FRERTIEELE CLEF T 2L

P A2 B BELRIREE S
PR EE PN Y

o I L DR

& % %L 0 NSC 98-2218-E-009-022-

HF P RF 98 EITT0IpIY9E100 31 0P
o HE D RERUAETIIRE R IELT

El SERE - R REEN

FE LB LR DAL frpv‘mﬁl -fiEpm@ LR
i fr;ﬁmﬂl_;\,:rpé;mkﬁ :fﬁ;;;:?i’
ﬁ_lfr,pmﬂl_,;{,:rpé;\ﬂAﬁ %fg—":}i
FALriEmy 4 -flEzem A o REg
ﬁ_lfrprmﬂl_,;\,:rpé;mkﬁ 2R
gﬁJ fr/g:rm A GE - B pﬁﬁ';‘f}

A HA - Eem AR gLk
BAFpmy 4 iEegm A f oo gRaz g

2 NAREERELEFHRLEF LB

o= A R O100# 017 29 0p

Multi-Level Parallelism Analysis of Face Detection on a Shared Memory Multi-Core
System

ABSTRACT

Face detection is one of the fundamental technologies for the
future smart objects. However, its computation intensive property
thwarts the practice of a real-time application on an embedded
device. Parallel processing and many-core architecture have become
a mainstream to achieve high performance in the future computing
systems. The parallelism of an application needs to be exposed
before being exploited by the parallel architecture. This paper
performs a comprehensive analysis of the parallelism of a face
detection algorithm at different algorithmic levels. This paper has
demonstrated that each parallelism level has its own potential to
enhance performance, but also imposes different limiting factors to
the overall performance. Based on the analysis results and design
experience, this paper proposes a multi-staged mixed-level
parallelization scheme to retain the performance scalability and
avoid the limiting factors. With this scheme, we are able to achieve
up to 37.5x performance enhancement on a 64-core system.

1. INTRODUCTION

Face detection is one of the fundamental technologies for the
future smart objects. It enables a device to recognize the faces of the
main users as well as the people in the surrounding environment. By
recognizing faces, the device can thereafter perform many intelligent
reactions such as user identification or even the customer background
search[16]. However, the high computation requirement prevents the
real-time face detection on a mobile or embedded device. It is
estimated to take about 3 seconds to process a single image of
512*512 pixels on a 500MHz single-issue ARM V5 architecture [1].
The execution time is 75 times slower than the requirement of a
real-time application (processing 25 images in one second). A
significant performance improvement is required to achieve the
real-time face detection on an embedded device.

Parallel processing and many-core architecture have become a
mainstream to achieve high performance in the future computing
systems. Embedded processor vendors, such as Tilera[2], ARM[3],
MIPS[4], are also moving towards many-core architectures. Even the
desktop processor vendors, such as Intel[5] and AMDI6] are
proposing many-core products for embedded and mobile applications.
The new parallel embedded processors present opportunities to boost
the raw computing capability and achieve more energy efficient
execution. However, three imperative design aspects have to be
concerned before the full advantages of many-core processors can be
transformed into superior system performance. First, the algorithmic
parallelism of applications needs to be explored and exposed. Second,
the characteristics of the highly integrated embedded system need to
be analyzed. Third, the possible system bottlenecks need to be
identified.

Motivated by the three design aspects, this paper performs a
comprehensive analysis on the potential parallelism of the widely
used Viola-Jones face detection algorithm [7]. The analysis explores
the parallelism in different algorithmic levels. By verifying the
results on a multi-threaded cycle-accurate multi-core simulator, this
paper demonstrates the significant computation parallelism inherited
in the face detection algorithm. However, the superior performance
can only be obtained through a careful co-design and optimization
crossing four critical design issues, including choosing appropriate

1

parallelism level, balancing workload, reducing synchronization
overhead, and memory and interconnect bandwidth. By following the
design guidelines concluded from the comprehensive analysis, this
paper proposes a multi-staged mixed-level parallelization scheme
which achieves 37.5x performance enhancement in a multi-core
system with 64 ARM processors.

The rest of the paper is organized as the following. Section 2
introduces related work. The Viola-Jones face detection algorithm is
discussed in section 3. Section 4 introduces a reconfigurable
multi-threaded cycle-accurate simulator for shared-memory SMP
(Symmetric Multi-Processing) systems. Section 5 analyzes the
characteristics of the face detection algorithm in different algorithmic
levels. Section 6 shows the experimental results on different
parallelism levels. Section 7 proposes a multi-staged mixed-level
parallelization scheme with better performance scalability. Section 8
draws the conclusion.

2. RELATED WORK

Face detection is extensively studied used in many smart object
applications [16]. The Viola and Jones algorithm is one of the most
widely used face detection schemes [7]. It provides high accuracy
and fast computation. Since the algorithm is so popular, many
research efforts have been spent on enhancing the performance of the
Viola-Jones algorithm. Wei et al.[8] and Yang et al.[9] realized
parallelism of the algorithm by using a specific HW design in a
FPGA. Theocharides[10] also proposed a scalable parallel
architecture for face detection on FPGA. C. Gao[11] presented a
novel approach to use FPGA to accelerate the Haar-classifier based
face detection algorithm with highly pipelined micro-architecture and
utilizes abundant parallel arithmetic units in an embedded system.
Most of the methods focus on using innovative HW architecture or
specific HW accelerator to enhance the performance. Our approach
concentrates on achieving better performance through exploiting the
algorithm parallelism on multi-core systems. It is different from
building a specific hardware accelerator to speed up the critical
computation in the algorithm. The proposed design can be easily
applied to a SMP system without any extra HW implementations.

Chen‘s research [12] is among the first to explore the algorithmic
parallelism of face detection algorithm, and is similar to the work
done in this paper. The author analyzed the potential parallelism of
Ada-boost algorithm and executed on multi-core systems with 4 to 8
processors. A 5.5X performance enhancement was demonstrated by
adopting a hybrid scheme of both coarse-grain and fine-grain TLP.
Our work differs from [12] in two aspects: (1) this paper not only
explores the algorithm parallelism in different levels, but also shows
the impact of different design issues; (2) the analysis is extended to a
larger scale (64 cores) of multi-processor which demonstrates a
significant computation parallelism in the face detection algorithm.

3. THE VIOLA-JONES FACE DETECTOR

The Viola-Jones face detection is widely used in many
applications due to its high accuracy and fast runtime. Figure 1(a)
illustrates the procedure of the face detection. The image is first
loaded and scanned by different sizes of scan windows. The face
features within each scan window is calculated based on the

Haar-like scheme [7], which will be performed by the integral image
block in Figure 1(a). The face features are evaluated by summing the
pixel values in the rectangular sub-region (shown in Figure 1(b)).
The result will then be sent to the detection block which uses
cascaded classifiers to scan and find the location of faces.

(a) (b)
Figure 1 (a) Viola-Jones face detection procedure
(b) Integral image computation.

(1) Integral image: The integral image method was firstly
introduced to the digital image processing by Crow [13]. In
Viola-Jones face detection, it is used for rapid computation of
Haar-like features [7], which are defined as the (weighted) intensity
difference between two to four rectangles. The integral image is
constructed as follow.

I(x,y) =
x'sx,y<y’

I(x,y) is the integral value of all the image pixels in the
rectangular region from (0,0) to (x,y). And i(x’,y’) is the value of the
pixel at location (x’, y’). It is fast and efficient to use the integral
image to compute the value of the face features in a rectangular
sub-region area. As shown in Figure 1(b), for example, the value of
point 4 is the sum of the sub-region area A+B+C+D. The value of
point 3 is the sum of A+C. If we want to compute the value of the
region D, it can be easily obtained by the value of (I(1) + 1(4)) -
(1(2) + 1(3)), which only requires four value references.

(2) Cascaded classifier structure with Ada-Boost: Boost is a
method of finding high accuracy by combing “weak” classifiers with
moderate accuracy [14]. Ada-boost algorithm is a kind of
appearance-based method which have shown superior performance
compared to others [9]. There are two types of classifiers, “weak”
classifiers and “strong” classifiers. Weak classifiers have arithmetic
value thresholds in recording human face features. A number of
weak classifiers with similar features are combined together as a
“strong” classifier.

ix,y")

Strong Strong Strong
classifier classifier classifier
detect| \True detect| \True detect True

Weak
classifier

OO0 Weak
O O classifier

‘ False ‘ False

Figure 2 Cascaded structure of strong classifiers

False

The cascade classifier structure, shown in Figure 2, is a critical
component in the Viola-Jones detector. This structure rapidly and
efficiently rejects most negative sub-window images while keeping
almost all the positive ones. The input sub-window images pass
through a series of nodes during detection. Each node represents a
strong classifier, which would make a decision on whether the
sub-window image should be kept for the next node or rejected. A

strong classifier at a later stage contains more weak classifiers to
provide better image checks and face detection.

4. PARALLELISM IN DIFFERENT LEVELS

The parallelism of the face detection exists in different
algorithmic levels. This section discusses the potential parallelism at
different levels of the face detection implementation. The face
detection implementation is adopted and modified from OpenCV
library[17], which applies the idea of Viola-Jones face detection
algorithm. As shown Figure 3, the implementation can be divided
into three parts. (1) Resize. The implementation uses the fixed-size
scan window with a well-trained classifier library in the Ada-boost
algorithm. Since the scan window size is fixed, an image needs to be
resized into different resolutions. (2) Integral. This part performs the
evaluation of the Haar-like features by using the integral image
method. (3) Detect. By moving the scan window through the image,
the sub-image is sent into the cascade classifier structure to detect the

location of a face.

1[1]1 102]3
1|—12]4

iegral | p [slele

A
s

Resize [

%,
*,

-
La]

Strong classifier

/’T
s
s
s
e .
/
s
L3 s '
Detect

Figure 3 The procedure of face detection implementation

—, \':—.
() +() Weak classifier

The parallelism of the algorithm can be extracted from different
levels. This paper divides the parallelism into four levels (shown in
Figure 4). Top level parallelism is demonstrated when different sizes
of images are processed by different threads concurrently. Detection
level parallelism can be exposed by performing the “detect” block on
different sizes of images concurrently. Other parts (resize and
integral) in the algorithm remain in the sequential scheme. Divided
detection level is similar to the detection level, but the image is
further divided into sub-images. The detection tasks of these
sub-images are executed simultaneously by different threads. Weak
classifier level exposes the parallelism by executing different weak
classifiers in the cascaded structure concurrently.

Top level [| Resize—>{integral 'J-:Delecll] [| Resize|—>{Integrall){Delecl]]

Detection
level

Divide
detection |Detect

level

Y s i
Weak /—{_)_—-_}____H_Et_rong classifier
classifier

level - - ; Weak classifier
Figure 4 Different algorithmic levels of the face detection
implementation

The key design trade-off here is the parallelism granularity and
the synchronization overhead. The lower parallelism level gives finer
granularity of parallelism which enables better load balance between
different concurrent threads. However, having more threads in a
system increases the amount of required synchronization among
threads and demands higher memory and interconnect bandwidth.

5. SIMULATION PLATFORM: A SHARED-MEMORY
CYCLE-ACCURATE SMP SIMULATOR

This paper uses a multi-threaded cycle-accurate shared-memory
SMP simulator [15], which enables HW/SW co-simulation of a SMP
multiprocessor system. The simulator contains both the
multi-threading library and the SMP hardware model. The
reconfigurability of the simulator allows designers to explore not
only the multi-threading programs, but also the multi-core
architectures. Fig.5 illustrates the organization of the simulator. The
top half shows the thread management queue, which is implemented
as a FIFO scheme. Processors can create and add new threads to the
tail of the thread queue. Idle processors can request tasks from the
head the thread queue.

The lower half illustrates the hardware model of a SMP system.
The processing core models a single-issue ARM v5 architecture.
Each processor has its own data cache and instruction cache where
the cache organization is configurable. Processors are connected by a
shared-bus. The bus is organized as a multi-master bus and contains
a test-and-set lock to support atomic read-modify-write operations.
The latencies of bus transaction and memory access are also
configurable. The cache coherence is implemented as a simple
snooping-based protocol.

FIFO Thread Queue

- B

Newly

Created Idle

Threads Processors

ARM ARM || ARM | ARM
| o 1 o | |||D'EIE!DE,|'
F 1 1 ; H
(i !nterr.n;'mm
Shared Memory

Figure5 A SW/HW organization of a multi-threaded

shared-memory SMP architecture

6. EXECUTION BEHAVIOR OF DIFFERENT
PARALLELISM LEVELS

The reference image of the experiment is the picture of Lena,
which is widely used as a reference image for digital image
processing. The size of the image is 512x512 pixels and is a
reasonable size for modern mobile digital devices. The experiment
platform is a multi-processor system with various numbers of ARM
v5 processors. Each processor is assumed to operate at 500 MHz.
Table 1 shows the computation time breakdown of the sequential
face detection algorithm. The resize and classifier detection occupy
the most significant parts of the execution time. Therefore the
parallelization and performance enhancement should be focused on
these parts.

W Image Resizing
M Integral Image
Classifier Detection

Figure 6 Parts consuming ratio of total execution time when
running the algorithm sequentially. (latency is set to 1 cycle)

6.1. Effect of Memory/Bus Latency

Figure 7 compares the execution time of different numbers of
processors with various memory and bus latencies. When the latency
is more than 20 cycles, the performance cannot keep scaling when
there are more than eight processors. More processors also cause the
traffic jam on interconnect and memory, which is reflected by the
bus activity rate. Memory and bus definitely play an imperative role
in the overall performance. However, the focus of this paper is on the
parallelism of the face detection application. We would be more
interested in the intrinsic computation parallelism which can be
exposed through parallelization. To minimize the impact of
communication bottleneck, the memory/bus latency is set to 1 cycle.
The rest of the paper will use this system scheme to explore the
parallelism of the application.

1T‘|1me(sec) =g |atency 20
« RunTime
12 \ e |atency 10
10 —A RunTime
\ e=fl==atency 5
8 4 RunTime
6 latzncy 20 | 4 Cae 8 Care
4 bus aclivity | 83.91% YO
lalency 14| 8 Care 16 Care
2 bus activity | 89.22% 93.95%
latercy 5 | 8 Core 16 Corz
bus aclivity | 65.43% | 23.06%
0 T T T T |
1 2 4 8 16 CoreMum

Figure 7 Execution time for different number of processors with
various memory/bus latencies. The latency is in the unit of cycles.

6.2. Performance at Different Parallelism Levels

The experiment is conducted in four parallelism levels, including
top level, detection level, divided detection level, and weak classifier
level. The lower parallelism level gives finer parallelism granularity
to achieve better load balance. However, having more threads also
increases the synchronization overhead which requires higher
memory and interconnect bandwidth to support the performance
scalability.

(1) Top level parallelism. In this level, the sequential part only
occupies a small portion of execution time, which includes loading
the image data, classifier library, and creating threads. The most
execution time of multiprocessor system is spent on the parallel
execution. As shown in Figure8, the execution time is improved as
the number of cores increases. However, the performance
enhancement slows down when there are more than 8 cores. This is
mainly due to the imbalance workloads among different threads.
The thread with the longest execution time becomes the performance
bottleneck in the 16-processor system. The execution time of the
16-processor system is decided by the execution time of the heaviest
thread on a single processor while all the other processors are
finished and idled. Better parallelism granularity can help improve
the performance.

(2) Detection level parallelism. This level only parallelizes the
detection block. The other parts, including the thread creation, are
still executed sequentially. This strategy makes the speed of creating
new threads too slow to sustain the demand of parallel execution.
Processors are idled waiting for new threads to be created. Besides,
the sequential part of the algorithm becomes the critical part of the
program. The performance would not improve when the number
processors increases. As shown in Figure8, the execution time does
not improve when the system has more than 8 processors.

(3) Divided detection level parallelism. This level returns a
more satisfied result than the previous strategy. More parallelism of
detection level can be extracted. Number of threads created in one
time is sufficient and the size of different threads is more balanced.
However, the sequential part is still plays the critical role in the
program. Therefore the run time is similar to the detection level.

(4) Weak classifier level parallelism. This is the lowest level in
the algorithm. The number of threads is equal to the number of weak
classifiers. Although it exposes the maximum potential parallelism,
the overhead becomes the limiting factor of the performance
enhancement. Since there could be thousands of weak classifiers, the
time required to create these threads is already in average 8.17x of
the total execution time of the sequential algorithm on a single
processor. Another overhead is the sheer amount of synchronization
transactions among the huge number of threads.

Time(Sec) Execute Time
4
3
W top

2 m detect
1 detect_divide
0

1 2 4 8 16 CORE_NUM

Figure 8 Result of each parallelism level

According to the experimental result, parallelizing the algorithm
in higher levels poses the disadvantage of imbalance workload.
When parallelizing the algorithm in lower levels, the overhead
increases on the aspects of creating new threads and synchronization.
The ratio of the sequential part to the algorithm also deteriorates the
performance. To achieve the best performance, we should have a
scheme to expose the significant parallelism in an appropriate level
and avoid the overhead of having too many threads.

7. A HYBRID PARALLEL SCHEME TO ACHIEVE
HIGH PERFORMANCE
Based on the experience from the previous section, we propose a

multi-stages mixed-level parallelism scheme to achieve the
maximum performance enhancement.

time(sec) Execute Time

3.5
3
2.5
2
1.5
1

0.5
0 e = =

CORENUM | 1 2 4 8 16 32 64
3.02 |1.494|0.754/0.381|0.203|0.185|0.193

M 3stage |3.016/1.484|0.744|0.376(0.194|0.108|0.081
(sec/image)

M 2stage

Figure 9 Result of our modified programs

The first implementation is a 2-stage scheme. Stages are executed
sequentially. The second stage will start when the first stage is
finished. The first stage will initiate multiple threads to perform the
resize and integral blocks concurrently. The second stage implements
the same scheme as in the “divided detection” level. Since the block
“detection” takes most of the execution time in the algorithm and its
parallelism can be well scaled in divided detection level. As shown
in Figure9, when compared with a single processor, the 2-stage
strategy can reach around 16x speed-up on a 16-core system.
However, the 2-stage scheme cannot achieve better performance
when the processor number is more than 16, due to the imbalanced
work load in the first stage.

The 3-stage scheme is implemented to further improve the
performance. The first stage now only contains a multi-threaded
version of the resize block. The second stage will process the integral
part and the third stage will perform the parallel execution of the
detection block. This scheme has better balanced tasks, and achieve
the superior performance scalability. As shown in Figure9, the
3-stage parallel strategy reaches a 27.8x and 37.5x speed-up on a
32-core and 64-core system respectively.

8. CONCLUSION

This paper performs a comprehensive analysis of the parallelism
of a face detection algorithm at different levels. We have
demonstrated that, each parallelism level has its own potential to
enhance performance, but also imposes different limiting factors to
the overall performance. The imbalanced execution loads among
threads adversely impact the performance as well. Based on the
analysis results and design experience, this paper proposes a
multi-staged hybrid scheme to retain the parallel performance and
avoid the limiting factor. With this scheme, we are able to achieve up
to 37.5x performance enhancement on a 64-core system.

9. REFERENCES

[1] FA626 ULTRA HIGH SPEED 32-BIT RISCCPU
http://www.faraday-tech.com/techDocument/FA626_ProdBrief_v1.2.pdf

[2] The TILE-Gx™ processor family processor, http://www.tilera.com/

[3] ARM cortex-A9 processor,_http://www.arm.com/

[4] MIPS Technologies Announces Symmetric Multiprocessing (SMP)
Support for Android™ Platform on MIPS-Based™ SoCs,
http://www.mips.com/

[5] Intel multicore technology, http://www.intel.com/

[6] AMD multi-core processing, http://www.amd.com/

[7] C. Zhang and Z. Y. Zhang, “A Survey of Recent Advances in Face
Detection ”, Microsoft Research, June 2010.

[8] Y. Wei, X. Bing, C. Chareonsak, "FPGA Implementation of AdaBoost
Algorithm for Detection of Face Biometrics", In Proc. IEEE International
Workshop Biomedical Circuits and Systems, 2004.

http://www.faraday-tech.com/techDocument/FA626_ProdBrief_v1.2.pdf�
http://www.tilera.com/sites/default/files/productbriefs/PB025_TILE-Gx_Processor_A_v3.pdf�
http://www.arm.com/products/processors/cortex-a/cortex-a9.php�
http://www.mips.com/news-events/newsroom/newsindex/index.dot?id=16091�
http://www.intel.com/�
http://www.amd.com/us/products/technologies/multi-core-processing/pages/multi-core-processing.aspx�

[9] M. Yang, Y. Wu, J. Crenshaw, B. Augustine, R. Mareachen, "Face
Detection for Automatic Exposure Control in Handheld Camera", in Proc.
IEEE International Conference Computer Vision Systems, 2006.

[10] T. Theocharides, N. Vijaykrishnam and M. J. Irwin, “A parallel
architecture for hardware face detection”, Symp on Emerging VLSI

Technologies and Architectures, pp. 452-453, 2006.

[11] C.J. Gao and S. L. Lu, “Novel FPGA based Haar classifier face
detection algorithm acceleration”, FPL 2008, Heidelberg, September
2008, pp. 373-378.

[12] Y. K. Chen, W. L. Li and X.F. Tong, “Parallelization of AdaBoost
algorithm on multi-core processors”, IEEE SiPS 2008, Washington DC,
2008, pp.275-280.

[13] F. C. Crow, “Summed-Area Tables for Texture Mapping”, Computer

Graphic, vol. 18, no. 3, pp. 207-212, July 1984.

[14] Y. Freund and R. E. Schapire, “A short introduction to boosting”,
Journal of Japanese Society for Artificial Intelligence, pp. 771-780, vol.
14, no. 5, September 1999.

[15] P. Schaumont, B. C. Lai, W. Qin, I. Verbauwhede, "Cooperative
Multithreading on Embedded Multiprocessor Architectures Enables
Energy-Scalable Design,” Proceeding 2005 Design Automation
Conference (DAC), pp. 27-30, June 2005.

[16] SixthSense Project, MIT Media Lab,
http://www.pranavmistry.com/projects/sixthsense/

[17] Open Source Computer Vision, http://opencv.willowgarage.com/

http://www.pranavmistry.com/projects/sixthsense/�
http://opencv.willowgarage.com/�

AP AL FEAT AR RAEERE R FHE

P#100& 1 7 30 p

*FE %5 [NSC 98— 2218 —E —009 — 022 —

;J‘é f"ﬁ;— f’;ﬂ}’f'v ,J<5fu.1ﬁ:’§>§]&§€—‘;{;¢1%\ﬁ;.%/;

B . TE o
g‘?ﬁ ﬁ'?f‘f‘hl{ }:E%F;;# ‘Li_‘ﬁm'ﬂ‘l : 4941_37?(1{}:
o 9#6" 13p 1 L, Anaheim, CA, U.S.A

gviﬂé*:g& 99-&6”18B'L gpiqf"f!i‘!:-

(F %) 2010 - R FF g3 p 6 1 'R €3

§k P A

(# =) ACM Design Automation Conference 2010

LR (¥ 2)&

RIS
BERIE SRR -

P g%‘if‘—}’.\%cﬂ-l:;z *24%7%@51:; N BEyiom ¥ 2 X mgﬁﬁ‘ &5 - 7
PR LY AR N E 5 o b BT A Y 2 AGE RO BT

~ R 3B

BB G RPN FE BT P g

i 9 A 4 S T S R S A S AUET L BRI A S
%m&ﬁﬂ£m$4ﬁpﬂ *ﬁim&>5%'€&ﬂ"@ﬂﬁ%%ﬂﬂ
8RBT S S 5 RALY ARt E B o doie A SR AR A 1 i
R LT ok S iﬁi’ﬂ%m:nwf#ﬁnﬂﬁio%ﬁﬁdéﬂf
AL ERCL A ERE SRS R E L S S
g R RLAF AP R o A B ER B & R T B
EonFa g RN P E R W F RipM X ?'Lg'x 5 1 B o

- PR EHY 0 ALEEE TERE £ iﬁmf?é”‘f“%??éﬁ”“
1 E &- &+ (e Cadence, Synopsys, Mentor :t)\ b e T IFES RS
BHE I }AU?@ ° giﬁ—mm _E;_‘fr' II}fg\r@jia:l__/r.'v‘h g iergp = N A =0 i)
ﬁ@??ﬁ%ﬁﬁvwﬁgﬁ?”’%kmaﬁlaﬂ&@omﬁ—ﬁﬁ“’

Pd

EEERE Y o AT T2 X R o SHT L EE B OTR D

FEHEIERE (Open Innovation Platform) » # ¥ & & l}ﬂ R R -

BRI cfRRFE AL E S AP I B EDAR IR p B0

(Electronic Des1gn Automation) % # #p4 (IP) >~ ®ARHFE ARPRIEE > J2
1

V.

4 FP“%iﬁ'*‘ﬂ3él (Open Innovation Platform)Jc
*h— BEFrRofri ¥ _University Booth & 7 —- BH#CR L BERT
KRETHFaF P ErR gkt % o

"

%v&e%aﬁm€%°$‘i?m%? e W?mﬁﬁﬁ’F’@“
s i § 7 L E BT L b RS R § - i A K B
03713‘ 4.2k£,1;zrwm;}\ BT LR)*’igﬁvihé\%l‘mi#i@% = mﬁf

E-l‘vo

Pt SAe (S CDAC AT RAN PEARERF ICRF-2 pdoit 1 B455 0 &

K

VRN MR E TR FEAEE L K p AR - g
2R X ARR m&f’?%‘fip’“ T TR AR ER 0 - B
WHF R A o

-

mv‘—“’

'g

EJ
g4

—\

N1

o
\\\?{r

BLIE 65 (10T 7 8 v

|4
MR
Fp - EREFSZY 4 RS WA € il ¥ 5 s % gl
#1000 AR U et o 5 R e BERG EF L PTE o
E:r;z: A ﬁ rﬁ@xﬁ_‘g

B2 Rl B e RS- i 7 ER OB E o 6% KFEp
BOHPFA LA RERNEER > HEBRFOTF B £ - BILE - 23R
| b VRS ERE- TRk AL BRRE €K
BB R SRR RERAERS > H 1
MR AN il

I < gL -

2. DAC2010 %% & DVD @t &

E:0y

RAL gt pmd g SR T4

p#:2011/01/26

B €At

PE LA P kM B B ERI R 2

PELEA K

P E %5l 98-2218-E-009-022- Fr

AR B

R A RHR TR

WEREHFTTHEFT S EFREL

FHEAEA ok

33 S5 - 98-2218-E-009-022-

PO S h R R B ERPRIZ 2

N

A-h @ oo B d
% % 5F B PR LS s | BERE | g |7 PR TR
B (s (WG RE | an e T2
Ao F i) i 2) £ P T S
*)
R 0 0 100%
N By |0 0 100% 3
m Y EIE
it gk 0 0 100%
%3 0 0 100%
R Y 0 0 100% .
© EEEEk 0 0 100%
B P * g 0 0 100% &
P AS
5 4 0 0 100% + A
e 0 0 100%
fprztd A4 L4 0 0 100% L
=X
(*FE) PLimg R 0 0 100%
% ixesim 0 0 100%
B~ 0 0 100%
B3 AR IR 2 |0 0 100%
N "
weFE | ; " *%iggéﬂ
g 2 2 100% H 48 5T h
%3 0 0 100% /4
me | oaq o tE . 1oo% 1
C K 0 0 100%
5 0 0 100% g
ForAs &
#114& 0 0 100% + A
e 0 0 100%
fpaztd A4 L4 0 0 100% L
=X
(PR Bl R 0 0 100%
% ixesim 0 0 100%

H A%
(miz gz
5 hoyE B s d S
HREE S ERREE
V=g g NP LB T
SR R D B
Vicne S TSN | 2
EE G F A

}ljo)

g

’i X538 P

frebs

—

#R%EL S(7 FRredn)

/e

Re|grga epe A1 8

21

Fi

B ye s IR

T e

3
1
4e
g |FiHE/ iy
i
p

PEASHAEZ 2 (BR) Ak

OO O OO O o (o

R ¢ LR T332 R84 p =4

?\;ﬁ""‘&ﬁﬂz’p\ gl’t’}%’;’l’éﬁ‘ ﬁi}i‘xi%\—}ﬁ FB*%'T%f‘;’“pf‘%“%i?ﬁjﬁ'\l}@% f%.'
fJ- (?P-Q i}i‘%\'acerlju%_Vlha N T'f.ﬁ_"géﬁﬁg\w

N FhEe-HFR2Z T lE) LF§
ELFHINFLAY FHE A EFRAE MY ES > F- FETR o

3l-

: F”HEH NEAERFEAASAER S ESTH P EGFIRIT- FE
lé¢5ﬂ

(A= p % (G#p » 12100 F 5 ')

[]9 2% % Pz

(7 e 2 @ 47

(]2 & & 7]

o

2. P =k gl g LAY R AIE A
w W FA Ag 2225 LER? &
_g;«fl e EE |:|\z' %ﬂ—:‘ .ﬁ
EES g D ﬁﬁ[hmu’lﬂ
Hi (1 100-?!")
AP EFL S RS RY B4 :

3. F§—12:§4itrls\')j£ s BHFAIET S AL g?%fgi‘i?ﬁ';’ m o ERAT

(@ﬂhdﬁ%wwa\ﬁgiwyﬁ\%gﬁgﬁﬁ

500 ')
kit 20002 100 2 A- EPRALEFEA BT E P 20 SR iR
% ‘?&ﬁ’fi":&“ﬁzi“ﬁ = ;2 (NSC 98-2218-E-009 022 -)" - » Rf ¢ H 1 Hr+- E
ARMRSZ B 3 2 end 3017 85 5 Pro f SRR o 00 S o iR BS T ¢ S AR enie
Az BT - FIREFHDOINE T U RS AN TR AT
Fenfi s Mt @B T DR Y F40 7 R FAMEEORF R L TR
BiE ?J‘m@\’%“'—ﬁﬁéii‘a 8 IR LN & G I s p o A

