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A study on the active control and manipulation of spin dynamics and transport in
semiconductors: [I] Electric dipole induced spin resonance in mesoscopic system;
[11] Asymmetries in intrinsic spin-Hall effect in low in-plane magnetic field; [I11] Spin-Hall

effects in a Josephson contact.
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Abstract:

We study the quantum transport in mesoscopic structure: [I] Electric dipole induced spin
resonance in mesoscopic system; [II] Asymmetries in intrinsic spin-Hall effect in low in-plane
magnetic field; [111] Spin-Hall effects in a Josephson contact

[1] Electric dipole induced spin resonance in mesoscopic system:
This thesis focuses on electric-dipole-induced spin resonance[1] in the mesoscpic system.

Furthermore, a quantum channel is introduced to explore possible spin polarization of the
spin-orbital effect from quantum resonance allowed by such transport system. A major finding in
this thesis is that generation of polarization occurs when the energy offered by electric field
matches the one half of Zeeman gap by considering inelastic scattering process between
intraband, different branches in the same subband. The intraband transition is not caused by
breaking symmetry in y-direction, whereas a static in-plane magnetic which mix two spin states

of o,ando, . These analytical results are derived with a perturbed method and the dominant

effects coming from one side band approach,[2] and the other result of numerical iteration is
compared.

And the important of the evanescent modes exists for long time but until recent get more and
more attention.[3-5] We study total spectrum of electron states which contain evanescent states in
different external field magnitudes. The results are obtained analytically by secular equation and
quadratic equation. In this paper, the all calculation include the affect of evanescent modes.

[11] Asymmetries in intrinsic spin-Hall effect in low in-plane magnetic field:

Effects of low in-plane magnetic field on bulk spin densities and edge spin accumulations of a
diffusive two dimensional semiconductor strip are studied. Focusing upon the Dresselhaus-type
intrinsic spin-orbit interaction (SOI), we look for the symmetry, or asymmetry, characteristics in
two magnetic field orientations: along and transverse to the strip. For longitudinal field, the out-
of-plane spin density Sz exhibits odd parity across the strip, even parity in the magnetic field, and
is edge accumulation. For transverse field, Sz becomes asymmetric in both spatial and field
dependences, and has finite bulk values for finite magnetic fields. Our results support utilizing
low in-plane magnetic fields for the probing of the underlying SOI.

Keywords:

Spin-orbit interaction, spin-Hall effect, bulk spin densities, spin accumulation, isotropic scatterer,
anisotropic scatterer, spin resonance, in-plane magnetic field, evanescent mode, spin polarization,
Rashba SOI, Dresselhaus SOI, Zeeman gap, intraband transition, Josephson contact



= ~ Motivations and goals

[1] Electric dipole induced spin resonance in mesoscopic system:

(1) Electric-dipole-induced spin resonance :

The basic physical concepts of EDSR are analogous to those of nuclear magnetic resonance
(NMR). Our fundamental idea of the paper base on the concept that employ an effective magnetic
field due to spin orbital interaction(SOI) instead of the external rotating magnetic field.[1]

(2) Energy spectra of Evanescent mode :

The intraband transition, transition between different branches in the same subband should
involve evanescent modes. The evanescent mode is important in the transport property and these
has been pointed out by other groups also.[3-5] Besides, we will discuss another kind of
Evanescent modes outside of the gap which have not been discussed numerously so far. The two
kinds of Evanescent modes have different behaviors individually.

[11] Spin Orientation and spin-Hall effect induced by tunneling electrons:

Generation and manipulation of spin densities by electrical means are major goals of
semiconductor spintronics that are made possible by spin-orbit interactions (SOI). [1-8] SOls
being considered are either of the intrinsic-type: the Rashba [2,5,7,9-11] and the Dresselhaus
SOls; [4,8,12,13] or of the extrinsic-type: the impurity-induced SOI. [1,3,6,10,14] These SOls
contribute, in an external electric field, to either spin densities in the bulk or spin accumulations
at lateral edges, or both. Out-of-plane spin polarization is of particular interest because it permits
efficient optical probe by Kerr rotation. The edge spin accumulation, according to the spin-Hall
effect (SHE), has an out-of-plane component, and is resulted from a transverse spin current
induced by the electric field. [1,4-6] However, for the case of intrinsic SOI, consensus has been
reached that the SHE is quenched by background scatterers, be they isotropic or anisotropic, [15]
as long as the momentum dependence in the intrinsic SOI is linear. Meanwhile, no out-of-plane
bulk spin densities is expected in an electric field. [2,10,16] When applying an in-plane magnetic
field to a two-dimensional (2D) systems, one might be led by the in-plane nature of the effective
spin-orbit magnetic field, h ¢= <h(k)>= 0, that there were no out-of-plane spin densities. This is
shown not to be the case by Engel et al. 11 for a Rashba-type 2D system, where out-of-plane spin
densities are found when the external in-plane magnetic field is longitudinal: a configuration
studied by recent experiments. [17,18] However, either the scatterer has to be anisotropic or the
electron dispersion has to be nonparabolic for the effect to hold. [11] In this work, we have
shown that out-of-plane bulk spin density can be generated in another configuration with less
restrictive assumptions. The configuration is a Dresselhaus-type 2D system and the external
in-plane magnetic field is in a transverse orientation. More importantly, the effect holds for
isotropic background scatterers and for parabolic dispersion for electrons. Our calculation has
included the cubic Dresselhaus SOI.

[I11] Spin-Hall effects in a Josephson contact



The Josephson tunneling through a 2D normal contact with the spin-orbit split conduction band
has been studied in the diffusive regime. Linearlized Usadel equations for triplet components of
the pairing function revealed a striking similarity to the equations of spin diffusion driven by the
electric field in normal metals. We predict that the out-of-plane spin-Hall polarization
accumulates towards lateral sample edges and the in-plane polarization is finite throughout the
entire normal region. The spin-Hall current is absent in the considered case of the stationary
Josephson effect.

= ~ Results and discussion:

[ 1] Electric dipole induced spin resonance in mesoscopic system
The Hamiltonian is written as

2

H :i[ﬁ+gﬂ(t)0(h—|x|)} +[Q(r)+e,5\(t)6’(£—|x|)j+50}&+vc
2m c 2 2

where

Q(p)=apxé,

E(t) = E, cos(wt)% , A=—c[ dtE(t) = o sinqutyz
w
L . .
H(E—|x|) is a step function

- g/u —
bO = TO BO
« is Rashba constant

. 1.
V. comfinement potential —=m (ZWy )2 y?
m" effective mass

The evanescent modes are found that their behavior quite different in weak (B <Bc) and
strong magnetic field (B > Bc). The critical field Bcis given by the Rashba spin-orbit interaction
(typically Bc10mT).

The three following energy dispersion figures corresponding to three magnitude magnetic field .



aph=0.03 b0=0.5(bc) bc=0.00045
3 T T T

IS
T

-4 | | | | | | | | |
-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

Figl : X-axis is momentumk (Unit : 1.89x10%m) ; Y-axis is Energy (&—0.16)/b, (Unit :
59.5mev ) Red curves : Propagating mode ; Blue curves : Evanescent mode. When
(¢—-0.16)/b,<-1, the two modes couple together. The magnetic energy is small then Rashba
energy and the energy dispersion is Rashba-like.
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Fig2 - X-axis is momentum k (Unit : 1.89x10%m) ; Y-axis is Energy (&—0.16)/b, (Unit :
59.5mev ) Red curves : Propagating mode ; Blue curves : Evanescent mode.When
(£—-0.16)/b,<-1, the two modes couple together. The magnetic energy is equal to Rashba energy

and the energy dispersion bottom is flat.
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Fig3 - X-axis is momentum k (Unit : 1.89x10%m) ; Y-axis is Energy (&—0.16)/b, (Unit :
59.5mev ) Red curves : Propagating mode ; Blue curves : Evanescent mode. When
(¢—-0.16)/b,<-1, the two modes couple together. The magnetic energy is lager then Rashba
energy and the energy dispersion is Zeeman-like.

We also studied spin density variation in position with different frequency. And the different
frequency cause first side band have different evanescent mode which affect strongly on spin
density.
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Fig4: The energy locates the center of Zeeman gap. The fluctuation of o, spin density has faster
saturation when the first side band locates at the lager evanescent mode, see the relation of the
side band and evanescent mode in figl. And the spin density becomes larger when we turn on the
electric field and tune up the frequency. Electric field Ey is in unit of 0.338 KV/cm.
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Fig5 : The energy locates the center of Zeeman gap. The fluctuation of o, spin density has
faster saturation when the first side band locates at the lager evanescent mode, see the
relation of the side band and evanescent mode in figl. And the spin density becomes larger
when we turn on the electric field and tune up the frequency. Electric field Ep is in unit of
0.338 KV/cm.
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[ 11' ] Asymmetries in intrinsic spin-Hall effect in low in-plane magnetic field
(see Appendix A, preparing to submit to Physical Review B )

[111] Spin-Hall effects in a Josephson contact

The distinct feature of this work is that the predicted effect here occurs as a equilibrium result.
This is in sharp contrast with the spin-Hall effect, where non-equilibrium spin polarization in the
bulk or the non-equilibrium spin accumulation at edges are generated by a driven electric field or
an influx of charge current. This work has been submitted to Physical Review Letters
(arXiv:0801.4419v1 for an earlier draft in archive, also see Appendix B).



Appendix A:



Asymmetries in intrinsic spin-Hall effect in low in-plane magnetic field

L. Y. Wang!, C. 8. Chu', A. G. Mal'shukov'=>
' Department of Electrophysics, National Chiae Tung University, Hsinchu 30010, Taiwan
*Institute of Spectroscopy, Russian Academy of Science, 142190, Troitsk, Moscow oblast, Russia

Effects of low in-plane magnetic field on bulk spin densities and edge spin accumulations of a
diffusive two dimensional semiconductor strip are studied. Focusing upon the Dresselhans-type
intrinsic spin-orbit interaction (SOI), we look for the svmmetry, or asymmetry, characteristics i
two magnetic field orientations: along and transverse to the strip. For longitudinal field, the out-
of-plane spin density 5. exhibits odd parity across the strip, even parity in the magnetic field,
and 15 edge accumulation. For transverse field, S: becomes asymmetric in both spatial and field
dependences, and has finite bulk values for finite magnetic fields. Our results support utilizing low
in-plane magnetic fields for the probing of the underlying SOI.

PACS numbers: 72.25.De, 71.70.Ej, 73.40.Lq

I. INTRODUCTION

Generation and manipulation of spin densities by elec-
trical means are major goals of semiconductor spin-
tronlcs that are made possible by spin-orbit interac-
tions (SOI).2% S0Is being considered are either of the
intrinsie-type: the Rashba®®7* ' and the Dresselhans
SOIs;4%1213 or of the extrinsic-type: the impurity-
induced SOLY3E10M Thege SOIs contribute, in an ex-
ternal electric field, to either spin densities in the bulk
or spin accumulations at lateral edges, or both. Out-of-
plane spin polarization is of particular interest because
it permits efficient optical probe by Kerr rotation. The
edge spin accumulation, according to the spin-Hall effect
(SHE), has an out-of-plane component, and is resulted
from a transverse spin current induced by the electrie
field.}* % However, for the case of intrinsic SOI, consen-
sus has been reached that the SHE is quenched by back-
gronnd scatterers, be they isotropic or anisotropic,'® as
long as the momentum dependence in the intrinsic SOI
15 linear. Meanwhile, no out-of-plane bulk spin densities
is expected in an electric field.21%1% When applying an
in-plane magnetic field to a two-dimensional (2D) sys-
tems, one might be led by the in-plane nature of the ef-
fective spin-orbit magnetic field, hog = {h(k)} # 0, that
there were no out-of-plane spin densities. This is shown
not to be the case by Engel et al'' for a Rashba-type
2D system, where out-of-plane spin densities are found
when the external in-plane magnetic field is longitudi-
nal: a configuration studied by recent experiments.!71%
However, either the scatterer has to be anisotropic or the
electron dispersion has to be nonparabolic for the effect
to hold.!! In this work, we have shown that out-of plane
bulk spin density can be generated in another configura-
tion with less restrictive assumptions. The configuration
15 a Dresselhaus-type 2D system and the external in-plane
magnetic field s in a transverse orientation. More impor-
tantly, the effect holds for isotropic background scatterers
and for parabolic dispersion for electrons. Our calcula-
tion has ineluded the cubic Dresselhans SOI.

Another major focus of this work is upon the sym-

metries, or asymmetries, in the bulk spin densities and
the edge spin accumulations with respect to either the
magnetic field or the transverse locations. Reference on
in-plane magnetic fields and their findings. Proposing
the weak in-plane magnetic field characteristics as a use-
ful probe for the SOI mechanism, without the need to
fabricate sample of different erystal orientations.

A thorough study on the low magnetic field character-
ization of the spin densities and aceumulations is impor-
tant for the exploration of Different SOI may be invoked
for different spin-control functionalities because Studies
show that the spin densities or spin accumulations are
intricately dependent on the form of the SOI and on the
effects from background scatterers. As the Rashba and
the extrinsic SOI do not depend on the crystal orienta-
tion but the Dresselhans SOI does depend on the crystal
orientation, to distinguish the SOI might require prepa-
ration of samples with different crystal orlentation, as
have been done by Awschalom. Thus, the pivotal impor-
tance of the SOIs to the spintronics demands a full-seale
development of diagnostic tools for the identification of
the SOI mechanism in a sample.

Recent years, the great potential of the spintronics at-
tracts a lot of studies in manipulation of the electron spin
because the spintronics provides a novel way to combine
the charge dynamics and the spin degree of freedom in the
application of semiconductor devices. One of key issues is
to control the electron spin by the spin-orbit interaction
(SOI) i the semiconductor, which plays an important
role of coupling the electron orbital motion and the spin
degree of freedom. The strength of SOT is much larger in
the semiconductor than in the vacuum.?! One new phe-
nomenon is SHE which refers to the generation of a spin
current transverse to a charge current in non-magnetic
systems in the presence of SOI. The SHE can be under-
stand that the electron spin encounters a transverse force
which is induced by a longitudinal driving electric field.??

The intrinsic and extrinsic SHE can generate spin cur-
rent transverse to an applied electric field due to differ-
ent origins of spin-orbit coupling in the semiconductor.
The intrinsic SHE?® is come from the spin-split band via
either Rashba or Dresselhaus® SOI in the structure in-
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FIG. 1: Top-view schematic illustration of the 2D strip. The
2D strip has width d and its boundaries are at y = £d/2. The
longitudinal electric field E and an in-plane magnetic field B

are applied on the 2D trip.

version asymmetry (SIA) and bulk inversion asymme-
try (BIA) semiconductor, respectively. However, the ex-
trinsic SHE is due to impurity scattering in the skew-
scattering processes, which induce the spin-dependent
propagation of the electron.?®2% The intrinsic SHE has
been experimentally demonstrated for p-doped two-
dimensional electron gas (2DEQG) .27 The extrinsic SHE
also have been performed in several experiments, %

It 1s mteresting to study the SHE in the presence of an
external magnetic field coupling to the spin dynamics.
The spin transport and relaxation of the intrinsic SHE
with a perpendicular magnetic field have been studied
in the diffusion approximation for Rashba SOI.2%?" Re-
cently, Rashba et al. studied the time-dependent electric
field with a static in-plane magnetic field to produce a
z-component spin accumulation via either non-parabolic
band or the anisotropic scatterer.® Lin et al. studied
the spin current and spin-Hall conductivity for short-
range and remote impurities in the case of the intrinsic
SHE with an in-plane magnetic field®!. As known, the
spin current is not conserved and its defimtion still re-
mains an issue.?® However, the spin aceumulation can be
measured directly by Kerr rotation technique.®? There-
fore, it i1s nteresting to study the the behavior of the
spin accumulation versus an in-plane magnetic field near
the boundaries. The symmetric property of spin accu-
mulations have been ohserved experimentally when an
in-plane magnetic field normal to the electric field is
applied with the same magnitude but in the opposite
direction.?2?¢ This symmetric spin accumulation is ex-
plained as the extrinsic SHE in the presence of an in-
plane magnetic field.?** As know, the extrinsic SHE pro-
duces the zero bulk spin density S, which is perpendicu-
lar to 2DEG due to the spin-dependent distribution being
proportional to linear electron momentum.*® Therefore,
the lowest-order spin accumnlation 5, is expected up to
the second order of the in-plane magnetic field. In this
paper, we focus on the behavior of the spin accumula-
tions near boundaries for intrinsic SHE n the presence
of an in-plane magnetic field.

The in-plane magnetic field B} is acted on the 2D
strip with a driving electric field E in the Fig. 1. In

the case of the intrinsic SHE with an in-plane magnetic
field, the diffusion equation can he emploved to investi-
gate the spin accumulation and spin current with bound-
aries. The spin aceumulation which is generated by the
intrinsic SHE can be affected by applying a weak in-plane
magnetic field By (wer < 1, we is cyclotron frequency
due to By and 7 is the momentum relaxation time) in
the diffusion region. In the ahsence of the external mag-
netic field, 1t is known that the intrinsic SHE vanishes for
arbitrary weak disorder in linear Rashba and Dresselhau
cases.*™3° However, the intrinsic SHE can produce a fi-
nite spin accumulation in the cubic Dresselhau caset®
The applied in-plane magnetic field induces two effects
which are the spin precession about the magnetic field
and the spin-charge coupling effect via the magnetic field
coupling to SOI. The spin precession can be interpreted
by a spin processing about the magnetic field with cy-
clotron frequency w.. In the weak magnetic field limit,
the electron spin can encounter many scattering events
within a precession period such that the spin would be
relaxed via impurity scattering processes. Besides, the
direction and magnitude of an effective magnetic field
hp indueced by SOI is related to the electron momen-
tum. In weak SOI case, the spin-split energy due to
S0I 15 much smaller than the disorder energy. This re-
sult causes the mechanism of the spin relaxation, called
D'yakonov-Perel’ (DP) relaxation.! Below, we will ex-
tend non-equilibrinm Green's function method in diffu-
sive region. In Section 11, the spin density and spin cur-
rent will be caleulated in the diffusion approximation in
the presence of the in-plane magnetic field. In Section
III, we have studied the spin accumulation by an applied
in-plane magnetic field with either Rashba or Dresselhau
S0L. The conclusion wonld be presented in Section IV.

II. FORMULATION
A. Spin Density

We use the Keldysh Green's function technique to de-
rive the diffusion equation of charge and spin densities,
which is equivalent to the Boltzmann kinetic equation.*?
By averaging all elastic and spin-independent impurities
in the method of nonequilibrinm Green's function has
been caleulated in our previous work.4® It is know that
the spin accumulation is induced by applying a uniform
electric field to a homogeneous 2DEG with SOI in the
diffusion regime due to the intrinsic SHE. This method
can be generalized in the case of applying in-plane mag-
netic in 2DEG. The SOI term can be expressed as hy, =
hp - & where hp denotes the momentum-dependent ef-
fective magnetic field due to SOI and o=(*,o¥, %) is
Pauli matrix vector. The effective SOI field have spe-
cific forms of (h7.h}) = (aky,, —ak.) for Rashba sor’
and (3, h3) = (Gko (k] — k%), Gky(k* — kZ)) for cubic
Dresselhaus SO1.24 The spin-orbit coupling constants are
o and 4, and # 1s the average of wave funetion in the



direction perpendicular to 2DEG. Both of the in-plane
magnetic field B and the driving electric field E are ap-
plied parallel to 2D strip. One can combine the in-plane
magnetic field with effective SOI field together into the
form Hg - o = (hp + ﬁ”] - . The magnetic energy 1s
defined by ﬁ” = g*upB) /2, where g* is the effective g
factor and pi g 15 the Bohr magneton. In the weak mag-
netic field case, assuming Epsh., > hp is valid and
the expansion of the exact Green's function only need
to expand up to linear order of ﬁ". It 15 the good ap-
proximation to treat the external electric field as a per-
turbation such that 1t i1s expressed in the four vector of
potentials in form of H' =3 @; (v, 1) 7%, where 2 x 2 ma-

T

trices 77 = 1,7%¥F = g, ,, .. H'is caleulated thronghout
the linear response theory by Kubo formula. It 1s conve-
nient to introduce four veetor of densities D4(r, 1), whose
index 1 = § is referring to the charge and i = z, y, z are
referring to the spin. The unit of one spin is taken by
fi/2 and spin densities are S, ,, . = (f/2)D, , .. The four
densities 1s expressed by using nonequilibrium Green’s
function method

Di(rt) = (THDs (1) St (=0Cuoum, ~00u)])

= —iTr[r*G= (r,r,t,t)]. (1)

where T; 1= time-loop order operator and =71 is the
Keldysh Green's function in the matrix form. The angu-
lar brackets denote the average over random distribution
of impurities. The upper time-loop branch (+) denotes
the time order evelution and the lower one (—) denotes
anti-time order evolution. The Green’s function =% is
described the time loop branch from — to +. In sta-
tlonary state, the system response depends only on time
difference such that one gets the density in the Fourier
space w, w'

Dg', l:le = fdzl"rz H,:j lil‘.l‘r.bv‘—l- w'!jl ‘1‘_—; (l‘r. w':l
+ DY (r.w). (2)

Here, 1t is convenient to express all coordinate-dependent
quantities in the momentum representation for a homo-
geneous 2DEG system. The momentum conservation is
obeyed for an electron collides with the random elas-
tic impurity. The most important physical mechanism
occurs near the Fermi energy Ep such that the energy
can be treated as w’ = Ep. Apph ing the relation of
fep() — fep(w+w') = w(dfrp(w’)/de?), the retarded
and advanced Green's function G7(py, kg + q,w + ')
and G*(ky,p1 — q.w) can be employed to caleulate the
response functions in momentum space

dw' d
‘3_',‘ q""J_“"Zf fFD

mka
#(Tr]G* (ka, p1—q, w‘)TéGT(PL ki +q.w+w)77]),
(3)

. where fp D(w ) is the Fermi-Dirac distribution function
at energy w’. The brackets in Eq. (1) denote averaging
over the random distribution of impurities in the 2DEG.
For w <« Ep, the relation frp(w’ +w) = frpp(w') is as-
sumed and one can obtain the local equulibrium densities

',

o R ’ )

Dilqw) =i Z f?fFD [ JZ ;g
palag’ i

< ATr[G7(py. ky — q,) TG (ky. pr + o ') 7d

— GO(py.ky —q) TG (k. py + o' W) (4)

which are associated with four vector of potentials
®,(q'.w). Assuming each random impurity potential
Vielr) is delta-profile correlation so that the pair corre-
lation (Ve (r)Ve(r')) = Td(r —r')/nNp, where [' = 1/27
is characterized by the mean elastic scattering time 7.
Assuming the semiclassical approximation Epr = 1 is
valid, the standard perturbation theory can be employed.
The unperturbed average Green’s functions are given by
2 x 2 matrix form

Gp,w) = (GO (p,w))
= 1/jlw—Ey—Hg-o£il), (5)
where E, = p?/2m*. The local equilibrium densities

DY are calculat.ed up to the lowest order expansion of
the average Green's function by setting Hg =~ 0 in
Eq. (5). Eventually, we obtain the local equilibrinm den-
sities DY (q.w) = —2.\D'IJ (¢].w) by setting ¢ = 0 in the
average Green's function. The N is the electron density
of state at Fermi energy E'p. The nth higher order term
of average Green's functions produce the order of power
1/(Ep)™ for ¢ = 0 and it is the small correlation to the
DY. Obviously, it is good enough to estimate the DY up
to the lowest order approximation in the average Green's
function.

In the presence of SOI, the spin would be relaxed due to
DP-relaxation mechanism in the disorder system after an
electron spin travels the characteristic distance, so-called
spin relaxation length l,. In the diffusion lumit, [, =
lmear 12 valid such that one electron spin can be seattered
by several impurities before it is relaxed completely. The
most important goal is to obtain the response function
from Eq. (3) by calculating the mean products of the
retarded and advanced Green's functions in the diffusive
regime. Ounly the pair of retarded and advanced Green's
functions of Eq. (3) carrying close enough momenta have
to be taken into count in the ladder series. Redefining
ki = p and p1 = p’ — q, each matrix element of the
impurity averaging can be evaluated in ladder expansions
as following

¥ TaTh <G’23 (p,p w4+ )GEL (P —ap — q-w‘))

=

=z T Th G (pow
T (. q) 615 (pow + ) Got (p — )

11’:1,‘1’;,1(!*(0) [p.w +w JGG( ) [I) —q, u,':] + J‘

+u) GG(D) (p— d,w)dpps

(6)



where the simplified notation

(mnavjzﬁmm

where c; 1s the impurity concentration and V° is the
volume of system . All the repeated indices have to be
summed and V,, is the strength of the impurity. From
Eq. (3), the response function is expressed in the form of

L5 ot ()

x %w-w-q [(1 - Tlw.w ) B (T)

T (., q)
mmmumm

I (qw) =

where 113 = 4,3y and T'/(rNg) = 61-,|Te';c|2;.-"‘[«". From
Eq. (2), Eq. (3) and Eq. (7), the four densities is given

by
Dilq.w) — DY{q,w) = i (q.w)® (8)

The four components tensor in Eq. (7) can be trans-
fnrmed mnto two components vector form via the equality

)l,\ = 1 2 E'r;\ \Irgj
i
Immediately, we can obtain

hath M- =2y 0 [0 - p)7)”,
L]

and the diffusion mechanism is decided by

e w).

)\,whele t,j =0, %, y and =.

11,'&1 — . [Ticr(ﬂ)[pf‘w + wIJJTJGa.(D) (p.r —q
(9)
The Eq. (8) can be expressed in matrix form
(1 - )" (D; — DY) = iwr DY, (10)

via the relation [ dw'(dfpp /dw’) = —8(w' — Ep) at zero
temperature. For the case of a static homogeneous elec-
tric field, the left-hand side of Eq. (10} is equal to zero
by setting w = 0 and the charge density Dy = 0 due to
charge neutrality.

First, U can be calculated in the absence of the SOI
and external magnetic field, saying Hg = 0, to easily
obtain

il (qw)|Hp=o= (1 +iwr — D qz) Bl
where the diffusion constant is D = vi7/2. Under the
consideration of the static and homogeneous electric field,
the time component of the electric field w = 0 1s assumed
in the below. The standard perturbation theory is em-
ployed to expand Eq. (9) respecting to the small param-
eters of Hp and q. Considering H., = §" in the weak
magnetic field case, the most Important effects of the
magnetic field come from the contribution of the linear
§|| term. It 1s known that hy = —h_j is odd parity and

(11)

B| is even parity respecting to the electron momentum
k — —k. The Eq. (9) 1= given by

Va=00=0)|5 =RE", (12)

where R{™ = — 5 2:%™ B, and m =x, y denotes the x,

m

v component of the inplane magnetic field. This term is
simply related to linear magnetic field term without cou-
pling to SOL. It can be interpreted that the electron spin
processes along the axis of an external magnetic field B,
in semiclassical picture. However, the travelling direction
of an electron would be changed by random impurities in
diffusion region such that the spin precession can be ran-
domized due to elastic scattering processes.

The lowest order expansion of hy in ¥y is zero for
¢ = 0 hecause the angular averaging integration contains
odd parity in the momentum k. It has to be expanded
in small q to get the finite result of
TR,

¥ (g = 0) |, = (13)

where RU™ = 47 3" s plo

angular average m:ér Fermi surtace and v is the m com-
ponent of Fermi velocity. This term is associated with
spin precession due to the SOL

Expansion of U¥ in the second order hy and q = 0
gives rise to

. The overline denotes the

T (q=0,0=0) |y = T, (14)
where ! = drhi (6% — nping!) for 4,1 # 0 and the unit
vector ny, = hy/ky. Its physical interpretation is recog-
nized as the DP relaxation. The physical meaning of the

“DP relaxation can be understood in the following discus-

sion. In the interval between collisions, the spin of each
electron precesses about an effective magnetic field which
is related to the electron momentum in the SOl system.
Consequently, the direction of electron momentum will
be changed via collide with the random elastic impuri-
ties and leads to the change of the precession axis. If the
time between collisions 1s much less than the precession
period, then the electron spin will not be able to follow
the change of the precession axis. Such that the electron
spin precession would be relaxed after collisions.

The SHE 1= strongly related to the spin-charge coupling
terms which induce the spin-Hall current moving normal
to the driving electric field E. The spin-charge coupling
terms can be calculated in higher order expansion of T
in the general form of

11;130 (qw = GJ |spjn-c‘harge = I\’[m + I\‘PBE' (.15)
. where the g-dependent operators are defined by
M = 47%igh? Ink
(16)

M = 272 (—iq) (Bfﬁ—

By%) 0z

The first term M® is original spin-charge coupling
term in the absence of in-plane magnetic field, which cou-
ples spin and charge together due to SOI for i = x, ¥, or
z. It 15 worth to notice that the second term denoted by
M3} conneets the charge and » component spin in the



SOI background through ﬁ". This term 1s a new contri-
bution in the diffusion equation with a external magnetic
field and it canses the bulk value of spin density varying
by B\ Finally, the diffusion propagator Dt is defined by
—(1—1T)/7 in the de limit {w = 0) and it can be trans-
formed into the real space representation by replacing iq
into the spatial differential operator 77

= —Dv*+ RE™ —TY 4+ R'™,,

70y pED
+ (M4 MR |éq_’f_:.

D‘i!
(17

Form Eqs. (12) and (18) by using 5; = I, /2 and w =0,
the diffusion equations for Rashba SOI are given by

r# iy
(va_F).s;Jr > ——{[v'8
j=z.ua
vii

2 - B
+E(B|| x8) + (Fﬂiy -

i . . . P 8 oa, B
where fi is restored for physical unit and V' = 70+ Bl
and i =x, y, and z.

Dy oy e — L S, +2B,8. =0

DE.S, + R"’B%.s ~2B,5. - LF(s, -84 =0

DS + B2 25, — 50 S, — 3B,S. + 3B.(S, -

(19)

The bulk spin density is S;, = —talNgeEd;y and it is as
same as the result in zero magnetic field. It is noticeable
that a homogeneous electric field E 1s applied along x
direction leading to .S'g due to a shift of Fermi sphere.
The spin precession term R¥*Y = —R*¥¥ = 37k vp and
the DP relaxation term [pe = [yy = T./2 = 27hE
can be calculated from the definition in Eqgs. (13) and
(14). Since the bulk sclution of the spin density 1s spatial-
independent, one can drops the derivative terms respect-
ing to coordinate y. The majority of electrons are driven
by E with the drift velocity vg toward —z direction and
the effective SOI field hys 15 lying in y direction normal
to vq for Rashba SOI case. Such that the bulk is natu-
rally revealed y-polarized spin density .5'5 in Rashba SOI
case. The magnetic field appearing in diffusion equa-
tions doesn’t change the solutions of spin densities. It
iz easily to solve the spin densities 5, = 5, = 0 and
Sy = S;. Even in the presence of external magnetic field,

again, there 15 no spin accumulation in diffusion region
for Rashba SOI case.

For Dresselhaus SOI case, the diffusion equations with
the external magnetic field are given by

r# R 2 .

[Dv'az - F)'g‘i + Z Tf\v x -Sj_?:]-é + E(B” x SJ{
Jl=zu,z

Gy B o, (20)

R R

IV (8 )

2~ .
53104,:)5; = (18}

;J =¥ Eq.

[

where Fi 1s restored for physical unit and i = x, v, and =.

Dy i oS+ B S, -
Il 1"5'5'

Da—g-gy — Tg—g

T C_'
Er S +2B,5. - S =0
2R, s* =0

% =3 Tm ey Py
& 1" R ¥ o 2 q 2 q
Dg—ygg =5+ 55z — 5By 5: + 5525,
B, = D
(21)
i
The notations are R**¥ = —R*¥ = ﬁE[QC'z 1/2) =

2D/lgg and Ty = Ty = I../2 32 TER(1/4 — o2 4
QC“], where ' = x/kp. The spin-charge coupling
terms O = .-'IIIDDSJ.-"Q is related to M and €. =
T{Ohi Ok, )(AD] (o) isrelated to ME. Df = —2NgeEx
(e=0) is related to the electric field. The DP relaxation
terms have the relation I'"™* = I'*¥ = ['** /2. The bulk
solutions of spin densities are given by

8P = Ay (—2Ca + &)/ (14242 4 2A2)
b — 9, A, S
sg =24, 96

(22)

. Where the ratio parameter is defined by A; = Eil.e‘l"'”.
All bulk spin densities S! are the function of the elec-
tric field E and A;. When the in-plane magnetic field
is turn off (A; = 0), these bulk spin densities hecome
5'5(0) = .S'f(o) = and .Sf(o) = — (" /T"** is finite value, in-
dependent of the external magnetic field.** All bulk spin
densities are coming from the spin-charge coupling terms
(15) and they vanish as E = 0. For Dresselhaus
801, the electric field Ed produces the bulk spin density
5'2(0) in the zero magnetic field case and .S';, 5P are in-

duced by S5(0) through .§". In the semiclassical picture
and diffusion region of l., & lnean, the external mag-
netic field EII can make 5'2(0) flipping to contribute the
bulk spin densities S° and .S';. For S%(E), the electric
field terms produce the x-component bulk spin density
and the y-component external magnetic field can make
S? fipping to contribute S"I"(E') For 56(E] it 1s coming
from the flip of 5"5 — S; via the x-component external
magnetic field. For S%(E), the first term describes the
Hip of .S'f — .S',_‘E via the y-component external magnetic
field and the second term is the contribution coming from
the driving electric field. It is clear that the bulk spin
densities without the external magnetic field would be
modified by §|| in Dresselhaus SOI case.

B. Spin Current

The spin current operator are defined by Ji =
(1/2) (Vig; + 7;V;) and each spin unit is i/2. The ve-
locity operator 1s given by

. ;\'g allk - T e

i= ms dky (23)
where m#+ denotes the effective mass of electron. The
first term in right-hand side of Eq. (20) is classical ki-




netic term and the second term is spin-dependent velocity
due to SOI. The spin current J; stands for the electron
moving with the velocity v; = (kj/m*) and spin state
a;. After some algebra, one can obtain the expression for
spin current densities

IHguw) =
3 (ucrg—l—ah*)("" (k+ 3. K+3w+e)  (24)

kk'

*1G (k' — 3k — 2w (g,w)
., where the spin indices i = x, v and z; j = 0, %, ¥
and z. In the de limit (w = 0) and at zero temperature
(' = Ep), the spin current densities can be simplified in
the form of

Ii=
m"

[Y D-—XFDg+ﬂWDy—hmDﬂ (25)

. where the index j' = x, v and z. The operators are

defined by
i —ir(0) L=
X!_(TN)ZLTﬂ GOkt fw+Er) o0
%73 a0 (k- g.EF}]
and
i _ Bh} +r(0) 4., .
Y.! _( 2w Np )%: ETI‘[C (k+2‘ +EFJ LQT)

x71Ge0) (k — 3, Ep)].

For the SHE, 1t is most important to study spin currents
flowing along v direction when a static electric field 1s
applied along = axis. To obtain the spin current densities
I} has to caleulate X’ and Y7

X Db )
—2igumrriu, (hk < S ) 81830 — Z:' 50 (28)

and

ahka

Yji =
v Ok

(20)
It is found that the last term of X;j 1s exactly cancelled

out the contribution of Y;—f . By restoring # into physical
unit, Eq. (24), Eq. (27) and Eq. (28) give us spin current
density expressions

as; Ry
dy

Iir)= i — S8 (30)
which are associated with spin densities S;. The first
term of I; deseribes the normal diffusion process of 5;
along y direction and the second term 1= contributed from
spin precession due to SOI. The total spin-Hall current
15 defined by I.y. The first term [,y i1s the spin-Hall
current term in the absence of external magnetic fleld.
The additional term I%; is totally contributed from the

external magnetic field. Naturally, these two terms are
proportional to the linear electric field E because the
origin of SHE is coming from spin-charge coupling by
SOI. Their expressions are given by

gHz—Emﬁ+h%E%¢w(ﬁ xm).(M)

For Rashba SOI case, 1t 15 easily to chegk that I.y
vanishes without an external magnetic field B),. Further-

more, the bulk spin density S; 1s equal to .S';(D) such that
the total spin-Hall current I,y 1= still zero even in the
presence of external magnetic field. For Dresselhau 301
case, I.p 1s finite even without B”. However, IfH 18 de-

pendent on §” and can modulate [.g by tuning either

the strength or the direction of Ell'

In the cases of a 2D strip, the hard-wall boundary con-
ditions I;(y = +d/2) = 0 are imposed. The houndary
conditions indicate that both of the spin and charge cur-
rent cannot penetrate the edges. The solutions of spin
densities can be obtained by solving Eq. (17), (18] with
the imposed boundary conditions. For Rashba SOI case,
the spin densities S,. = 0 and S, = 5'5(0) are analyti-
cally solved for both cases of the zero and finite in-plane
magnetic field. For Dresselhaus SOI case, the spin den-
sity has form of 5; = Zj A,:jc:“‘-?y for indices i=1~8,
i =ury. and 2. One can solve 4;; and A; by using the
Eq.(19) and boundary conditions.

III. THE SPIN DENSITIES OF A 2D STRIP
WITH IN-PLANE MAGNETIC FIELD

In this section, the spin accumulation behavior has
been investigated for the case of the 2D strip in the pres-
ence of an in-plane magnetic. The driving electric fleld
Ei 15 applied along the z axis of the 2D strip and the
transverse direction 1s in the y axis with boundaries at

= +d/2. For the Rashba SOI, there is no spin ac-
cumulations in the diffusion region without the in-plane
magnetic field on the 2D strip®®. The diffusion equation
and boundary conditions of the spin density on a 2D strip
with the in-plane magnetic field have been caleulated in
sec. II. According to Eqgs. (18) and (28), 1t is easily to
obtain zero spin accumulation corresponding to the case
of Rashba SOI with an in-plane magnetic field. However,
for the case of Dresselhaus SOI on the 2D strip, the spin-
Hall current I; survives after averaging over all impuri-
ties without the external magnetic field. Furthermore,
it 1s remarkable the behavior of the spin accumulation
due to the in-plane magnetic. As following, we will focus
on the case of Dresselhaus SOI because there is no ac-
cumulation for the case of Rashba SOI with either zero
magnetic field or an in-plane magnetic field. It is known
that the spin density S. is exhibited the anti-symmetric
behavior but S; is exhibited the symmetric behavior in
the case of B = 0. For B # 0 case, the symmetric



properties of spin accumulations are determined by not
only the magnitude but also the direction of B). The
hard-wall boundary conditions requires spin-Hall current
I j = 0 at the boundaries. The nonzero spin-Hall currents
are compensated by the spin density accumulations near
the boundaries to achieving I; = 0 in Dresselhaus SOI
case. Below, we studied the spin density accumulations
for several different values of B on a 2D strip and the
spin density aceumulations at a fixed boundary y = —d /2
with scanning inplane magnetic field from —B; to B; on
one-boundary case.

In our numerical result, the effective mass of GaAs
18 0.06Tmy and mg 18 the free electron mass. The elec-
tric field £ = 25mV/pm along x axis*. It 1s conve-
nient to define a unit electron density ng = 10'%(1/m?)
such that the units of the Fermi wave vector and the
Fermi velocity are kpg = 2mng = 7.92 x 107 (1/m)
and vpg =1.36 x 105 (m/s), respectively. The typical
mean free path is lneen = 1 om (actually, lneen becomes
smaller in more disorder system) so that the unit scatter-
ing time 5 = 7.3 x 1071%(s) i given by lnean = vFoTo.
The Dresselhaus SOI constant is 3 = 27.5(eV _fha] for
GaAs®! and the DP relaxation energy is given by ['** =
0.0042(C*—C2/241/8) (meV). The unit of quantum well
thickness is wg = 1107 {m) such that the n¢h subband
energy are cL = 2?::‘ (nm/wo)?. The effective g-factor of
Gals is ¢* = 0.44 and the unit thickness of GaAs quan-
tum well is w, = 100A. The magnetic field energy EII
1s equal to 0.013 (meV) corresponding to B) = 1 Tesla.
The electron density 15 n = n*ng and quantum well thick-
ness is w = w*wg, where n*, w* are dimensionless mim-
bers. The Fermi wave vector is kp = kpgv/n* and the
parameter denotes ' = Cp/ VX, where X = nu® and
C'y = tig/kpy. Therefore, the spin relaxation length be-
comes l,, = m,—ﬁg[n-—fg(gc'g% - %)]—1 and I, = lyean
is required in the diffusive regime. On the other hand,
the electron energy is required to be lower than the sec-
ond subband of a hard-wall confinement in = direction
corresponding to k2 + (7 /w)? < (27 /w)?.

The Fig. 2 {a)-(c) show that spin densities 5; as a fune-
tion of y for B, = -300 (black-triangular), 0 (blue-solid)
and 300 (red-dashed) (mT), respectively. We choose the
parameter X = 22 corresponding to the thickness of
GaAs quantum well w = 3004 and the electron den-
sity n = 2.4 x 10%(1/m?). The spin relaxation length
18 lip = 2.9um. When the longitudinal magnetic field
B 15 applied, the spin densities can be calculated from
Eq. (21) with boundary conditions I;(y = xd/2) = 0.
According to Eq. (21) with B = By, it is easily to oh-
tain that S is even parity in y and Sy, 5. are odd parity
in y corresponding to Fig. 2(a), (b}, and (c), respectively.
It is worth to note that S, is absence for B = 0 and be-
come odd parity in y by applying By. As such, 5; 1s
flipped by B, leading the variation of 5y in Fig. 2 (b) for
the B, = +300mT. The bulk spin densities S% is finite
and SS = SP = 0 =satistying Eq. {22). The corresponding
bulk spin densities are demonstrated far away from edges

~ 4'{_] ) 4 B =-300mT
RS ——B=0aT \
= 30} ----B=300mT
w23
200, . . . .
~ o6t®
E 03} . /
= 00 s ST
w 40.3// "
0.6 i
3
W 2@]
= 0
a7
20
E] S . . . .
4 2 2 4

0
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FIG. 2: Spin densities S; are plotted as a function of ¥ n
unit. of I,, corresponding to X = 22, where w = 2004 and
n =24 % 10'%(1/m?*). Each panel shows the different curves
with parameters B, = —300mT (black-triangular), A, =0
(blue-salid) and B, = 300mT (red-dashed). Spin densities
S,, S, and 5, in the unit of 1/um? are shown in Fig. 2 (a),
(b} and (c), respectively.

y = £d/2. When the magnetic fleld direction is reversed
(B> — —B.), Eq. (21) reveal the parity in B, for a fixed
y. It 1s found that S, S. are the even parity of B, and
Sy is odd parity in B,. Accordingly, spin densities of the
+ B, coincide with each other for both cases of 5, and
S, in Fig. 2 (a) and (c).

When B = By is applied, the spin densities 5; ex-
hibit asymmetric behaviors in y. Immediately, 5, =01is
straightforwardly obtained from the =second equation of
Eq. (21). From Eq. (21), both of driving terms €' and
ByCs /R exist such that S; and 5. exhibit asymmetric
properties for finite By, in Fig. 3 (a) and (b), respec-
tively. The black-triangular, hlue-solid and red-dashed
curves are referred to By, = —300mT, By = OmT and
B, = 300mT, respectively. By applying B,, our caleu-
lation points out that S.(y) is asymmetric for intrinsic
SHE. Recently, extrinsic SHE experiments show the sym-
metric behavior of S, versus B,**4. It is important that
S. can be a diagnostic tool to identify the origin of SOI
in the sample by applying B,.

We also study spin accumulation S at y = +£d/2 by
varying B, in Fig. 4(a)-(b) and B, in Fig. 4(c)-(d). The
edge spin densities SF are plotted in Figs. 4 for i = z,
y and = corresponding to dashed, dash-dotted, and solid
curves, respectively. In the case of B = B, by changing
y — —u, it can be found out the SF and 5F are odd
parity in y in Eq. (21). Therefore, ST have to satisfy the
even parity such that three equations become consistent
in Eq. (21) corresponding to boundary conditions. For a
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FIG. 3: Spin densities are plotted as a function of v in unit
of I, corresponding to X = 22, where w = 300A and n =
2.4 % 10'%(1/m?). Each panel shows the different curves with
parameters B, = —300mT (black-triangular), B, = OmT
(blue-sclid) and B, = 300mT" (red-dashed). Spin densities
S, and S, in unit of 1/pm?® are shown in Fig. 3 (a) and (b),
respectively. The 5, is zero in these cases.
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FIG. 4: The spin densities ST is plotted as a function of in-
plane magnetic field Br and B, for i=x, ¥, and z The spin
densities ST at the right (left) edge y = —d /2 (d/2) is labelled
by — (+) in the upper index.

fixed B, these parities obey the .S“;(:)(y) = —.S'y‘(:)(—y]
and ST (y) = 57 (—y) and are shown in Fig. 4 (a) and (b).
For B; — —B;, Eq. (21) also shows the characteristics
of 53,4(Bx) = 53, (—Bx) and 57 (Bx) = —S§(—B:) in
Fig. 4 (a) and (b). For B = B, by changing y — —v, the
.S'qf = [ is easily to calculated from the second equation of
Eq. (21). In this case, 5'::(:) show asymmetric behaviors
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FIG. 5: The contour feature of the spin density S: is plotted
as a function of ¥ versus the (a) longitudinal magnetic field
B;: and (b} transverse magnetic field B,.

for B, — —B, in Fig. 4 (c) and (d). If the By and
coordinate y are reversed at the same time, it is found
out that S.(B,.y) = —S:(—By.—y) and 5:(B,.y) =
Sz(—By, —y) are agreed with Eq. (21).

More clearly, Fig. 5 (a) and (b) present the contour
plot of spin densities 5. versus vy with varying B, and
B, respectively. In Fig. 5 (a], spin 5, demonstrate the
anti-symmetric accumulations in transverse coordinate y
by varying B, from 400mT to —400mT. It shows that
the spin density 5. i1s odd function in y by varyving B,.
However, the Fig. 5 (b) reveals the asymmetric behav-
ior of S. in transverse coordinate y by varying B,. For
intrinsic SHE, the bulk solution of 5! is proportional to
linear B, leading to this asymmetry characteristie.

IV. CONCLUSION

In conclusion, we have studied the spatial distribution
of the spin density S5; in the presence of an in-plane mag-
netic field for either Rashba or Dresselhous SOI cases.
In the weak magnetic field limit, the diffusion equation
15 proportional to linear magnetic field. For Rashba SOI
case, the In-plane magnetic field doesn’t affect the spatial
distribution of the spin density in space. For Dresselhau
SOI case, the spatial distribution of spin density shows
symmetric or asymmetric properties depending on the di-
rection of the in-plane magnetic field. These results lead
to a diagnostic tool for the identification of the origin of
SOI in the system.
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Appendix B:

Spin-Hall effects in a Josephson contact
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The Jesephson tunneling through a 21 normal contact with the spin-orbit split conduction band
has been studied in the diffusive regime. Linearized Usadel equations for triplst eomponents of
the pairing function revesled a striking similarity to the equaticns of spin diffusion driven by the
electric fisld in normal metals. Consequently, we pradict that the out-of-plane spin-Hall polarization
accumulates towards lateral sample edges and the in-plane polarization is finite throughout the
entire normal region. At the same time, the spin-Hall current is absent in the considered case of the

stationary Josephson effect.
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In connection with waricus spintronic applications,
much interest have besn attracted recently to spin-orbit
interaction (S01) effects on electron transport in normal
metals and semiconductors. This interaction gives rise
to fundamental transport phencmena, such as the spin-
Hall effect (SHE) (for a review se== |1]) and electric spin
crientation [1, 2). Thess effects represent a direct man-
ifestation of the spin-orkit coupling between spin and
charge degrees of freedom in electron transport. At the
same time, spin-orbit effecta were also discussed for su-
perconductors. Some works dealt with SF3 juncticns [3)
(F stands for ferromagnet), others considersd 8NS |4,
SN [6] systems, or bulk superconductors 5, 6. As was
pointed out in Ref [5, 6], SOI leads to admixture of
triplet components to the pairing function. This sort of
singlet-triplet coupling locks similar to the spin-charge
coupling in normal systems. Therefore, cne would ex-
pect that phenomena clossly related to SHE could mam-
fest themselves in superconductors. At the first sight on
this problem it becomes elear that, at least in the case
of zero voltage across the junciion, the spin-Hall current
can not be generated as a linear response to the super-
conducting current.  The reason 1= that these currents
have cpposite parities with respect to the time inversion,
while they must be equal in the staticnary nondissipative
superconducting transport. On the other hand, besides
the spin currents, in normal systems SHE leads to spin
accumulation near sampls edges. Therefore, 1t 1s inter-
esting to find cut, 1f similar aceumulation of magnetiza-
tion takes place in superconducting systemns. It should
be noted that, despite formal similarities, such a magne-
tization 15 fundamentally distinct from that induced by
the normal SHE, since it 1s not subject to the energy dis-
sipation accompanying spin diffusion and relaxation mn
normal systems.

We will consider SHE and the electric spin onentation
for a Josephson tunneling throngh a 21 normal contact
{see Fig 1). The 501 there is represented by the Hamilto-
nian H;, = o hy, where o 15 a vector consisting of Pauli
matrices. The spin-orbit field hy, which 12 a function

of the electron wave wector k, can be given, for exam-
ple, by Rashba (7], or Dresselhauns [5] 801, as well as by
their combination. In this case the vector hy lies in the
plane of the 2D} system. The electron transport through
the contact will be treated within the diffusion approx-
imation, so that the length of the junction L, the elec-
tron coherence length e and the spin precession length
Liy =wup/h, where up is the Fermi velocity and & is the
angular averaged spin orbit field, are assumed to be much
larger than the electron mean free path I, The electric
wvoltage across the junction is set to zerc. Hence, the su-
percurrent 1s provided by the phase difference betwesn
two electrodes. The analvsis of such a problem will be
performed within a standard semiclassical treatment of
Gor'kov's equations in the diffusion approximation (for
a review se= [9]). Our goal is to derive linearized Usadel
type equations and calculate the spin density induced by
SHE.

A=z far as the thermal equilibrium state i=s consid-
ered, all chservables of interest can be expressed via re-
tarded and advanced Green functicns. The correspond-
ing Gor'kov's equations in the Nambu representation
have the form

[ I S
(E ~H - E) Erin X = HX - X, (1)

where r, a denote retarded or advanced functions, X =

FIG. 10 Josephson contact with 3 and N dencting supercon-
ducting and normal regicns.



t,rand
- . . .
H=2m.h—.3p+a-hﬁ, (2}
with the momentum operator k = —i/@r and the chem-

ical potential . After averaging of initial Green fune-
tions over random pesiticns of short-range impurities, the
self-energy in (1) takes the form [10]

Ta

I =
STV E

G e e irad(e — '), (3)

where 7 15 the elastic scattering time. Unperturbed
Green functions are easily obtained from Eq.1). In
the momentum representation and after the time Fourier
transform thev can be written as

SV kY = (w —maEp — o hp 2T, [4)

where Ej, = (k%/2m*) — g Below we will perform caleu-
lations for retarded functions and drop the labels r, a.

FProximity to superconducting contacts results in an
admixture to the Green functions of ancmalous | propor-
tional to 7y and ) components. Alsa, these functions
become inhomogensous in space. In crder to caleulate
thern, we will follow awell known procsdure in the frame-
work of the semiclassical approximation [11). First, we
perform the Fourler transform with respect to X — X'
introducing, accordingly, the frequency and wave vectar
wvariables, w and k. The center of mass variables will be
remained intact and denoted as v, Smce the problem 1=
stationary, the corresponding center of mass time wvari-
able iz absent. Taking intc account that variations of &
in the scale of the Fermi wave-length are small, Eq. (1)
should be expanded in terms of gradients &/dv. The next
step is to simplify the self-energy part of Eq. (1) keeping
there cnly terms linear in the ancmalcus part. Such a
linsarzation can be done if the transparency of the SN
contact 1= small, or the leads are close to the supercon-
ducting critical temperature. Taking the sum of Eq. (1)
and its conjugate cne, and making use of the fact that
hg i= an odd function of k. for the ancmalous part (712
we chitain the equation

(2w—v G+=)C — {hy 0.0} —
1
E [511].:q . rJ',Cm] = Jae. (5}
where dhpg = (- Valhe with § = —id/fr, and

(Cligtz + g1205h) . (B

Tee = _QTF."\-'F'
The lower labels in 3 denote the matrix elements in
the Nambu space and g1z = ¥ Giz. Usually, the quan-
tum kinstic equation, such as (5}, can be reduced to the
Eilenberger [12] equation by integration with respect to

the electron energyv. In cur case this procedure 1= not
convenient becanse of electron energy spin splitting. In-
atead, within the diffusion approximaticn, from Eq. (5)
we will express &ie in terms of gia, and taking its sum
over k obtain the closed diffusion equation for gya. Be-
fore doing this, we transform the 22 matrix Giogag to
the conventicnal pairing function F_z = &a n5, where &
denotes the spin projection opposite to 3. Further, it 1s
convenient to decomposs F into triplet By, F_y, Fo and
singlet F, components as

Ea

Fia+ Foy Fia— Fyy
T LY L T

V2 N
Fi=Fn, Fo=Fa (7

(3|

The corresponding density function f =%, F will alsc
be represented in a siilar way. After this transforma-
ticn, 1t 1s easy to see that the last term in the Lhos. of
(5} 18 responsible for a coupling between the singlet and
triplet components of the pairing function. Besides, the
singlet-triplet coupling alsc criginates from the spin de-
pendent parts of G} and G2 in Eq. (8). Due to such
coupling, the triplet component of F 1= generated within
the junction between two singlet superconductors.

For simplicity, when dernving the diffusicn equation, let
uz assume that 301 is strong encugh, =0 that L, < L.
Further, considering I, together with the last term in
the Lha of (5} as sourcea, we resclve Eq.(b) performing
expansion in (v - §)r and hgT up to the second order.
Finally, we obtain the following diffusion equation for
the triplet pairing function fo, = (i/aNp) 3", Fy, (m =
0,1, -1

a 2
2=-u.f=.—{(-w-a—+21-h.) VFAMA. (8)
T

where J 1= the vector of 3x3 angular moment operators
and (...} denctes the angular averaging cver the Fermi
surface. The triplet-singlet coupling 15 given by

T . . .
My =0, My = —=(hfihy = ihyq)ife.  (9)
w2

with hf = h§ T ih}. The singlst f; satisfies the usual
Usadel equation [2] with an additicnal term which is Her-
mitian conjugate to M. Since this term 1s small, we will
neglect a carresponding correction to f; in Eq.(8). Hence,
£y 18 given by the well known unperturbed sclution in the
SNE contact. Since 1t vares within the scale Lo 2 Lo,
we neglected all contributions to M with higher powers
of gradients, as well as terms proportional to w - DI.I'LE,
where I? is the diffusicn constant.

Without the last term in the r.ha, Eq.8) formally
colneides with the spin diffusion equation for 2DEG in a
zera electric fisld [13]. The spin diffusion equation in the
presence of the electric field has been derived in Ref. [14]
for the case of the Rashba SOI, and for a general S0O1 in



[15]. After a linear transformation (18] to spin density
variables Eq.(8) will alac coincide with these equations,
if, apart from a constant factor, fi 15 formally identified
with the electric field potential. Hence, a conphng of the
spin to the electric field in normal spin transport appears
tao be very similar to the singlet-triplet coupling mn Eq.(8).

Let us consider an example of the Rashba SOL In this
case hi = ak, and F_E = —afip. For a homogeneous in
y-direction case all functicns depend only on x and we

get fo =0, fi = f_y, with fy satisfving the equation
a2 arlg, & .
Dﬁf Tefi _IT@:'F" (10}

where T';, = '.ZTan% 15 the [Fyakonov-Perel” spin re-
laxation time [16]. The small Lhs. of Eq.8) has been
neglected in (10). Boundary conditions at @ = +L /2
can be written in a way similar to a singlet SN interface
[17]. At least in the linearized appreximation the bound-
ary conditicns contain only characteristics of one-particle
transmission. Therefore, they can be easily generalized
to the case of a triplet pairing. Following calculations of
Ref. [17] we abtain

Ofiw -
f.i‘1s—9.f1'n'|g-;r,m—ib B |»--1=L;2| (11}

where the labels S and NV denote superconductor and
normal sides of 8N contacts at ¢ = £L/2, and g =
w| /4T F 072 — [A]T is & DOS factar for a super-
conductor. The characteristic length & depends on the
SN barrier transmittancs, For cur cheics of parameters
b & Lge. The same equation (11} takea place for feo.
At the low SN barrier transmission cne may use the so
called rigid boundary conditions and sst iz = 0. At
the same time, the singlet paring function fas|grm =
g exp(tic) /w. Neglecting the third derivative of f,
the solution of Eq. (10} can he written as
f1=—z%%_fg + ). (12}

where @ i) is a linear combination of exp(+kr), with
k= +/DT =1/Ls. It is casy to see from (1) that at
kb= 1 the first term dominates in Eq. (12). Thersfors,
i will be neglected below.

Ohur next step s to caloulate the spin polarization den-
sity associated with triplst components of the pairing
function. This polarization is given by

i dw

sy = 53 [ Fene) «
a2 . D
Trle'{Ghulw, v} — Gl )], (13)

where ng is the equilibrium Fermi distribution function.
It is easy to asse that the nonzerc wvalue of Fq. (132}
is provided by triplet compenents of ancmalous Green
functions which contribute to 11 with a correction term

o 2. Up to the leading second order with respect to
fe and keeping cnly the linsar terms of the triplet fi
(m=1,-1.0), for the retarded function we abtain from
Eqs. (1-4)

3 Trltoil = [, AR Fal L L el B
ke

Fcf.’*“ff’-’“ +HEEETEL (1)

where fy = (f14 f_1)/2 and fo = —i(fi
conjugate functions fH{w) = — f*{—w).
In the case of Rashba SO f; = fy = 0 and f, = fy.
The latter 1= given by Eq. (12). Then, from (14} it
immediately fallows that enly the y-projection of the spin

— f_13/2 The

density is fimte. Using the relations ffw) = f7(—w) and
Falw) = = fRi—w] (m=1,-1,0), we arrive to the spin
polarization
Ji
§¥(x) = eNpar 222 | (1)

where 74a 15 the de conductivity of the normal metal and
J iz the Josephscon current density
—(r =a).

SJ’, C:'f'-
479 ¥y fd.;ﬂpkw,l[l'
(16)

The spin pelarization (15) coincides with polarization in-
duced in normal metals by the electric Held E [2], if the
Josephson current is substituted for the normal dissipa-
tive de current Jy, = oy F. It is easy to check that this
analogy takes place also for the Diesselhaus 301, with
a little more complicated expression for 5'(x) [15]. An
important distinetion from the electric spin crientation
in normal metals is that due to the charge neutrality,
Jgo = const in the r directlon, while the supercurrent
varies inside the contact. Bimilar effect has been pre-
dicted by Edelstein [6] for bulk superconductors and at
NS boundary, providing the supercurrent flows along the
SN interface.

Let us now check, if the analogy with the electric spin
orientation extends to the spin-Hall effect. Hence, our
goal 15 to calculate JY, which is the ¥ projection of a
spin flux pelarized in the z-directicn. The corresponding
apin current operator can be written as 15 = {7z, vy} /2,
where the velacity vy, = ky/m* +0{a - hy) [0k, Since it
has been assumed that iz = 0, ons gets J§ = mohy/m*.
The spin-Hall current Ja, in its turn, can be derived
from Eq.(13), with ¢! substituted for I3, Keeping the
same leading terms as in calculation of the spin density,
we arrive to Jop = 0. This result does not depend on
whether kg i= given by the Rashba or Dresselhaus inter-
actions. That is very distinct from the normal spin-Hall
effect, where in the diffusive regime the spin-Hall condue-
tance iz zero for the Rashba SOL, but finite for the cubic




Dresselhaus interaction [18]. In general, as it was dis-
cussed above, the zerc value of Jyp In superconducting
transport follows from the time inversicn symmetry.
Besides Jom, in normal systems the DO current to-
gether with 301 gives rise to accumulation of the z-
component of spin at the lateral edges of the sample
[15, 19, 20]. In the case of the Josephson junction the
z-projection of the spin density 15 given by Eq.(13) and
the first term in Eq. (14). Hence, it is proportional to the
fo component of the pairing function which, in its turn,
can be found from Eq.(%). For simplicity, let us consider
hard wall boundaries of 2DEG at v = +£L,/2. In this
case one can borrow the boundary conditions for Eq. (8)
from Ref. [15, 20]. In normal systems these conditicns
correspond to the vanishing spin current at y = L, /2.
In our case similar equations can be written for triplet
“currents” 7 = wF. We thus have ¥ o =0,
where the thrip%tkmnlponeut 15 given b}'ls—iLa.Q

il = —D% — Zir{{vy[hg = (V2F + Tihe g F)]) . (17)
The first term in this equation is the diffusive current,
the first term in the brackets is detzrmined by the spin
precession in the effective spin-arbit fisld, and the last
term looks as the spin-Hall surrent in the normal spin
transport. As far as f; is treated a slowly varying fune-
tion of =, thus allowing one to ignore 1ta higher gradi-
enta together with edge terma like 4 in (12), the analysis
of Eq. (8) with the abowe boundary conditions is the
same, as for SHE in normal systems. Hencsforth, follow-
ing Ref.[15, 20] one may conclude that fy = O for Rashba
SO, but fi is finite in the case of the cubic Dresselhans
interaction. From Eqs.(13) and (14} it is immediately
seen that in the former case 5% = 0. For the Dressel-
haus B01 the sclution of Eq. (®) has the form fo =
wl{w)idf /@x), where x i= a real odd function of . Then,
Eq=.(13),(14) and {16) give 5% = —eNpy(y)(J/og.). The
funection v, in its turn, have been caleulated in Bef. [15].

In conclusion, the spin-Hall effect induced by a super-
current across an SN2 junction has besn studied in the
diffusive regime for a relatively strong (Lg% L.} 30T in
the 21} juncticn and for low conducting SN barners. We
found cut that, although the apin-Hall current 1= forbid-
den by the time inversion symmetry, in the case of cubic
Dresselhaus SOT the cut-of-plans magnetization is accu-
mulated near sample edges at y = L, /2, in a very closs
analogy to 3HE in normal systems. Alsc, similar to the
electric spin orientation, the apin polarization parallsl to
IDEG i= finite throughout the entire N-region.
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