphs, edges, and vertices.

3. Proof of Theorem 1

The infinite board is partitioned into an infinite number of disjoint B, (without overlap and vacancy) as shown in Fig. 2(a),
where B, is the game board shown in Fig. 1. From Lemma 1 (below), since MBBoard(B,, 2) is drawn, White has some strategy
S such that none of the solid lines are occupied by Black. Let White follow S to play inside each B,. Observed from Fig. 2(b), all
segments of 11 consecutive squares vertically, horizontally, and diagonally must cover entirely one solid line among these
B,. Since none of these solid lines are occupied by Black from Lemma 1, none of the segments contain all 11 black stones.
Thus, MBConnect(11, 2) is drawn. From Corollary 1, Connect(11, 2) is drawn. O

Lemma 1. MBBoard(B,, 2) is drawn.

Proof. A program was written to verify that none of the solid lines in B, are occupied by Black. The program is briefly
described in Section 3.2. An intuition is given in Section 3.1. O

3.1. Intuition for Lemma 1

This subsection gives an intuition for the correctness of Lemma 1. Move 1 (by Black) is classified into the following cases.

1. Black only places one stone in the board, as illustrated in Fig. 3(a).

2. Black places two stones.
2.1 Both are placed on the two squares marked “1” in Fig. 3(b), called middle squares for this game board.
2.2 One of the two stones is placed on either of the two middle squares.
2.3 Neither of the two stones is placed on the two middle squares.

In Case 2.1, White replies by placing two stones, as shown in Fig. 3(b); and in all the other cases, White replies by placing
one stone on one of the two middle squares. Here, only Case 1 in Fig. 3(a) and Case 2.1 in Fig. 3(b) are illustrated. Intuitively,
it is hard for Black to occupy a horizontal line, since the horizontal lines contain two more squares than the vertical and
diagonal lines. Therefore, let us ignore and remove the horizontal lines for simplicity of analysis.

After Move 2 (by White), Fig. 4 shows the boards with active vertical and diagonal lines only. Let an active line be a line
that does not yet contain a white stone. Since Black is never able to cover all the squares of some inactive line (not active),

S.-H. Chiang et al. / Theoretical Computer Science 412 (2011) 4558-4569 4561

Fig. 3. The first two moves: (a) in Case 1, and (b) in Case 2.1.

A

Fig. 4. The active vertical and diagonal lines after Move 2 (by White) in (a) Case 1, and (b) Case 2.1.

inactive lines are irrelevant to the results of games. Hence, the inactive lines can be removed from a board. In Fig. 4(a), the
middle vertical line and the third diagonal line (from the left) become inactive and get removed after Move 2. In Fig. 4(b), the
rightmost two vertical lines and the second and fourth diagonal lines (from the left) also become inactive and get removed,
similarly.

A game board is called a tree if all the lines form no cycles in the board, as illustrated in both cases in Fig. 4. Lemma 2
(below) shows that a game is drawn if its game board is a tree which contains at most one black stone and in which each
line covers at least four squares. Thus, from Lemma 2, the two games in Fig. 4 are drawn.

Lemma 2. In a tree Br, assume that there exists at most one black stone on Br and that each line in By covers at least four squares.
Then, MBBoard(Br, 2) is drawn.

Proof. Assume that there exists one black stone on some square s. Black cannot win in his/her next move for the following
reason. Since Black can place at most two stones in a move, one line contains at most three stones (together with the one
on s). Since each line covers at least four squares, Black cannot win in the next move.

Let Black place one stone on another square s in the next move. Since the game board is a tree, we find at most one path
(a sequence of lines) from s to s’, and then let White place one stone on one of these lines in the path, if any. (Note that, if
both sand s’ are on the same line, White simply places a stone on that line.) Thus, By is broken into some trees, each of which
contains at most one black stone. If Black places two stones in the next move, simply use two stones to break the game board
as above. Thus, this lemma holds by induction. O

To prove Lemma 1 rigidly, we also need to consider the case that some horizontal line may be occupied by Black. Thus, the
proof for this unfortunately becomes tedious. In practice, we wrote a program to prove it by searching all cases exhaustively,
as briefly described in the next subsection.

3.2. Program description for Lemma 1

The program to prove Lemma 1 uses a recursive search routine to search the game space and to find a strategy for White
to tie the game. When it is Black’s turn, the search routine searches all possible Black moves exhaustively, and verifies that
Black does not win in any of the moves and any of their subsequent moves recursively. For each of these Black moves, the
search routine chooses a White move to play such that Black does not win subsequently. The search routine does not search
deeper moves when Black occupies some line, or when it is provable that Black has no winning way subsequently, e.g., there
are no more active lines.

After running the above program, it was proved that White is able to tie the game. The program searched 1291,140,480
game positions in 17,104 s on a PC with AMD Athlon™ 64 x 2 Dual Processor with 5200 + 2.70 GHz. However, for the
purpose of publishing the search tree, a method described in [14] was employed to optimize the size of the search tree.
Then, under the optimization, the program ran in 37 s and searched 844,618 game positions. The search tree was published
in[14].

4. Proof of Theorem 2

In this proof, similar to that of Theorem 1, the infinite board is partitioned into an infinite number of disjoint game boards
Bz (L) and B_z(L) vertically interleaved without overlap and vacancy, as shown in Fig. 6. The game board? Bz (L) is shown

2 The game board By (L) is so named in this paper since the board shape consists of many Ns, while the game board Bz (L) is so named since the parts
different from By (L) look like Zs.

4562 S.-H. Chiang et al. / Theoretical Computer Science 412 (2011) 4558-4569

\ NOONNNN NN NN
AR

3L-1

W 57557 AN
Wz
””(llllll]/”‘ ;

S

| ®

NMIAARIRRRRRANA
VAR
NARRRNNN

N\\s NN

Fig. 6. Partitioning the infinite board into disjoint Bz (L).

in Fig. 5(a), where each (solid) line covers L squares and the game board extends infinitely to both sides. The game B_z (L)
is a horizontal mirror of Bz (L). Fig. 5(b) also shows another similar game board By (L), which will be used in this section.
Let MBBoardZ(L, p) denote the game MBBoard(B;(L), p), and MBBoardN(L, p) denote MBBoard(By(L), p), for simplicity of
discussion. This proof will show that the following three properties are satisfied.

Property 1. If MBBoardZ(L, p) is drawn, then MBConnect(3L — 1, p) is drawn.
Property 2. If MBBoardN(L, p) is drawn, then MBConnect(3L — 1, p) is drawn.

Property 3. Consider allp > 1. Let P(d — 1) < p < P(d), where P(d) = 2¢ — d — 2. Then, MBBoardN(p + d, p) games are
drawn.

First, Property 1 is satisfied for the following reason. As observed in Fig. 6, all segments of 3L — 1 consecutive squares
vertically, horizontally, and diagonally must contain one whole solid line among these B; (L) and B_(L). Assume that the
game MBBoardZ(L, p) is drawn. Then, White has some strategy S such that Black cannot occupy any solid lines inside each
Bz (L) and B_z(L). Thus, by following the strategy S inside each Bz (L) and B_z (L), White prevents Black from occupying any
segment of 3L — 1 consecutive squares completely. Thus, MBConnect(3L — 1, p) is drawn.

Then, both Properties 2 and 3 are shown in Sections 4.1 and 4.2, respectively. Section 4.1 shows that the game board
Bz (L) is isomorphic to By (L), in the sense of hypergraphs [4,8], and that Property 2 is satisfied from the isomorphism and
Property 1. Section 4.2 proves that Property 3 is satisfied for all MBBoardN games listed in Property 3. Thus, Theorem 2 is
satisfied from Corollary 1, Property 2 and Property 3. O

S.-H. Chiang et al. / Theoretical Computer Science 412 (2011) 4558-4569 4563

(b) By (4).

Fig. 7. Coordinate mapping between Bz (4) and By (4).

4.1. Isomorphism

Both game boards Bz (L) and By (L) are hypergraph isomorphic [4,8] according to the following mapping. Let every L
neighboring vertical or horizontal solid lines be grouped into one zone in both Bz (L) and By (L), as shown respectively in
Fig. 7(a) and (b). In both game boards, each square has a coordinate (x, y, z), where the square is in the xth column (from the
left) and in the yth row (from the top) in zone z. Let each square at (x, y, z) on Bz (L) be mapped into the one at (x, y, z) on
By (L) when z is even, and at (y, x, z) on By (L) when z is odd. All solid lines (or hyperedges) on Bz (L) are mapped into those
on By (L) accordingly, except that the ith horizontal line (from the top) of Bz (L) is mapped to the ith vertical line (from the
left) of By (L) in zone z, where z is odd.

Lemma 3. Consider both MBBoardZ(L, p) and MBBoardN(L, p) games over all L and p. Then, MBBoardZ(L, p) is drawn if and only
if MBBoardN(L, p) is drawn.

Proof. According to the above mapping from Bz (L) to By (L), placing one stone at (x, y, z) in Bz (L) is equivalent to placing
one stone at (x, y, z) in By(L) when z is even, and at (y, x, z) when z is odd, and vice versa. Since both Bz (L) and By(L) are
hypergraph isomorphic for the mapping, one solid line of B; (L) is occupied by Black if and only if the mapped solid line of
Bn(L) is. Therefore, MBBoardZ(L, p) is drawn if and only if MBBoardN(L, p) is drawn. O

From Lemma 3 and Property 1, Property 2 is satisfied.

4.2. Drawn MBBoardN games

This section will prove that Property 3 is satisfied. First, we introduce the concept of exclusive squares in Section 4.2.1,
which is used in the remaining subsections. In order to prove that all MBBoardN games are drawn in Property 3, we derive
some initial drawn MBBoardN games in Section 4.2.2, and derive induction rules for MBBoardN games in Section 4.2.3. Finally,
Section 4.2.4 concludes that Property 3 is satisfied.

4.2.1. Game boards with exclusive squares

In this subsection, we introduce the concept of exclusive squares, on which Black is not allowed to place stones. The game
boards with exclusive squares are defined in Definition 2 (below).

Definition 2. MBBoardX(B, b) is a Maker-Breaker game defined as follows.

1. The game board B is the same as that in Definition 1, except for the following. For each line, one extra square is added as
an exclusive square, as illustrated with solid bullets in Fig. 8(a)-(c).

2. In Move 2i — 1, where i > 1, Black is allowed to place any (positive) number of black stones, say p’ (>1) black stones, on
the game board B. However, Black is not allowed to place stones on these exclusive squares. In Move 2i, White is allowed
to place p’ or fewer white stones on any squares (including exclusive squares).

3. Black wins if the following condition holds. An active line contains more than b black stones at time t;; (when Black is
to play), where i > 0. Time ¢; indicates the moment after Move j and before Move j + 1, and t; indicates the initial
moment. O

4564 S.-H. Chiang et al. / Theoretical Computer Science 412 (2011) 4558-4569

a ¢ o > ¢ ¢ bulluuuuu c

Fig. 8. Three game boards with exclusive squares (solid bullets). (a) Brecx (m, 1). (b) Brecx— (m, n). (¢) Byx (L).

a

Fig. 9. An illustration. (a) The original game board. (b) Partitioned game boards with exclusive squares.

The game MBBoardX(B, b) is said to be a drawn game if White has some strategy to prevent Black winning in all cases.

The motivation of using exclusive squares is to partition a game board into two or more game boards with exclusive
squares and then to use Lemma 4 (below) to derive some properties from the partitioned game boards. Let us illustrate it by
a simple game MBBoard(B, 9) as follows. Let the board B contain disjoint lines each with 10 squares (which are not covered
by any other lines), as shown in Fig. 9(a). Then, partition the board B into two, one named Bj; containing 5 squares of each
line and the other Byg, containing the other 5, and add exclusive squares to all lines as shown in Fig. 9(b). Clearly, both
games MBBoardX(Bjes;, 0) and MBBoardX(Byigh:, 0) are drawn, for the following reason. Whenever Black places one or more
stones on some line, White places one stone on the exclusive square of the line to defend. From Lemma 4, we obtain that
MBBoard(B, 10 — (0 + 0) — 1) is drawn; that is, MBBoard(B, 9) is drawn. Obviously, it is true that MBBoard(B, 9) is drawn,
from the following observation. Whenever Black places one or more stones on some active line, White places one stone on
that line in the next move to make it inactive. Note that Black must leave one square unoccupied in an active line, so White
is allowed to place a stone on that line.

Lemma 4. Consider a game board B, where each line covers at least L squares. Partition® the game board B into two disjoint game
boards, B; and B,. Assume that both games MBBoardX(B,, b1) and MBBoardX(B,, b,) are drawn and that L — (b, + by) > 1.
Then, White has some strategy in MBBoard(B, L — (b 4+ by) — 1) such that each active line in B contains at most by + b, black
stones at all times t,; (when Black is to play), where i > 0. Implicitly, MBBoard(B, L — (b1 + by) — 1) is drawn.

Proof. It suffices to prove by induction that White has some strategy such that each active line in B contains at most by + b,
black stones at all times t,;, where i > 0. This implies that MBBoard(B, L — (b; 4+ b,) — 1) is drawn, since Black cannot occupy
any active line (at most b; + b, black stones) in the next move (at most L — (b1 4+ b,) — 1 black stones), and each line covers
atleast L (>(b; + by) + L — (b + by) — 1 =L — 1) squares.

It is trivial that the induction hypothesis is true initially.

Assume that the induction hypothesis is true at t,;, when Black is to move. Consider Black’s next move. Since Black can
place at most L — by — b, — 1 stones in a move, each active line must leave one square unoccupied. Now, investigate the black
stones of this move in B;. Since MBBoardX(B, by) is drawn according to the assumption, White must has some strategy for
the game such that each active line contains at most b, black stones in B at ty;1 . Thus, White simply follows the strategy to
place stones at the edge of B;. In the case that White needs to place a stone on the exclusive square in one active line in B,
White uses the following strategy. If the corresponding line in B is inactive (e.g., the line contains a white stone at the edge
of B,), simply ignore this line. Otherwise, if it is active, White simply places one stone on the unoccupied square of the line

3 Inthe partitioning, we assume that each square belongs to either B; or B, and that each pair of squares in either B, or B, is covered by one line if they
are also covered by the same line in B.

S.-H. Chiang et al. / Theoretical Computer Science 412 (2011) 4558-4569 4565

el et
3

Fig. 10. Two cases for B (m, n).

as described above. Note that it does not matter even if the unoccupied square is at the edge of B,. Thus, White ensures that
each active line contains at most b; black stones at the edge of By at t,;;. Similarly, White also ensures that each active line
contains at most b, black stones in B, at t; 5. Thus, the induction hypothesis is true at t;;;,. O

In this paper, we consider three game boards with exclusive squares, as shown in Fig. 8. The first game board, denoted
by Byecx (m, n) and shown in Fig. 8(a), consists of m horizontal lines and n vertical lines, each of which contains one extra
exclusive square. The second, denoted by Bcx— (m, n) and shown in Fig. 8(b), is the same as By.cx (m, n) except that the square
at the lower-left corner is removed. The third, shown in Fig. 8(c), is the original By (L) extended with one exclusive square
for each line. For simplicity, let MBBoardNX(L, b) denote the game MBBoardX(By (L), b) and Byx (L) denote the game board
By (L) with extra exclusive squares. Three properties related to the above three boards are shown respectively in Lemma 5,
Lemma 6, and Lemma 7 (below).

Lemma 5. MBBoardX(Becx(m, n), 1) is drawn over all m and n.

Proof. Let variables oz(r) and o ¢(c) respectively be the number of black stones in the rth horizontal line and that in the
cth vertical line, if still active, and be 0, otherwise. Let variable 0 = Xy og(r) + X o ¢(c). For this proof, it suffices to prove
that White has a strategy such that o < 1 at all times t,; (when Black is to play), where i > 0.

Assume by induction that o < 1 at some t,;. Assume that, in Move 2i + 1, Black places only one stone on square s at row
r and column c. Obviously, Move 2i + 1 increases o by at most two (one for the vertical line and the other for the horizontal
line). That is, o < 3. White uses the following strategy to make Move 2i + 2 such that ¢ < 1 at ;5.

1. When o < 1, simply place a stone randomly on one empty square, if any.

2. When o < 2, simply choose one active line containing a black stone and block it by placing one white stone on the
exclusive square in that line. Then, o is at most 1.

3. When o = 3 and an active line contains two black stones, simply block the active line by placing one white stone on the
exclusive square in that line. Then, o is at most 1.

4. In the remaining case that ¢ = 3 and none of the active lines contains two black stones, assume some oR(r') = 1,
where r’ # r, without loss of generality. Thus, the square s” at row 1’ and column ¢ (both lines are active) must be empty
(otherwise, we are in Case 3, since two black stones are in the same column). Therefore, simply place one white stone on
s’. Since the stone blocks the two active lines in row r’ and column ¢, o is back to 1. This is illustrated by Moves 3 and 4
in Fig. 10(a).

However, if Black places several black stones, say p’ black stones, in Move 2i + 1, we separate the move into p’ submoves,
each with one stone only. Then, White pretends that Black makes submoves one by one, and therefore follows the above
strategy to place stones, except for the following case. If White is to place one stone on an empty square s’ in some submove
M as in Case 4, but one of the subsequent submoves M’ places one black stone on s’ too, the strategy needs to be changed as
follows.

5. Place two white stones respectively on the exclusive squares of the two active lines in row r’ and column ¢ containing s’.
Thus, o is back to 1 too. Thus, for M’, White replies by placing no more stones. In this case, the two white stones together
are viewed as a reply to the two black stones at submoves M and M. This case is illustrated by the example in Fig. 10(b).
For Move 3, Black places two stones at 3 and 3’. Assume Black to make submoves in the sequence 3 and then 3’. For 3,
White cannot reply by placing a stone on 3’, since it will be occupied by Black. Therefore, White places stones on 4 and
4’ to make o back to 1, instead.

From the above strategy, o < 1 is maintained at all times t,;. Thus, this lemma holds. O
Lemma 6. MBBoardX(Byecx_(m, n), 1) is drawn over all m and n.

Proof. This proof is the same as that in Lemma 5, except for the first black stone and White’s reply. The first black stone
is placed on the board in the following three positions: (1) in the leftmost vertical line, (2) in the bottom horizontal line,
and (3) in the rest of the rectangle. In Case 1, let White reply by placing one white stone on the leftmost vertical line as
shown in Fig. 11(a), thus making this vertical line inactive. Now, the variable o is only 1. Then, we simply follow the strategy
described in Lemma 5 to maintain o < 1. Similarly, in Case 2, let White reply by placing one on the bottom horizontal line.
In Case 3, let White place one on the leftmost vertical line without loss of generality, while blocking the first black stone in

4566 S.-H. Chiang et al. / Theoretical Computer Science 412 (2011) 4558-4569

rrrr Crrrrt. Q1T
STel - oo

©©

RREY!

Fig. 11. (a) and (b): Two cases for Byx— (m, n) in and (c) another case for the board missing two corner squares.

Fig. 12. The case that Black already occupies L — p stones on an active line.

the same horizontal line as shown in Fig. 11(b). Similarly, since the variable ¢ is only 1, simply follow the strategy described
in Lemma 5 to maintain ¢ < 1. Thus, White is able to maintain & < 1 in all cases. That is, MBBoardX(Becx_ (m, n), 1) is
drawn. (Note that we may not maintain o < 1 when two corner squares are missing, as illustrated in Fig. 11(c).) O

Lemma 7. As described above, assume that the game MBBoardN(L, p) is drawn. Then, MBBoardNX(L, L — p — 1) is drawn.

Proof. Since MBBoardN(L, p) is drawn, White has a strategy S such that all active lines have at most L — p — 1 black stones
at all times t,; (when Black is to play). Otherwise, if an active line contains at least L — p black stones, Black wins by simply
placing p stones on this line, as illustrated in Fig. 12.

In the game MBBoardNX(L, L — p — 1), assume that Black still places at most p black stones in Move 2i + 1, where i > 0.
Then, White simply follows strategy S (without placing stones on exclusive squares) such that all active lines in Byx (L)
contain at most L — p — 1 black stones at all times t;;,, (when Black is to play).

Assume that Black makes a move with more than p black stones. We separate the move into several submoves, each with
at most p black stones. Then, White pretends that Black makes submoves one by one, and for each submove simply follows
S to play, but with the following exceptional case. By following S, assume that White needs to make a submove on some
empty squares, but some subsequent Black submoves will place stones on these empty squares. Without loss of generality,
assume that White makes a submove M on an empty square s, but some subsequent Black submove M’ will place a stone
on s. Then, the strategy is changed as follows.

1. Place two white stones respectively on the exclusive squares of the two lines containing s, instead. The reason is similar
to that in Case 5 in Lemma 5. Both lines containing s are no longer active. Let the black stone at s be added into M and
removed from M’. Thus, the reply to M still prevents Black from having active lines with more than L — p — 1 black
stones. Although the reply to M uses one more stone, M has one more stone on s too.

Thus, all active lines in the game MBBoardNX(L, L — p — 1) have at most L — p — 1 black stones at all t,; (when Black is to
play). That is, MBBoardNX(L,L — p — 1) isdrawn. O

4.2.2. Initial drawn games

In this subsection, initial MBBoardN(4, 1), MBBoardNX(2, 1) and MBBoardNX(3, 2) games are shown to be drawn in
Lemma 8, Lemma 9, and Lemma 10 respectively.

Lemma 8. MBBoardN(4, 1) is drawn.

Proof. Let us transform By (4) into By_ (4) by shortening the solid lines, as shown in Fig. 13. Since By_(4) is a tree and there
are no black stones initially, By_(4) is drawn, from Lemma 2. Obviously, this implies that By (4) with extra longer lines is
drawn too. O

Lemma 9. MBBoardNX(2, 1) is drawn.

S.-H. Chiang et al. / Theoretical Computer Science 412 (2011) 4558-4569 4567

Fig. 13. (a) By (4). (b) By—(4), the same as By (4) except that all the solid lines are shortened.

i 1 sl

Fig. 14. (a) Bnx (2). (b) The tree broken by White, Move 2. (c) The tree broken by White, Move 4.

Fig. 15. (a) Bnx (3). (b) Byx (3) occupied by some black stones initially.

Fig. 16. Partitioning By (2L + 1) into dark gray and light gray zones.

Proof. The game board Byx (2) is a tree, as shown in Fig. 14(a). First, we assume that Black places one stone for each move.
It suffices to prove that White has a strategy such that at all times t,; (when Black is to play) each of the trees (formed by all
the active lines) satisfies that only the leftmost (active) line, if it exists, contains one black stone. For example, in Fig. 14(b),
for Move 1 (by Black), Move 2 (by White) blocks the diagonal line on Move 1; and in Fig. 14(c), for Move 3, Move 4 blocks
the vertical line containing the stone of Move 3. Thus, it is easy to see that no active lines contain two black stones at all
times ty;. If Black places several stones in one move, we simply pretend that Black places stones one at a time. White simply
follows the above strategy without being disturbed by Black’s multi-stone moves, since White replies by placing stones on
exclusive squares where Black cannot place stones. Thus, MBBoardNX(2, 1) is drawn. O

Lemma 10. MBBoardNX(3, 2) is drawn.

Proof. For game board Byy (3) as shown in Fig. 15(a), assume that all squares above the bottom exclusive squares are initially
occupied by black stones, as shown in Fig. 15(b). By ignoring these squares with black stones, the game board becomes
Bnx (2). From Lemma 9, at all times t,; (when Black is to play), Black occupies at most one of the remaining two squares plus
the one already shown in Fig. 15(b), that is, at most two. Thus, MBBoardNX(3, 2) is drawn. O

4.2.3. Induction rules
In this subsection, four induction rules are shown in Lemma 11, Lemma 12, Lemma 13, and Lemma 14 respectively.

Lemma 11. Assume that MBBoardNX(L, b) is drawn, where 0 < b < L. Then, MBBoardN(2L + 1, 2L — b — 1) is drawn too.
Proof. Partition the game board By (2L + 1) into dark gray and light gray game boards, as shown in Fig. 16. Half of the dark
gray board can be squeezed into By(L), as shown in Fig. 17. The light gray game board is the union of disjoint By.x (L + 1,

L+ 1). Since MBBoardNX(L, b) is drawn from the assumption and MBBoardX(Becx (L + 1,L + 1), 1) is drawn from Lemma 5,
MBBoardN2L+ 1, 2L+ 1) — (b+ 1) — 1) = MBBoardN (2L + 1, 2L — b — 1) is drawn from Lemma 4. O

Lemma 12. Assume that MBBoardNX(L, b) is drawn, where 0 < b < L. Then, MBBoardN(2L + 2, 2L — b) is drawn too.

4568 S.-H. Chiang et al. / Theoretical Computer Science 412 (2011) 4558-4569

a ! L - ! b
i 5 ')0 i
d /7 7
P 0,70 T 2,7 T
[s, 1! R AN
R N N R NI
Lt 1 ,,,,/ H ||II/,’, ,,/ II|||
1! ‘. Y LAY !
[S [R [
|)’ | % b
, ! ‘. :

Fig. 17. (a) Half of the dark gray game board. (b) Squeezing the game board in (a) into a By (L).

Fig. 18. Partitioning By (2L + 2) into light gray and dark gray zones.

Table 1
List of drawn MBBoardN games derived from Property 4, where2 < p < 4.

Drawn games Drawn games derived from Lemma 11 or Lemma 12.

MBBoardNX(2,1) — MBBoardN(5, 2) and MBBoardN(6, 3)
MBBoardNX(3,2) = — MBBoardN(7, 3) and MBBoardN(8, 4)

Table 2
List of drawn MBBoardN games derived from Property 5, where 5 < p < 13.

Drawn games Drawn games derived from Lemmas 13 and 14.

MBBoardN(4, 1)
MBBoardN(5, 2)

(MBBoardN(9, 5) and MBBoardN(10, 6)
(
MBBoardN(6, 3)
(
(

MBBoardN(11, 7) and MBBoardN(12, 8)
MBBoardN(13, 9) and MBBoardN(14, 10)
MBBoardN(15, 10) and MBBoardN(16, 11)
MBBoardN(17, 12) and MBBoardN(18, 13)

MBBoardN(7, 3)
MBBoardN(8, 4)

il

Proof. This proof is similar to that in Lemma 11, except that B,.cx_ (L 4+ 2, L 4+ 2) is used (instead of B,ecx) and some lines
marked in dashed boxes in Fig. 18 are covered by two B,.cx_ (L + 2, L + 2). For the lines covered by two Byecx_ (L + 2, L + 2),
since each active line in Brcx— (L 4+ 2, L 4+ 2) contains at most one black stone, each of these lines, if active, contains at most
two black stones when Black is to play. For the other lines, we can still use Lemma 4 to derive that each line, if active, contains
at most b + 1 black stones when Black is to play. Since b + 1 > 2, all lines contain at most b 4 1 black stones when Black is
to play. Thus, the game MBBoardN(2L + 2, (2L +2) — (b + 1) — 1) = MBBoardN (2L + 2, 2L — b) isdrawn. O

Lemma 13. Assume that MBBoardN(L, p) is drawn. Then, MBBoardN(2L + 1, L 4 p) is drawn too.

Proof. Since MBBoardN(L, p) is drawn, MBBoardNX(L, L —p — 1) is drawn from Lemma 7. From Lemma 11, MBBoardN(2L+1,
2L — (L—p—1) — 1) = MBBoardN (2L 4+ 1, L + p) is drawn. Thus, this lemma holds. O

Lemma 14. Assume that MBBoardN(L, p) is drawn. Then, MBBoardN(2L + 2, L 4+ p 4 1) is drawn too.

Proof. Since MBBoardN(L, p) is drawn, MBBoardNX(L,L—p — 1) is drawn from Lemma 7. From Lemma 12, MBBoardN(2L+ 2,
2L — (L—p — 1)) = MBBoardN(2L + 2, L + p + 1)) is drawn. Thus, this lemma holds. O

4.2.4. The proof for Property 3
This subsection concludes in Lemma 15 that Property 3 is satisfied.

Lemma 15. Property 3 is satisfied.

Proof. Initially, the three games, MBBoardN(4, 1), MBBoardNX(2, 1) and MBBoardNX(3, 2), are shown to be drawn in
Lemma 8, Lemma 9, and Lemma 10, respectively. From Lemma 11 or Lemma 12, we obtain the drawn MBBoardN games,
forall 2 < p < 4, as shown in Table 1. Then, from Lemmas 13 and 14, we obtain the drawn MBBoardN games, for all
5 < p < 13, as shown in Table 2. By induction, all the remaining drawn MBBoardN games in Property 3 can be derived from
Lemmas 13 and 14. O

S.-H. Chiang et al. / Theoretical Computer Science 412 (2011) 4558-4569 4569
5. Conclusion

The contributions of this paper are listed as follows.

o With the help of a program, this paper shows that Connect(11, 2) is drawn. Note that drawn Connect(k, p) implies drawn
Connect(m, n, k', p, q) forallk’ > k,m > 1,n > 1,0 < q < p. In contrast, the best known result [10] in the past was
drawn Connect(15, 2).

e This paper shows that Connect(kg.qw (p), p) games are drawn for all p > 3, where K44, (p) = 3p +3d — 1 and d is a
logarithmic function of p. Specifically, d is an integer such that P(d — 1) < p < P(d) and P(d) = 2¢ — d — 2. The values
karaw (p) derived in this paper are currently the smallest for all 2 < p < 1000 (the value is the same as that in [10] when
p=4).

Although this paper presents tighter bound for k, many interesting problems are still open. The following are two
examples.

e Derive lower kg.q, (p) for p < 1000, especially for small p, e.g., 1 < p < 10. These problems are more realistic in real

games. For example, Connect(5, 1) favors Black [1,2], while Connect(8, 1) is drawn [17]. There is still a gap between 5 and
8.
When p = 2, the gap is even wider. Currently, the conjecture by most Connect6 players are that Connect6, Connect(19, 19,
6,2, 1), is drawn, and that Black wins in Connect(19, 19, 6, 2, 2). Both are still open problems. A search approach similar to
those in [15,16] is perhaps helpful to solve the latter. However, from our experiences, it is very difficult to use the search
approach to solve the former. It is also an important open problem to solve all Connect(n, 2), where 7 < n < 10.

e Derive general tighter bounds than those in this paper and those in [11] simultaneously.

Acknowledgements

The authors would like to thank the National Science Council of the Republic of China (Taiwan) for financial support of
this research under contract numbers NSC 95-2221-E-009-122-MY2 and NSC 97-2221-E-009-126-MY3. The authors would
also like to thank Po-Ting Chen for his assistance with the program in Theorem 1 and the anonymous referees for their
valuable comments.

References

[1] L.V. Allis, Searching for solutions in games and artificial intelligence. Ph.D. Thesis, University of Limburg, Maastricht, the Netherlands, 1994.
[2] L.V.Allis, HJ. van den Herik, M.P.H. Huntjens, Go-moku solved by new search techniques, Computational Intelligence 12 (1996) 7-23.
[3] J. Beck, On positional games, Journal of Combinatorial Theory Series A 30 (1981) 117-133.
[4] C.Berge, Graphs and Hypergraphs, North Holland, Amsterdam, 1973.
[5] E.R.Berlekamp,].H. Conway, R.K. Guy, Winning Ways for your Mathematical Plays, vol. 3, 2nd ed., A K Peters. Ltd, Canada, 2003.
[6] S.-H. Chiang, I-C. Wu, P.-H. Lin, On drawn k-in-a-row games, in: The 12th Advances in Computer Games Conference, ACG12, Pamplona, Spain, May
2009.
[7] L. Csirmaz, On a combinatorial game with an application to Go-moku, Discrete Mathematics 29 (1980) 19-23.
[8] R. Diestel, Graph Theory, 2nd edition, Springer, New York, 2000.
[9] HJ. van den Herik, J.W.H.M. Uiterwijk,].V. Rijswijck, Games solved: now and in the future, Artificial Intelligence 134 (2002) 277-311.
[10] M.-Y. Hsieh, S.-C. Tsai, On the fairness and complexity of generalized k-in-a-row games, Theoretical Computer Science 385 (2007) 88-100.
[11] A.Pluhar, The accelerated k-in-a-row game, Theoretical Computer Science 270 (1-2) (2002) 865-875.
[12] I-C. Wu, D.-Y. Huang, A new family of k-in-a-row games, in: The 11th Advances in Computer Games, ACG11, Conference, Taipei, Taiwan, 2005.
[13] I-C. Wy, D.-Y. Huang, H.-C. Chang, Connect6, ICGA Journal 28 (4) (2006) 234-242.
[14] I-C. Wu, P.-H. Lin, Search tree for drawn Connect(11, 2). Available at http://www.connect6.org/articles/drawn-connect-games/.
[15] 1.-C. Wu, P.-H. Lin, Relevance-zone-oriented proof search for Connect6, IEEE Transactions on Computational Intelligence and Al in Games 2 (3) (2010)
191-207.
[16] I-C. Wu, H.-H. Lin, P.-H. Lin, D.-]. Sun, Y.-C. Chan, B.-T. Chen, Job-Level Proof-Number Search for Connect6. in: The International Conference on
Computers and Games 2010, CG2010, Kanazawa, Japan, September 2010.
[17] T.G.L. Zetters, 8(or more) in a row, American Mathematical Monthly 87 (1980) 575-576.

http://www.connect6.org/articles/drawn-connect-games/

	Drawn k -in-a-row games
	Introduction
	Maker--Breaker version
	Proof of Theorem 1
	Intuition for Lemma 1
	Program description for Lemma 1

	Proof of Theorem 2
	Isomorphism
	Drawn MBBoardN games
	Game boards with exclusive squares
	Initial drawn games
	Induction rules
	The proof for Property 3

	Conclusion
	Acknowledgements
	References

