
ELSEVIER Applied Numerical Mathematics 21 (1996) 439--467
MATHEMATICS

Object-oriented programming of adaptive finite element and
finite volume methods"

Jinn-Liang Liu a,*, Ing-Jer Lin b, Miin-Zhih Shih a, Ren-Chuen Chen a,
Mao-Chung Hsieh c

Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan
b Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan

Department of Power Mechanical Engineering, National YunIin Polytechnic Institute, Yunlin, Taiwan

Abstract

This article describes an object-oriented implementation of the finite element method and the finite volume
method in a unified adaptive system using the programming language C++. The system applies to various types
of mathematical model problems. Traditionally, different numerical methods for different types of problems
are implemented independently by procedural languages such as C and Fortran. Moreover, adaptive analysis
programs are more complicated than nonadaptive programs. Nevertheless, these methods share many common
properties such as linear system solvers, data structures, a posteriori error analyses, and refinement processes.
Some advantageous features of object-oriented programming are demonstrated through the integration of these
properties in the adaptive system. New data types of objects specific to adaptive methods are also introduced. The
system is well-structured, extendable, and maintainable due mainly to the nature of encapsulation and inheritance
of object-oriented programming.

Keywords: Object-oriented programming; C++; Adaptive methods; Finite elements; Finite volumes

1. Introduction

Adaptivity is currently one of the major concepts in practical and large-scale computations [8,35].
Despite many object-oriented programming (OOP) examples of finite element programs which have
been developed in recent years to demonstrate the benefits of object-oriented languages in imple-
mentation [12-14,22,30,36] some important issues, such as unstructured meshes and their associated
data structures, dynamic refinement strategies, and a posteriori error analyses, specific to adaptive
implementations remain to be addressed. The programming effort required to create adaptive finite

* This work was supported by NSC-grants 82-0208-M-009-060 and 83-0208-M-009-057, Taiwan.
* Corresponding author. E-mail: jinnliu@math.nctu.edu.tw.

0168-9274/96/$15.00 Copyright © 1996 Elsevier Science B.V. All rights reserved
PII SO 168-9274(96)00044-X

440 Jinn-Liang Liu et al. /Applied Numerical Mathematics 21 (1996) 439-467

element programs is obviously more involved than that of nonadaptive programs. OOP principles can
be powerful tools to develop adaptive programs.

The adaptive implementation presented here is based on three widely used numerical methods,
namely, the finite element method (FEM), the least-squares finite element method (LSFEM), and the
finite volume method (FVM). The literature on these methods can be found in many mathematical
and engineering journals. We do not attempt to elaborate the theoretical aspects of these methods
within adaptivity theory. We shall instead illustrate some fundamental features of adaptive methods
in connection with the programming implementation in an OOP language. The prototyping language
C++ is used. Based on the concepts of adaptivity and OOP, we have developed a research code called
AdaptC++.

The objectives of the present article are threefold. First, based on commonly shared procedures
such as linear system solvers, data structures, a posteriori error analyses, and refinement processes,
we describe how to integrate the adaptive implementation of different numerical methods in a single
package without repeating common tasks and common data management. Second, we describe a
unified, adaptive, computing environment that can be used for various types of mathematical model
problems which are usually treated by different methods. More specifically, a generic formula is
presented that can be reformulated into the respective formulas suitable for FEM, LSFEM, and FVM.
This generic formula is important in the sense that it serves as a "base" formula which will be
"inherited" by those methods in their own reformulation. The concept of this hierarchical formulation
fits naturally into the OOP language itself. The features of OOP, particularly those of encapsulation
and inheritance, provide a very modular and hierarchical coding structure. The structure is similar to
a tree structure and is constructed by various characteristic classes. Our final objective is to illustrate
the design of the classes in AdaptC++.

The remainder of the paper is organized as follows. The guiding principles for the design of
AdaptC++ will be given in Section 2. These principles are characterized by mathematical models
which determine the scope of applications of AdaptC++, by adaptivity which is the primal interest in
developing the code, and by OOP for which some standard terminology will be emphasized. Section 3
includes all classes designed for the code. These classes are presented in such a way that their distinctive
qualities are described as briefly as possible and yet sufficiently to show the connection of adaptivity
and OOP. The standard 1-irregular refinement scheme [4,10,29] is usually implemented in Fortran, a
simplified version in C++ is given in Section 4. In Section 5, numerical experiments on three model
problems are given to demonstrate the use of abstract classes defined in AdaptC++. Finally, some
concluding remarks will be made in Section 6.

2. The governing principles

We begin with an illustration of a typical procedure of adaptive solution analysis, see also Fig. 1.
Given a mathematical model problem under study, we first partition the solution domain into a set
of finite elements or finite volumes. The model problem is then approximated by either FEM or
FVM. After the assembly of global stiffness and mass matrices and a load vector, a system of linear
equations can be solved by either a direct or an iterative solver. Once an approximate solution is
computed, an a posteriori error analysis is performed to assess the quality of the approximate solution.
The error analysis will produce an error estimator and a set of error indicators. The error estimator is

Jinn-Liang Liu et al. /Applied Numerical Mathematics 21 (1996) 439-467 441

Mathematical
Model

Domain I _
Discretization I -

Direct

FEM LS J
Assembly

Ax=b

IMuitigridl l SOB

Refinement]

[ConjGrad

>TOL
Error Estimation

~ <TOL

Postprocessing

Fig. 1. AdaptC++.

a global assessment of the approximate solution. If the estimator is less than a preset error tolerance,
the adaptive process will be terminated and the approximate solution can be postprocessed for further
analysis. Otherwise, a refinement scheme is employed to refine or coarsen each of the current elements
depending on the magnitude of the error indicator for that element. For FVM, the error indicator is
calculated on an element-by-element basis with the finite volumes being the dual of finite elements.
A finer partition of the domain is thus created and a new solution procedure is repeated.

The fundamental principles of the design of AdaptC++ can be classified as follows.

2.1. Mathematical models

AdaptC++ requires mathematical model problems to be cast into the following generic form

- p z (u , uz , uy) - qy(u, ux, Uy) + r (u , uz , Uy) = f i n O ,
BD(U) = gD on OOD, ~J'2 = OO D U ~ O N , (2.1)
BN(U, Uz, Uy) = n l p + n2q = BY on OON,

where O is a given domain in R 2, u, p, q, r, f , gD and gN are m-dimensional vector-valued functions,
and n l and n2 are components of the outward unit normal vector n on the Neumann boundary 0 ON.

442 Jinn-Liang Liu et al. /Applied Numerical Mathematics 21 (1996) 439~167

Here, Pz, Uu, etc. denote partial derivatives and u = (u (1) , . . . , u(m)), etc. The functions p, q and
r can be expressed by

m

:= Z + CPX(,k)u (k) +
kml

q(i) := E {CQ(i ,k)u(k) + CQX(i ,k)ux(k) + CQY(i ,k)uv(k)} , (2.2)

k~n'
:= Z {CR(i , CRX(,k)ux(k)+ CRY(i,k)u (k)},

k = l

for i = 1 , . . . , m, where the coefficient functions CP(i, k), CPX(i , k), etc. are specified by the user.
This generic formulation allows the user to choose FEM and/or FVM for numerical experiments with
AdaptC++. Of course, model problems suitable for FE approximation may not be suitable for FV
approximation and vice versa.

For FE approximation, the generic problem (2.1) is formulated in the variational form

B(u, v) = F(v), (2.3)

where B(-, .) and F(.) are bilinear and linear forms defined respectively by

s~ (2.4)
F(v) := f . v d x d y + gu" yds.

J~ ~'~N

We also consider a class of first-order systems of partial differential equations that can be approxi-
mated by using LSFEM [3,6,7,17]. In this case the bilinear and linear forms are defined by

s~ (2.5)
F(v) := (f . r(v, vx, Vy)) dxdv.

~2

The FEM, furthermore, applies to a class of variational inequalities that can be used to describe, for
example, the flow of an incompressible inviscid fluid through an unsaturated porous medium [2,18,27],
contact and obstacle problems [16,28], and semiconductor device simulation [19], etc. This class of
problems are cast into the following formula [15]

B(u, v) - F(v) >1 B(u, u) - F(u), (2.6)

where the bilinear and linear forms are given in (2.4).
There are several variants of FV schemes [9]. The vertex based FVM is implemented in our code.

This FV scheme has the feature that the unknowns are held at the primary cell vertices but conservation
is applied over a secondary system of cells centered on the unknowns. In AdaptC++, the primary cells
are exactly the finite elements whereas the secondary cells are called the finite volumes, see Section 4.
One of the important common properties of FEM and FVM in AdaptC++ is that all unknowns are
held at finite element nodal points.

Jinn-Liang Liu et al. /Applied Numerical Mathematics 21 (1996) 439-467 443

The FV approximation is based on the following formula

i '"d'-"'+i'd'd":S'd'"+ i
Obi \ O O bi bi DbiNO~'2 N

for all bi E 13 where B denotes a FV partition of /2 .

gN ds, (2.7)

2.2. Adaptivity

Adaptive methodology involves two basic processes: a posteriori error estimation and refinement.
The refinement scheme implemented in AdaptC++ will be discussed in Section 4. The a posteriori

error estimation can be regarded as the "heart" of the adaptive mechanism. The weak-residual type of
error estimation proposed in [21] is presented in a general framework in [20]. It is this unified approach
for error estimation that motivates us to combine FEM, FVM, LSFEM, and variational inequalities in
one package with the aid of OOP.

Let Uh be a computed solution by FEM or FVM. Let ~ denote an error estimate of the exact error
u - uh. The error estimate is computed elementwise and is based on the formula

B(~, w) = F (w) - B(uh , w) (2.8)

for FEM, FVM, and LSFEM, and based on

B (- d , w) - [F (w) - B(Uh, W)]) U(~ , 'd) - [F (~) - B(uh,e)] (2.9)

for variational inequalities. We refer to [20,21] for more details of the implementation of weak-residual
error estimators. Note particularly that the errors of the FE and FV solutions are estimated using the
same formula and that the solution processes of approximation and estimation are exactly the same
for FEM, LSFEM, and variational inequalities.

2.3. OOP

The standard terminology in OOP such as abstract data type, object, class, encapsulation, message,
function, inheritance, polymorphism, dynamic binding, etc. can be found in many programming books,
see, e.g., [32]. We also refer to [36] for their use in finite element programming. However, the following
terms are particularly emphasized owing to their importance in our presentation that follows.

(i) Classes: A class specification has two parts: (1) a class declaration which describes its com-
ponent members, i.e., data members and function members, and (2) method definitions which
describe how certain class member functions are implemented. When a class inherits from
another class, the original class is called a base class and the inheriting class is called a derived
class. A derived class includes all nonprivate features of its ancestors and then adds its own
characteristics.

(ii) Pure virtual functions: A pure virtual function is a function that has no definition within the
base class. Consequently, the function must be defined in one of its derived classes.

(iii) Abstract classes: A class that contains at least one pure virtual function is said to be abstract.
No objects may be generated by using an abstract class, since it contains one or more undefined
functions. It nevertheless creates pointers. This allows a support of dynamic linking (run-time
polymorphism), which relies upon the pointer to select a proper function from derived classes.

444 Jinn-Liang Liu et al. / Applied Numerical Mathematics 21 (1996) 439-467

3. Classes specific to AdaptC++

The classes designed in AdaptC++ are divided into two groups. The first group, shown in Fig. 2,
consists of six auxiliary classes, Node, Element, Matrix, Vector, BdryData, and GaussQuad which
are associated with the base class Adaptor. They are neither derived from nor derive any class. The
second group, see Fig. 3, consists of Adaptor and its descendant classes where the classes shown in
ellipses are abstract classes and those in rectangles are user-defined classes. The directed acyclic graph
represents the relation of inheritance within classes. It clearly indicates how the user can choose a
path (a methodology) to perform a numerical experiment with AdaptC++.

IBdryData I

Fig. 2. Auxiliary classes.

LSFEM

StreamFunc

Helmholtz

FEM

Adaptor
Seepage I

v se°c°nduct°r

PotentialFIow

(~ : abstract classes I - - 1 : user classes --,,,--- : inherited from ...

Fig. 3. Abstract classes and user classes.

Jinn-Liang Liu et al. /Applied Numerical Mathematics 21 (1996) 439-467 445

Each individual class is characterized by its data members and member functions which are designed
in order to perform certain tasks distinguishable from other classes. Specification of classes by tasks,
data members, and member functions provides a very manageable coding layout. We describe the
classes of AdaptC++ using this specification.

3.1. Auxiliary classes

All degrees of freedom associated with FEM or FVM are held at regular nodes of some 1-irregular
mesh. Data for each regular node includes node_index, node_cood, and node_value corresponding
respectively to the sequence number and the coordinates of that node, and the computed m-dimensional
function value at that node; see Table 1. Once a refinement or an approximation is completed, these
data will be stored by functions SetNodelndex, SetNodeCood, or SetNodeValue. Similarly, these data
can be retrieved for estimation, refinement, or postprocessing via GetNodelndex, etc.

The refinement process dynamically generates a family of hierarchical elements. The data member
elem_level in Table 2 indicates the rank of an element in the hierarchy. The pointers *father, **son,
**neighbor, and **node determine the unique location of the element in the tree structure of the
hierarchy and hence the exact location in a specific mesh. Using pointers to define these data members
enables the advantageous feature of dynamic memory allocation in OOP to be fully taken for the
dynamic data structure associated with the adaptively unstructured mesh. Quadrilateral elements of
NFEARS [24] are implemented in our code. The use of pointers also provides users with a flexible
choice of FE spectral order. For instance, the double pointer **node allows users to use four-noded
(linear) or eight-noded (quadratic) quadrilaterals with which the associated data will be allocated at
run time. Similarly, using double pointers, the object values of the variables son and neighbor are
determined at run time, i.e., an element can be devided into two or four subelements (the latter is
implemented here) and it may have two to four neighboring elements depending whether or not it is
next to the boundary. Again, these data members are operated by the Set and Get functions analogous
to those in Node. The Print function will be called by the member function PostProcess of Adaptor
when the current mesh geometry is requested for visualization.

The classes Matr& and Vector of Tables 3 and 4 are designed for data management on sparse
matrices which are naturally generated by FEM and FVM. Objects of Matrix and Vector are link-list
objects in which only nonzero entries are stored with the begin pointers *begin. Manipulation on these
nonzero entries is performed via NonZeroSearch.

Table 1
Class Node

Tasks Member functions Data members

Set data SetNodelndex node_index

SetNodeCood node_cood

SetNodeValue node_value

Get data GetNodelndex

GetNodeCood

GetNodeValue

446 Jinn-Liang Liu et al. /Applied Numerical Mathematics 21 (1996) 439-467

Table 2
Class Element

Tasks Member functions Data members

Set data SetElemlndex elem_index

SetElemLevel elem_level

SetFather *father

SetSon **son

SetNeighbor **neighbor

SetNode **node

SetEdge *edge

Get da ta GetElemlndex

GetElemLevel

GetFather

GetSon

GetNeighbor

GetNode

GetEdge

Print data Print

Table 3
Class Matrix

Tasks Member functions Data members

Set dimension SetRowSize rows

SetColSize cols

*begin

Get dimension GetRowSize

GetColSize

Get data NonZeroSearch

Table 4
Class Vector

Tasks Member functions Data members

Set dimension SetVectorSize

Get dimension GetVectorSize

Get data NonZeroSearch

size

*begin

Jinn-Liang Liu et al. /Applied Numerical Mathematics 21 (1996) 439-467

Table 5
Class BryData

Tasks Member functions Data members

Set data SetBCData *dof_index

*dof_value

Table 6
Class GaussQuad

Tasks Member functions Data members

Get data GetXCoord *x_coord

GetYCoord *y_coord

GetWeights *weights

dim

pts

447

Essential boundary conditions on the Dirichlet part of boundary O-('~D are specified in the class
BdryData (Table 5). At each regular node, the number of degrees of freedom is equal to m the
dimension of unknown function u. The data member dof_inOex indicates which component of the
vector u should be imposed with its specified boundary value (OoI_value) per SetBCData. The boundary
data will then be used in the assembling procedure in Adaptor per ImpBdryCond.

The class GaussQuad (Table 6) provides the coordinates and weighting coefficients for Gaussian
integration. For double integrals, the number of integrating points (pts) in each direction is assumed to
be the same. For example, in a square region, i.e., dim = 2, the functions GetXCoord and GetYCoord
will return the coordinates (x_coord(i), y_coord(j)) of pts dim Gaussian nodes, i, j = 1 , . . . , pts, with
the corresponding weights weights(k), k = i + j x pts.

3.2. Abstract classes

Most data members and member functions required for a complete process shown in Fig. 1 are
declared and partially defined in Adaptor (Table 7). Many important features of OOP can be seen in
this class. We describe the class by means of its tasks in the order shown in the flow chart of Fig. 1.

(1) Input: The functions GenericP, Q,R,F, GN,GD declared as pure virtual in Adaptor create pointers
which should ultimately point to some user class in which these functions are explicitly defined
according to the generic form (2.1). The data member sol_dim denotes the dimension of the
vector-valued unknown function. The number of initial elements (init_elem_no) and the number
of initial regular nodes (init_noOe_no) are given in a user file called InitMesh. This file should also
include the initialization data: the coordinates of the nodes, the relation between neighboring
elements and nodes, and the boundary type (interior, Dirichlet, Neumann) of each one of four
edges of the elements. The member function ReadlnitMesh reads these data and then passes it
to the classes Node and Element for data allocation.

(2) Approximation: Approximation using FEM is based on the formula (2.3) or (2.6) which re-
quires the specification of the bilinear and linear forms. These two forms are coded in the

448 Jinn-Liang Liu et aL /Applied Numerical Mathematics 21 (1996) 439-467

Table 7
Class Adaptor

Tasks Member functions Data members

Input GenericP, Q,R,F, GN,GD t sol_dim

ReadlnitMesh init_elem_no

init_node_no

Approximation GenericP, Q,R,F, GN,GD t elem_order

BilinearForm t

LinearForm t

Assembly GetStiffMatrix t stiff

GetLoadVector t load

ImpBdryCond

Solution Solve solver_type

Direct solution

Multigrid

SOR

ConjGrad

Estimation BilinearForm t norm_type

LinearForm t error_indicator

GetApproErrNorm appro_err_norm

GetApproSolNorm appro_sol_norm

RelativeError relative_error

Tolerance tolerance

Refinement

Data search

errest_type

init_elem_loca

total_levels

total_elems

total_nodes

total_dofs

refine_criterion

*init_elem_address

*nowJoca_address

*elem_pointer

Output

UniformRefine

AdaptiveRefine

ElementDivide

Level

StartElemSearch

SearchElemTree

SearchUndividedElem

EndElemSearch

PostProcess post_process

t: pure virtual functions

Jinn-Liang Liu et al. /Applied Numerical Mathematics 21 (1996) 439-467 449

functions BilinearForm and LinearForm in the class FEM. For FVM, the functions Gener-
icP, Q,R,F, GN,GD wil l be used since the approximation is based on the formula (2.7). The
spectral order (elem_order) of the finite element approximation can be chosen as either linear
or quadratic, whereas for FVM only linear approximation is implemented in the code.

(3) Assembly: The computation of local stiffness matrices and load vectors and their assembling
procedure are solely determined by the approximation method FEM or FVM. Hence, the pure
virtual functions GetStiftMatrix and GetLoadVector should be defined in F E M or FVM. How-
ever, the way that the essential boundary conditions are imposed is the same for both FEM and
FVM since all prescribed values are stored with the regular nodes of the boundary. Therefore,
the imposition function ImpBdryGond for boundary data is defined in this class. These func-
tions generate a matrix stiff and a vector load which are objects of classes Matrix and Vector,
respectively.

(4) Solution: The system of linear equations produced in the previous stage is solved by either
a direct method (Direct) such as Gaussian elimination or by an iterative method. The choice
is made via the declaration of the data member solver_type. The iterative methods that are
implemented in our code are multigrid, SOR, and conjugate gradient methods. Because of
encapsulation, any solver written in C or C++ can be easily incorporated in our code. These
functions are accessed indirectly by the interface function Solve which then produces a solution
(solution) on the current mesh.

(5) Estimation: The functions BilinearForm and LinearForm will be used in both approximation,
i.e., (2.3) and (2.6), and estimation, i.e., (2.8) and (2.9), with different construction of shape
functions for trial and test functions. There are several ways of constructing shape func-
tions for the a posteriori error estimation [21]. They can be specified by the data mem-
ber errest_type. Once the approximate solution Uh is available, a local problem based on
(2.8) or (2.9) is solved in each element to obtain a local solution ~. The solution is then
computed by GetApproErrNorm to get an error indicator in some suitable norm (the de-
fault is the energy norm, i.e., norm_type = ENERGY) for that element. All error indica-
tors are stored in the vector error_indicator. GetApproErrNorm also computes the error esti-
mator (appro_err_norm) of the current solution. The function GetApproSoINorm is called for
measuring the approximate solution in the energy norm (appro_sol_norm). The relative er-
ror (relative_error = appro_err_norm/[appro_sol_norm + appro_err_norm]) provides one of the
stopping criteria (e.g., relative_error ~< tolerance = 0.01, see Fig. i). This is implemented in
RelativeError.

(6) Refinement: Both uniform and adaptive refinement schemes (UniformRefine and AdaptiveRefine)
are provided by the code. The refinement process will generate trees of elements and nodes.
The total number of trees equals the number of initial elements (init_elem_no) which are also
the roots of those trees. The structure of the tree consists of the location of the root element
(init_elem_loca), the hierarchy of the tree (total_levels), the total number of elements and nodes
(total_elerns, total_nodes), and the total number of degrees of freedom (total_dofs). More algo-
rithmic details for the member functions AdaptiveRefine and ElementDivide will be given in
Section 4.

(7) Data search: To search data in a particular element, the function StartElemSearch resets the
current element pointer (*elem_pointer) to an address of some root element (*init_elem_address).
The function SearchElemTree is implemented by a depth first search algorithm that requires

450 Jinn-Liang Liu et al. /Applied Numerical Mathematics 21 (1996) 439-467

an additional look-ahead pointer *now_loca_address. SearchElemTree visits all elements of the
current tree. The function SearchUndividedElem returns the search of leaves of the tree which
are undivided elements where the data is stored. The search is completed with the function
EndElemSearch.

(8) Output: The standard output data provided by the code are appro_sol_norm, appro_err_norm, rel-
ative_error, etc. The function PostProcess generates a formatted data file which contains coordi-
nates of nodes in the current mesh and can be postprocessed by, e.g., the software Mathematica TM

to draw a diagram of the mesh.
In F E M (Table 8), the generic problem (2.1) (GenericP, Q,R,F, GN,GD) is reformulated into the

variational problem (2.3). The reformulation is coded in the member functions BilinearForm and
LinearForm which are used for the calculation of local stiffness matrices (GetStiffMatrix) and load
vectors (GetLoadVector).

The functions BilinearForm and LinearForm defined in L S F E M (Table 9) are based on the formu-
la (2.5). The assembly functions inherit from those of FEM.

All member functions of approximation and assembly in F E M are inherited by the class Variatnllneq

(Table 10). However, the solution function SOR has to be modified since the approximate solution
of (2.6) should satisfy a discrete constraint condition which is determined by the constraint functions
UpConstraint and LowConstraint, see, e.g., [15].

Table 8
Class FEM: public Adaptor

Tasks Member functions

Input GenericP, Q,R,F, GN,GD t

Approximation BilinearForm

LinearForm

Assembly GetStiffMatrix

GetLoadVector

Estimation BilinearForm

LinearForm

Table 9
Class LSFEM: public FEM

Tasks Member functions

Input GenericP, Q,R,F, GN,GD t

Approximation BilinearForm

LinearForm

Estimation BilinearForm

LinearForm

Jinn-Liang Liu et al. / Applied Numerical Mathematics 21 (1996) 439~167

Table 10
Class Variatnllneq: public FEM

Tasks Member functions

Input GenericP, Q,R,F, GN,GD t

UpConstraint ~

LowConstraint t

Solution SOR

Estimation BilinearForm

LinearForm

451

Table 11
Class FVM: public Adaptor

Tasks Member functions

Input GenericP, Q,R,F, GN,GD t

Approximation GenericP, Q,R,F, GN,GD t

Assembly GetStiffMatrix

GetLoadVector

Estimation BilinearForm

LinearForm

For FV approximation (Table 11), the functions GetStiffMatrix and GetLoadVector use directly
the input functions GenericP, Q,R,F, GN,GD according to the formula (2.7). For error estimation, the
functions BilinearForm and LinearForm are defined as those in FEM because they use the same formu-
la (2.8).

3.3. User classes

We only describe the user classes Stokes and StreamFunc in Fig. 3. Other classes are defined in the
same fashion. The model problems tested by AdaptC++ are from references [17] for Stokes, [7] for
Helmholtz, [3] for Heat, [34] for Dam, [2] for Seepage, [16] for Torsion, [19] for Semiconductor, [25]
for AdvecDiffus and [23] for PotentialFlow.

From the user's viewpoint, the implementation of a user class is simple. Only the input functions
GenericP, Q,R,F, GN,GD (Table 12) are required for a user to define if the standard output data generated
by the output function PostProcess in Adaptor are sufficient. Of course, the ouput function can be
redefined in the user class.

In order to draw a diagram of streamlines (Postprocess in Table 13), one may solve the Poisson
equation with a load function in terms of the computed velocity field. Again, the problem can be
approximated by the standard FEM with now the generic form different from that of Stokes.

452 Jinn-Liang Liu et al. /Applied Numerical Mathematics 21 (1996) 439-467

Table 12
Class Stokes: public LSFEM

Tasks Member functions Data members

Input GenericP, Q,R,F, GN,GD Relnv

Output PostProeess

Table 13
Class StreamFunc: public FEM

Tasks Member functions

Input GenericP, Q,R,F, GN,GD

Output Postprocess

4. A refinement algorithm

The 1-irregular mesh refinement method was first proposed in [5] and has been implemented in
many adaptive finite element research or commercial codes, e.g., FEARS [4], NFEARS [24], SAFES
[11], ADAPT TM [26]. Its implementation is usually based on a data structure designed for Fortran.
Nevertheless, the general tree structure of adaptivemeshes is very suitable for C++ because its hi-
erarchical properties can be fully exploited by the very same properties of OOP. For example, the
labeling algorithm developed by Rheinboldt and Mesztenyi [29] is a dynamic access algorithm on the
tree which is designed for a procedural language such as FORTRAN and considerably improves data
management of the unstructured refinement process. But the algorithm entails a complicated label-
ing strategy for nodes, edges, coordinates, elements, etc. Using C++, the work of labeling is in fact
supported by the language itself; hence, producing a significant reduction of coding effort.

The refinement method is implemented here by a recursive algorithm based on the following two
rules:

Rule 1. Let No, see Fig. 4, be an element to be refined. If the refinement level of No is less than or
equal to all the refinement levels of its neighboring elements, NI, N2, N3, then it is refined without
further refinement of its neighbors.

Rule 2. Otherwise, see Fig. 5, the neighboring elements, N2 and N3, with lower level are refined
before No is refined.

N3 N2

NO N1

[] : element to be refined

: boundary

Fig. 4. Recursive refinement rule 1.

Jinn-Liang Liu et al. /Applied Numerical Mathematics 21 (1996) 439-467 453

N3

N4 NO
N2

N1

r ~ • element to be refined

- boundary

N2

Fig. 5. Recursive refinement rule 2.

N3

NO i

void Adaptor::AdaptiveRefineO
{

Element *ptr;
for(i=1; i~<4; i++)

if(&elem_pointer-+GetNeighbor(i)!=NULL)
if(elem_pointer--~GetElemLevelO >
elem_pointer--~GetNeighbor(i).LevelO)
{

ptr=elem_pointer;
elem_pointer=&elem_pointer--~GetNeighbor(i);
AdaptiveRefineO;
elem_pointer=ptr;

}
ElementDivideO;

Fig. 6. A recursive program of 1-irregular mesh refinement.

By these two rules, the 1-irregularity can be kept for all successive refinements. The recursive
algorithm (Fig. 6) is defined in the member function AdaptiveRefine of the class Adaptor.

After the two rules have been checked, the majority of the refinement process takes place in
ElementDivide. For simplicity, we only state the steps of the action in Fig. 7 where the element No is
admissible for refinement.

454 Jinn-Liang Liu et al. /Applied Numerical Mathematics 21 (1996) 439-467

void Adaptor::ElementDivideO
{

Step 1: A new family of No (the parent) with four offsprings is created.
Step 2: Set the refinement level of each offspring to be that of the parent plus one.
Step 3: The type (interior, Dirichlet, Neumann) of the offspring's edge is defined as an interior type

if the edge is the interface of two siblings, otherwise it is inherited from that of the parent.
Step 4: The relation (south, east, etc.) between each offspring and its neighbor is newly defined if

the neighbor is its sibling, otherwise it is inherited from its parent.
Step 5: Set the data (coordinates, node number, etc.) of new regular nodes in the family. The

attributes of an old node are inherited by the offspring that shares the node with its parent.

Fig. 7. Refinement procedure.

5 8 4
~.:.iiii#:.:.:,:.:.:.:.:.:.:.:.:.:::.:.:.:.:.:.:.:.:.:.:.:.: :::

i!!!iiiiiiiiii!iiiiiiiliiiiiii iii iii!iiiill ii !!!!i!iiiiii!iii!iiii 1
 ii!i!iiiiliiii iiiiii!iiiiiiilililililiiiiiiiiiiiiiiiii! i!iiiii!iiiii ililiiii ii!iiiiiiiiii!i!i!i!i!iii!i!i

iii!i i iiiiiii}i i
0 7 16 18 11

13 22 3
.

r~...::::~,

~ ~ 21

• . , ,

~ "~':':':':':'~' r 12

Fig. 8. A 1-irregular FE mesh.

Fig. 8 shows a particular 1-irregular mesh, i.e., the maximum number of irregular nodes (marked
by ×) on an element side is one. In implementation, no degrees of freedom will be associated with
these irregular nodes. Accordingly, the support of shape functions defining a basis for a finite element
space should change adaptively with regular nodes, for example, the shaded subdomains ~26, ~217 and
Q21 are the supports of the shape functions corresponding, respectively, to the regular nodes 6, 17
and 21. The finite element spaces so constructed preserve the conformality required by the standard
finite element approximation provided that some special element constraint methods [10] are used to
invoke continuity across interelement boundaries of elements of different size.

For FV approximation, control volumes have to adapt accordingly to their dual elements. Thus
23 control volumes in the dual mesh of Fig. 8 are shown, in dotted lines, in Fig. 9. Comparing
Figs. 8 and 9, one can easily observe that it is impractical to develop refinement schemes based on
control volumes, since shapes of volumes differ dramatically in comparison with those of elements,
especially if a data structure were associated with volumes. Using the 1-irregular FE mesh refinement
scheme, thirteen different patterns of boundaries of control volumes in the reference element can be
classified depending on how many and where irregular nodes are located in the element, see Fig. 10.

Jinn-Liang Liu et al. / Applied Numerical Mathematics 21 (1996) 439--467 4 5 5

5 8 4 1 3 2 2 3
• . • . Q . •" Q "_ •

. ~ - • - o 2 1
2 0 i :

........ ~ i

9 • • x • ~ • ~ e 1 2
6 1 4 1 0

l a ' ' l , , * , , , l l l l l ~ H l l I H , , , , , H , , I H H ~ H H , H , , -

. ~ - • • • -: ~

1 5 1 9 1 7 ~
* , H I ~ H H t H H , , , t H , H H I H H I , J H H ~ , , , I , H H 2

• . • ; • ~ • ~ • ~ • . Q

0 7 1 6 1 1 8 11 2

F i g . 9 . A 1 - i r r e g u l a r F V m e s h .

l i l

i i

~lrlnnlnlolo

l l t l t t l l l l l

Ira°::::::: i
nIHaIHHU i

........... i i
i i l | l | l l l l i

: !
uIHnHnHn i

--- Hi

II00aUl011U~Iuunnn|IIn

' I
7t|llullulllu

i l ~_ -'2
F i g . 10 . B o u n d a r y p a t t e r n s o f c o n t r o l v o l u m e s in e l e m e n t .

456 Jinn-Liang Liu et al. / Applied Numerical Mathematics 21 (1996) 439~167

5. Test model problems

In this section, we present three model problems for which four user classes Stokes, StreamFunc,
Semiconductor, and AdvecDiffus are respectively derived from the abstract classes LSFEM, FEM,
Variatnllnq, and FVM. The first model problem is described with more details from a user's viewpoint
while the other two are briefly illustrated.

5.1. A 2D driven cavity flow

The use of least-squares principles for the approximate solution of the Navier-Stokes equations of
incompressible flow has been increasingly studied in the past few years, we refer to [6] for further
references. Our adaptive implementation of LSFEM is illustrated by a model problem of the Stokes
equations cast into a first-order system involving the velocity, vorticity, and pressure as dependent
variables.

5.1.1. Mathematical modeling
By introducing the vorticity w = ~v/Ox - Ou/Oy, the 2D dimensionless Stokes equations can be

written as

Z u =

0 0 u~,,

o o - . ~ ~
& 0 0 0x Oy

~ 1 0 0y ~x
P

= f in S2, (5.1a)

where u and v are the z and y components of velocity, p the total pressure, u the inverse of Reynolds
number (Relnv) and fl and fa the given body forces. Let boundary conditions be written in operator
form as

R u = go on ~J2. (5.2b)

The LSFEM for (5.1) is based on the minimization of the least-squares functional

J(v) = ~ (L v - f) . (Lv - f) dxdy
. J

$2

on the Sobolev space

S = {v • [g '(J2)]4: Rv = gD on ~/2}.

The minimizer u • S of J equivalently solves the variational problem

~(~ , , , ,) := [(L~, . Lv)dxdy = [(S" Lv)dxdy =: F(~), W • S. (5.2)
S2

In flow simulation, it is often necessary to calculate the stream function of the flow. Using the
velocity field, the stream function ¢ of (5.1) can be determined by solving another variational problem

B(¢,~) : : / (r e . W)dxdy = / (~ - Vx)~dxdy =: F(~). (5.3)
o ,

£2 £2

Jinn-Liang Liu et al. /Applied Numerical Mathematics 21 (1996) 439-467 457

UI=O
U2--O

U1=1
U~=O

P=O

'///////////-.'//////.,'//////,~//////////H////~///////~
Ua=O
U2=O

UI=O
U2:0

(0,1)
4

21

9

13

1
(o,o)

2~ 8

19'

A
~-2 s

10 6

18 3

17q

16 7

14 2

Fig. 11. Problem definition. Fig. 12. Initial mesh.

(1,1)

(1,0)

5.1.2. Definition of input member functions
For the 2D driven cavity flow problem defined in Fig. 11, a list of C++ programs of the user classes

Stokes and StreamFunc, an input file containning the data of the initial mesh, and the main program
are given in the appendix.

5.1.3. Output
Starting with the initial mesh shown in Fig. 12, AdaptC++ automatically generates a sequence of

approximate solutions on the corresponding adaptive meshes until the relative error is less than 0.01
or the total number of degrees of freedom is greater than 100,000 a default value in Adaptor. The
final mesh is given in Fig. 13 which was obtained by invoking the member function PostProcess of
Adaptor. Moreover, the diagrams of the computed vorticity, velocity, and stream function are given
in Figs. 14, 15 and 16, respectively. These diagrams were obtained by means of the same function
PostProcess redefined in Stokes. Figs. 13-16 evidently show that AdaptC++ is effectively capturing
the singular behavior of the problem which occurs at the top comers.

5.2. A simulation of reverse biased pn-junctions

The use of the class Variatnllneq is demonstrated by a device simulation model given in [19]. We
consider a device occupying a bounded polygonal domain ~2 C ~2 whose stationary behavior is ruled
by the drift-diffusion equations

- d i v (e V ¢) -= q(D - n + P),

divJn = qR, Jn = q (DnVn - #nnV ¢) ,

divJp = - q R , Jp = - q (D p V p - #ppV¢),

where usually the electric potential ¢ and the carrier concentrations n and p for electrons and holes
are unknown while the permittivity e, the doping profile D, the elementary charge q, the electron and
hole diffusivities Dn and Dp, the electron and the hole mobi!ities/Zn and #p, and the recombination-
generation rate R are given parameters of the problem.

458 J inn-Liang Liu et al. / A p p l i e d N u m e r i c a l M a t h e m a t i c s 21 (1 9 9 6) 4 3 9 - 4 6 7

I

I , , I

i

I ~-I~ o.8

O.6

I 0.4

0 . 2

0

0 0.2 0.4 0.6 0.8 1 0 0 . 2 0.4 0.6 0.8 1

Fig. 13. Final mesh. Fig. 14. Vorticity contour.

1t
0 , 6

U.4

0 . 2

\
\

o.2 o'.¢ 0'.6 o .e ~ o 0 .2 o .4 0 .6

Fig. 15. Velocity field. Fig. 16. Streamline

J

i

/

The boundary 0/2 of ~ is spilt into (ohmic) contacts 0~2c and insulating segments 0~2 I. This leads
to Dirichlet boundary conditions for ~b, n and p on a~2c and vanishing electric field V~b and current
densities dn, Jp on ~12i. This model whose advantages and limits are thoroughly discussed in [31] can
be considerably simplified under strongly reverse bias conditions. The geometric data of the model is
given in Fig. 17.

• {oD\°U~ uo 0 -- 05 'o Duo oq~_ = d~ [(U),H ~ 05} = (U)H

O.IOtl~

,{~ uo .o.~ o ~ (~'~)~ ~ o~_ I(~)~ ~ ~} = :q

los XOAUO0 oq~ U! a pu~ n suo!lounj Iie aoj

G G

"E'g IOpOl, q jo Mtotuoo~ ieuo!lmndtuoD "L['~!z[

(0£~ '0) : 9

(oc 'o): -4

(0g '0LC):3

(0 '0L¢) : O

(0 '0~t,):0

(0eL '0~t~) : n

(O£L '06 I.) : V

,,,rf : ~!un

epoq~,eo : ~o

apoJ~,Oele-dots : I'0

epouv : 00

0

Q

tHHt.tt~

~.,,,,......,,,,:,:

tCHCtHH

C',2C,',','i
tHHt.tH

~,','4,~'~', U UO01IIS ~<'~',?:,':.~', _ •.

~,,,,,,,,-~,,--~

~(,~:,.~
,HtH~H

,;--;,',,,,,~,'.::..- .~....: ..

~":','! ~iii~:::::::::::::::::::::::::::::::: :::::::::::::::: :"::::: :~ ::::::::

g~~", :i:::::::::::i: :i:i:i:?:i:i:i:i:~::::: :::::::::::::::::::

fl V

6~'P Z9P-6gP (966I) I~ sol.~vutaztm14! lDO~..~aUmN Pa1.1ddv / "I v ~a m.7 guv?'-l-UUlf

460 Jinn-Liang Liu et al. /Applied Numerical Mathematics 21 (1996) 439--467

T h e permitt iv i ty ~ is g iven by e : S0~r, where

1 air,
E0 = 8 . 8 5 4 . 1 0 -14, er --- 3 .9 oxide ,

11.7 s i l icon.

T h e d o p i n g prof i le D has the va lues

- 1 0 1 7 c m -3 in p + ,

D = 1019 c m -3 in n +,

8 • 1013 c m -3 in n -

A n d the interfaces 71 and "/2 o f p + - n - and n + - n - are g iven as

x 2 (y - 0 . 0 5 3) 2

71 : : 1302 + 202 - 1,

(x - 0 . 0 3 7) 2 (y - 0 . 053) 2
0'2 : = 50 z + 52 - 1.

0.07

0.06

0 . 0 5

0.04

0 . 0 3

0.02

0 . 0 1

1

0.01 0.02 0.03 0.04 0

Fig. 18. Initial mesh of Model 5.2.

0 . 0 1 0 . 0 2 0 . 0 3

Fig. 19. Final mesh of Model 5.2.

0.04

Jinn-Liang Liu et al. /Applied Numerical Mathematics 21 (1996) 439467 461

i

0 .8

0 0.2 0,4 0.6 0.8 1

Fig. 20. Initial mesh of Model 5.3.

1

0 . 8

0 . 6

I lll .
i i i i i i i:i:i:iiiiiiiiiiiiii iiiiiiiiiiiiiiiiiii

li i i

0.2 0.4 0.6 0.8 1

Fig. 21. Final mesh of Model 5.3.

The elementary charge q = 1.602- 10 -19. The boundary conditions are

{o
¢0 o n t o ,

¢lan = on
0 on 6'2,

with ~bo = 1000. Along AB a linear increase of the potential is assumed which then is kept zero along
BCDE, and this device is assumed to be isolated along ~ 2 i = FG so that

~n ¢ = 0.
0~2i

The initial and final meshes are given in Figs. 18 and 19, respectively.

5.3. An advection-diffusion problem

The finite volume class FVM is tested by the following linear advection-diffusion problem given
in [25]

- V . (u V u - a u) + 2 u = f , i n S 2 = (0 , 1) 2 ,

u = 0 , o n i o n ,

where a = (I, I), u the inverse of Reynolds number and the body force f is given so that the exact
solution u = zy(l - e x p ((x - l) / u)) (l - e x p ((y - l) /u)) . This is a typical singularly perturbed
problem, whose solution has elliptic boundary layers along the two sides {(I, y) I 0 < y < I } and
{(x, I) I 0 < x < I}. For u = 0.I, the initial and final FE meshes are given in Figs. 20 and 21,
respectively. Note that the finite volumes are implicitly embedded in these finite element meshes.

6. Conc lud ing remarks

It is shown that an integration of different numerical methods applying to various mathematical
model problems in a unified adaptive environment is possible provided that all adaptive methods share

462 Jinn-Liang Liu et al. /Applied Numerical Mathematics 21 (1996) 439-467

a common data structure. Toward this unified approach, the following aspects of AdaptC++ are also
discussed and illustrated.

Theoretical aspect: We present a generic formulation suitable for adaptive FE and FV approximations
of first-order and second-order systems of boundary value problems, with a subclass corresponding to
second-order variational inequalities. A posteriori error estimation and refinement scheme are two basic
components in adaptive methodology. We have used the weak residual error estimators [1,20,21] which
are simple to implement in the sense that they disregard input model problems and only rely on very
general linear and bilinear forms and boundary conditions. This is in contrast to other estimators, see,
e.g., [4], that depend on the problem, the location of singularities, the quantity of interest (displacement,
stress, etc.), and the spectral order of approximation. The data structure depends very much on the
refinement scheme. To unify adaptive FE and FV methods, we have chosen the 1-irregular mesh
refinement scheme since the complexity of the construction of adaptive control volumes increases as
the irregularity increases, see Fig. 10.

lmplementational aspect: The concepts of inheritance and encapsulation of OOP play the most
important role in our development of the code. Both of the generic formulation and the refinement
scheme lead naturally to a hierarchical structure which is perfectly compatible with the hierarchical
property of the programming language itself. Data encapsulation helps define classes with clearly set
contours. Inheritance organizes classes into a tree. Consequently, the program is much more readable
and modular than in a procedural language. It definitely promotes modification, extension, maintenance,
and reuse of the code. In addition, the implementation of an object-oriented program requires less
time and produces small programs. The size of AdaptC++ amounts to 297 KB. We also feel that
the code is very easy to use. For example, the definition of user classes is quite simple and general.
Essential boundary conditions can be easily modified or changed since they are implemented as an
auxiliary class. The auxiliary class and the initial mesh file are independent of the numerical methods.
Consequently, the same input information (model problem, boundary conditions, and initial data) can
be used for all methods (FEM, FVM, conjugate gradient methods, multigrid methods, etc.) provided
by the code. Moreover, the performance of different methods can be evaluated on a more uniform
basis.

We next briefly remark on the choice of the language C++. Smalltalk and C++ are the most widely
used OOP languages today [33]. These two languages differ on some basic design tradeoffs such
as weak typing vs. strong typing, dynamic binding vs. static binding, single inheritance vs. mul-
tiple inheritance, etc. [33]. Smalltalk, used in [36], is a pure object language that is very simple
to leam and is relatively easier to use than C++. However, since C is currently the dominant de-
velopment language in the PC and workstation market, there are many well-developed numerical
programs in C that can be readily and easily incorporated into C++ programs. For example, the source
codes of the linear system solvers listed in the flow chart of Fig. 1 are written in C. Our prefer-
ence of C++ is primarily based on our experience with the C environment and its easy translation to
OOP.

The current version of AdaptC++ only addresses steady 2D problems. Its extension to transient 3D
problems evidently can be based on the same governing principles, although this is by no means a
straightforward modification. The most fundamental change will be the redesign of the data structure,
adaptive refinement algorithm, and the construction of shape functions associated with 1-irregular 3D
meshes.

Jinn-Liang Liu et al. /Applied Numerical Mathematics 21 (1996) 439-467 463

Acknowledgements

The authors would like to thank the referees for their helpful comments and suggestions.

Appendix A

In this section, we give a complete list of user programs (Figs. A. 1-A.7) for the 2D driven cavity
flow discussed in Section 5.1. The adaptive procedure can be easily understood by the main program
illustrated in Fig. A.1.

For the model problem (5.1a), the corresponding generic functions p and q in (2.1) are zero func-
tions. The user-defined functions GenericP(x,y) (Fig. A.4) and GenericQ(x,y) need not explicitly define
each one of zero coefficient functions CP(i , k), CQ(i , k), etc. in (2.2), since they are initialized to
zeros in the constructor of the class Adaptor.

include "Stokes.hpp"
int main(int argc, char *argv[])
{

Stokes driven;
driven.ReadlnitMesh0;
do
{

driven.GetStiffMatrix0;
driven.GetLoadVector0;
driven.lmpBdryCond0;
driven.Solve0;
driven.GetApproSolNorm0;
driven.GetApproErrNorm0;
driven.AdaptiveRefine0;
driven.RelativeError0;

} while(driven.Tolerance0 > driven.RelativeError0)
driven.PostProcess0;

Fig. A. 1. The main program for the 2D driven cavity flow.

(initial nodes,elements)
(21,4)

node-index : coordinate (x, y)
1 : (0 , 0) 2 : (1 , 0) 3 : (1 , 1) 4 : (0 , 1) 5:(0.5, 0.5) 6:(0.5,0)
7:(1 , 0.5) 8:(0.5, 1) 9:(0,0.5) 10:(0.25, 0) 11:(0.5,0.25)

Fig. A.2. The initial mesh (Fig. 12).

464 Jinn-Liang Liu et al. /Applied Numerical Mathematics 21 (1996) 439-467

12:(0.25,0.5) 13:(0,0.25) 14:(0.75, 0) 15:(1 ,0.25) 16:(0.75, 0.5)
17:(1 ,0.75) 18:(0.75, 1) 19:(0.5,0.75) 20:(0.25, 1) 21 :(0,0.75)

element-index : node (nl , n2, n3, n4, n5, n6, n7, n8),
bdry-type (s, e, n, w), neighbor (s, e, n, w)
1 :(1,6,5,9,10,11,12,13),(D,I,I,D),(0,2,4,0)
2:(6,2,7,5,14,15,16,11),(D,D,I,I),(0,0,3,1)
3:(5,7,3,8,16,17,18,19),(I,D, D,I),(2,0,0,4)
4:(9,5,8,4,12,19,20,21),(I,I,D,D),(1,3,0,0)

Fig. A.2. (continued).

Stokes::Stokes0
{

Relnv = 1.0;
sol_dim = 4;
elem_order = BIQUADRATIC;
solver_type = CG;
norm_type = ENERGY;
errest_type = BLTENT;
refine_criterion = 0.1 ;
tolerance = 0.01;
post_process = YES;

}

Fig. A.3. The constructor of the class Stokes (initialization).

void Stoke::GenericP(x,y)
{
}

void Stoke::GenericR(x,y)
{

CR(3,3)=1.0;
CRX(1,4)=1.0;
CRX(2,3)=-Relnv;
CRX(3,2)=-1.0;
CRX(4,1)=1.0;
CRY(1,3)=Relnv;
CRY(2,4)=1.0;
C RY(3,1)=1.0;
CRY(4,2)=1.0;

Fig. A.4. Member functions of the class Stokes.

Jinn-Liang Liu et aL /Applied Numerical Mathematics 21 (1996) 439-467 465

BdryData Stokes::GenericGD(x,y)
{

BdryDa,a bc;
if (y==1.0)
{

if (xT=0.0 && x!=1.0)
{

bc.SetBCData(1,1.0);
bc.SetBCData(2,0.0);

}
}
else
{

bc.SetBCData(1,0.0);
bc.SetBCData(2,0.0);

}
if (x==0.5 && y==0.0)
{

bc.SetBCData(4,0.0);
/* The first argument represents the fourth component
the pressure which is prescribed to be zero,
the value of the second argument. */

}
return bc;

}

Fig. A.5. A member function of the class Stokes.

void StreamFunc::GenericP(x,y)
{

CPX(1,1)=-1.0;
CPY(1,1)=-1.0;

}

Fig. A.6. A member function of the class StreamFunc.

BdryData StreamFunc::GenericGD(x,y)
{

BdryData bc;
bc.SetBCData(1,0.0);
return bc;

Fig. A.7. A member function of the class StreamFunc.

466 Jinn-Liang Liu et al. /Applied Numerical Mathematics 21 (1996) 439-467

References

[1] S. Adjerid and J.E. Flaherty, Second-order finite element approximations and a posteriori error estimation
for two-dimensional parabolic systems, Numer. Math. 53 (1988) 183-198.

[2] M. Ainsworth, J.T. Oden and C.Y. Lee, Local a posteriori error estimators for variational inequalities, Numer.
Methods Partial Differential Equations 9 (1993) 23-33.

[3] A.K. Aziz and J.-L. Liu, A weighted least squares method for the backward-forward heat equation, SlAM
J. Numer. Anal. 28 (1991) 156-167.

[4] I. Babugka and A. Miller, The post-processing approach in the finite element methods, Internat. J. Numer.
Methods Engrg. 20 (1984) 1085-1109, 1111-1129 and 2311-2324.

[5] I. Babu~ka and W.C. Rheinboldt, Error estimates for adaptive finite element computations, SlAM J. Numer.
Anal. 15 (1978) 736-754.

[6] P.B. Bochev and M.D. Gunzburger, Accuracy of least-squares methods for the Navier-Stokes equations,
Comput. & Fluids 22 (1993) 549-563.

[7] C. L. Chang, A least-squares finite element method for the Helmholtz equation, Comput. Methods Appl.
Mech. Engrg. 83 (1990) 1-7.

[8] K. Clark, J.E. Flaherty and M.S. Shephard, eds., Proceedings of the 3rd ARO Workshop on Adaptive
Methods for Partial Differential Equations, Appl. Numer. Math. 14 (1-3) (1994).

[9] P.I. Crumpton, J.A. Mackenzie and K.W. Morton, Cell vertex algorithms for the compressible Navier-Stokes
equations, J. Comput. Phys. 109 (1993) 1-15.

[10] L. Demkowicz, J.T. Oden, W. Rachowicz and O. Hardy, Toward a universal h-p adaptive finite element
strategy. Part 1. Constrained approximation and data structure, Comput. Methods Appl. Mech. Engrg. 77
(1989) 79-112.

[11] J.C. Diaz, R.E. Ewing, R.W. Jones, A.E. McDonald, D.U. von Rosenberg and L.M. Uhler, Self-adaptive
local grid refinement application in enhanced oil recovery, in: Proceedings Fifth Internat Sympos on Finite
Elements and Flow Problems, Austin, TX (1984).

[12] Y. Dubois-P~lerin, T. Zimmermann and P. Bomme, Object-oriented finite element programming: II. A
prototype program in Smalltalk, Comput. Methods Appl. Mech. Engrg. 98 (1992) 361-397.

[13] G.L. Fenves, Object-oriented programming for engineering software development, Engrg. Comput. 6 (1990)
1-15.

[14] B.W.R. Forde, R.O. Foschi and S.E Stiemer, Object-oriented finite element analysis, Comput. & Structures
35 (1990) 355-374.

[15] R. Glowinski, J.L. Lions and R. Tr6moli6res, Numerical Analysis of Variational Inequalities (North-Holland,
Amsterdam, 1981).

[16] R.H.W. Hoppe and R. Kornhuber, Adaptive multilevel method for obstacle problems, SlAM J. Numer. Anal.
31 (1994) 301-323.

[17] B.-N. Jiang and C.L. Chang, Least-squares finite elements for Stokes problem, Comput. Methods Appl.
Mech. Engrg. 78 (1990)297-311.

[18] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications
(Academic Press, New York, 1980).

[19] R. Kornhuber and R. Roitzsch, Self-adaptive finite element simulation of bipolar, strongly reverse-biased
pn-junctions, Comm. Numer. Methods Engrg. 9 (1993) 243-250.

[20] J.-L. Liu, On weak residual error estimation, SIAM J. Sci. Comput., to appear.
[21] J.-L. Liu and W.C. Rheinboldt, A posteriori finite element error estimators for indefinite elliptic boundary

value problems, Numer. Funct. Anal. Optim. 15 (1994) 335-356.
[22] R.I. Mackie, Object oriented programming of the finite element method, lnternat. J. Numer. Methods Engrg.

35 (1992) 425-436.

Jinn-Liang Liu et al. / Applied Numerical Mathematics 21 (1996) 439~167 467

[23] S.E McCormick, Multilevel Adaptive Methods for Partial Differential Equations (SIAM, Philadelphia,
1989).

[24] C.K. Mesztenyi and W.C. Rheinboldt, NFEARS: A nonlinear adaptive finite element solver, Computer
Science TR-1946, University of Maryland, College Park (1988).

[25] J.J.H. Miller and S. Wang, An exponentially fitted finite volume method for the numerical solution of 2D
unsteady incompressible flow problems, J. Comput. Phys. 115 (1994) 56-64.

[26] J.T. Oden, J.M. Bass, C.-Y. Huang and C.W. Berry, Recent results on smart algorithms and adaptive methods
for two- and three-dimensional problems in computational fluid mechanics, Comput. & Structures 35 (1990)
381-396.

[27] J.T. Oden and N. Kikuchi, Theory of variational inequalities with applications to problems of flow through
porous media, Internat. J. Engrg. Sci. 18 (1980) 1173-1284.

[28] J.T. Oden and N. Kikuchi, Contact Problems in Mechanics (SIAM, Philadelphia, 1988).
[29] W.C. Rheinboldt and C.K. Mesztenyi, On a data structure for adaptive finite element mesh refinements,

ACM Trans. Math. Software 6 (1980) 166-187.
[30] S.-P. Scholz, Elements of an object-oriented FEM++ program in C++, Comput. & Structures 43 (1992)

517-529.
[31] S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer, New York, 1984).
[32] B. Stroustrup, The C++ Programming Language (Addison-Wesley, Reading, MA, 1986).
[33] A. Taylor, Object-Oriented Information Systems: Planning and Implementation (Wiley, New York, 1992).
[34] R.E. White, An Introduction to the Finite Element Method with Applications to Nonlinear Problems (Wiley,

New York, 1985).
[35] O.C. Zienkiewicz, Computational mechanics today, Internat. J. Numer. Methods Engrg. 34 (1992) 9-33.
[36] T. Zimmermann, Y. Dubois-P~lerin and E Bomme, Object-oriented finite element programming: I.

Governing principles, Comput. Methods Appl. Mech. Engrg. 98 (1992) 291-303.

