
1

行政院國家科學委員會補助專題研究計畫成果報告
※ ※※※※※※※※※※※※※※※※※※※※※※
※ ※
※ ※
※ 大型資料庫中循序樣式之勘測與維護 ※
※　　　　　　　　　　　　　　　　　　　　　 ※
※※※※※※※※※※※※※※※※※※※※※※※

計畫類別：<個別型計畫　　□整合型計畫

計畫編號：NSC－89－2213－E－009－006

執行期間：88 年 08 月 01 日至 89 年 07 月 31 日

計畫主持人：李素瑛

著作人：李素瑛

本成果報告包括以下應繳交之附件：
□赴國外出差或研習心得報告一份
□赴大陸地區出差或研習心得報告一份
□出席國際學術會議心得報告及發表之論文各一份
□國際合作研究計畫國外研究報告書一份

執行單位：國立交通大學資訊工程學系

中　華　民　國　89　年　10　月　31　日

2

行政院國家科學委員會專題研究計畫成果報告
大型資料庫中循序樣式之勘測與維護

Discovery and Maintenance of Sequential Patterns in Large
Databases

計畫編號：NSC 89-2213-E-009-006
執行期限：88 年 8 月 1 日至 89 年 7 月 31 日

主持人：李素瑛 國立交通大學資訊工程學系
著作人：李素瑛 國立交通大學資訊工程學系

計畫參與人員：林明言 國立交通大學資訊工程學系

一、中文摘要
關聯規則與循序樣式的勘測是重要的

資料探勘問題。在銷售資料庫中，循序樣
式的勘測是要找出所有同一個顧客的交易
間，所銷售的商品之循序性關係。其探勘
包括了關聯規則的勘測，以及項目集間排
列組合的順序關係。

由於可能序列的個數，相當影響探勘
的演算法效率。因此，一個有效率的演算
法，必須能夠涵蓋所有頻繁序列的可能序
列，並減少資料庫檢測的次數或資料筆數
的循序樣式勘測方法。同時，隨著資料庫
新資料的加入、舊資料的更新及修改，必
須對現有的循序樣式加以維護。本計畫設
計了一個新演算法，利用現有的循序樣式
資訊，減少可能序列的產生，同時降低重
複的資料庫檢視，有效改善因資料庫更新
導致愈來愈長的探勘執行時間。
關鍵詞：資料探勘、循序樣式、時間性關
聯規則、序列勘測、序列維護
Abstract

The discovery of sequential patterns is
to find out the sequence relationships among
transaction items of inter-transactions in a
sales database. The mining of sequential
patterns comprise of not only the discovery
of associations but also the permutation of
sets of items.

The project aims to devise an efficient
algorithm for the mining and the maintenance
of sequential patterns. Since the number of
candidate sequences is one of key factors that
affect the performance of mining algorithm,
we have developed a method for speeding up
the mining process. Our new algorithm

utilizes previous knowledge about frequent
patterns to reduce the number of candidate
sequences, and to eliminates the redundant
scanning of customer sequences. The
performance of mining new patterns, i.e.,
pattern maintenance, is effectively improved.
Keywords: Data Mining, Sequential Pattern,

Temporal Association Rule,
Sequence Discovery, Sequence
Maintenance

二、緣由與目的
Data Mining and Knowledge Discovery

in Databases (KDD) thus has been
recognized as a promising field of AI,
statistics and database researches [1]. Mining
of sequential patterns was first introduced in
[2]. The purpose is to discover sequential
patterns in a database of customer
transactions, consisting of records having
customer id, transaction time, and transaction
items. A sequential pattern indicates a
sequence of transactions that usually
occurred serially in time.

The issue of maintaining sequential
patterns becomes essential because database
transactions may be updated over time. Due
to new transactions, some existing sequential
patterns would become invalid after database
update since they might no longer have
sufficient supports, while some new
sequential patterns might appear. However,
there is not much work on incremental
updating of sequential patterns. In order to
ascertain sequential patterns up to date for
the updated database, re-execution of mining
algorithm on the updated database is required.

3

Nevertheless, because of appended database
transactions, re-execution of mining
algorithm demands more time than previous
mining. Moreover, the effort of mining last
time is wasted if all discovered sequential
patterns in the original database were
ignored.

In this project, we propose a new
algorithm that can utilize information about
discovered sequential patterns, and efficiently
reduce candidate sequences for mining in
updated database. The objective of this work
is to solve the update problem of sequential
patterns after a nontrivial number of new
transactions have been appended to original
database. Assuming that minimum support
keeps the same, existing frequent sequences
and their supports in original database could
be utilized for the mining of updated
database. Through effective reuse of previous
derived knowledge in each pass, the number
of candidate sequences is substantially
reduced. Instead of counting all candidate
sequences for full updated database, counting
reduced candidate sequences for original
database and for increment database, could
achieve better performance. For transactions
that have same customer id in both original
database and increment database, we extract
old transactions from original database and
merge into increment database. Since the size
of increment database is smaller than original
database in general, better performance thus
could be retained.

三、文獻回顧
　　There are many excellent algorithms
that deal with the mining of association rules
[1, 3] and several algorithms were developed
for the mining of sequential patterns [2, 9,
10]. Algorithms to discover frequent
episodes in a single long sequence and its
generalization can be found in [6, 7]. There is
no efficient algorithm designed for the
maintenance of sequential patterns in large
databases. As mentioned earlier, they call for
the need of re-mining the whole database.
Incremental updating techniques for the
maintenance of association rules were

proposed in [4, 5]. However, previous work
dealing with the incremental updating of
sequential patterns cannot be found. Besides,
appended transactions induce more
complicated problems in sequential pattern
mining than in association rule mining. The
problem of finding association rules concerns
with intra-transaction patterns whereas that
of sequential pattern mining concerns with
inter-transaction patterns [2]. Appended
transactions bear no relation to original
database for the former problem, while for
the latter problem, different transactions with
same customer id in both databases must be
sorted into one data sequence.

四、研究成果
We propose a new algorithm, FASTUP,

to efficiently keep patterns up-to-date. The
basic construct of the FASTUP algorithm is
similar to that of GSP[9], with improvements
on candidate generation and support counting.
As shown in Figure 1, FASTUP reduces the
size of Ck (candidate k-sequences) into Ck'
and updates the supports of sequences in SDB

(frequent k-sequences in DB) by simply
checking the increment database db, which is
usually smaller than the original database DB.
In addition, the separate counting technique
enables FASTUP to accumulate candidates’
supports quickly because only the new
candidates, whose supports are unavailable
from SDB, need to be checked against DB. In
order to avoid duplicate counting, FASTUP
deals with the required merges by implicit
merging technique.

Essentially, FASTUP generates
candidates and examines data sequences to
determine frequent patterns and their
supports in multiple passes, like GSP.
Nevertheless, with the knowledge of previous
sequential patterns, FASTUP further reduces
the number of candidates required for
checking, and separates the process of
support counting to efficiently counts the
supports of candidates during the same
database scanning. As shown in Figure 1,
Support Counting (I) deals with sequences in
the increment database db using the full

4

candidate set Ck, while the Support Counting
(II) works with sequences in the original
database DB using the reduced candidate set
Ck'. Moreover, we also integrate the implicit
merging into the first support counting
process. Figure 2 lists the proposed FASTUP
algorithm.

In each pass, we initialize the two
support counts of each candidate to zero, and
read the support count of each frequent k-
sequence x. We then accumulate the
increases in support count of candidates with
respect to the sequences in db by Support
Counting (I). Before Support Counting (II)
starts, candidates which are also frequent in
DB but can not be frequent in UD according
to Lemma 4 are filtered out. The full
candidate set Ck is reduced into the set Ck'.
Next, the Support Counting (II) calculates the
support counts of these promising candidates
with respect to the sequences in DB. As
indicated in Lemma 1, the support count of
any candidate k-sequence is the sum of the
two counts obtained after the two counting
processes. Consequently, we can discover Sk
by validating the sum of the two counts of
every candidate. The Sk is used for generating
the complete candidate set for the next pass,
employing the same candidate generation
procedure in GSP. The above process is
iterated until no more candidates.

Extensive experiments were performed
to compare the execution times of FASTUP
and GSP. The effect on performance with
various minsups for datasets having the same
number of customers was evaluated first. The
experiments shows that FASTUP is always
faster than GSP for all values of minimum
supports. In general, FASTUP gains less by
incremental update at higher increment ratio
because bigger increment ratio causes more
pattern updatings. FASTUP updates patterns
more efficiently than GSP for all the
comeback ratios and that FASTUP was
efficient with implicit merging, even when
the comeback ratio was increased to 100%,
i.e., all the transactions in the increment
database must be merged. In these
experiments, other datasets generating with

various combinations of parameters. Still,
FASTUP was several times faster than GSP
for distinct combinations of data
characteristics.

Read k-sequence x ∈SDB

Generate Ck

∀ data sequence ds ∈ db

Filtered Ck'

Sk = {x| x ∈ Ck ∧ ≥ minsup × |UD|}UD
countx

Support
counting

(I)

∀ data sequence ds ∈ DB

Support
counting

(II)

Figure 1. The k-th pass of FASTUP.
1) /* Initially, each item is a candidate 1-sequence */

2) C1 = {x| x =<(α)>, α ∈Ψ } ; /* Let x be a candidate k-sequence */
3) k = 1 ; /* Start from pass 1 */

4) repeat /* Find frequent k-sequences in the k-th pass */

5) for each x ∈ Ck do = = 0 ; /* Initialize counters */
6) Read ; /* = {frequent k-sequences in DB */

7) Check sequences in db by Support Counting (I) ; /* See Figure 8 */

8) /* Prune candidates: (1) counted in (2) insufficient “new” counts */

9) Ck' = Ck−{x|x ∈ }−{x| < minsup × (|UD|−|DB|)} ;
10) Check sequences in DB by Support Counting (II) ;/* See Figure 8 */
11) /* Frequent k-sequences in UD found */

12) Sk = {x| x ∈ Ck ∧ + ≥ minsup × |UD|} ;
13) k = k + 1;

14) Generate Ck with Sk-1 ; /* Generate candidates for next pass */

15) until no more candidates

16) Answer SUD = ∪k Sk ;

DB
kS

db
countx

DB
countx

DB
kS

DB
kS db

countx

DB
countx

db
countx

DB
kS

Figure 2. FASTUP Algorithm

五、結論
The problem of sequential pattern mining

is more complicated than association
discovery due to sequence permutation.
Without maintenance, validity of discovered
patterns may change and new patterns may
emerge after updates on databases. Keeping
sequential patterns current by re-execution of
mining algorithm on the whole database
takes more time than last mining because of
the additional sequences. We have devised
the FASTUP algorithm utilizing discovered
knowledge to resolve the problem efficiently
by incremental updating without re-mining
from scratch. The performance
improvements result from effective implicit
merging, early candidate pruning, and
efficient separate counting.

5

Implicit merging ensures that FASTUP
employs correctly combined data sequences
while preserving previous knowledge useful
for incremental updating. Candidate pruning
after updating pattern supports against the
increment database further accelerates the
whole process, since fewer but more
promising candidates are generated by just
checking counts in increment database.
Eventually, efficient support counting of
promising candidates over the original
database accomplishes the discovery of new
patterns. FASTUP both updates the supports
of existing patterns and finds out new
patterns for the updated database. Our
simulation shows that the proposed
incremental updating mechanism is several
times faster than re-mining using the GSP
algorithm, no matter what combination or
what proportion of transactions in the
increment database and the original database.
FASTUP runs slightly slower than GSP only
when the increment database is bigger than
the original database, i.e. the maintenance
period is too long.

The FASTUP algorithm currently solves
the pattern updating problems with the
constraint of fixed minimum support. Further
researches could be extended to problems of
dynamically varying minimum supports.
Generalized sequential pattern problems [2],
such as patterns with is-a hierarchy or with
sliding-time window property, are also
worthy of further investigation since different
constraints induce diversified maintenance
difficulties. In addition to the maintenance
problem, constantly updated database
generally create a pattern-changing history,
indicating changes of sequential patterns at
different time. It is challenging to extend our
algorithm to efficient exploration for the
history of pattern updates.

六、參考文獻

[1] R. Agrawal, H. Mannila, R. Srikant, H.
Toivonen and A. I. Verkamo, Fast
Discovery of Association Rules,
Advances in Knowledge Discovery and
Data Mining, edited by U. M. Fayyad et
al, AAAI/MIT Press, pp. 307-328, 1996.

[2] R. Agrawal and R. Srikant, Mining
Sequential Patterns, Proceedings of the
11th International Conference on Data
Engineering (ICDE’95), pp. 3-14, Taipei,
Taiwan, 1995.

[3] S. Brin, R. Motwani, J. Ullman and S.
Tsur, Dynamic Itemset Counting and
Implication Rule for Market Basket Data,
Proceedings of the 1997 SIGMOD
Conference on Management of Data, pp.
255-264, 1997.

[4] D. W. Cheung, J. Han, V. T. Ng and C. Y.
Wong, Maintenance of Discovered
Association Rules in Large Databases:
An Incremental Updating Technique,
Proceedings of International Conference
on Data Engineering, 1996.

[5] S. D. Lee, D. Cheung, B. Kao, A General
Incremental Technique For Maintaining
Discovered Association Rules,
Proceedings of the 5th International
Conference On Database Systems For
Advanced Applications, pp. 185-194,
Melbourne, Australia, Apr. 1997.

[6] H. Mannila and H. Toivonen,
Discovering Generalized Episodes using
Minimal Occurrences, Proceedings of the
Second International Conference on
Knowledge Discovery and Data Mining
(KDD’96), pp. 146-151, Portland, 1996.

[7] H. Mannila, H. Toivonen and A. I.
Verkamo, Discovering Frequent Episodes
in Sequences, Proceedings of the First
International Conference on Knowledge
Discovery and Data Mining (KDD’95),
pp. 210-215, Montreal, Canada, 1995.

[8] J. S. Park, M. S. Chen, and P. S. Yu.,
Using a Hash-Based Method with
Transaction Trimming for Mining
Association Rules, IEEE Transactions on
Knowledge and Data Engineering, Vol. 9,
No. 5, pp. 813-825, 1997.

[9] R. Srikant and R. Agrawal, Mining
Sequential Patterns: Generalizations and
Performance Improvements, Advances in
Database Technology–5th International
Conference on Knowledge Discovery and
Data Mining (KDD’95), pp. 269-274,
Montreal, Canada, 1995.

[10] M. J. Zaki, Fast Mining of Sequential
Patterns in Very Large Databases,
Technical Report 668, The University of
Rochester, New York, Nov. 1997.

	page1
	page2
	page3
	page4
	page5

