O 0o g

-
NSC 89 2213
88 08 01

89

[
E 009 006
89 07 31

10 31

Discovery and Maintenance of Sequential Patternsin Large

Databases
NSC 89-2213-E-009-006

88 8

Abstract

The discovery of sequential patterns is
to find out the sequence relationships among
transaction items of inter-transactions in a
sales database. The mining of sequential
patterns comprise of not only the discovery
of associations but also the permutation of
sets of items.

The project aims to devise an efficient
algorithm for the mining and the maintenance
of sequential patterns. Since the number of
candidate sequences is one of key factors that
affect the performance of mining agorithm,
we have developed a method for speeding up
the mining process. Our new agorithm

1

89 7 31

utilizes previous knowledge about frequent
patterns to reduce the number of candidate
sequences, and to eliminates the redundant
scanning of customer sequences. The
performance of mining new patterns, i.e.,
pattern maintenance, is effectively improved.
Keywords: Data Mining, Sequential Pattern,
Tempora Association Rule,
Sequence Discovery, Sequence
Maintenance

Data Mining and Knowledge Discovery
in Databases (KDD) thus has been
recognized as a promising field of Al,
statistics and database researches [1]. Mining
of sequential patterns was first introduced in
[2]. The purpose is to discover sequentia
patterns in a database of customer
transactions, consisting of records having
customer id, transaction time, and transaction
items. A sequential pattern indicates a
sequence of transactions that usualy
occurred serialy in time.

The issue of maintaining sequential
patterns becomes essential because database
transactions may be updated over time. Due
to new transactions, some existing sequential
patterns would become invalid after database
update since they might no longer have
sufficient supports, while some new
sequential patterns might appear. However,
there is not much work on incrementa
updating of sequentia patterns. In order to
ascertain sequential patterns up to date for
the updated database, re-execution of mining
algorithm on the updated database is required.

Nevertheless, because of appended database
transactions, re-execution of mining
algorithm demands more time than previous
mining. Moreover, the effort of mining last
time is wasted if al discovered sequential
patterns in the origina database were
ignored.

In this project, we propose a new
algorithm that can utilize information about
discovered sequential patterns, and efficiently
reduce candidate sequences for mining in
updated database. The objective of this work
is to solve the update problem of sequential
patterns after a nontrivial number of new
transactions have been appended to original
database. Assuming that minimum support
keeps the same, existing frequent sequences
and their supports in original database could
be utilized for the mining of updated
database. Through effective reuse of previous
derived knowledge in each pass, the number
of candidate sequences is substantially
reduced. Instead of counting al candidate
sequences for full updated database, counting
reduced candidate sequences for origina
database and for increment database, could
achieve better performance. For transactions
that have same customer id in both original
database and increment database, we extract
old transactions from origina database and
merge into increment database. Since the size
of increment database is smaller than original
database in general, better performance thus
could be retained.

There are many excellent agorithms
that deal with the mining of association rules
[1, 3] and severa algorithms were developed
for the mining of sequentia patterns [2, 9,
10]. Algorithms to discover frequent
episodes in a single long sequence and its
generalization can befound in [6, 7]. Thereis
no efficient algorithm designed for the
maintenance of sequential patterns in large
databases. As mentioned earlier, they call for
the need of re-mining the whole database.
Incremental updating techniques for the
maintenance of association rules were

proposed in [4, 5]. However, previous work
dealing with the incremental updating of
sequential patterns cannot be found. Besides,
appended transactions induce more
complicated problems in sequential pattern
mining than in association rule mining. The
problem of finding association rules concerns
with intra-transaction patterns whereas that
of sequential pattern mining concerns with
inter-transaction patterns [2]. Appended
transactions bear no relation to origina
database for the former problem, while for
the latter problem, different transactions with
same customer id in both databases must be
sorted into one data sequence.

We propose a new agorithm, FASTUP,
to efficiently keep patterns up-to-date. The
basic construct of the FASTUP agorithm is
similar to that of GSA9], with improvements
on candidate generation and support counting.
As shown in Figure 1, FASTUP reduces the
size of Cy (candidate k-sequences) into Cy'
and updates the supports of sequences in §°
(frequent k-sequences in DB) by simply
checking the increment database db, which is
usually smaller than the original database DB.
In addition, the separate counting technique
enables FASTUP to accumulate candidates
supports quickly because only the new
candidates, whose supports are unavailable
from S, need to be checked against DB. In
order to avoid duplicate counting, FASTUP
deals with the required merges by implicit
merging technique.

Essentially, FASTUP generates
candidates and examines data sequences to
determine frequent patterns and their
supports in multiple passes, like GSP.
Nevertheless, with the knowledge of previous
sequential patterns, FASTUP further reduces
the number of candidates required for
checking, and separates the process of
support counting to efficiently counts the
supports of candidates during the same
database scanning. As shown in Figure 1,
Support Counting (1) deals with sequences in
the increment database db using the full

candidate set Ci, while the Support Counting
(1) works with sequences in the original
database DB using the reduced candidate set
C«. Moreover, we aso integrate the implicit
merging into the first support counting
process. Figure 2 lists the proposed FASTUP
algorithm.

In each pass, we initidize the two
support counts of each candidate to zero, and
read the support count of each frequent k-
sequence x. We then accumulate the
increases in support count of candidates with
respect to the sequences in db by Support
Counting (I). Before Support Counting (l1)
starts, candidates which are also frequent in
DB but can not be frequent in UD according
to Lemma 4 are filtered out. The full
candidate set Cy is reduced into the set Cx.
Next, the Support Counting (I1) calculates the
support counts of these promising candidates
with respect to the sequences in DB. As
indicated in Lemma 1, the support count of
any candidate ksequence is the sum of the
two counts obtained after the two counting
processes. Consequently, we can discover &
by validating the sum of the two counts of
every candidate. The & is used for generating
the complete candidate set for the next pass,
employing the same candidate generation
procedure in GSP. The above process is
iterated until no more candidates.

Extensive experiments were performed
to compare the execution times of FASTUP
and GSP. The effect on performance with
various minsups for datasets having the same
number of customers was evaluated first. The
experiments shows that FASTUP is adways
faster than GSP for al vaues of minimum
supports. In general, FASTUP gains less by
incremental update at higher increment ratio
because bigger increment ratio causes more
pattern updatings. FASTUP updates patterns
more efficiently than GSP for al the
comeback ratios and that FASTUP was
efficient with implicit merging, even when
the comeback ratio was increased to 100%,
i.e, dl the transactions in the increment
database must be merged. In these
experiments, other datasets generating with

various combinations of parameters. till,
FASTUP was several times faster than GSP
for distinct combinations of data
characteristics.

H Read k-sequence x1 8 H "

Support
counting

0}
Support

(Filtered ¢,/)€
counting —

amn a—y- data sequence ds DB

‘ " data sequence dsi db‘

S=(AxT GU o * minsup’ |UD)

Figure 1. The k-th pass of FASTUP.

1) /* Initially, each item is a candidate I-sequence */

2) C,={Ax=<(a)> al Y} ;/* Let xbe acandidate k-sequence */
3) k=1;/* Start from pass1*/

4) repeat /* Find frequent k-sequences in the k-th pass */

) foreachxl Cgdox22 = ngum =0;/* Initidlize counters */
) Read §°; /¢ S7°={frequent k-sequencesin DB*/
)
)

~N O O

Check sequencesin dbby Support Counting (1) ; /* See Figure 8 */
/* Prune candidates: (1) counted in S°% (2) insufficient “new” counts */
9 G/=Ce LT §3-{X Xy minsup” (IUDL DB} ;

10) Check sequencesin DBby Support Counting (I1) ;/* See Figure 8 */
11) /* Frequent k-sequencesin UD found */

12) S={xx1 C.U Xouy + Xo® minsup” |UD} ;

13) k=k+1,;

14) Generate C,with S, ; /* Generate candidates for next pass*/

15) until no more candidates

16) Answer 3P =E S;

Figure 2. FASTUP Algorithm

@©

The problem of sequential pattern mining
is more complicated than association
discovery due to sequence permutation.
Without maintenance, validity of discovered
patterns may change and new patterns may
emerge after updates on databases. Keeping
sequential patterns current by re-execution of
mining agorithm on the whole database
takes more time than last mining because of
the additional sequences. We have devised
the FASTUP dgorithm utilizing discovered
knowledge to resolve the problem efficiently
by incremental updating without re-mining
from scratch. The performance
improvements result from effective implicit
merging, early candidate pruning, and
efficient separate counting.

Implicit merging ensures that FASTUP
employs correctly combined data sequences
while preserving previous knowledge useful
for incremental updating. Candidate pruning
after updating pattern supports against the
increment database further accelerates the
whole process, since fewer but more
promising candidates are generated by just
checking counts in increment database.
Eventually, efficient support counting of
promising candidates over the origind
database accomplishes the discovery of new
patterns. FASTUP both updates the supports
of existing patterns and finds out new
patterns for the updated database. Our
simulation shows that the proposed
incremental updating mechanism is severa
times faster than re-mining using the GSP
algorithm, no matter what combination or
what proportion of transactions in the
increment database and the original database.
FASTUP runs dlightly slower than GSP only
when the increment database is bigger than
the original database, i.e. the maintenance
period istoo long.

The FASTUP agorithm currently solves
the pattern updating problems with the
constraint of fixed minimum support. Further
researches could be extended to problems of
dynamically varying minimum supports.
Generalized sequential pattern problems [2],
such as patterns with /s-a hierarchy or with
diding-time window property, are also
worthy of further investigation since different
constraints induce diversified maintenance
difficulties. In addition to the maintenance
problem, constantly updated database
generally create a pattern-changing history,
indicating changes of sequential patterns at
different time. It is challenging to extend our
algorithm to efficient exploration for the
history of pattern updates.

[1] R. Agrawa, H. Mannila, R. Srikant, H.
Toivonen and A. |. Verkamo, Fast
Discovery = of Association Rules
Advances in Knowledge Discovery and
Data Mlnln?, edited by U. M. Fayyad et
a, AAAI/MIT Press, pp. 307-328, T996.

[2] R. A(%_rawal and R. Srikant, Mining

uential Patterns, Proceedings of the

11th International Conference on Data

Engineeri n% éICDE’ 95), pp. 3-14, Tape,
Taiwan, 1995.)

[3] S. Brin, R. Motwani, J. Ullman and S.
Tsur, Dynamic Itemset Counting and
Implication Rule for Market Baskel Data,
Proceedings of the 1997 SIGMOD
Conference on Management of Data, pp.
255-264, 1997.

[4] D. W. Cheung, J. Han, V. T.Ngand C. Y,
Wong, Maintenance of iscovered
Association Rules in Large Databases:
An Incrementa Updating Technique,
Proceedings_of International Conference

on Data En8| neering, 1996.

[5] S. D. Lee, D. Cheung, B. Kao, A General

Incremental Technique For Maintaining

Discovered Association Rules

Proceedings of the 5th International

Conference On Database Systems For

Advanced Applications, ES 185-194,

Melbourne, Australia, Apr. 1997.

H. Mannila and H.. Toivonen,
Discovering Generalized Episodes using
Minimal Occurrences, Proceedings of the
Second International Conference on
Knowledge Discovery and Data Mining
(KDD’96),. Pp. 146-151, Portland, 1996.
H. Mannila, H. Toivonen and A. I.
Verkamo, Discovering Frequent Episodes
in Sequences, Proceedings of the First
International Conference on Knowledge
Discovery and Data Mining (KDD’95),
pp. 210-215, Montreal, Canada, 1995.

J. S. Park, M. S. Chen, and P. S. Yu,,

Using a Hash-Based Method with

Transaction _ Trimmin for Mining

Association Rules, IEEE Transactions on

Knowledge and Data En_/gl neering, Vol. 9,

No. 5 pE. 813-825, 1997. o

[9] R. Sfikant and R._Agrawal, Minin

uential Patterns. Generalizations an
Performance Improvements, Advances in
Database Technol ogly—5th International
Conference on Knowledge Dlscovergy and
Data Mining (KDD’'95), pp. 269-274,
Montreal, Canada, 1995. .

[10] M. J. Z&ki, Fast Mining of Sequentia
Patterns in Vey Large Databases
Technical Report 668, The University of
Rochester, New Y ork, Nov. 1997.

[6]

[7]

[8]

	page1
	page2
	page3
	page4
	page5

