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Abstract 

This article describes an object-oriented implementation of the finite element method and the finite volume 
method in a unified adaptive system using the programming language C++. The system applies to various types 
of mathematical model problems. Traditionally, different numerical methods for different types of problems 
are implemented independently by procedural languages such as C and Fortran. Moreover, adaptive analysis 
programs are more complicated than nonadaptive programs. Nevertheless, these methods share many common 
properties such as linear system solvers, data structures, a posteriori error analyses, and refinement processes. 
Some advantageous features of object-oriented programming are demonstrated through the integration of these 
properties in the adaptive system. New data types of objects specific to adaptive methods are also introduced. The 
system is well-structured, extendable, and maintainable due mainly to the nature of encapsulation and inheritance 
of object-oriented programming. 
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1. Introduction 

Adaptivity is currently one of the major concepts in practical and large-scale computations [8,35]. 
Despite many object-oriented programming (OOP) examples of finite element programs which have 
been developed in recent years to demonstrate the benefits of object-oriented languages in imple- 
mentation [12-14,22,30,36] some important issues, such as unstructured meshes and their associated 
data structures, dynamic refinement strategies, and a posteriori error analyses, specific to adaptive 
implementations remain to be addressed. The programming effort required to create adaptive finite 
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element programs is obviously more involved than that of nonadaptive programs. OOP principles can 
be powerful tools to develop adaptive programs. 

The adaptive implementation presented here is based on three widely used numerical methods, 
namely, the finite element method (FEM), the least-squares finite element method (LSFEM), and the 
finite volume method (FVM). The literature on these methods can be found in many mathematical 
and engineering journals. We do not attempt to elaborate the theoretical aspects of these methods 
within adaptivity theory. We shall instead illustrate some fundamental features of adaptive methods 
in connection with the programming implementation in an OOP language. The prototyping language 
C++ is used. Based on the concepts of adaptivity and OOP, we have developed a research code called 
AdaptC++. 

The objectives of the present article are threefold. First, based on commonly shared procedures 
such as linear system solvers, data structures, a posteriori error analyses, and refinement processes, 
we describe how to integrate the adaptive implementation of different numerical methods in a single 
package without repeating common tasks and common data management. Second, we describe a 
unified, adaptive, computing environment that can be used for various types of mathematical model 
problems which are usually treated by different methods. More specifically, a generic formula is 
presented that can be reformulated into the respective formulas suitable for FEM, LSFEM, and FVM. 
This generic formula is important in the sense that it serves as a "base" formula which will be 
"inherited" by those methods in their own reformulation. The concept of this hierarchical formulation 
fits naturally into the OOP language itself. The features of OOP, particularly those of encapsulation 
and inheritance, provide a very modular and hierarchical coding structure. The structure is similar to 
a tree structure and is constructed by various characteristic classes. Our final objective is to illustrate 
the design of the classes in AdaptC++. 

The remainder of the paper is organized as follows. The guiding principles for the design of 
AdaptC++ will be given in Section 2. These principles are characterized by mathematical models 
which determine the scope of applications of AdaptC++, by adaptivity which is the primal interest in 
developing the code, and by OOP for which some standard terminology will be emphasized. Section 3 
includes all classes designed for the code. These classes are presented in such a way that their distinctive 
qualities are described as briefly as possible and yet sufficiently to show the connection of adaptivity 
and OOP. The standard 1-irregular refinement scheme [4,10,29] is usually implemented in Fortran, a 
simplified version in C++ is given in Section 4. In Section 5, numerical experiments on three model 
problems are given to demonstrate the use of abstract classes defined in AdaptC++. Finally, some 
concluding remarks will be made in Section 6. 

2. The governing principles 

We begin with an illustration of a typical procedure of adaptive solution analysis, see also Fig. 1. 
Given a mathematical model problem under study, we first partition the solution domain into a set 
of finite elements or finite volumes. The model problem is then approximated by either FEM or 
FVM. After the assembly of global stiffness and mass matrices and a load vector, a system of linear 
equations can be solved by either a direct or an iterative solver. Once an approximate solution is 
computed, an a posteriori error analysis is performed to assess the quality of the approximate solution. 
The error analysis will produce an error estimator and a set of error indicators. The error estimator is 
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Fig. 1. AdaptC++. 

a global assessment of the approximate solution. If the estimator is less than a preset error tolerance, 
the adaptive process will be terminated and the approximate solution can be postprocessed for further 
analysis. Otherwise, a refinement scheme is employed to refine or coarsen each of the current elements 
depending on the magnitude of the error indicator for that element. For FVM, the error indicator is 
calculated on an element-by-element basis with the finite volumes being the dual of finite elements. 
A finer partition of the domain is thus created and a new solution procedure is repeated. 

The fundamental principles of the design of AdaptC++ can be classified as follows. 

2.1. Mathematical models 

AdaptC++ requires mathematical model problems to be cast into the following generic form 

- p z ( u ,  uz ,  uy) - qy(u,  ux,  Uy) + r (u ,  uz ,  Uy) = f i n O ,  
BD(U) = gD on OOD, ~J'2 = OO D U ~ O N ,  (2.1) 
BN(U,  Uz, Uy) = n l p  + n2q = BY on OON, 

where O is a given domain in R 2, u, p, q, r, f ,  gD and gN are m-dimensional vector-valued functions, 
and n l and n2 are components of the outward unit normal vector n on the Neumann boundary 0 ON. 
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Here, Pz, Uu, etc. denote partial derivatives and u = (u (1 ) , . . . ,  u(m)), etc. The functions p, q and 
r can be expressed by 

m 

:= Z + CPX( ,k)u (k) + 
kml 

q(i) := E {CQ(i ,k)u(k)  + CQX(i ,k)ux(k)  + CQY(i ,k )uv(k)}  , (2.2) 

k~n' 
:= Z {CR( i ,  CRX( ,k)ux(k)+ CRY(i,k)u (k)}, 

k = l  

for i = 1 , . . . ,  m, where the coefficient functions CP(i,  k), CPX( i ,  k), etc. are specified by the user. 
This generic formulation allows the user to choose FEM and/or FVM for numerical experiments with 
AdaptC++. Of course, model problems suitable for FE approximation may not be suitable for FV 
approximation and vice versa. 

For FE approximation, the generic problem (2.1) is formulated in the variational form 

B(u,  v) = F(v),  (2.3) 

where B(-, .) and F(.)  are bilinear and linear forms defined respectively by 

s~ (2.4) 
F(v)  := f . v d x d y  + gu" yds.  

J~ ~'~N 

We also consider a class of first-order systems of partial differential equations that can be approxi- 
mated by using LSFEM [3,6,7,17]. In this case the bilinear and linear forms are defined by 

s~ (2.5) 
F(v)  := ( f .  r(v,  vx, Vy)) dxdv. 

~2 

The FEM, furthermore, applies to a class of variational inequalities that can be used to describe, for 
example, the flow of an incompressible inviscid fluid through an unsaturated porous medium [2,18,27], 
contact and obstacle problems [16,28], and semiconductor device simulation [19], etc. This class of 
problems are cast into the following formula [15] 

B(u,  v) - F(v) >1 B(u,  u) - F(u),  (2.6) 

where the bilinear and linear forms are given in (2.4). 
There are several variants of FV schemes [9]. The vertex based FVM is implemented in our code. 

This FV scheme has the feature that the unknowns are held at the primary cell vertices but conservation 
is applied over a secondary system of cells centered on the unknowns. In AdaptC++, the primary cells 
are exactly the finite elements whereas the secondary cells are called the finite volumes, see Section 4. 
One of the important common properties of FEM and FVM in AdaptC++ is that all unknowns are 
held at finite element nodal points. 
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The FV approximation is based on the following formula 

i '"d'-"'+i'd'd":S'd'"+ i 
Obi \ O O bi bi DbiNO~'2 N 

for all bi E 13 where B denotes a FV partition of /2 .  

gN ds, (2.7) 

2.2. Adaptivity 

Adaptive methodology involves two basic processes: a posteriori error estimation and refinement. 
The refinement scheme implemented in AdaptC++ will be discussed in Section 4. The a posteriori 

error estimation can be regarded as the "heart" of the adaptive mechanism. The weak-residual type of 
error estimation proposed in [21] is presented in a general framework in [20]. It is this unified approach 
for error estimation that motivates us to combine FEM, FVM, LSFEM, and variational inequalities in 
one package with the aid of OOP. 

Let Uh be a computed solution by FEM or FVM. Let ~ denote an error estimate of the exact error 
u - uh. The error estimate is computed elementwise and is based on the formula 

B(~, w)  = F ( w )  - B(uh ,  w)  (2.8) 

for FEM, FVM, and LSFEM, and based on 

B ( - d , w ) -  [ F ( w ) -  B(Uh, W)] ) U(~ , 'd ) -  [ F ( ~ ) -  B(uh,e)] (2.9) 

for variational inequalities. We refer to [20,21] for more details of the implementation of weak-residual 
error estimators. Note particularly that the errors of the FE and FV solutions are estimated using the 
same formula and that the solution processes of approximation and estimation are exactly the same 
for FEM, LSFEM, and variational inequalities. 

2.3. OOP 

The standard terminology in OOP such as abstract data type, object, class, encapsulation, message, 
function, inheritance, polymorphism, dynamic binding, etc. can be found in many programming books, 
see, e.g., [32]. We also refer to [36] for their use in finite element programming. However, the following 
terms are particularly emphasized owing to their importance in our presentation that follows. 

(i) Classes: A class specification has two parts: (1) a class declaration which describes its com- 
ponent members, i.e., data members and function members, and (2) method definitions which 
describe how certain class member functions are implemented. When a class inherits from 
another class, the original class is called a base class and the inheriting class is called a derived 
class. A derived class includes all nonprivate features of its ancestors and then adds its own 
characteristics. 

(ii) Pure virtual functions: A pure virtual function is a function that has no definition within the 
base class. Consequently, the function must be defined in one of its derived classes. 

(iii) Abstract classes: A class that contains at least one pure virtual function is said to be abstract. 
No objects may be generated by using an abstract class, since it contains one or more undefined 
functions. It nevertheless creates pointers. This allows a support of dynamic linking (run-time 
polymorphism), which relies upon the pointer to select a proper function from derived classes. 
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3. Classes specific to AdaptC++ 

The classes designed in AdaptC++ are divided into two groups. The first group, shown in Fig. 2, 
consists of six auxiliary classes, Node, Element, Matrix, Vector, BdryData, and GaussQuad which 
are associated with the base class Adaptor. They are neither derived from nor derive any class. The 
second group, see Fig. 3, consists of Adaptor and its descendant classes where the classes shown in 
ellipses are abstract classes and those in rectangles are user-defined classes. The directed acyclic graph 
represents the relation of inheritance within classes. It clearly indicates how the user can choose a 
path (a methodology) to perform a numerical experiment with AdaptC++. 

IBdryData I 

Fig. 2. Auxiliary classes. 
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Fig. 3. Abstract classes and user classes. 
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Each individual class is characterized by its data members and member functions which are designed 
in order to perform certain tasks distinguishable from other classes. Specification of classes by tasks, 
data members, and member functions provides a very manageable coding layout. We describe the 
classes of AdaptC++ using this specification. 

3.1. Auxiliary classes 

All degrees of freedom associated with FEM or FVM are held at regular nodes of some 1-irregular 
mesh. Data for each regular node includes node_index, node_cood, and node_value corresponding 
respectively to the sequence number and the coordinates of that node, and the computed m-dimensional 
function value at that node; see Table 1. Once a refinement or an approximation is completed, these 
data will be stored by functions SetNodelndex, SetNodeCood, or SetNodeValue. Similarly, these data 
can be retrieved for estimation, refinement, or postprocessing via GetNodelndex, etc. 

The refinement process dynamically generates a family of hierarchical elements. The data member 
elem_level in Table 2 indicates the rank of an element in the hierarchy. The pointers *father, **son, 
**neighbor, and **node determine the unique location of the element in the tree structure of the 
hierarchy and hence the exact location in a specific mesh. Using pointers to define these data members 
enables the advantageous feature of dynamic memory allocation in OOP to be fully taken for the 
dynamic data structure associated with the adaptively unstructured mesh. Quadrilateral elements of 
NFEARS [24] are implemented in our code. The use of pointers also provides users with a flexible 
choice of FE spectral order. For instance, the double pointer **node allows users to use four-noded 
(linear) or eight-noded (quadratic) quadrilaterals with which the associated data will be allocated at 
run time. Similarly, using double pointers, the object values of the variables son and neighbor are 
determined at run time, i.e., an element can be devided into two or four subelements (the latter is 
implemented here) and it may have two to four neighboring elements depending whether or not it is 
next to the boundary. Again, these data members are operated by the Set and Get functions analogous 
to those in Node. The Print function will be called by the member function PostProcess of Adaptor 
when the current mesh geometry is requested for visualization. 

The classes Matr& and Vector of Tables 3 and 4 are designed for data management on sparse 
matrices which are naturally generated by FEM and FVM. Objects of Matrix and Vector are link-list 
objects in which only nonzero entries are stored with the begin pointers *begin. Manipulation on these 
nonzero entries is performed via NonZeroSearch. 

Table 1 
Class Node 

Tasks Member functions Data members 

Set data SetNodelndex node_index 

SetNodeCood node_cood 

SetNodeValue node_value 

Get data GetNodelndex 

GetNodeCood 

GetNodeValue 
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Table 2 
Class Element 

Tasks Member functions Data members 

Set data SetElemlndex elem_index 

SetElemLevel elem_level 

SetFather *father 

SetSon **son 

SetNeighbor **neighbor 

SetNode **node 

SetEdge *edge 

Get da ta  GetElemlndex 

GetElemLevel 

GetFather 

GetSon 

GetNeighbor 

GetNode 

GetEdge 

Print data Print 

Table 3 
Class Matrix 

Tasks Member functions Data members 

Set dimension SetRowSize rows 

SetColSize cols 

*begin 

Get dimension GetRowSize 

GetColSize 

Get data NonZeroSearch 

Table 4 
Class Vector 

Tasks Member functions Data members 

Set dimension SetVectorSize 

Get dimension GetVectorSize 

Get data NonZeroSearch 

size 

*begin 
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Table 5 
Class BryData 

Tasks Member functions Data members 

Set data SetBCData *dof_index 

*dof_value 

Table 6 
Class GaussQuad 

Tasks Member functions Data members 

Get data GetXCoord *x_coord 

GetYCoord *y_coord 

GetWeights *weights 

dim 

pts 
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Essential boundary conditions on the Dirichlet part of boundary O-('~D are  specified in the class 
BdryData (Table 5). At each regular node, the number of degrees of freedom is equal to m the 
dimension of unknown function u. The data member dof_inOex indicates which component of the 
vector u should be imposed with its specified boundary value (OoI_value) per SetBCData. The boundary 
data will then be used in the assembling procedure in Adaptor per ImpBdryCond. 

The class GaussQuad (Table 6) provides the coordinates and weighting coefficients for Gaussian 
integration. For double integrals, the number of integrating points (pts) in each direction is assumed to 
be the same. For example, in a square region, i.e., dim = 2, the functions GetXCoord and GetYCoord 
will return the coordinates (x_coord(i), y_coord(j)) of pts dim Gaussian nodes, i, j = 1 , . . . ,  pts, with 
the corresponding weights weights(k), k = i + j x pts. 

3.2. Abstract classes 

Most data members and member functions required for a complete process shown in Fig. 1 are 
declared and partially defined in Adaptor (Table 7). Many important features of OOP can be seen in 
this class. We describe the class by means of its tasks in the order shown in the flow chart of Fig. 1. 

(1) Input: The functions GenericP, Q,R,F, GN,GD declared as pure virtual in Adaptor create pointers 
which should ultimately point to some user class in which these functions are explicitly defined 
according to the generic form (2.1). The data member sol_dim denotes the dimension of the 
vector-valued unknown function. The number of initial elements (init_elem_no) and the number 
of initial regular nodes (init_noOe_no) are given in a user file called InitMesh. This file should also 
include the initialization data: the coordinates of the nodes, the relation between neighboring 
elements and nodes, and the boundary type (interior, Dirichlet, Neumann) of each one of four 
edges of the elements. The member function ReadlnitMesh reads these data and then passes it 
to the classes Node and Element for data allocation. 

(2) Approximation: Approximation using FEM is based on the formula (2.3) or (2.6) which re- 
quires the specification of the bilinear and linear forms. These two forms are coded in the 
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Table 7 
Class Adaptor 

Tasks Member functions Data members 

Input GenericP, Q,R,F, GN,GD t sol_dim 

ReadlnitMesh init_elem_no 

init_node_no 

Approximation GenericP, Q,R,F, GN,GD t elem_order 

BilinearForm t 

LinearForm t 

Assembly GetStiffMatrix t stiff 

GetLoadVector t load 

ImpBdryCond 

Solution Solve solver_type 

Direct solution 

Multigrid 

SOR 

ConjGrad 

Estimation BilinearForm t norm_type 

LinearForm t error_indicator 

GetApproErrNorm appro_err_norm 

GetApproSolNorm appro_sol_norm 

RelativeError relative_error 

Tolerance tolerance 

Refinement 

Data search 

errest_type 

init_elem_loca 

total_levels 

total_elems 

total_nodes 

total_dofs 

refine_criterion 

*init_elem_address 

*nowJoca_address 

*elem_pointer 

Output 

UniformRefine 

AdaptiveRefine 

ElementDivide 

Level 

StartElemSearch 

SearchElemTree 

SearchUndividedElem 

EndElemSearch 

PostProcess post_process 

t: pure virtual functions 
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functions BilinearForm and LinearForm in the class FEM. For FVM, the functions Gener- 
icP, Q,R,F, GN,GD wil l  be used since the approximation is based on the formula (2.7). The 
spectral order (elem_order) of the finite element approximation can be chosen as either linear 
or quadratic, whereas for FVM only linear approximation is implemented in the code. 

(3) Assembly: The computation of local stiffness matrices and load vectors and their assembling 
procedure are solely determined by the approximation method FEM or FVM. Hence, the pure 
virtual functions GetStiftMatrix and GetLoadVector should be defined in F E M  or FVM. How- 
ever, the way that the essential boundary conditions are imposed is the same for both FEM and 
FVM since all prescribed values are stored with the regular nodes of the boundary. Therefore, 
the imposition function ImpBdryGond for boundary data is defined in this class. These func- 
tions generate a matrix stiff and a vector load which are objects of classes Matrix and Vector, 
respectively. 

(4) Solution: The system of linear equations produced in the previous stage is solved by either 
a direct method (Direct) such as Gaussian elimination or by an iterative method. The choice 
is made via the declaration of the data member solver_type. The iterative methods that are 
implemented in our code are multigrid, SOR, and conjugate gradient methods. Because of 
encapsulation, any solver written in C or C++ can be easily incorporated in our code. These 
functions are accessed indirectly by the interface function Solve which then produces a solution 
(solution) on the current mesh. 

(5) Estimation: The functions BilinearForm and LinearForm will be used in both approximation, 
i.e., (2.3) and (2.6), and estimation, i.e., (2.8) and (2.9), with different construction of shape 
functions for trial and test functions. There are several ways of constructing shape func- 
tions for the a posteriori error estimation [21]. They can be specified by the data mem- 
ber errest_type. Once the approximate solution Uh is available, a local problem based on 
(2.8) or (2.9) is solved in each element to obtain a local solution ~. The solution is then 
computed by GetApproErrNorm to get an error indicator in some suitable norm (the de- 
fault is the energy norm, i.e., norm_type = ENERGY) for that element. All error indica- 
tors are stored in the vector error_indicator. GetApproErrNorm also computes the error esti- 
mator (appro_err_norm) of the current solution. The function GetApproSoINorm is called for 
measuring the approximate solution in the energy norm (appro_sol_norm). The relative er- 
ror (relative_error = appro_err_norm/[appro_sol_norm + appro_err_norm]) provides one of the 
stopping criteria (e.g., relative_error ~< tolerance = 0.01, see Fig. i). This is implemented in 
RelativeError. 

(6) Refinement: Both uniform and adaptive refinement schemes (UniformRefine and AdaptiveRefine) 
are provided by the code. The refinement process will generate trees of elements and nodes. 
The total number of trees equals the number of initial elements (init_elem_no) which are also 
the roots of those trees. The structure of the tree consists of the location of the root element 
(init_elem_loca), the hierarchy of the tree (total_levels), the total number of elements and nodes 
(total_elerns, total_nodes), and the total number of degrees of freedom (total_dofs). More algo- 
rithmic details for the member functions AdaptiveRefine and ElementDivide will be given in 
Section 4. 

(7) Data search: To search data in a particular element, the function StartElemSearch resets the 
current element pointer (*elem_pointer) to an address of some root element (*init_elem_address). 
The function SearchElemTree is implemented by a depth first search algorithm that requires 
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an additional look-ahead pointer *now_loca_address. SearchElemTree visits all elements of the 
current tree. The function SearchUndividedElem returns the search of leaves of the tree which 
are undivided elements where the data is stored. The search is completed with the function 
EndElemSearch. 

(8) Output: The standard output data provided by the code are appro_sol_norm, appro_err_norm, rel- 
ative_error, etc. The function PostProcess generates a formatted data file which contains coordi- 
nates of nodes in the current mesh and can be postprocessed by, e.g., the software Mathematica TM 

to draw a diagram of the mesh. 
In F E M  (Table 8), the generic problem (2.1) (GenericP, Q,R,F, GN,GD) is reformulated into the 

variational problem (2.3). The reformulation is coded in the member functions BilinearForm and 
LinearForm which are used for the calculation of local stiffness matrices (GetStiffMatrix) and load 
vectors (GetLoadVector). 

The functions BilinearForm and LinearForm defined in L S F E M  (Table 9) are based on the formu- 
la (2.5). The assembly functions inherit from those of FEM. 

All member functions of approximation and assembly in F E M  are inherited by the class Variatnllneq 

(Table 10). However, the solution function SOR has to be modified since the approximate solution 
of (2.6) should satisfy a discrete constraint condition which is determined by the constraint functions 
UpConstraint and LowConstraint, see, e.g., [15]. 

Table 8 
Class FEM: public Adaptor 

Tasks Member functions 

Input GenericP, Q,R,F, GN,GD t 

Approximation BilinearForm 

LinearForm 

Assembly GetStiffMatrix 

GetLoadVector 

Estimation BilinearForm 

LinearForm 

Table 9 
Class LSFEM: public FEM 

Tasks Member functions 

Input GenericP, Q,R,F, GN,GD t 

Approximation BilinearForm 

LinearForm 

Estimation BilinearForm 

LinearForm 
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Table 10 
Class Variatnllneq: public FEM 

Tasks Member functions 

Input GenericP, Q,R,F, GN,GD t 

UpConstraint ~ 

LowConstraint t 

Solution SOR 

Estimation BilinearForm 

LinearForm 

451 

Table 11 
Class FVM: public Adaptor 

Tasks Member functions 

Input GenericP, Q,R,F, GN,GD t 

Approximation GenericP, Q,R,F, GN,GD t 

Assembly GetStiffMatrix 

GetLoadVector 

Estimation BilinearForm 

LinearForm 

For FV approximation (Table 11), the functions GetStiffMatrix and GetLoadVector use directly 
the input functions GenericP, Q,R,F, GN,GD according to the formula (2.7). For error estimation, the 
functions BilinearForm and LinearForm are defined as those in FEM because they use the same formu- 
la (2.8). 

3.3. User classes 

We only describe the user classes Stokes and StreamFunc in Fig. 3. Other classes are defined in the 
same fashion. The model problems tested by AdaptC++ are from references [17] for Stokes, [7] for 
Helmholtz, [3] for Heat, [34] for Dam, [2] for Seepage, [16] for Torsion, [19] for Semiconductor, [25] 
for AdvecDiffus and [23] for PotentialFlow. 

From the user's viewpoint, the implementation of a user class is simple. Only the input functions 
GenericP, Q,R,F, GN,GD (Table 12) are required for a user to define if the standard output data generated 
by the output function PostProcess in Adaptor are sufficient. Of course, the ouput function can be 
redefined in the user class. 

In order to draw a diagram of streamlines (Postprocess in Table 13), one may solve the Poisson 
equation with a load function in terms of the computed velocity field. Again, the problem can be 
approximated by the standard FEM with now the generic form different from that of Stokes. 
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Table 12 
Class Stokes: public LSFEM 

Tasks Member functions Data members 

Input GenericP, Q,R,F, GN,GD Relnv 

Output PostProeess 

Table 13 
Class StreamFunc: public FEM 

Tasks Member functions 

Input GenericP, Q,R,F, GN,GD 

Output Postprocess 

4. A refinement algorithm 

The 1-irregular mesh refinement method was first proposed in [5] and has been implemented in 
many adaptive finite element research or commercial codes, e.g., FEARS [4], NFEARS [24], SAFES 
[11], ADAPT TM [26]. Its implementation is usually based on a data structure designed for Fortran. 
Nevertheless, the general tree structure of adaptivemeshes is very suitable for C++ because its hi- 
erarchical properties can be fully exploited by the very same properties of OOP. For example, the 
labeling algorithm developed by Rheinboldt and Mesztenyi [29] is a dynamic access algorithm on the 
tree which is designed for a procedural language such as FORTRAN and considerably improves data 
management of the unstructured refinement process. But the algorithm entails a complicated label- 
ing strategy for nodes, edges, coordinates, elements, etc. Using C++, the work of labeling is in fact 
supported by the language itself; hence, producing a significant reduction of coding effort. 

The refinement method is implemented here by a recursive algorithm based on the following two 
rules: 

Rule 1. Let No, see Fig. 4, be an element to be refined. If the refinement level of No is less than or 
equal to all the refinement levels of its neighboring elements, NI, N2, N3, then it is refined without 
further refinement of its neighbors. 

Rule 2. Otherwise, see Fig. 5, the neighboring elements, N2 and N3, with lower level are refined 
before No is refined. 

N3 N2 

NO N1 

[ ]  : element to be refined 

: boundary 

Fig. 4. Recursive refinement rule 1. 
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N3 

N4 NO 
N2 

N1 

r ~  • element to be refined 

- boundary 

N2 

Fig. 5. Recursive refinement rule 2. 

N3 

NO i 

void Adaptor::AdaptiveRefineO 
{ 

Element *ptr; 
for(i=1; i~<4; i++) 

if(&elem_pointer-+GetNeighbor(i)!=NULL) 
if(elem_pointer--~GetElemLevelO > 
elem_pointer--~GetNeighbor(i).LevelO) 
{ 

ptr=elem_pointer; 
elem_pointer=&elem_pointer--~GetNeighbor(i); 
AdaptiveRefineO; 
elem_pointer=ptr; 

} 
ElementDivideO; 

Fig. 6. A recursive program of 1-irregular mesh refinement. 

By these two rules, the 1-irregularity can be kept for all successive refinements. The recursive 
algorithm (Fig. 6) is defined in the member function AdaptiveRefine of the class Adaptor. 

After the two rules have been checked, the majority of the refinement process takes place in 
ElementDivide. For simplicity, we only state the steps of the action in Fig. 7 where the element No is 
admissible for refinement. 
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void Adaptor::ElementDivideO 
{ 

Step 1: A new family of No (the parent) with four offsprings is created. 
Step 2: Set the refinement level of each offspring to be that of the parent plus one. 
Step 3: The type (interior, Dirichlet, Neumann) of the offspring's edge is defined as an interior type 

if the edge is the interface of two siblings, otherwise it is inherited from that of the parent. 
Step 4: The relation (south, east, etc.) between each offspring and its neighbor is newly defined if 

the neighbor is its sibling, otherwise it is inherited from its parent. 
Step 5: Set the data (coordinates, node number, etc.) of new regular nodes in the family. The 

attributes of an old node are inherited by the offspring that shares the node with its parent. 

Fig. 7. Refinement procedure. 

5 8 4 
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Fig. 8. A 1-irregular FE mesh. 

Fig. 8 shows a particular 1-irregular mesh, i.e., the maximum number of irregular nodes (marked 
by ×) on an element side is one. In implementation, no degrees of freedom will be associated with 
these irregular nodes. Accordingly, the support of shape functions defining a basis for a finite element 
space should change adaptively with regular nodes, for example, the shaded subdomains ~26, ~217 and 
Q21 are the supports of the shape functions corresponding, respectively, to the regular nodes 6, 17 
and 21. The finite element spaces so constructed preserve the conformality required by the standard 
finite element approximation provided that some special element constraint methods [10] are used to 
invoke continuity across interelement boundaries of elements of different size. 

For FV approximation, control volumes have to adapt accordingly to their dual elements. Thus 
23 control volumes in the dual mesh of Fig. 8 are shown, in dotted lines, in Fig. 9. Comparing 
Figs. 8 and 9, one can easily observe that it is impractical to develop refinement schemes based on 
control volumes, since shapes of volumes differ dramatically in comparison with those of elements, 
especially if a data structure were associated with volumes. Using the 1-irregular FE mesh refinement 
scheme, thirteen different patterns of boundaries of control volumes in the reference element can be 
classified depending on how many and where irregular nodes are located in the element, see Fig. 10. 
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5. Test model problems 

In this section, we present three model problems for which four user classes Stokes, StreamFunc, 
Semiconductor, and AdvecDiffus are respectively derived from the abstract classes LSFEM, FEM, 
Variatnllnq, and FVM. The first model problem is described with more details from a user's viewpoint 
while the other two are briefly illustrated. 

5.1. A 2D driven cavity flow 

The use of least-squares principles for the approximate solution of the Navier-Stokes equations of 
incompressible flow has been increasingly studied in the past few years, we refer to [6] for further 
references. Our adaptive implementation of LSFEM is illustrated by a model problem of the Stokes 
equations cast into a first-order system involving the velocity, vorticity, and pressure as dependent 
variables. 

5.1.1. Mathematical modeling 
By introducing the vorticity w = ~v/Ox - Ou/Oy, the 2D dimensionless Stokes equations can be 

written as 

Z u  = 

0 0 u~,, 

o o - . ~  ~ 
& 0 0 0x Oy 

~ 1 0 0y ~x 
P 

= f in S2, (5.1a) 

where u and v are the z and y components of velocity, p the total pressure, u the inverse of Reynolds 
number (Relnv) and fl  and fa the given body forces. Let boundary conditions be written in operator 
form as 

R u  = go on ~J2. (5.2b) 

The LSFEM for (5.1) is based on the minimization of the least-squares functional 

J(v) = ~ ( L v  - f ) .  (Lv - f )  dxdy 
. J  

$2 

on the Sobolev space 

S = {v • [g '(J2)]4:  Rv  = gD on ~/2}. 

The minimizer u • S of J equivalently solves the variational problem 

~(~ , , , , )  :=  [(L~, .  Lv)dxdy = [ (S"  Lv)dxdy =: F(~), W • S. (5.2) 
S2 

In flow simulation, it is often necessary to calculate the stream function of the flow. Using the 
velocity field, the stream function ¢ of (5.1) can be determined by solving another variational problem 

B(¢,~) : : / ( r e .  W)dxdy  = / ( ~  - Vx)~dxdy =: F(~). (5.3) 
o ,  

£2 £2 
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UI=O 
U2--O 

U1=1 
U~=O 

P=O 

'///////////-.'//////.,'//////,~//////////H////~///////~ 
Ua=O 
U2=O 

UI=O 
U2:0 

(0,1) 
4 

21 
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13 

1 
(o,o) 
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10 6 

18 3 

17q 

16 7 

14 2 

Fig. 11. Problem definition. Fig. 12. Initial mesh. 

(1,1) 

(1,0) 

5.1.2. Definition of  input member functions 
For the 2D driven cavity flow problem defined in Fig. 11, a list of C++ programs of the user classes 

Stokes and StreamFunc, an input file containning the data of the initial mesh, and the main program 
are given in the appendix. 

5.1.3. Output 
Starting with the initial mesh shown in Fig. 12, AdaptC++ automatically generates a sequence of 

approximate solutions on the corresponding adaptive meshes until the relative error is less than 0.01 
or the total number of degrees of freedom is greater than 100,000 a default value in Adaptor. The 
final mesh is given in Fig. 13 which was obtained by invoking the member function PostProcess of 
Adaptor. Moreover, the diagrams of the computed vorticity, velocity, and stream function are given 
in Figs. 14, 15 and 16, respectively. These diagrams were obtained by means of the same function 
PostProcess redefined in Stokes. Figs. 13-16 evidently show that AdaptC++ is effectively capturing 
the singular behavior of the problem which occurs at the top comers. 

5.2. A simulation of  reverse biased pn-junctions 

The use of the class Variatnllneq is demonstrated by a device simulation model given in [19]. We 
consider a device occupying a bounded polygonal domain ~2 C ~2 whose stationary behavior is ruled 
by the drift-diffusion equations 

- d i v ( e V ¢ )  -= q(D - n + P),  

divJn = qR, Jn = q (DnVn  - #nnV ¢) ,  

divJp = - q R ,  Jp = - q ( D p V p  - #ppV¢),  

where usually the electric potential ¢ and the carrier concentrations n and p for electrons and holes 
are unknown while the permittivity e, the doping profile D, the elementary charge q, the electron and 
hole diffusivities Dn and Dp, the electron and the hole mobi!ities/Zn and #p, and the recombination- 
generation rate R are given parameters of the problem. 
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Fig. 13. Final mesh. Fig. 14. Vorticity contour. 
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Fig. 15. Velocity field. Fig. 16. Streamline 
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The boundary 0/2 of ~ is spilt into (ohmic) contacts 0~2c and insulating segments 0~2 I. This leads 
to Dirichlet boundary conditions for ~b, n and p on a~2c and vanishing electric field V~b and current 
densities dn, Jp on ~12i. This model whose advantages and limits are thoroughly discussed in [31] can 
be considerably simplified under strongly reverse bias conditions. The geometric data of the model is 
given in Fig. 17. 
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T h e  permitt iv i ty  ~ is g iven  by e : S0~r, where  

1 air, 
E0 = 8 . 8 5 4 . 1 0  -14,  er --- 3 .9  oxide ,  

11.7 s i l icon.  

T h e  d o p i n g  prof i le  D has the va lues  

- 1 0 1 7  c m  -3  in p + ,  

D = 1019 c m  -3  in n +,  

8 • 1013 c m  -3  in n -  

A n d  the interfaces  71 and "/2 o f  p +  - n -  and n + - n -  are g iven  as 

x 2 (y - 0 . 0 5 3 )  2 

71 : :  1302 + 202 - 1, 

(x  - 0 . 0 3 7 )  2 (y - 0 . 053 )  2 
0'2 : =  50  z + 52 - 1. 

0.07 

0.06 

0 . 0 5  

0.04 

0 . 0 3  

0.02 

0 . 0 1  

1 

0.01 0.02 0.03 0.04 0 

Fig. 18. Initial mesh of Model 5.2. 

0 . 0 1  0 . 0 2  0 . 0 3  

Fig. 19. Final mesh of Model 5.2. 

0.04 
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Fig. 20. Initial mesh of Model 5.3. 
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Fig. 21. Final mesh of Model 5.3. 

The elementary charge q = 1.602- 10 -19. The boundary conditions are 

{o 
¢0 o n t o ,  

¢lan  = on 
0 on 6'2, 

with ~bo = 1000. Along AB a linear increase of the potential is assumed which then is kept zero along 
BCDE, and this device is assumed to be isolated along ~ 2 i  = FG so that 

~n  ¢ = 0. 
0~2i 

The initial and final meshes are given in Figs. 18 and 19, respectively. 

5.3. An advection-diffusion problem 

The finite volume class FVM is tested by the following linear advection-diffusion problem given 
in [25] 

- V . ( u V u - a u ) + 2 u = f ,  i n S 2 = ( 0 , 1 )  2 , 

u = 0 ,  o n i o n ,  

where a = (I, I), u the inverse of Reynolds number and the body force f is given so that the exact 
solution u = zy( l  - e x p ( ( x -  l ) / u ) ) ( l  - e x p ( ( y -  l ) /u) ) .  This is a typical singularly perturbed 
problem, whose solution has elliptic boundary layers along the two sides {(I, y) I 0 < y < I } and 
{(x, I) I 0 < x < I}. For u = 0.I, the initial and final FE meshes are given in Figs. 20 and 21, 
respectively. Note that the finite volumes are implicitly embedded in these finite element meshes. 

6. Conc lud ing  remarks  

It is shown that an integration of different numerical methods applying to various mathematical 
model problems in a unified adaptive environment is possible provided that all adaptive methods share 
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a common data structure. Toward this unified approach, the following aspects of AdaptC++ are also 
discussed and illustrated. 

Theoretical aspect: We present a generic formulation suitable for adaptive FE and FV approximations 
of first-order and second-order systems of boundary value problems, with a subclass corresponding to 
second-order variational inequalities. A posteriori error estimation and refinement scheme are two basic 
components in adaptive methodology. We have used the weak residual error estimators [1,20,21] which 
are simple to implement in the sense that they disregard input model problems and only rely on very 
general linear and bilinear forms and boundary conditions. This is in contrast to other estimators, see, 
e.g., [4], that depend on the problem, the location of singularities, the quantity of interest (displacement, 
stress, etc.), and the spectral order of approximation. The data structure depends very much on the 
refinement scheme. To unify adaptive FE and FV methods, we have chosen the 1-irregular mesh 
refinement scheme since the complexity of the construction of adaptive control volumes increases as 
the irregularity increases, see Fig. 10. 

lmplementational aspect: The concepts of inheritance and encapsulation of OOP play the most 
important role in our development of the code. Both of the generic formulation and the refinement 
scheme lead naturally to a hierarchical structure which is perfectly compatible with the hierarchical 
property of the programming language itself. Data encapsulation helps define classes with clearly set 
contours. Inheritance organizes classes into a tree. Consequently, the program is much more readable 
and modular than in a procedural language. It definitely promotes modification, extension, maintenance, 
and reuse of the code. In addition, the implementation of an object-oriented program requires less 
time and produces small programs. The size of AdaptC++ amounts to 297 KB. We also feel that 
the code is very easy to use. For example, the definition of user classes is quite simple and general. 
Essential boundary conditions can be easily modified or changed since they are implemented as an 
auxiliary class. The auxiliary class and the initial mesh file are independent of the numerical methods. 
Consequently, the same input information (model problem, boundary conditions, and initial data) can 
be used for all methods (FEM, FVM, conjugate gradient methods, multigrid methods, etc.) provided 
by the code. Moreover, the performance of different methods can be evaluated on a more uniform 
basis. 

We next briefly remark on the choice of the language C++. Smalltalk and C++ are the most widely 
used OOP languages today [33]. These two languages differ on some basic design tradeoffs such 
as weak typing vs. strong typing, dynamic binding vs. static binding, single inheritance vs. mul- 
tiple inheritance, etc. [33]. Smalltalk, used in [36], is a pure object language that is very simple 
to leam and is relatively easier to use than C++. However, since C is currently the dominant de- 
velopment language in the PC and workstation market, there are many well-developed numerical 
programs in C that can be readily and easily incorporated into C++ programs. For example, the source 
codes of the linear system solvers listed in the flow chart of Fig. 1 are written in C. Our prefer- 
ence of C++ is primarily based on our experience with the C environment and its easy translation to 
OOP. 

The current version of AdaptC++ only addresses steady 2D problems. Its extension to transient 3D 
problems evidently can be based on the same governing principles, although this is by no means a 
straightforward modification. The most fundamental change will be the redesign of the data structure, 
adaptive refinement algorithm, and the construction of shape functions associated with 1-irregular 3D 
meshes. 
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Appendix A 

In this section, we give a complete list of user programs (Figs. A. 1-A.7) for the 2D driven cavity 
flow discussed in Section 5.1. The adaptive procedure can be easily understood by the main program 
illustrated in Fig. A.1. 

For the model problem (5.1a), the corresponding generic functions p and q in (2.1) are zero func- 
tions. The user-defined functions GenericP(x,y) (Fig. A.4) and GenericQ(x,y) need not explicitly define 
each one of zero coefficient functions CP( i ,  k), CQ( i ,  k), etc. in (2.2), since they are initialized to 
zeros in the constructor of the class Adaptor. 

include "Stokes.hpp" 
int main(int argc, char *argv[ ]) 
{ 

Stokes driven; 
driven.ReadlnitMesh0; 
do 
{ 

driven.GetStiffMatrix0; 
driven.GetLoadVector0; 
driven.lmpBdryCond0; 
driven.Solve0; 
driven.GetApproSolNorm0; 
driven.GetApproErrNorm0; 
driven.AdaptiveRefine0; 
driven.RelativeError0; 

} while( driven.Tolerance0 > driven.RelativeError0) 
driven.PostProcess0; 

Fig. A. 1. The main program for the 2D driven cavity flow. 

# (initial nodes,elements) 
(21,4) 

# node-index : coordinate ( x, y ) 
1 : ( 0 , 0 )  2 : ( 1 , 0 )  3 : ( 1 , 1 )  4 : ( 0 , 1 )  5:( 0.5, 0.5) 6:(0.5,0) 
7:( 1 , 0.5) 8:(0.5, 1 ) 9:(0,0.5) 10:(0.25, 0)  11:(0.5,0.25) 

Fig. A.2. The initial mesh (Fig. 12). 
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12:(0.25,0.5 ) 13:( 0,0.25) 14:(0.75, 0 ) 15:( 1 ,0.25) 16:(0.75, 0.5) 
17:( 1 ,0.75) 18:(0.75, 1 ) 19:(0.5,0.75) 20:(0.25, 1 ) 21 :( 0,0.75) 

# element-index : node ( nl ,  n2, n3, n4, n5, n6, n7, n8 ), 
# bdry-type ( s, e, n, w ), neighbor ( s, e, n, w ) 
1 :(1,6,5,9,10,11,12,13),(D,I,I,D),(0,2,4,0) 
2:(6,2,7,5,14,15,16,11 ),(D,D,I,I),(0,0,3,1 ) 
3:(5,7,3,8,16,17,18,19),(I,D, D,I),(2,0,0,4) 
4:(9,5,8,4,12,19,20,21 ),(I,I,D,D),(1,3,0,0) 

Fig. A.2. (continued). 

Stokes::Stokes0 
{ 

Relnv = 1.0; 
sol_dim = 4; 
elem_order = BIQUADRATIC; 
solver_type = CG; 
norm_type = ENERGY; 
errest_type = BLTENT; 
refine_criterion = 0.1 ; 
tolerance = 0.01; 
post_process = YES; 

} 

Fig. A.3. The constructor of the class Stokes (initialization). 

void Stoke::GenericP(x,y) 
{ 
} 

void Stoke::GenericR(x,y) 
{ 

CR(3,3)=1.0; 
CRX(1,4)=1.0; 
CRX(2,3)=-Relnv; 
CRX(3,2)=-1.0; 
CRX(4,1 )=1.0; 
CRY(1,3)=Relnv; 
CRY(2,4)=1.0; 
C RY(3,1 )=1.0; 
CRY(4,2)=1.0; 

Fig. A.4. Member functions of the class Stokes. 
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BdryData Stokes::GenericGD(x,y) 
{ 

BdryDa,a bc; 
if (y==1.0) 
{ 

if (xT=0.0 && x!=1.0) 
{ 

bc.SetBCData(1,1.0); 
bc.SetBCData(2,0.0); 

} 
} 
else 
{ 

bc.SetBCData(1,0.0); 
bc.SetBCData(2,0.0); 

} 
if (x==0.5 && y==0.0) 
{ 

bc.SetBCData(4,0.0); 
/* The first argument represents the fourth component 
the pressure which is prescribed to be zero, 
the value of the second argument. */ 

} 
return bc; 

} 

Fig. A.5. A member function of the class Stokes. 

void StreamFunc::GenericP(x,y) 
{ 

CPX(1,1)=-1.0; 
CPY(1,1)=-1.0; 

} 

Fig. A.6. A member function of the class StreamFunc. 

BdryData StreamFunc::GenericGD(x,y) 
{ 

BdryData bc; 
bc.SetBCData(1,0.0); 
return bc; 

Fig. A.7. A member function of the class StreamFunc. 
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