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The manipulation of electron spin dynamics and transport in the semiconductor:

[ T ] Competing interplay between Rashba and cubic-k Dresselhaus spin-orbit interactions in
spin-Hall effect ;

[ IT ] Asymmetries in intrinsic spin-Hall effect in low in-plane magnetic field;

[ IIT ] Electrical detection of spin current;

[ IV ] Spin accumulation in a Rashba-type two-dimensional electron gas due to a nonuniform
driving electric field;

[ V ] Persistent current and spin density in a mesoscopic Dresselhaus-type quantum ring;

[ VI ] Quantum scattering from a circular disk in a cubic-k Dresselhaus-type two dimensional
electron gas;

[VII] Investigation on dissipationless edge state in the Quantum spin Hall system.
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Abstract:

We study the manipulation of electron spin dynamics and transport in the semiconductor:

[ I ] Competing interplay between Rashba and cubic-k Dresselhaus spin-orbit interactions in
spin-Hall effect ; [ II ] Asymmetries in intrinsic spin-Hall effect in low in-plane magnetic field,
[ III ] Electrical detection of spin current; [ IV ] Spin accumulation in a Rashba-type
two-dimensional electron gas due to a nonuniform driving electric field; [ V | Persistent current
and spin density in a mesoscopic Dresselhaus-type quantum ring; [ VI ] Quantum scattering from
a circular disk in a cubic-k Dresselhaus-type two dimensional electron gas; [VII] Investigation on

dissipationless edge state in the Quantum spin Hall system.

[I] Competing interplay between Rashba and cubic-k Dresselhaus spin-orbit interactions in
spin-Hall effect :

Focusing on the interplay between the Rashba and cubic-k Dresselhaus spin-orbit interactions
(SOI), we calculate the spin accumulation S, and the spin polarizations S at, respectively, the
lateral edges and in the bulk of the two-dimensional electron gas. Their dependences on both the
ratio between the Rashba and the Dresselhaus SOI coupling constants and the electron densities
are studied systematically. Strong competition features in S, are found. In the
Dresselhaus-dominated regime S, changes sign when the electron density is large enough. In the
Rashba-dominated regime S, is essentially suppressed. Most surprising is our finding that the
Rashba-dominated regime occurs when o ~2f3, where o and S are the Rashba and the
effective linear-k Dresselhaus SOI coupling constants, respectively. For the spin polarizations
S’ , the Rashba-dominated regime occurs when « > /3. Our results point out that decreasing |a|
leads to the restoration of the spin accumulation S,.

[II] Asymmetries in intrinsic spin-Hall effect in low in-plane magnetic field:

Effects of low in-plane magnetic field on bulk spin densities and edge spin accumulations of a
diffusive two-dimensional semiconductor stripe are studied. Focusing upon the Dresselhaus-type
intrinsic spin-orbit interaction (SOI), we look for the symmetry, or asymmetry, characteristics in
two magnetic-field orientations: along and transverse to the stripe. For longitudinal field, the
out-of-plane spin density S, exhibits odd parity across the stripe and even parity in the magnetic
field and is an edge accumulation. For transverse field, the out-of-plane S, becomes asymmetric
in both spatial and field dependencies and has finite bulk values for finite magnetic fields. Our

results support utilizing low in-plane magnetic fields for the probing of the underlying SOI.

[III] Electrical detection of spin current:

Spintronics involve spin injection, transport and detection. Even though a lot of proposals on
schemes for the measurement of spin current have been made, a feasible pure electrical means of
measuring spin current remains a challenge. Here we theoretically demonstrate an electrical

method to detect an ac spin current.



[IV] Spin accumulation in a Rashba-type two-dimensional electron gas due to a nonuniform
driving electric field:

It is well understood that a Rashba-type two-dimensional electron gas (2DEG) does not support
spin accumulation, or spin Hall effect, in the diffusive regime when the driving field is uniform.
In this work we address the issue about a possible restoration of the spin Hall effect when the
driving field becomes nonuniform. Toward this end, we consider the spin accumulation in the
vicinity of a circular hole, with radius R>> [,, where the driving field becomes nonuniform. Here
ls, 1s the spin relaxation length, and /[, ~I, , the electron mean free path. Our results shows that
the nonuniform driving field gives rise to nonuniform in-plane spin densities S, and S, which in
turn contribute to a finite spin current via the combined processes of spin diffusion and
spin-procession. The spin accumulation thus obtained is proportional to the Rashba coupling
constant a, and its spatial pattern is one of spin-dipole form, aligned perpendicular to the driving
field.

[V] Persistent current and spin density in a mesoscopic Dresselhaus-type quantum ring:

Recently, it is possible to grow self-assembled annulus semiconductor structures in a large range
of inner and outer radii by using molecular beam epitaxy. Typical samples show a circular cross
section with an inner radius about 10 nm, and the outer radius ranges between 30 and 70 nm. This
kind of structures has been studied by their potential applications as spintronic and quantum
computing. While most of the calculations have neglected the finite width of the ring, our interest
is to look at the spin density distribution across the width and the net spin for a quantum state in
the ring. Our finding is that the ring will carry a spontaneous magnetization when there is odd
number of electrons in the ring, whereas in the case of a magnetic flux through the center of the
ring, the ring will have spontaneous magnetization in most situations.

[VI] Quantum scattering from a circular disk in a cubic-k Dresselhaus-type two dimensional
electron gas:

We will solve the eigenstate problem in two dimensional Dresselhaus-type system including
linear-k and cubic-k. The eigenstates are represented by cylindrical functions due to the
cylindrical symmetry potential. The cubic-k spin-orbit interaction causes the coupling between all
the cylindrical functions. We attempt to introduce a semi-numerical method to solve for the
eigenstates of the system, and to calculate the spin density in the vicinity of the circular potential

disc.

[VII] Investigation on dissipationless edge state in the Quantum spin Hall system:

The first realization of propagating edge state is in the quantum Hall system.[1] In the presence of
a strong magnetic field, the cyclotron-like orbital of electrons in a two-dimensional-electron-gas
system will be deformed at the sample edges into propagating edge states of energy higher than
the Landau level in the bulk. At this energy, there is no bulk state and so the bulk behaves as an
insulator. These edge states have a nice dissipationless property. However, the need of a strong
magnetic field for the setting up of the state is not a welcoming feature for application purpose. In
2005, Kane and Mele[2] proposed another edge state, which does not require a magnetic field, in
the graphene system. This new phenomenon is now known as the quantum spin Hall (QSH)



effect. QSH system has an energy gap in the bulk, but has gapless helical edge states with
opposite spins counter-propagating at each edge. More recently, Benevig et al.’ propose a more
realistic material for the edge state physics: the semiconductor HgTe/CdTe quantum wells. An
experimental confirmation of part of the prediction of QSH is soon demonstrated in a ballistic
edge channels® We study the edge state physics as will be revealed by s local scatterer.

[1] K. V. Klitzing et al., Phys. Rev. Lett. 45, 494 (1980).
[2] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).

Keywords:

Nonuniform field, low magnetic field, diffusion, spin Hall effect, spin accumulation, cubic
Dresselhaus, Rashba, spin-orbit interaction, spin current, electrical detection, persistent current,
quantum ring, cylindrical symmetry, hard-wall disk, quantum spin-Hall effect, dispersionless,

edge state.



= ~ Motivations and goals

[1] Competing interplay between Rashba and cubic-k Dresselhaus spin-orbit interactions in
spin-Hall effect :

Spin-orbit interaction (SOI) provides the key leverage for the recent strive for all electrical
generations and manipulations of spin densities in semiconductors. [1-9] Intrinsic SOIs, such as
the Rashba SOI (RSOIJ) [1, 7, and 9-10] and the Dresselhaus SOIs (DSOIs) [6], are of particular
interest. It is due to their tunability, gate tuning for the RSOI and either sample thickness or
electron-density tuning for the DSOI, and to their physical origins, being independent of disorder
that requires the presence of SOI impurities. Yet the ever present background scatterers do play a
subtle role in the intrinsic spin-Hall effect [11]. In spin-Hall effect (SHE), an external electric
field induces a transverse spin current and, in turn, an out-of-plane spin accumulation S, at lateral
edges [1,5-9]. For intrinsic SOIs, the background scatterers lead to a complete quenching of the
edge spin accumulation S, when the SOI depends only linearly on the electron momentum k [11],
but S, maintains finite and dependent on the momentum relaxation time 7z when the SOI has a
cubic-k dependence [11-14]. Thus, separately considered, the RSOI does not contribute to edge
spin accumulation S, while the cubic-k DSOI does. For a more realistic situation, when the two
SOIs coexist in a sample, RSOI could exert its effect on the edge spin accumulation S,, but that
would have to be mediated through the cubic-k DSOL. It is of great interest to see whether this
effect would be reinforcing or competing for S,.

Thus, in this work, we focus upon the interplay between the RSOI and the cubic-k DSOIs in
their combined, or competing, effects on both the edge spin accumulation S, and the bulk spin
density S”. Bulk spin density S, formed in an external electric field, is another important
physical quantity of interest that is closely related to the intrinsic SOIs. The subscript i denotes
the vector component of spin. The effect of the background scatterers on S/ is less subtle than
thatonS,: S/, remains finite for all intrinsic SOIs and depends on 7 also.[3] Intuitively, up to
leading order in the SOI coupling constant one might expect this S’ feature to arise from a
SOI-effective magnetic field.[4] It turns out to be the case when there is only one dominated SOI
and the SOI depends on k linearly. Take, for instance, a Rashba-type two dimensional electron
gas 2DEG in the diffusive regime, the k-dependent effective magnetic field becomes
<h, >=-azxE when <k > isaveraged over the electron distribution given by a shifted
Fermi sphere f(&.k)= fo(g,k)—wé(@ -g)where a, f,,and m" are, respectively,
the Rashba coupling constant, Fermi-%irac distribution, and electron mass and for 0. With
<h, >=are/hZ x E, the bulk spin density, in units of , is givenby S’ =-N,are/hZxE,
which was first obtained by Edelstein.3 In the above expression the density of states per spin is
denoted by Ny. Beyond leading order or linear k dependence in the SOIs, or for the coexistence of
different types of SOIs, the derivation of S becomes more involved. In this work, we calculate
the S’ within a spin-diffusion equation approach and perform a systematic study on the
competing interplay between the RSOI and the cubic-k SOIs. This work is accepted for

publication in Physical Review B within two months.
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FIG. 3. (Color online) Spin densities S” versus k. The case of

pure Dresselhaus SOI (a.',é:()) is denoted by black circular dots. 1 12 14

-
@

The case of @/B=1.01s indicated by blue open circles. Intermediate o;ff'.:ﬂ

between them we have curves for @/ B=Nx A, where A:T;. From

@/ B=1 to a/B=2 we have curves for a/B=1+M X A. 57 is essen- FIG. 5. (Color online) Bulk spin polarization S as a function of
tially suppressed when a=28. a/Band k, and for 0.9=a/B=2.0.
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[11] Asymmetries in intrinsic spin-Hall effect in low in-plane magnetic field:

Out-of-plane spin polarization is of particular interest because it permits efficient optical
probe by Kerr rotation. The edge spin accumulation, according to the spin-Hall effect
(SHE), has an out-of-plane component and is resulted from a transverse spin current induced by
the electric field.[1-4] However, for the case of intrinsic SOI, it is understood that the SHE is
quenched by background scatterers, be they isotropic or anisotropic, [5] as long as the intrinsic
SOIs consist of only linear-momentum dependence term. Meanwhile, no out-of-plane bulk spin
densities are expected in an electric field.[6] When applying an in-plane magnetic field to a

two-dimensional (2D) system, one might be led by the inplane nature of the effective spin-orbit

magnetic field h g =< Ek ># (), obtained by averaging the spin-orbit effective field over the

distribution of the electron momentum 7k , to expect that there were no out-of-plane spin
densities. This is shown not to be the case by Engel et al. [7] for a Rashba-type 2D system, where
out-of-plane spin densities are found when the external in-plane magnetic field is longitudinal: a
configuration studied by recent experiments. [8,9] However, either the scatterer has to be
anisotropic or the electron dispersion has to be nonparabolic for the effect to hold. [7] Here,
longitudinal denotes the direction parallel to the electric field and its orthogonal counterpart in the
2D plane is denoted transverse.

In this paper, we have shown that out-of-plane bulk spin density can be generated in another
system configuration with less restrictive assumptions. The configuration is a Dresselhaus-type
2D system and the external in-plane magnetic field is in a transverse orientation. More
importantly, the effect holds for isotropic background scatterers and for parabolic dispersion for
electrons. Our calculation has included the cubic Dresselhaus SOI. This work is published in

Physical Review B.
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[111] Electrical detection of spin current:

Spintronics involve spin injection, transport and detection. Even though many people
propose many means to measure spin current, but how to detect spin current is still a challenge
now. Here we theoretically demonstrate an electrical method to detection the magnitude of
in-plane spin current.

We proposal a device with 2DEG (two dimensional electron gas) sandwiched in between two

parallel metallic plate as is given in the following picture.

metal

semiconductor

semiconductor 2DEG

Our calculation starts from the perturbed spin-orbit interaction term of the Hamiltonian.
A/ =
H' =e—a-(p><E)
h

where e is the magnitude of electron charge; A is the spin-orbit interaction constant; 7 is the
plank constant; & is the Pauli matrices ; E'is the electric field.

By averaging the perturbed Hamiltonian H' by the spin polarized electron wave function, we
obtain the effective perturbed Hamiltonian H/, for the photons. When the electron is allowed to
flow, the effective perturbed Hamiltonian will describe the emission of photon by the AC spin

!

eff
function of the photons. This allows us to calculate the expectation value of the vector potential ,

A(F,t)= (P4 |P)
From which we can calculate the electric field. For our settiilg, the electric field we are looking at

current. Using the perturbed Hamiltonian H,, we can obtain the one photon emission wave

is in between two infinite conducting plates sandwiching the 2DEG on which the spin current is
located. By integrating the electric field, we obtain the electric potential difference between the
two metallic plants. For a reasonable choice of system parameters, the voltage across the metal
plates is of the order of 10 nA, which is within the comfortable range of the present experimental
capability. This work is intended to submit to Physical Review Letters.

[IV] Spin accumulation in a Rashba-type two-dimensional electron gas due to a nonuniform
driving electric field:

The SHE induces transverse spin currents towards opposite directions with opposite spins via a

longitudinal driving field with SOI. The extrinsic SHE arises from the skew scattering process

due to the spin-dependent impurity.[1] The opposite out-of-plane spin accumulations at lateral

edges can be probed by Kerr rotation due to the extrinsic SHE.6 In contrast, the intrinsic SHE is

contributed from SOI band dependence such as the Rashba SOI (RSOI) or the Dresselhaus SOI



(DSOI). These SOIs are related to electron momentum k from the K - p band calculation.
Furthermore, the generation of the intrinsic SHE in the diffusive regime becomes a key issue and
the SHE can be induced against impurities through the cubic DSOI.[2] However, in the presence
of disorder, including either isotropic or anisotropic impurities,[3] the intrinsic SHE is quenched
for the linear RSOIL. In highly symmetric system, the finite spin current can form a finite spin
accumulation near the boundary.[4,5] In the diffusive regime with RSOI, the SHE can be restored
by considering the anisotropic scatterers, or non-parabolic electron dispersion with an in-plane
magnetic field, or by the magnetic means. The nonuniform driving field achieved by asymmetric
mesoscopic structures can generate the spatial variation of the spin polarization near the boundary.
In this paper, we start from the diffusion approximation based on electron transport to derive the
drift-diffusion equations where spin and charge densities are coupled to each other via the SOI.
The boundary conditions are connected to spin currents by spin and charge densities and it causes

the spin accumulation. This work is to be submitted for publication.
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[V] Persistent current and spin density in a mesoscopic Dresselhaus-type quantum ring:
The geometric model of our research is an isolated finite width mesoscopic ring with

Dresselhaus spin-orbit (DSO) coupling. The cross section of the structure is shown in Fig.1.

Fig.1 The figure is the cross section of the finite width mesoscopic ring, where 7 and r, are
the inner and outer radii.

If we just consider the k-linear bulk inversion asymmetry (BIA) contribution, the total
single-particle Hamiltonian for a quantum ring (QR) which we assume a narrow QR with the z

direction grown along [001] and present the total Hamiltonian in matrix form, we
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spatial confinement for; - (y,,) and z along the ring axis; A is the Dresselhaus SO constant for

the material.
After demonstration and numerical analysis, we can discuss the energy-splitting induced by the
magnetic flux, spin accumulation and persistent current. Furthermore, we can design the quantum

computing devices in the future work.

[VI] Quantum scattering from a circular disk in a cubic-k Dresselhaus-type two
dimensional electron gas:

The most important is the method of partial waves. The total wave is composed of incoming
waves and outgoing waves where the incoming wave part is given by the incident plane wave and
then outgoing wave part can be represented by the eigenstate which we obtain before.
Furthermore, the outgoing wave part contains unknown coefficients which are resulted from the
two kinds of helicity wave functions. The unknown coefficients can be obtained by solving the
boundary condition problems. Finally, we obtain the particle current density by driving the

particle continuity equation of the Dresselhaus-type system.

Figure 2.3: The plane wave of an incident electron wave with wave vector k maling an

angle ¢y with X axis gets scattered by a scattering region defined by a Dresselhans SO1

and a "hard” wall disk
If we just consider the k-linear bulk inversion asymmetry (BIA) contribution, the total
single-particle Hamiltonian for a quantum ring (QR) which we assume a narrow QR with the z

direction grown along [001] and present the total Hamiltonian in matrix form, we
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, wherek, = —ie*" {—i i ——} = —je*? p;¢ ; M is the electron effective mass; V(r,z) 18 the
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spatial confinement for; - (y,,) and z along the ring axis; A is the Dresselhaus SO constant for



the material.
After demonstration and numerical analysis, we can discuss the energy-splitting induced by the
magnetic flux, spin accumulation and persistent current. Furthermore, we can design the quantum

computing devices in the future work.

[V ] Investigation on dissipationless edge state in the Quantum spin Hall system:

However, there are still several problems need to be solved, e.g. how robust the edge state is
against the disorder? Does reflection happen when the edge state comes to one corner but two
different spin orientations along two direction edges? How to utilize the spin-resolved edge when
the absence of magnetic field preserving the time reversal symmetry leads to a Kramer

degeneracy and zero net charge and spin current...etc. ?

We investigate these problems with effective four-band model derived from the Kane model
for semiconductors confining in a heterojunction of semiconductor HgTe/CdTe.[1] The
h(k) 0

Hamiltonian is descried by H = .
0 h(-k)

J where
h(k)=£(k)1,,, +d,c’ ,e(k)=C—D(k +k} )= &(k)=C-Dk’,

d,(k) = (Ak,, Ak,,M(k)) and M (k) = M — B(k] +k; ) = M — Bk>.h* is time reversal of 1. A, B, C,

D, and M are the parameters determined by the thickness of the quantum well. The crucial
parameter is mass or gap parameter M changes its sign when the thickness d of the quantum well

is varied through a critical thickness d. =6.3 (nm). The quantum well has QSH phase in case of

d>dC and normal insulator phase in case of d<d - [3]

[1] B. A. Bernevig et al., Science 314, 1757 (2006).
[2] M. Konig et al., Science 318, 766 (2007);
[3] Pfeuffer-Jeschke, Ph.D. thesis thesis, University of Wiirzburg (2000).



= ~ Results and discussion:

[1] Competing interplay between Rashba and cubic-k Dresselhaus spin-orbit interactions in
spin-Hall effect (Appendix A).

[ 11 ] Asymmetries in intrinsic spin-Hall effect in low in-plane magnetic field (Appendix B).

[1VV] Spin accumulation in a Rashba-type two-dimensional electron gas due to a nonuniform
driving electric field
For RSOI case, the uniform driving electric field can induce the uniform in-plane spin density but
the nonuniform driving electric field can induce the nonuniform in-plane particular spin density
Si. S can contribute a finite spin current such that the out-of-plane spin accumulation is built-up
to compensate this spin current near the boundary. In general, the spin drift-diffusion equations
for the intrinsic SHE can be expressed by [4]
> [6'DV?+ RV, TV ]S, +M" D) /2=0. (1)

J=x,5,z
The diffusion constant is D =v.7/2 with the Fermi velocity vr and elastic scattering time .

The spin dynamics can consider by the first conventional diffusion term, the spin precession term
related to RY", D'yakonov-Perel' (DP) spin relaxation term related to I', and the source term M”
contributed from the spin-charge coupling due to SOI. The electric potential ¢(r) enters into Eq.
(1) only through D00=2eN()go, where the electric field is E(r)= -\/¢(r). Furthermore, the
spin-charge source term can be removed by introducing AS;=S; -S;” replacing S; in Eq. (1). For
intrinsic SHE, the in-plane nonuniform electric field E(r) can induce the position-dependent Sy,
via the spin-charge source term. On the other hand, the in-plane E(r) does not induce the

out-of-plane spin polarization resulting in S?,=0.
We denoting 7, is the spin current projected on 7# -direction, where 7 = (cos @,sin ¢) is the unit

vector normal to the boundary and ¢ is the angle between 7 and x axis. I,/ is connected to the

total spin density S; in the expression of

=" =-2DV S — R"S e ()

where V, =cos¢(0/0x)+sing(d/dy). When the hard-wall boundary is imposed in our system,

it implies that spin currents are equal to zero in Eq. (2). Apparently, the

spin density S; =AS; +S;" is position-dependent because the nonuniform electric field induces the

nonuniform S7. Consequently, V,S;#0 allows a finite spin accumulation S, to compensate

its contribution in Eq. (2) at the boundary.

To study the phenomenon of the nonuniform driving field applied to the spin diffusion
equation acted upon the RSOI, we adopt a realistic model of a circular hole with radius Ry. While
a driving electric field E x is applied, Sz presents the dipole spatial distribution in Fig. 1. The

maximum spin-up (-down) polarization occurs at ¢=37/2(x/2) and it decreases within a



range of 1.1 pm.
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Figl: Spatial distribution of spin density S, around a hole with a radius 1.8 pm.
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Competing interplay between Rashba and cubic-k Dresselhaus spin-orbit interactions
in spin-Hall effect
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Focusing on the interplay between the Rashba and cubic-k Dresselhaus spin-orbit interactions (SOI). we
calculate the spin accumulation S. and the spin polarizations SF at, respectively, the lateral edges and in the
bulk of the two-dimensional electron gas. Their dependences on both the ratio between the Rashba and the
Dresselhaus SOI coupling constants and the electron densities are studied systematically. Strong competition

features in 8. are found. In the Dresselhaus-dominated regime S. changes sign when the electron density is
large enough. In the Rashba-dominated regime . is essentially suppressed. Most surprising is our finding that

the Rashba-dominated regime occurs when a=2f, where o and £ are the Rashba and the effective linear-k
Dresselhaus SOI coupling constants, respectively. For the spin polarizations §¥, the Rashba-dominated regime

occurs when a= £. Our results point out that decreasing |« leads 1o the restoration of the spin accumulation

5.

DOI: 10.1103/PhysRevB.79.1953 14

I. INTRODUCTION

Spin-orbit interaction (SOI) provides the key leverage for
the recent strive for all electrical generations and manipula-
tions of spin densities in semiconductors.'™ Intrinsic SOIs,
such as the Rashba SOI (RSOI) (Refs. 3. 7. and 9-12) and
the Dresselhaus SOIs (DSOIs).%!31423 are of particular inter-
est. It is due to their tunability, gate tuning for the RSOI and
either sample thickness or electron-density tuning for the
DSOL. and to their physical origins, being independent of
disorder that requires the presence of SOI impurities. Yet the
ever present background scatterers do play a subtle role in
the intrinsic spin-Hall effect.' In spin-Hall effect (SHE). an
external electric field induces a transverse spin current and,
in turn, an out-of-plane spin accumulation S. at lateral
edges.'* For intrinsic SOIs, the background scatterers lead
to a complete quenching of the edge spin accumulation §.
when the SOI depends only linearly on the electron momen-
tum k'3 but . maintains finite and dependent on the mo-
mentum relaxation time 7 when the SOI has a cubic-k
dependence.'*!7 Thus. separately considered. the RSOI does
not contribute to edge spin accumulation 8. while the cubic-k
DSOI does. For a more realistic situation, when the two SOIs
coexist in a sample, RSOI could exert its effect on the edge
spin accumulation S_, but that would have to be mediated
through the cubic-k DSOL It is of great interest o see
whether this effect would be reinforcing or competing for S..

Thus, in this work, we focus upon the interplay between
the RSOI and the cubic-k DSOIs in their combined. or com-
peting, effects on both the edge spin accumulation S. and the
bulk spin density S%. Bulk spin density .S’f‘. formed in an
external electric field, is another important physical quantity
of interest that is closely related to the intrinsic SOls. The
subscript i denotes the vector component of spin. The effect
of the background scatterers on S:" is less subtle than that on
S.:8%, remains finite for all intrinsic SOIs and depends on 7
also.” Intuitively, up to leading order in the SOI coupling

1098-0121/2009/79(19)/195314(6)
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constant one might expect this Sf’ feature to arise from a
SOl-effective magnetic field.* It turns out to be the case
when there is only one dominated SOI and the SOI depends
on k linearly. Take, for instance, a Rashba-type two-
dimensional electron gas (2DEG) in the diffusive regime, the
k-dependent effective magnetic field becomes (hy)=-az
% (k) when (k) is averaged over the electron distribution
given by a shifted Fermi sphere fle.K)=fy(e.k)
—%6(5;——6). where a. fy, and m" are. respectively, the
Rashba coupling constant, Fermi-Dirac distribution, and
electron mass and for e > 0. With (hy)=are/fiz X E, the bulk
spin density, in units of fi, is given by S¥=-N,are/ i X E,
which was first obtained by Edelstein.” In the above expres-
sion the density of states per spin is denoted by Nj,. Beyond
leading order or linear k dependence in the SOIs, or for the
coexistence of different types of SOls, the derivation of S2
becomes more involved. In this work, we calculate the Sr-h
within a spin-diffusion equation approach and perform a sys-
tematic study on the competing interplay between the RSOI
and the cubic-k SOls.

Interplay between the RSOI and the linear-k DSOI in a
sample has attracted much attention lately.'"** Earlier work
studied the effect of f:::fl‘. where E is the effective linear-k
DSOI coupling constant, on the magnetoconductivity.'®
More recent work on the same a= 3 regime pointed out that
the spin becomes a good quantum number, independent of k.
and has a long relaxation time." The D"yakonov-Perel’ (DP)
mechanism' for spin relaxation is suppressed. This finding
led to proposals for spintronic transistor that would manipu-
late polarized spin transport in the diffusive regime.!™" It
was later shown, within the same a/B=1 regime, that the
Fermi circles of opposite spins are connected by a wave vec-
tor Q that depends only on the SOI constant and the effective
mass.™ This leads to the persistent spin-helix state.** Since
the ratio @/ is important for the development of spintron-
ics, and the transport is anisotropic when both & and B are

©2009 The American Physical Society
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a number of experiments were designed to
extract this ratio by the monitoring of the spin
photocurrent.”*?*27 Most of the studies dealt with the
linear-k SOIls. One of the exceptions is a weak localization

experiment that has extracted a. $, and also the cubic-k
DSOI coupling constant from comparing the magnetocon-
ductance data with a weak localization theory.”' The delicate
interplay between the RSOI and the cubic-k DSOI is yet to
be explored and is much needed in either the spin transport,
as is briefed above, or in the spin accumulations, as is related
to SHE.

To study the interplay between the RSOl and the cubic-k
DSOI in the diffusive regime, we extend our previous studies
on the spin diffusive in a 2DEG strip to include both types of
the SOL'7 The diffusive regime has [, < L., where L, and [,
are, respectively. the typical spin-relaxation length due to
either the RSOI or the DSOI and the momentum-relaxation
length. We study in detail the variations in S. and S¥ with
respect to a/ 8 and to the electron density. Our result shows
Dresselhaus-dominated and Rashba-dominated regimes are

determined primarily by the ratio a/ ﬁ In the intermediate
regime, intricate interplay between the RSOI and cubic-k
DSOI is clearly shown as the electron density is varied. The
edge spin accumulation S_ is essentially suppressed in the
Rashba-dominated regime. Most surprisingly is our finding
that the Rashba-dominated regime occurs when aﬁ?ﬁ for
the edge spin accumulation S. and when a=8 for the bulk
spin polarization S, Our result points to a possible way to
restore the DSOI’s contribution to the SHE. namely, to lower
|/ B| to values well below unity. In Sec. Il we present the
spin-diffusion equation and the analytical solutions. In Sec.
II we present our numerical results and discussions. Finally,
in Sec. 1V, we will present our conclusion.

II. THEORY

The system we consider is a 2DEG confined in an infinite
strip with transverse boundaries at v= *d/2. The thickness
of the strip w<sd. An electric field E in the x direction in-
duces the SHE. The phenomenon is described by a spin-
diffusion equation'*'” which has been derived from the
Keldysch nonequilibrium Green’s function method.*" It has
also been extended to the case of an in-plane magnetic
field.*" Detail of the derivation is not repeated here. but we
will describe the physical meaning of the terms in the spin-
diffusion equation. For our purpose here, the SOl magnetic
field hy includes both the RSOI and the cubic-k DSOI and is
separated into linear-k and cubic-k terms hy=hy ;+hy ;. In a
2DEG, hy lies on the two-dimensional plane after we aver-
age it with the lowest subband wave function over its thick-
ness. Explicitly, we have

hy ;= alk,.— k) + B (= k,.k,).

hy 3= Blk .= kD). (0

Here, 8 is the DSOI coupling constant, Klz(ki). and k, and
k, are along, respectively, the [100] and [010] directions for
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a zinc-blende crystal.* It is convenient to define the effective
linear-k DSOI coupling constant ;§=,Bx3. The SOI hamil-
tonian H,,=hy- o. where o is the Pauli-matrix vector.
Equation (1) provides us a simple way to get at the direc-
tion of the effective magnetic field hy for a given electron
distribution in the k space. This is important for an intuitive
understanding of the spin-diffusion equation. From hy=
—h_y. the effective magnetic field is zero when the k-space
occupation is symmetric, as it is for the equilibrium case. If
the deviation from equilibrium is a shifted distribution char-
acterized by a wave vector Q. then the effective magnetic
field h”® due to RSOI will be along the direction of Q xi.
The DSOI case is less straight forward. but when Q is along
either k, or k,, then h” will be along or opposite to O Spe-
cifically. in the low electron-density (k, <€ k) regime h” will
be opposite (along) to Q when Q is along k, (k). The direc-
tion of h” will be reversed in the high-density (k;> &) re-
gime. Here kj is the Fermi wave vector.
The stationary spin-diffusion equations are given by
il

& R a R™Y o | Rl
D—S_+ —S,. +——85,
dys - fi day

h ay : f-

‘f)] R 4 | r C
I)_‘,.S“ 4 ——5 - —,}S‘ R T
PR ARl iy

where diffusion constant D=vf,-1'f’2. and S; is the spin density
in units of A. Since kgl > 1, charge neutrality is maintained
by the condition of zero net charge density throughout.

The DP spin-relaxation rates I"'=47hi(§'=nin}) for i, |
e 1, 2, and 3. for unit vector n=hy/ /.. The overline denotes
the angular average over the Fermi surface. Specifically, we
have I’-‘-":l‘-"-"ﬁ: I'# i 2=27!\‘jr{a1+ B~ %ﬁzp+é‘ﬁgf“) and ™
="=—a7k;B(4—k*) for k=ky/ k. The diagonal components
of the DP spin-relaxation rate receive independent contribu-
tions from the individual SOI. The off-diagonal DP compo-
nents, however. involve both SOIs together, as they are pro-
portional to arB. Furthermore, k serves as an agent that
carries the cubic-k effects of the DSOL For example, the
term that has B2 is resulted from mixing the linear-k and
the cubic-k effects of the DSOI. whereas the term that has
Bk is due solely to the cubic-k effect of the DSOI, and in its
second order.

Spin precession arising from spatial nonuniformity in spin
densities is characterized by coefficients RiMm=473 eMpliy,
where £’ is the Levi-Civita symbol. Specifically. the RSOI's

ge suy 2THE 5 :
contributions are R**'=—=R" =%a. and the DSOI's contri-

. oy 27E = ) =y .
butions are R*"-‘:—R“‘--‘:Tf(ﬁ—fﬁk*). As we will explore
the interplay between the two SOIls by varying a while keep-
ing E fixed. it is more convenient to define the length scale
l=2D/R*" according to the strength of 8 only. The coeffi-
cient R if not zero, causes the precession of ;. due to its
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spatial variation along m. to rotate into S;. That R™, for
instance, receives sole contribution from RSOI can be under-
stood from our aforementioned shifted electron-distribution
picture. Taking that 5 (g,) is represented by a shifted distri-
bution with QZ—f. the effective magnetic field h® due to
RSOI will be along (}Xi:—i. leading to the precession of
S, about & clockwise. On the other hand, the effective mag-
netic field h” due to DSOI for this case will be along —¥,
assuming low electron-density regime, and cannot lead to the
precession of S,. Similar argument can be applied to explain

(8’ = 1607 B*+83") + lza4 + 3a1,§1—

PHYSICAL REVIEW B 79, 195314 (2009)
why R*', for instance, receives contribution from DSOI
only.

The effect of the driving electric field on the above spin

diffusion enters through the coefficients C,, for ie 1,2. It is

given by C;=2M 9D}/ ox, where M’ =4I} == incorporates
the spin-charge coupling and Dy==2NyeEx is a local equi-
librium density."” The bulk spin densities can be solved di-
: C.[4+C, T y

rectly from Eq. (2). We obtain SB ﬁ &2
o T9¥—TT x

=y and Sf:(}. The full expressions are given by

‘EAELO

SB: ( TN"(’EE) %

? 2h

(8a'— 1607 B+ 8[2‘)+{12a33

12898 + (2B + zmr‘

8- (TNUL‘EC!') »
' 2h (-4a* + 82 B

Equation (3) reduces to the pure RSOI result® when B=0,
and to the pure cubic-k DSOI result'” when a=0. If the
cubic-k term in the DSOL is dropped (k=0), Eq. (3) gives
SfRD=—m—;:'—£{;§.a} so that it points to the third quadrant in
the x-y plane. For a=p. SERD forms 45° with the —x axis.

We solve the spin-diffusion equation for the spin density
§; across the semiconductor strip. The boundary condition
we use is derived from requiring the local spin-current den-
sity /{, which is expressed in terms of both §; and its spatial
derivative dS;/dy, to be zero in its transverse flow [, at the
lateral edges.!” This is appropriate for a hard-wall
boundary.**** Extended to include both SOIs, the spin-
current density is given by

d . - B e B
F == 2D =5, = R(S, = $%) = R(S, = S + Ly
) ay i

d
I=-2D—S§, - RS,
: dy - h

7
F=-2D—S,-R®S.. (4)
e :

The spin-current density in Eq. (4) has contribution from
spin diffusion, via the spatial gradients in S;, spin precession.
via the R"™ coefficients, and the electric field, via the bulk
spin-current density /. It is given by

vy b v gl Dlh
‘H——R S - RS +4T£’FNUUF

N
?L‘.Xh")_ )

(3)

248 + (4P B+ 4B - 281 + 1 B0 - ﬁﬁ*i}“

II. NUMERICAL RESULTS AND DISCUSSIONS

In this section. we present the edge spin accumulation S.
and the bulk spin polarizations S* for a 2DEG semiconductor
strip that consists of both the RSOl and the cubic-k DSOL.
For definiteness, material parameters are chosen to be con-
sistent with GaAs: effective mass m"=0.067m,. with m,, the
electron mass; Dresselhaus SOl B=27.5 eV A332 and J(
=BK*)=2.22 eV m for quantum well thickness w=300 A.
The width of the strip is d=30 pm. and the mean free path
[,=1 pm. Typical value of I, for n=1x%10"% m=2, or k
=0.76, is [,,=2.20 um. The electrons occupy only the low-
est suhhand in the quantum well. An electric field E
=25 mV/pm is applied along x to set up the spin-Hall phe-
nomenon.

Figure | presents the spatial profile of 5. across the semi-
conductor strip. Besides the well-known odd-parity feature
of S.in the transverse coordinate v, Figs. 1(a)-1(d) show, for
the given physical parameter ranges, that the spin accumula-
tion §. is sensitive to the ratio alB. S. has the largest mag-
nitude in Fig. 1(a). where a/B=0: it exhibits sign changes in
Figs. 1(b) and 1(c). where a/B=0.5 and 1, respectively; and
it is essentially suppressed in Fig. 1(d). when a/B=2.0. The
fact that the RSOI dominates as early as a/B=2.0 is surpris-
ing.

Dependence of S. on the electron density. or k. is also
shown in Fig. 1. For the case of pure Dresselhaus SOL. the
edge spin accumulation S. increases with k. This feature cor-
roborates with the fact that the cubic-k SOI is the major
contributor to S.. On the other hand, S. can change sign by
either increasing the electron density, as is shown by the k
=1.20 curve in Fig. 1(b), or by increasing the a!,é ratio, as is
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FIG. 1. (Color online) Spatial profile of spin density: 5. versus
v. 5. in units of gm™, v in units of gm, and the width of the strip
d=30 pm. k=0.76 (black solid line), 0.93 (blue diamond), and
1.20 (red triangle) correspond to electron density n=1.0, 1.5, and
2.5%10'5 m™2. The ratio a/B=0.0, 0.5, 1.0, and 2.0 in (a)-(d),
respectively.

shown by the curves in Fig. 1(c). This sign change in §. is a
manifestation of the competition between the RSOI and the
cubic-k DSOI. That the RSOI joins forces with the cubic-k
DSOI to compete with the pure cubic-k DSOI feature is an
intriguing result we have found here. This is supported by
Fig. 1(b), when the RSOI is of intermediate strength. The
sign change in S. occurs for the k=1.20 curve of which the
cubic-k effect is the strongest. For larger RSOI, as in Fig.
1{c). the sign change occurs for all curves shown, including
those of smaller k values. All these characteristics. and the
results in the following, have prompted us to categorize the
spin accumulation into three regimes: the Dresselhaus-
dominated regime. Fig. 1{a): the Rashba-dominated regime,
Fig. 1(d); and the intermediate regime. Figs. 1(b) and I(c).
The ratio a/f is the key parameter that helps define these
regimes. We note in passing that we have treated « and k as
though they were independent parameters whereas in prac-
tice they may be connected. It has been demonstrated experi-
mentally, however, that the two parameters can be decoupled
by a two gates technique.™

The dependence of the edge spin accumulation S”=S(y
=—d/2) at the sample edge on the regime parameter m’,é is
presented in Fig. 2. The first feature that we want to address
about these curves is their even parity in a/ 8. This confirms
our expectation nicely because the symmetry of the system
seems to demand a parity symmetry in S_ with respect to
a/B. However. the fact that §”#0 at a/B=0 rules out the
possibility for a S7 of odd parity. leaving us the even parity
as the only choice. There are other features, which are
equally important, in the general dependence of ST on alpB.
Starting from a maximum at a/gB=0, S” passes through a
minimum of negative value and then diminishes to small
values at «/B=2. The minima occur within a region 0.5

PHYSICAL REVIEW B 79. 195314 (2009)
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FIG. 2. (Color online) Edge spin accumulation 5_ versus alB.
k=1.51 (black cross), 1.20 (red wiangle), 0.93 (blue diamond), 0.76
(black solid line), and 0.68 (black triangle) correspond to eleciron
density n=3.5, 2.5, 1.5, 1.0, and 0.8 X 10" m™, respectively. The
curves show the symmetry S”(a)=57(-a).

<a/B<1. These minima of S are resulted from the com-
petition between the two SOls. In contrast, the maximum of
57 is a pure DSOI feature. The maximum value of 57 in-

creases with k up to around k=1.20. Beyond this, the maxi-
mum value of 57 takes on a different course and decreases
with increasing k to negative values, as is indicated by the
k=151 curve. Suppression on 57 is already quite significant
when a!;§> 1.5. On the other hand, taking both directions of
ST into account, |ai§| < 1 is the optimal region for the exhi-
bition of spin accumulation.

Presented in Fig. 3 is the dependence of S on both k and
al ﬁ It is meant to be a comprehensive presentation, with 87
versus k curves plotted together for different values of a/ ,é
(0=a/B=2). The pure DSOI case is denoted by the circular
dots and the a/ B=1 case is denoted by the open circles. The
a/ B=2 case forms the boundary of the group of curves of

increasing M. where the variation in S with k is weak and
the magnitudes small. It is convenient to describe the general

features separately in two regions: the 0=a/B=1 and the
]EMEEE regions. In the former region the S increases
with & initially, following quite closely with the afﬁ:ﬂ
curve, before it reaches its maximum. Beyond this point, 87
deviates from the a/ B:O curve and decreases to pass
through zero and into the negative value region. The increas-
ing of ME results in the negative shifting in the k values of
the zero of S_. There is a tendency, as k further increases, for
the S_ to conform to the pure DSOI behavior. namely, that 5~
increases its magnitude with k. This tendency, however,
gradually fades out, for a/B>04, and results in a much
weaker dependence on k when m’,é-ﬁ 2.

The domination of the pure DSOI in the small k region is
consistent with the understanding that the DSOI is the sole
contributor to S” there and the effect of RSOI needs to be
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FIG. 3. {Color online) Spin densities 57 versus k. The case of
pure Dresselhaus SOI (@/B=0) is denoted by black circular dots.
The case of a/ fi: 1.0 is indicated by blue open circles. Intermediate
between them we have curves for e/ B=N X A, where A:%. From
alB=1 10 a/ B=2 we have curves for a/ B=1+M X A, & is essen-
tially suppressed when a=25.

mediated by the cubic-k DSOI. The effects of RSOl emerge
in larger k& values, where the location of the zero of 57 is
negatively shifted with the increasing of a/ . The zero of S7
can be understood with the vanishing of the effective mag-
netic field h=0. Taking the a/B=0 case as an example.
(W)= [k (~B+BE2) k(B BK3)]). In a driving E field, the
averages (k)=—7e/hE and (k,)=0 so that (h”) becomes
zero if (B—pk?)=0. This condition is satisfied if k=12,
which is quite close to the value k=1.47 for the pure DSOI
curve. We point out that the averages on h that enter into the
contribution to the various processes considered in this work
are much complicated than the one that we have just shown.
But this nice correspondence in the & values for the a/B=0
case convinces us that the effective magnetic field concept is
at work. This effect of a on the zero of 57 shows that the
effect of RSOI is a competing one. Similar competing nature
causes the suppression of the pure DSOI feature in the k
> 1.2 region. As is demonstrated by the a/B=1 curve, the
pure DSOI trend in this region no longer prevails but is
largely suppressed. It is also of interest to see that ST is
negative in the entire shown values of k.

For the | = a/B=2 region. 5 decreases monotonically in
its magnitude with the increasing of e/, while exhibiting a
converging behavior as a/ ,g' increases. Except for a residual
positive value for 57 in the large k region when a/B=2. the
87 is essentially suppressed.

In Figs. 4 and 5 we present both the bulk spin polarization
SB and its linear-k counterpart S{'y;, and their dependence on
a/ B and k. Relative magnitude between each vector pairs is
shown, with the magnitude of S¥u, chosen as unity. For a
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FIG. 4. (Color online) Bulk spin polarization 8% as a function of
@/ B (abscissa) and & (ordinate), and for 0= a/B= 1.2. Directions
of S® are shown with x and v axes along the abscissa axis (pointing
right) and the ordinate axis (pointing upward), respectively. SERD
(black arrows) denotes the linear-k SOIs, and S% (red diffused ar-
rows) denotes the full SOIs. The magnitudes of the vector pairs are
normalized between themselves such that the magnitude of the bulk
spin polarization is |$%]/|SF, ). and that of 8P4, is unity.

fixed k., the two vector pairs become more aligned in both
their directions and magnitudes when a/f increases. For a
fixed a/ 3 the general feature is that the vector pairs deviate
more from each other as k increases. This is consistent with
the understanding that the deviation comes from the cubic k
in the DSOL There is an interesting intermediate region

where the $#=0. Starting from a/B=0, the zero S* is
around k=1.1. With the increasing of a/p, the k value for
zero S® decreases. This zero §7 feature ties up nicely with the
zero S feature in Fig. 3 in that both of the k values for the
corresponding zeros decrease with the increasing of a/ E
Beyond the region a/ EE I. the zero S¥ feature subsides
while the vector pairs align nicely with each other, both in
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FIG. 5. (Color online) Bulk spin polarization $% as a function of
e/ B and k. and for 0.9=a/B=2.0.

195314-5



CHANG, CHU, AND MAL'SHUKOV

direction and magnitude, unless for very large k. Thus the
RSOI helps to make the linear-k SOI dominates in the for-

mation of 8% for a/B>1.

IV. CONCLUSION

In conclusion, we have studied systematically the compet-
ing interplay between the RSOI and the cubic-k DSOI in
their contribution to the edge spin accumulation and the bulk
spin polarization. There are three regimes. namely, the

Dresselhaus-dominated regime (|a/B|<0.5): the Rashba-

PHYSICAL REVIEW B 79, 195314 (2009)

dominated regime (|e/B|=2); and the intermediate regime
(0.5<|a/B|=1). The optimal restoration of the spin accu-
mulation occurs in the region |e/ 8/ < 1.0. While the RSOI
alone cannot give rise to spin accumulation, it can still exert
its effect via the cubic-k DSOI, and thus provide the needed
tunability for spin accumulations.
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Asymmetries in intrinsic spin-Hall effect in low in-plane magnetic field
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Effects of low in-plane magnetic field on bulk spin densities and edge spin accumulations of a diffusive
two-dimensional semiconductor stripe are studied. Focusing upon the Dresselhaus-type intrinsic spin-orbit
interaction (SOI), we look for the symmetry, or asymmetry, characteristics in two magnetic-field orientations:
along and transverse to the stripe. For longitudinal field. the out-of-plane spin density §; exhibits odd parity
across the stripe and even parity in the magnetic field and is an edge accumulation. For transverse field. the
out-of-plane 5 becomes asymmetric in both spatial and field dependencies and has finite bulk values for finite
magnetic fields. Our results support utilizing low in-plane magnetic fields for the probing of the underlying

SOL.

DOI: 10.1103/PhysRevB.78.155302

I. INTRODUCTION

Generation and manipulation of spin densities by electri-
cal means are major goals of semiconductor spintronics that
are made possible by spin-orbit interactions (SOI).'-* SOIs
being considered are either intrinsiclike: the Rashba®™7%!!
and the Dresselhaus SOIs**!'%!* or extrinsiclike: the
impurity-induced SOL!'*01% These SOIs contribute, in an
external electric field, to either spin densities in the bulk or
spin accumulations at lateral edges, or both.

Out-of-plane spin polarization is of particular interest be-
cause it permits efficient optical probe by Kerr rotation. The
edge spin accumulation, according to the spin-Hall effect
{SHE), has an out-of-plane compenent and is resulted from a
transverse spin current induced by the electric field.!*%
However, for the case of intrinsic SOI, it is understood that
the SHE is quenched by background scatterers, be they iso-
tropic or anisotropic,'® as long as the intrinsic SOIs consist
of only linear-momentum dependence term. Meanwhile, no
out-of-plane bulk spin densities are expected in an electric
field 21%1% When applying an in-plane magnetic field to a
two-dimensional {2D) system, one might be led by the in-
plane nature of the effective spin-orbit magnetic field h.g
={hy)#0, obtained by averaging the spin-orbit effective
field over the distribution of the electron momentum #k, to
expect that there were no out-of-plane spin densities. This 1s
shown not to be the case by Engel ef al.!! for a Rashba-tvpe
2D system, where out-of-plane spin densities are found when
the external in-plane magnetic field is longitudinal: a con-
figuration studied by recent experiments. !™!'# However, either
the scatterer has to be anisotropic or the electron dispersion
has to be nonparabolic for the effect to hold.!" Here. longi-
tudinal denotes the direction parallel to the electric field and
its orthogonal counterpart in the 2D plane 1s denoted trans-
verse.

In this paper, we have shown that out-of-plane bulk spin
density can be generated in another system configuration
with less restrictive assumptions. The configuration is a
Dresselhaus-type 2D system and the external in-plane mag-
netic field is in a transverse orlentation. More importantly,

1098-0121/2008/78(15)/155302(6)
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the effect holds for isotropic background scatterers and for
parabolic dispersion for electrons. Our calculation has in-
cluded the cubic Dresselhaus SOL

This paper also addresses the symmetrical properties of
the spin densities and spin accumulations in a weak in-plane
magnetic field. We believe that this is important for distin-
guishing the dominant type of SOI in a particular sample.
Qut-of-plane spin accumulations at the lateral edges of an
extrinsic SOI two-dimensional electron gas (2DEG) are sym-
metric with respect to a transverse magnetic field.® The sup-
pression that it exerts on the spin accumulations is exhibited
in the position-dependent Hanle profiles.'” Study on the
same fleld configuration, but in an extrinsic SOl normal
metal, has found similar field suppression in another physical
quantity: the out-of-plane spin-Hall potential.? For the in-
trinsic SOI, studies on the in-plane magnetic-field effects
have focused on the spin-Hall conductivity?'-2? and the bulk
spin densities !> but not on the symmetry properties. Thus it
1s legitimate to perform a thorough and systematic investiga-
tion on both the spatial as well as the field-dependent sym-
metry characteristics of the spin distributions for the case of
intrinsic SOL

Ouwr results show, for the case of a Dresselhaus-type
2DEG stripe, strong anisotropy in the symmetry characteris-
tics with respect to the field orientations. For longitudinal
field, the out-of-plane spin density 5. exhibits odd parity
across the stripe and even parity in the magnetic field and is
an edge accumulation. For transverse field, S, becomes
asymmetric in both spatial and field dependencies and has
finite bulk values for finite magnetic fields. As the Rashba
and the extrinsic SOIs do not depend on the crystal orienta-
tions, while the Dresselhaus SOI does, the strong anisotropy
in the symmetry characteristics obtained in this work 1s dis-
tinct for the Dresselhaus SOL Our work thus serves to com-
mence the notion of utilizing low in-plane magnetic fields as
a characterizing tool for the probing of the underlying SOI in
a particular sample.

In this paper, we consider a diffusive Dresselhaus-type
2DEG stripe in a weak in-plane magnetic field as shown in
Fig. 1. The diffusive regime has [ & [.. where [, and [, are.
respectively, the spin-relaxation length due to the SOI and

©2008 The American Physical Society
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FIG. 1. Top-view schematic illustration of the 2D stripe. The 2D
stripe has a width d. In the system, electric field E and in-plane
magnetic field B are applied. The direction along the stripe, or ¥, is
denoted longitudinal and that along v, ransverse.

momentum relaxation length. Spin distributions across the
entire width of the stripe are investigated for all three spin
directions including out-of-plane and in-plane components.
In Sec. Il we present the spin-diffusion equation and the
associated boundary conditions. In Sec. IIl, we present our
numerical results. Finally, in Sec. IV, we will present a sum-
mary and discussion of our results.

II. SPIN-DIFFUSION EQUATION

Following on the procedure of deriving the spin-diffusion
equation for B=0 from the Keldysh nonequilibrium Green’s
function technique,'® we extend the derivation to include an
in-plane magnetic field. The spin-dependent term in the
Hamiltonian is given by Hg-a=(hk+ﬁ}-a, where « is the
Pauli-matrix vector, hg=-h_y is the SOI effective field and a
function of the 2D wave vector k, and ﬁ:g’pr;’Q is the
Zeeman term. Here g is the effective g factor and up is the
Bohr magneton. We consider the weak magnetic-field regime
where Ep=h, > B.

A brief outline of the derivation is presented below. Start-
ing with the perturbation from a four potential given by H'
=ZQ(r )7, where the 2 X2 matrices 7°=1 and 77
=0, and the four densities D{r.f)=—i Ti[7G*(r.r.1.1)]
are expressed in terms of the full Green’s function. Within
the linear-response regime, and for e < Ep, it becomes

Di(r,w)= j dr' Y T(r,r @) @) + DY(r,w). (1)
J

With 2N, the electron density of states D(q.w)
=—2Ny @ (].w) are easily understood as the local equilib-
rium densities.'® This term turns out to be the driving term
for the spin-Hall effect: and within the linear response, it
suffices to neglect the correction due to Hy o in DY.

The response function in the & representation is

dew' afm(w )

I{q.0)=io> (T G"(K;.p; - q.0)
Pk, 2ar
X:‘G’(Dl,kl+q,m+m’)r’]}, 2)

where fpp(w’) is the Fermi-Dirac distribution function at en-
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ergy @' and the angular brackets denote averaging over the
random impurity configurations. The averaged Green's func-
tion is given by G’m:'(p,o))=1f(w—Ep— Hg- or+iT), where
Ep is the Fermi energy and I'=1/27. In the following, we
consider the regime Ep=T >/, Evaluating Eq. (2) within
the ladder series™* leads to the summation, up to all orders,
of a basic diagram Vil(w, o' ,q):%|V5c|?'EDG;ﬂ(p,w
+w'}G“L(p—q,o)'}. The response function becomes

&f N i @ [
23 [ aor T2} 0

X{[1 - Vo' .q)I ', (3)

where l{fE @0y and T/ (mNg)=c{ V,c|2;’ V. Here, V is total
area of the sample and ¢; and V_ are, respectively, the impu-
rity density and the Fourier transform of a short-range impu-
rity potential at gq=0. Making use of the transformation

’l’ﬁ, (1/2)=47 h‘l’”r’ 4 Eds. (1) and (3) together gives

ngw

(1= ¥y(D, - DY) = iwrP'DY, (4)

where

i = E TG " @+ )P0 (p' - q.0")].

2mN,
(5)

The charge neutrality is maintained by the condition Dy=0,
since Epre1 and w=0.

The spin-diffusion equation can be obtained by expanding
¥ in lower orders of q and then by obtaining the Fourier
transform of Eq. (4) to the position representation. Expand-
ing ¥ up to lower orders in i and to first order in B results
in a total of five terms given by

5
LZEDIR o (6)
=1

where ¢ and @ dependences are not shown.

The term ¥ =(1+iwr=Dq*)8; with D= Lpﬂ"’ produces
the legular diffusion equation. The second term ‘\I";I
=ig,7R"™, where R™=473 L hIUE and & as the Levi-
Civita symbo] causes the spin densities to precess about its
local variations. The overline denotes the angular average
over the Fermi surface and m.n are the component indices.
The third term Wi =—+T", where I“T=4Thi(§"{—ni_ni) for
i,/#0, and for wunit vector mg=hy/h, describes the
Dyakonov-Perel” spin relaxation.! The last two terms contain
new contributions from the in-plane magnetic fields. In the
fourth term, we have Tf=fR§m, where R’I’"— EmEE‘I’"ﬁm
and m 1s the field component index. This gives rise to pre-
cession of the spin densities about the magnetic field. In
the fifth term we have the spin-charge coupling

V0= (ig)(M - M), Here MO=47U% and MY

=27%R ——g‘.%)@;. The latter contains the effect of the

xdk

in-plane magnetic field. Up to this point we have kept a
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generic form of the SOI. Applving to the case of Rashba
SOI, when hy=ak Xz, we find no out-of-plane bulk spin
densities and no edge spin accumulations, which is consis-
tent with previous findings.!! A more interesting case is the

where §;=0;/2 and the homogeneity along x is assumed.
Effects of the in-plane magnetic field enter Egs. (7) in two
places. The first is the precession effect given exactly by
der/di=(2/%)B X or. The second is through the coefficient
C,. which is originated from the spin-charge coupling term
ML? Its explessmn is given by Cr=7{ahi/ &kx){aDUf dx),
where Do——ZNgeE'x for e>0 represents the effects of the
driving electric field.

Expressions for other coefficients in Egs. (7) are the
Dyakonov-Perel” spin  relaxation rates I'™=I""=I'%/2
=,8sz%(1;’4—@+2(.‘4), where C=x/kp. Precessions about

local variation in spin densities are given by the coefficients

R =_R%Y= gy SH2€2-1/2)=2D/l,,. Finally, the spin-
cha.rge coupllng that originates from M™ is the coefficient
C,=M"Dj/2.

The bulk spin densities obtained from Eqs. (7) are

Sf.’:A_l. —c,+— /(1+°A?+°A?
_\-=—2AA5‘?,
$=2A st - S
X l".‘l’l

(8)

where A, the dimensionless B, is given by A;=B,/T™. §%is
checked to reproduce the correct B=0 limit.!® Except for the
A,C, term in .S'f' . which is originated from the spin-charge
coupling, all other terms in §? that are proportional to A; are
related to spin precessions about B.

The boundary condition for the spin-diffusion equation is
established in the following by connecting the spin current to
the spin densities and their spatial gradients and then requires
the transverse flow of the spin current to be zero at the lateral
edges.'® This is appropriate for hard wall boundary.”* We
start from the conventional form of the spin current operator
Ji=(112)(Vo;+0,V)), where spin unit of /i/2 is implied. The
velocity operator is given by

& R g
D Esx Y a—yS; -
i r
{ D ay2 Sy 72
& R r=
ch?yE b T&)’SI_? N
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Dlesselhaus SOL. where h,= g8k, (k‘ PONAlS k?')] 5 Here
s {k ) is the average over the thickness of the 2DEG and
{hi)=0. From Eqs. (4) and (6) and the form of /., we obtain
the static spin-diffusion equations

2
8- ;BAS; =0, (7

k; é'hk'c

E R e s 9
1 m*+ F (9)

where v;=(k;/m"). The expression for the spin current is'®

Iq.0) = uuj da GWFE <(UFTE+

k'

xG’(k+ ﬂ,k’ + g,m+ m']f‘i

a4
okt J

k- ﬂ,w') >q>j(q,m), (10)

xG“(k'—% 2

where the summation convention for repeated indices is
adopted. In the dc limit (w=0) and at zero temperature
(w'=Eg), the spin current is related to the four densities in
the form

= —{X/ Dy = X'Dy+ Y/ Dy - ¥['DE). (1)

where j' denotes the spin indices. The operators to the spin
densities are

xf=

XTr| 760k + 3 0 + Ep | 7G|k -
"2 [
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(- )5 o

yi =
P\ 2aN, /S ok

xTr[G’“”(k + ‘2—',m+ Ep] #GO k- %,Ep]} :

L) \ !

(13)

S]_J_ecifyling to the flow of spin along y. we calculate Xf and
Y to give

i
Xi=- m"( iq,D;+ SR (8. + 57 |

opd

. 2 dhy | dJri';.
-2 - "J(h.X— & 8- —d,. (14
1, m Ul Uy c”(_\. _.]: iz%0 f-:"ky il ( }
and
. ghi
vi= 2o (15)

with the latter being exactly canceled by a term in Eq. (14).
Finally, substituting Egs. {13) and (14) into Eq. (10), we
arrive at the spin current expression that provides us the
boundary condition J’;,:O at the lateral edges for the spin-
diffusion equation with

a5; Riiy

—_— R — 3 “"H -
R STS)%e (16)

I(r)=-2D

The first term of [, describes the spin diffusion due to
spatial variation in S;, the second term is the spin precession
prompted by the SOI, and [ 48 is the bulk spin current with

Iy= —R;f-"S?+4fzeE.Nonx;( ﬂ e hk) 2 (17)

\ dky /2

Equations (16) and (17) appear to be the same as their coun-
terparts for the B=0 case;'® but the magnetic field contrib-
utes. in its lowest order, via the spin density Sj? in Eq. (8). It
is worth pointing out here that the primary purpose of deriv-
ing Eq. (17) is to apply it to a region within a distance much
less than [, from the sample boundary. As such, the effect of
spin torque”™* on the boundary condition should be of sec-
ondary importance, and the results in this work should also
remain intact. An eventual exploration on this issue, how-
ever, is left for future study.

L NUMERICAL RESULTS: IN-PLANE B FIELD
IN A DRESSELHAUS 2D STRIPE

In this section, we present the electric-field-induced bulk
spin densities and edge spin accumulations in a Dresselhaus-
type 2DEG stripe acted upon by an in-plane magnetic field.
Svmmetries, or asymmetries, of the spin distributions with
respect to spatial coordinates and the magnetic field are pre-
sented in two field orientations: longitudinal and transverse.

For definiteness, we use material parameters consistent
with GaAs: effective mass m*=0.06Tmg, with my the elec-
tron mass; effective g factor g"=0.44 (Ref. 30); and the
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FIG. 2. (Color online) Spin densities §; versus y, in units of (...
for the case of a longitudinal in-plane magnetic field. Spin densities
Sy 5y and 5 in units of ,u.u'n‘2 are shown in (a), (b), and (c).
respectively, for magnetic fields B,=—300 mT (black/ triangles),
B,=0 mT (blue/solid curve) and B,=300 mT (red/dashed curve).
The edges of the stripe are at yv=2*5[_,.

Dresselhaus SOI B=27.5 eV A>23 Other typical parameters
are electron density n=2.4% 10" m™2, quantum well thick-
ness w=300 A, I,=1 gm, and /_,,=2.9 pm. The electrons
occupy only the lowest subband in the quantum well. An
electric field E=25 mV/pm is applied along x to set up the
spin-Hall phenomenon.

Longitudinal field orientation case is presented in Figs.
2(a)-2(c). Shown here are the spatial variations in all spin
components of §; across the stripe. 5, has both finite bulk
spin density and edge spin accumulation. It exhibits even
parity in its spatial variation and remains so for finite field
B.. The magnetic field causes only a minor change to the 5,
profile while it has an even parity in its B, dependence. §, is
zero at B,=0 and has an edge spin accumulation in finite B,.
It is of odd parity in both its spatial and field dependencies.
S. has an edge spin accumulation. It is of odd and even
parities in its spatial and field dependencies. respectively.
Owerall, except for §,, the effects of B for the chosen range
of field strengths is weak. That the spatial profile of 5, for
finite fields mirrors that of S, corroborates a spin precession
picture as suggested by Egs. (7). Following the der/dt
=(2/A)B X o time evolution, the precession of S, contributes
to §,.

Transverse field orientation case is presented in Figs. 3{a)
and 3(b). The field effects on the spin distributions and on
the parity of the §; profiles are much more dramatic. In short,
the §, and 5. profiles become asymmetric in both their spatial
and field dependencies. S, however, remains zero in all these
cases. Qualitative understanding of these changes can be ob-
tained again from the spin precession picture. We take. for

instance, the B,=-300 mT curve for §. in Fig. 3(b). The
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FIG. 3. (Color onling) Spin densities §; versus y for the case of
a transverse in-plane magnetic field. Spin densities 5, and 5. in
units of pm™2 are shown in (a) and (b), respectively, for magnetic
fields B,=-300 mT (black/triangles), B,=0 mT (blue/solid curve),
and B,.=3DD mT (red/dashed curve). .S'_‘. remains zero in all these
cases.

out-of-plane spin density 5,=1.5 pm™2 in the bulk is re-
sulted from the precession of the zero-field 5, and also from
a spin-charge coupling term in Eq. (8). On the other hand,
the S, edge spin accumulation is resulted from two spin pre-
cession processes, if we treat §; as individual entities. First,
the magnitude of 5. edge accumulation is reduced due to its
own precession. However, it may be increased due to the
precession of 5. As the zero-field 5, is even and the zero-
field S; is odd in their spatial parity, it is inevitable that the
magnitude of S_ will receive enhancement at one edge and
suffer suppression at another This leads to the breaking of
the spatial parity of the §_ profile as is confirmed in Fig. 3.
The zero-field S; thus play a pivotal role in the shaping of the
low in-plane magnetic-field S, profile.

Figure 4 presents the edge spin accumulations of Sr-t and
their parity in their field dependencies. Sf-: denote edge spin
densities at y=Fd/2. For the longitudinal field orientation
depicted in Figs. 4(a)} and 4(b), S_‘: and Sf are of even parity
in B, whereas Sf is of edd parity in B,. The magnitude of
the variation is comparable for S} and 57, a feature consis-
tent with our spin precession picture. More detailed symme-
tries can be read off from Eq. (7) and is given in the follow-
ing:  Sy)= §t=S.. S%,(B)=Si,(-B,). and
S,(By)==57(-B,). For the transverse field orientation de-
picted in Figs. 4(c) and 4{d), Sf and S;: become asymmetric
in their field dependencies, whereas 57 =0. The extremum
points in S;: at B,=50 and —50 mT in Figs. 4(c) and 4(d),
respectively, demonstrate the competition between the two
spin precession processes: decreasing in magnitude due to its
own precession and increasing in magnitude due to spin pre-
cession in Sf. Finally, if we include both the spatial and the

=St
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FIG. 4. (Color online) Edge spin densities 57 versus magnelic
field for both field orientations: longitudinal B, cases in (a) and (b)
and transverse By cases in (c) and (d). Sf denotes spin densities at
the edges v=Fd/2. 5, is labeled by the dashed curve, 5, by the
dashed-dotted curve. and S, by the solid curve. '

field reversals, we obtain symmetries 57(B,)=-5_(-B,) and
S:(BV}ZS;{_BJ

The entire spatial and field symmetries of the out-of-plane
spin densities are presented in the contour plots in Fig. 5. In
Fig. 5(a), the longitudinal field case exhibits even parity in
B and odd parity in y. In contrast, the transverse field case,
depicted in Fig. 5(b). exhibits much richer features. Even
though the asymmetry of §. with respect to B, and y, indi-
vidually, is evident, the symmetry S;(B_\,,y}=—5;[—8y.—)’) is
also clearly shown. At the lateral edges, the highest spin
densities are shifted from B,=0. It is resulted from the two
competing spin precession processes. Near the center of the
sample. S is odd in B, and its magnitude increases with the
field as indicated in Eq. (8) already.

: 0
(b Wiy

FIG. 5. (Color online) Contour plot of 5, on the Bi-y plane for
(a) the longitudinal and (b) the transverse field orientations,
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The strong in-plane magnetic-field anisotropy in the sym-
metry characteristics of the §; profiles shown here is distinct
for the Dresselhaus SOL. For the edge spin accumulation S
in a transverse magnetic field, the Dresselhaus SOT leads to
an asymmetric field dependence, whereas extrinsic SOI leads
to a symmetric field dependence.® This symmetry character-
istic for the extrinsic SO is clearly seen in the experiment of
Kato et al.® [Fig. 1(c) in Ref. 6], and also in their demonstra-
tion the S, profile fits well to a Lorentzian function
Ag/[(wy7)*+ 1] which depends on even power of B through
the square of the electron Larmor precession frequency wy.
The factor Ay is a proportionality constant and 7, is the
electron-spin lifetime. As for the Rashba SOI, symmetry
governs that we turn to longitudinal magnetic field. We find
no 5 both in the bulk and at edges, which is consistent with
previous finding.!! In contrast, we find that the Dresselhaus
S0OI leads to an even-parity field dependence. Nonvanishing
bulk spin density S, due to Rashba SOI, but for the case of
either anisotropic scatterers or nonparabolic electron disper-
sion, has been obtained by Engel et al.!! and the field depen-
dence is of odd parity.!!!7 Thus we commence the notion of
utilizing low in-plane magnetic field for the determination of
the underlying SOI in a particular sample, without the need
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to prepare controlling samples of different crystal orienta-
tions.

IV, CONCLUSION

In conclusion, we have performed a systematic and com-
prehensive study on the effects of a weak in-plane magnetic
field on the bulk spin densities and edge spin accumulations
in a diffusive Dresselhaus-type 2D stripe. Our results show
that out-of-plane spin density can be generated in the case of
transverse field orientation without assuming anisotropic
scatterers or nonparabolic electron dispersion relations. The
breaking of the parity of the spin distributions with respect to
their spatial and field dependencies provide a unique signa-
ture for the Dresselhaus SOL This work thus points to the
possibility of invoking weak in-plane magnetic fields for the
determination of the SOI in a particular sample.
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