FHRERATPEELRE CLET TS 2R

BLATEER R E A PEIE I B JRIE
FL+%HL0EHR)

Cal S S I

7% % 5. ¢ NSC 98-2221-E-009-083-

o P F S 98#£08201lpx99E07T 3R
folH R REREARFRIEE L ()

L4 H oA ER

FESEAR D ALy 4 IR AR RN
Eﬁififgfi—’i iFpsIE A ﬁ : frrgulgjniu
IR Y Sl el GIERLE AR F;
Blripmy 4 - EeEA | s

o= oA R 99# 100 29 p

FRERTHPELE § L EF PR b2
LY EEF W E S PR AR B PRI

P2P Live and Time-shifted Streaming Services (1)

3% %% 1 NSC 98-2221-E-009-083

{749 *2 1 2009.08.01 1 2010.07.31
AgEL DEPE AW AFF

BAR IEFT RSB A -MAEE LUAFFTL R

VRS .
LR
EE LR DL Z 0 SRR RIS X L - 3P B RS RE T o (e gt 8k b

WEPEE R AT R AT o BRELSY #H;é{ﬁ TRRAT PR ALY B o R
WF 5 S R NE RIRARILE SR AR B R PRAR R AR W S S AR s RS P
R R o (e B BEAFELOS PE B L IRAE 0 4 ,7&{# i AL S Rl eI T R T L8
ZPEREEY SRR SRR PR R G BT o R RARA Y o AR - B
/AR R R kAL RO PRI B R TR h A $050 B F I ek > & 4 PlanetLab
T L EEP o AP - A RenT AR T o AP BRBR i 0 AECS 64 §8en
PE? AP kY BulEEapie B TI0L 16 4 0 WELIRT| & ‘*%ﬁqiﬁflj‘vﬂli};&;@,y
320 F) 0 @ B UnE T T 3 98% o d TR MELRA M iFL R i EFRR > P

el A B i 100% 0 H P 9Tk p His &L 3%KpMELR o AR o A lrﬂ;{?wﬁ
W 8 BRI TR DIT 692 2 4 BE el 5 B AES 49 % 1L blenid 3 TR A2 2
PEG AR NPZR- BT E o TRE L S RETPRE

Abstract

With the increasing prevalence of broadband Internet access, multimedia streaming services
have been among the most popular Internet applications in recent years, but the system scalability
has always been an issue to solve. P2P architecture has been one of the most promising solutions
addressing the scalability problem, and has been widely applied on live streaming services and
video-on-demand (VoD) services. However, currently there are very few studies in P2P streaming
systems that provide time-shift streaming services, where users can watch video streaming programs
with an arbitrary offset of time. In this report, we present the design and implementation a P2P
live/time-shift streaming system, and a distributed cache management strategies for time-shift video
cache files. In addition, we study the system’s performance and characteristics on the PlanetLab
experiment platform. In our initial experiments with 64 nodes, the live streaming part achieved a
startup delay of 15 seconds, an end-to-end delay of 16 seconds and a continuity index over 98%.
Moreover, for the time-shift streaming service, our system achieved a continuity index of 100%, with

1

over 94% of the streaming data were from P2P peers. However, our random back-off publishing
strategies for cached video segments have synchronization problems, which lead to incomplete
publishing results. New publishing strategy needs to be developed, and large-scale of experiments
need to be conducted.

1. Introduction

With the increasing prevalence of broadband Internet access, multimedia streaming service has
been a very popular Internet application in recent years, but the system scalability has always been
an issue to solve. In the early developments of media streaming applications, client-server
architecture suffers from scalability problems; as the number of users increases, the servers are
quickly overloaded [1]. Content delivery networks (CDNs) with strategically placed proxies have
been developed to balance the loading of the servers, but they are too costly for general applications
[2]. IP multicast being probably the most efficient vehicle, its deployment, however, is very limited
due to many practical issues, such as the lack of IP multicast supporting infrastructures and the lack
incentives for network operators to carry streaming data traffic [3]. Application-level multicast, by
constructing an overlay network with unicast connections between peer nodes in the system, has
been proposed to deal with the scalability issue and used in many Internet applications.

Currently, there are mainly two types of streaming services: live streaming and VoD (video on
demand) streaming. Live streaming is similar to watching broadcast TV programs; users tune to a
selected channel, and the users tuning to the same channel synchronously receive the same content.
By contrast, in VoD streaming, a user selects to watch any video clip any time at the user’s will.
Therefore, contents delivered to VoD users are asynchronous even for the users watching the same
video clip.

Another type of streaming service is time-shift streaming service, which provides the ability for
a user to watch contents broadcasted in the past; it is like a digital video recorder (DVR) but the user
does not need to program the DVR in advance. P2P time-shift streaming can be taken as a special
case of P2P VoD streaming. For P2P VoD streaming, video programs are pre-generated and their
lengths are known. The video programs are originally stored in dedicated VoD servers. By contrast,
in P2P time-shift streaming, the video contents are generated constantly and transmitted to live
program viewers. There may not be dedicated servers to store the video contents for time-shift
viewers to retrieve them at later time. Therefore, the live program viewers need to coordinately cache
the video contents, and thus an efficient peer cache management strategy is needed.

However, there are very few researches on streaming systems that provide both live streaming
and time-shifted streaming. In this report, we present the design and implementation of a P2P system
providing both live streaming and time-shift streaming functionality. We also propose a distributed
cache management strategy to store video contents for time-shift users. In addition, we performed
experiments on the PlanetLab platform to study the performance and characteristics of our system.
We believe that our work provides valuable knowledge of P2P live/time-shift streaming system for
further development on time-shift streaming services.

2

The remaining of this report is organized as follows. Section 2 describes the current work in
P2P streaming studies related to our research. Section 3 presents the design and implementation of
our system in details. Section 4 presents the experiment results for system performance. Conclusions
and future work are presented in Section 5.

2. Related Work

There have been comprehensive studies on P2P systems. Steaming services based on P2P
technologies are also very popular. We will briefly describe the current developments of P2P live
streaming systems, P2P VoD streaming systems, and P2P streaming systems with time-shift function.

2.1 P2P live streaming

In P2P live streaming service, peers require the synchronized delivery of streaming media
content. One of the important design issue is to form an overlay structure for efficient content
delivery mechanism. CoopNet [6] adopts a centralized model; the source node is responsible to
collect information from the joining nodes and maintain a multi-tree structure. Using a
multiple-description-coding (MDC) technique, each tree to transmit different MDC descriptions.
However, CoopNet is not a pure P2P system, but a complement to a client-server framework; the
multi-tree overlay is only invoked when the server is unable to handle the load imposed by clients.

In SplitStream [7], the streaming content is split into multiple stripes and independent multicast
trees are constructed for delivering a stripe on each tree. By constructing a forest of multicast trees,
where an interior node in one tree is a leaf node in all the remaining trees, the video forwarding load
can be evenly spread across all participating nodes. However, such node-disjointness is a property
hard to achieve, especially in heterogeneous environments [8]. In GridMedia [4], the bootstrap
procedure uses a rendezvous point to assist peer nodes to join the overlay. A newly joined node first
contacts the rendezvous point to obtain a list of nodes that have already joined the overlay. Then, it
measures the end-to-end delay to each node in the list and selects a number of node as partners, with
the probability of a node being selected is in inverse to the end-to-end delay. This allow the node to
select nearby peer nodes as partners. In DONet/CoolStreaming [3], a newly joined node first contacts
an origin node and the origin node randomly selects a deputy and redirects the new node to the
deputy. The new node can obtain a list of partner candidates from the deputy and establish
partnership with these candidates. For video transmission, the video stream is divided into segments
of uniform length, and the availability of segments in the buffer of a node is represented as a bitmap
called Buffer Map (BM). Each node continuously exchanges its BM with its partners and then
schedules video pulling operations accordingly. The scheduling algorithm takes both availability and
partners’ upload ability into consideration. The block with the least number of available providers
will be pulled first, from the partner with the highest available and sufficient bandwidth among the
multiple potential providers, if any.

2.2 P2P VoD streaming

Video-on-Demand (VoD) service provides users the functionality to watch any programs at any
3

time. One of the design issues of P2P VoD service is what a peer should cache to share the load of
the VoD servers and how to find such cached contents from the peers. In P2Cast [9], peers watching
the same video clip within a time interval form a session in a single-tree fashion, each peer caches
the beginning part of the video program and a newly joined peer can be patched with the cached
beginning part from its parent’s buffer. In P2Vod [10], peers form generations, where in each
generation, peers have synchronized buffer start. A newly joined peer tries to join a generation, or
form a new generation appended to an older generation. Generations are numbered, from G1 as the
oldest generation and Gn as the youngest generation. Nodes in these generations excluding the server
form a video session. In a session, if there is no client that still has the first block of the video, the
session will be closed, and a new video session is created for newly joined clients. Both P2Cast and
P2Vod only support start-from-beginning VoD viewing. oStream [11] provides peers the ability to
watch from arbitrary positions, but since the system inserts new peers into the system, video
disruption is noticeable on the child nodes of the new peers.

BASS [12] applied BitTorrent protocol to download video content, with the VoD server to
support emergency contents, which are too close to the playback deadline but are not arrived yet.
Their simulation results indicate that this mechanism reduces 34% of the bandwidth of the server
when the users’ average outgoing bandwidth is about the same as video bit-rate. However, the
required bandwidth from the server still increases linearly as the number of users increases.
PONDER [13] also adopts a mesh-based approach similar to BitTorrent, and applies new
mechanisms to accommodate VoD service. While BitTorrent treats all data units, called chunks, with
equal importance, PONDER partitions the video into equal sized sub-clips, each of which contains
hundreds of chunks. The sub-clip close to the playback deadline is given a higher priority to
download, so that the urgent data can be downloaded first. PONDER also gives up the tit-for-tat
incentives of BitTorrent; peers are served based only on their needs without considering their
contributions. This maximizes the amount of data that can be downloaded before the playback time.
PONDER achieves 70% saving of server bandwidth with users’ average outgoing bandwidth being
about 80% of video bit-rate, and up to 93% saving for users’ average outgoing bandwidth being
112% of the video bit-rate.

2.3 P2P live streaming with time-shift streaming support

To the best of our knowledge, P2TSS [14], LiveShift [15] and an IPTV variation [16] are the
few existing researches on providing both live streaming and time-shift streaming. P2TSS presents
two distributed cache algorithms: Initial Play-out Position Caching (IPP) and Live Stream Position
Caching (LSP). It allows peers to decide which video block to be cached locally to share with other
peers. Their simulation results indicate that P2TSS achieves low server stress by utilizing the peer
resource. However, in IPP, the video availability is not uniform for each video block, while in LSP,
though the availability is uniform for each video block, it requires extra bandwidth and more
connections for each peer to fill its distributed streaming cache.

LiveShift is a software prototype. It is a live streaming system based on a multiple-tree overlay.
As a peer receives the video contents and the video segment reaches a pre-defined size, the segment

4

is stored and the peer adds a reference to the segment in a DHT. Although they have presented a
demonstration scenario, but there is no detailed analytic results of the system.

IPTV is an integrated media delivery architecture that provides four basic functionalities of
video delivery: linear TV, video on demand (VoD), time-shifted TV (tsTV) and network personal
video recorder (NPVR). The system adopts native IP multicast for linear TV, and distributed caching
and P2P mechanism for VoD, tsTV and nPVR services.

3. System Design & Implementation

3.1 System overview

By studying related research on P2P live streaming and P2P VoD streaming systems, we believe
that our system needs to cope with the following issues: live streaming, content caching, publishing,
searching and fetching, which we sorted into three major topics as follows.

1. Live streaming framework

A live streaming framework provides a base for our system, because it supports live streaming
service and the live streaming nodes would store the received contents for the future use of time-shift
streaming viewers. Since many live streaming frameworks have been comprehensively studied, we
would not create a brand new live streaming system; instead, we adopted the design of the latest
DONet/Coolstreaming with modifications to suit our needs.

2. Caching strategy and cache replacement policy

Live streaming nodes need to cache the contents they have watched to support time-shift
streaming nodes, and thus the caching strategy is an important issue of the system design. Two
factors, cached data redundancy and time-shift service span, have been considered. It is clear that
having all live streaming nodes caching all the contents they have watched provides the most data
redundancy, but the shortest service span as an overall system, because each node only has a limited
storage space. On the other hand, having only one replica cached in the system provides a storage
space equal to the sum of all nodes’ storage space, but this provides poor data redundancy. The
departure or failure of a node means the loss of its cached data. Therefore, a mechanism that keeps a
balance between the two factors is needed, and thus we propose a probability algorithm to keep a
desired number of replicas in the system.

3. Time-shift content search/fetching mechanism

The cached content must be located before it can be retrieved, we adopted Kademlia [17-18]
distributed hash table (DHT) for content publishing and content search. With the published
knowledge stored in the DHT, time-shift contents can be fetched from multiple sources in an
efficient and load-balancing manner.

3.2 System architecture
Figure 3-1 depicts the architecture of our system. The system consists of three types of nodes:

5

bootstrap server, provider and viewer. The bootstrap server maintains a list of available channels and
a list of participating nodes of each channel, in order to bootstrap the newly joined nodes. A provider
is also a source node of live streaming data, and it registers its channel information with the bootstrap
server. When a viewer joins the system, it first obtains the information of available channels and
participating nodes from the bootstrap server, and then retrieves the desired video contents for live or
time-shift streaming.

DHT
Bootstrap
Server
Channel 1 Channel 1

Live Streaming Time-shift Streaming

A
e\

Viewer " u
1 u?/' :,‘
Time-shift
v A Viewer
\'. ’ ub "‘ \
Channel Live

Provider Viewer x

&S Time-shift
Live Viewer
Viewer

<— Signaling
¢ Live streaming
<& TS streaming

Figure 3-1 The system architecture.

Figure 3-2 depicts the block diagram of a node; a node can be a channel provider or a viewer.
The player-buffer relationship depends on the type of the node. For a provider, the player encodes the
original video stream into packet stream, and the stream data is put in the buffer for data transmission
and genertaing its buffering status. For a viewer, the video content is also put in the buffer for data
transmission, generating buffering status and playback. To share video content among peers, the
buffered content can be transmitted to other peers for live streaming or time-shift streaming. The live
streaming part handles the content transmission for live streaming, and cooperates with the time-shift
streaming part to cache and publish the contents. Transmissions are carried out over TCP connections
to avoid data losses in the network layer. Kademlia DHT is used to publish the cahed content, and its
messages are transmitted over UDP packets.

Player

e ——
Live Streaming Part i ﬁ-ﬂme-shlf’(Streaming Part

Member Cache

i i S —
Partner Management Caching Policy
Storage
Parent Management OHT

Sub-stream Management

4L 42

Signaling \ Data Transmission

Network Interface
=% ¢
<5 <5 <5

‘ Peer node ‘ ‘ Peer node ‘ ‘ Peer node ‘

Node

Figure 3-2 The block diagram of a node.

3.3 The streaming transmission unit

The streaming transmission flow of our system is depicted in Figure 3-3. The video stream is
generated from a video source. A video provider encodes the video contents into continuous packets
and transmits the video packets to the viewer nodes. Each viewer node receives the video packets,
and the video player decodes the received packets back to video. It is intuitive to replay the packets
using a buffer-then-play scheme for both live and time-shift P2P streaming. However, the packet
receiving times at the provider needs be recorded, so that the video packets can be played back
synchronously. Therefore, we record the duration of each video packet.

|Packet| |Packet]

Video D
Source %

A

-

Video
Player

P2P overlay

Provider Viewer

Figure 3-3 The streaming packet transmission flow.

At the video source, the video is encoded into UDP packets by a VLC media player [19]. The
7

UDP packets are then sent to the video provider, via local loopback interface. The video provider
measures each packet’s duration. Since it is inefficient to track each packet individually, continuous
packets received in a second are packed into a video block. Furthermore, in order to support
time-shift streaming, 10 consecutive blocks, with the starting block’s timestamp aligned to 10’s
multiples, are packed into a video file for local storage purpose. The file is named after the
information given by the channel provider, along with a timestamp. For example, a video file with
name “ProviderName_Channell_20100620182520” stands for 10 blocks of Channel 1 provided by
ProviderName, with timestamp 2010/06/20 18:25:20. Figure 3-4 shows the structures of a video
block and a video file.

Packet with timing information: ‘ Duration ‘Packet Length‘ Packet length of UDP packet payload ‘
Packing timed packet to block: ‘ Timestamp ‘Timed Packet ‘ Timed Packet ‘ Timed Packet ‘ ‘Timed Packet ‘
Packing blocks to file for storage: ‘ Block Length ‘ Block ‘ Block Length ‘ Block ‘ ‘ Block Length ‘ Block

Figure 3-4 The structures of a video block and a video file.

2.2 Live streaming framework based on DONet/Coolstreaming

We adopted the design of the latest DONet/Coolstreaming as the live streaming framework to
deliver live contents. In the following, we present the characteristics of the latest
DONet/Coolstreaming, and our modifications as well.

1. Node hierarchy

Each live steaming node maintains three levels of nodes known to it: members, partners and
parents. Members give the node a partial view of currently active nodes in the system, but no
connection is established between the node and the known members. Connections are established
between partners to exchange block availability information. Parent-child relations are formed when
connections are established for video block transmission. Apparently a node’s parents and children
are a subset of its partners set.

2. Multiple sub-streams

The video stream is encoded and packed into continuous blocks, each of which is one-second
long and time-stamped. The blocks are decomposed into S sub-streams, by grouping blocks whose
timestamps have the same modulo of S. By dividing the stream into multiple sub-streams, each
sub-stream can be retrieved from different parent nodes independently, which means a node can
retrieve data from up to S nodes. Figure 3-5 shows a video stream divided into four sub-streams with
S=4. In our design, the video stream is divided into 8 substreams.

s 123+ 5. 1

Sub-stream 1 T??E]
Sub-stream 2 T?TOE]
Sub-stream 3 ?TETS]
Sub-stream 4 7?5176]

Figure;')gb;eaim deco;p&iaii

3. Joining procedure

When a node joins, it first contacts the bootstrap server and retrieves a list of available channels.
After selecting a channel, the node retrieves a partial list of the currently active nodes in the channel,
and put the nodes on a list as its membership cache. Then the node randomly selects some of the
nodes as its partners. Partners exchange their membership cache and the video block availability
information periodically. In our design, a newly joined node first obtains the video block availability
from its partners. Since each partner node may receive the video sub-streams at different paces, for
each sub-stream, the node determine the fastest pace (i.e., the newest block) among its partners. The
node would set its playback time point to be the slowest of all the fastest sub-streams, so that all the
blocks the node would request have been received by some of its partners. After that, for each
sub-stream, the node would subscribe the sub-stream from a partner whose pace is the closest to the
initial playback time point. This would allow the node to receive all substreams at about the same
pace.
4. Hybrid push-pull mechanism

To form a parent-child relationship, the node subscribes a sub-stream with a partner. When a
partner node receives a subscription message with a designated starting timestamp, the partner
becomes the parent node of the subscriber node and stores the subscriber’s information, including its
IP, communication port number and data port number in a sub-stream subscriber list. The parent
node starts sending to the subscriber all blocks in the subscribed sub-stream starting from the
timestamp requested. The parent can be either the provider or another peer node. If it is the provider,
it pushes a block to the subscribers whenever it finishes packing a new block. If it is another node, it
pushes a block to the subscribers whenever it receives a new block. The subscription contract ends
when the subscriber sends an unsubscribing message, or when the parent node is unable to push
blocks to the subscriber because of underlying network problems.
5. Parent re-selection

As the subscription increases, a node may be overloaded and lags in pushing blocks to its
subscribers. A node can detect such lagging by comparing sub-stream receiving status of its parents,
or comparing sub-stream receiving status between itself and its partners. The node compares the pace

of each substream with the average of all sub-streams. If the largest difference among all sub-streams
9

is over a threshold, the node replaces the sub-stream that has the largest difference by subscribing to
the partner whose timestamp of the substream is the nearest to the average. As shown in the lower
part of Figure 3-6, the node compares the receiving status in its buffer with a partner’s buffer, and
can discover that its sub-stream 2 is lagging behind the partner’s sub-stream 2 by three blocks. If the
lagging range is larger than a certain threshold, which may indicate the parent node is overloaded,
the parent re-selection procedure is triggered, and a new parent node will be selected to support the
lagging sub-stream and the original subscription is cancelled. The new parent node can be selected
from the current partners if there’s any, or from current parents with better buffering status, if there’s
no available partners.

Current Node’s Buffer

Sub-stream 1 T??E -
Sub-stream 2 T?EZ . -
Sub-stream 3 ?7ET5 . -
Sub-stream 4 T?EE -
Some Partner’s Buffer
Sub-stream 1 T??E -
Sub-stream 2 7?55 . -
Sub-stream 3 ?7ET5 L
Sub-stream 4 7?5176]
DBIock not received

D Block received

Figure 3-6 Comparing sub-stream status in parent re-selection.

3.4 Distributed cache management strategy

The goal of our distributed cache management strategy is to effectively keep a desired number
of replicas for the cached contents. The strategy is composed of two parts: publishing/re-publishing
policy and content caching based on probability.

1. Content publishing/re-publishing policy

After a video file is collected for future time-shift viewers, the node publishes the ownership
information on the DHT. However, the provider node caches all video contents but never publishes
the ownership information. The provider node would act as a backup node; its cached contents can
only be accessed at emergency. For example, when a block is 5 seconds to the time-shift playback

10

deadline but had not been received, or when there is no owner of a desired video file published on
the DHT. Since the system would keep multiple replicas for each video file, the published record on
the DHT is a list of <IP, Port, Last_Update_Time> triples. Fig.3-5 depicts the relations between a file
name and its owner list found on the DHT, and the structure of the owner list.

File name

SHA-1 [

160-bit key

GET(key)

Record 1 IP Port | Last_Update_Time

Record 2 IP Port | Last_Update_Time

Record 10 | IP Port | Last_Update_Time

Figure 3-7 Getting the owner list from the DHT.

When a node wants to update a list, it first tries to get the list from the DHT. If the list does not
exist, it creates a new one. Then the node removes the record of two types: (1) the record put by itself
in the past, and (2) the out-of-date records, which can be determined by comparing the records’
Last_Update_Time with the current time. In our system, we consider a record out-dated if the record
is last updated more than thirty minutes ago. This thirty-minute interval would give the node enough
time to do multiple updates by the republishing policy described later. After that, the node checks the
number of replica. If the number has reached the desired number of replicas, the node deletes its
cached file; otherwise, it adds its record to the list, and put the list back to the DHT. However, the
accesses of the DHT from the peers are not coordinated, which means a published record may be
overwritten by another node. This is a well-known write-after-write data hazard, and will be referred
to as publishing collision.

To deal with the publishing collisions, each node will back-off for a random interval before
publishing to reduce such collisions. For the first time when a node updates a list, it will have a
random back-off time uniformly distributed in (0, 50) sec. A node also republishes its cached files.
The republishing operation is similar to the initial publishing operation, but is done periodically in
order to keep the lists up to date and to alleviate the effects of over-written publishing. A node will
periodically do the republishing operation with a random back-off time uniformly distributed in [600,
1200) sec. As we described above, the records on the DHT have a thirty-minute out-of-date threshold.

11

This means that each node can perform at least one republishing operation before the record is
out-dated. The algorithm for random caching and random back-off for publishing is listed as follows.
01 while(waitngForBlocks)

02 block = node.receiveBlock();

03 buffer.put(block);

04 if(block and nearby blocks can be dumped)

05 viewerKnowledge = MAX(parent.size()+partner.size(), viewerCount);
06 rand = a random integer generated between (0, viewerKnowledge]
07 if(rand < replicasRequired)

08 dump blocks to local storage;

09 random back-off for DHT publishing;

10 fileOwnerList = DHT.get(filename);

11 remove out-dated entry and this node’s entry in fileOwnerList
12 if(DHT.get(filename).size() < replicasRequired)

13 FileOwnerList.add(this node);

14 DHT.put(filename, flleOwnerList);

15 else

16 delete dumped file

17 end if

18 end if

19 end if

20 end while

Algorithm 3-1 Random caching and random back-off for publishing.

2. Caching based on probability

To distribute the responsibility of caching streaming contents and keep a desired number of
replicas in the system, we adopted a probability algorithm to determine whether a file should be
cached or not. Assume that the system wants to keep R replicas, and the system has N viewers. It is
clear that each node should cache the received content with a probability of R/N. Since R is a
constant, the discovery of N is the issue here.

To estimate N, first, a local knowledge based on the design of DONet/Coolstreaming is used.
Since each node keeps connections with its partners and parents, these nodes must be active nodes in
the system. Therefore, the node has the first parameter as the value of the number of partners plus the
number of parents. In addition, the number of the current active viewers can be obtained by a
modified node-startup procedure. When a node joins the system, heartbeat messages are periodically
sent to the bootstrap server to update the membership cache, and the number of active viewers is
piggybacked to the node in the reply messages. With the two values, N is selected as the larger one of
the two. The local knowledge helps the node to react fast to the change of active nodes, especially
when the size of viewer is small, since they would form an almost fully-connected mesh structure;
and the number of the current active viewers helps the node to make better decisions when the size of

12

viewers becomes larger.

3.5 Time-shift streaming

For time-shift streaming, we adopt per-block pulling mechanism for content retrieval. After a
node decides the channel and the starting time to watch, the name of the video file containing the
required content is known. By querying with the file name on the DHT, the node obtains a list of the
file owners. Then, the node would try to pull up to 4 blocks every sec., each from a randomly
selected owner in the owner list. The reason why there’s a limit on the number of pulling blocks in
each sec. is that the available cached content may be much larger the buffer’s capacity, so that it is
necessary to keep the pulling timestamp staying in a distance with the playback timestamp. For
emergency handling, contents close to playback deadline but not received will be pulled directly
from the provider. To ease the load of live streaming peers, we need to enhance the cooperation
between time-shift peers. It means time-shift peers can share video content with time-shift peers that
their watching points are near.

To share contents with near time-shift peers, time-shift peers form groups. A group consists of
peers watching close-by video contents, i.e., their viewing time points are within a threshold. The
center of a group is defined to be the median of the newest and the oldest viewing time points of the
peers in the group. The radius of a group is the larger value of ten minutes or the distance from the
center to the oldest viewing time points. A peer joins a group if its viewing time point is in the
group’s radius. If there is no such a group, the peer creates a group and makes itself as the center of
the group. When a peer joins a group, the group adjusts its center.

The peers in a group exchange buffer map information with each other. The peer watches the
older video contents can fetch contents from the peer watching newer contents. If their buffer maps
are overlapped, peers watching older contents can fetch video blocks into their own buffer. If not
overlapped, peers watching older contents can also prefetch video files beyond its buffer capacities
and store them into local disks in the same way as live streaming peers store video files for time-shift
viewers. The stored video files are likely to be used for time-shift playback by the peer itself and by
other peers.

3.6 System Implementation

We have implemented the system in Java 1.6 using a request-reply model. The nodes
communicate with each other with request messages, and the recipients repond with corresponding
reply messages. The bootstrap server creates a ServerSocket for incoming messaging connections,
Threads are created for each incoming connection and received messages are handled and replied to
the connecting node. On the other hand, a provider/viewer node creates two ServerSockets, one for
incoming messaging connections and the other for block transmission connections.

A message consists of the message type and the required options of the message. Messages are
transmitted over TCP with Java Socket. The messages used in our system are listed below.

(1) Channel Registration
A channel provider registers its information with the bootstrap server. The options include

13

@)

3)

(4)

Q)

(6)

(7)

this node’s messaging port number, channel provider’s name and channel description. The
bootstrap server replies with whether the registration is successful or not.
Channel List

A viewer requests for the available channels registered at the bootstrap server. The options
include the node’s messaging port number, channel provider’s name and channel description.
The bootstrap server replies with a list of available channels’ provider names and channel
descriptions.
Channel Join

For live streaming, this message is used for channel joining procedure; the options include
this node’s control port number, channel provider’s name and channel description. The
bootstrap server replies with a list of currently active nodes in the channel. For time-shift
streaming, the message is used for DHT joining procedure, where the bootstrap server replies a
DHT bootstrap node for the DHT bootstrap procedure.
Buffermap Exchange

The message is used for buffer map information exchanges between nodes. The options
includes this node’s control port number and buffer map. The recipient replies with its buffer
map.
Sub-stream Subscription

This message is used for sub-stream subscription. The options include this node’s
messaging port number, block transmission port number, subscribing timestamp and its buffer
map of subscribing sub-stream. The recipient replies with the subscription result.
Sub-stream Un-subscription

This message is used for sub-stream un-subscription. The options include this node’s
messaging port number and the index of the un-subscribing sub-stream. The recipient replies
with the un-subscription result.
Time-shift Block Request

This message is used for time-shift streaming viewer nodes to request a block from other
nodes. The options include the node’s messaging port number, block transmission port number
and its requesting timestamp. The recipient replies with the requested result and (1) if it has the
block, the requested block is sent to the requesting node, or (2) if it does not has the block, it
informs the node to request from the source.

4. Performance Measurements

4.1 Experiment Environment

To evaluate the system performance, we performed experiments on PlanetLab, an open global

research network [20]. The streaming provider was located in the Internet Communication
Laboratory, NCTU. 48 PlanetLab nodes were used as live streaming viewers, and 16 PlanetLab
nodes were used as time-shift streaming viewers; most of them were located in the United States.

14

The video stream bit rate is 400 kbps, the number of sub-streams is 8, and each node can connect to
up to 24 other nodes as partners. The buffer size of each node is 120 blocks The random back-off
time of first time publishing is uniformly distributed in (0, 50) sec. The random back-off for
republishing is uniformly distributed in (10, 20) min. The system intends to keep 10 replicas for each
block. Time-shift nodes cache each received block with probability 0.5. Table 4-1 lists the system
parameters used in our system.

In the experiment, we first started the bootstrap server and streaming provider, and then all 64
nodes joined the system as a Poisson process, with an expected inter-arrival time of 60 seconds. For
each time-shift node, it randomly selected a time between the time when the streaming started and
the time it joined the system as the playback point. The experiment lasted 2 hours, and we assumed
no peer churn.

Table 4-1 Experiment system parameters.

System parameter Value

Video streaming bit-rate 400 kbps

The number of sub-streams 8

The maximum number of partners 24

The number of replicas to keep 10

Buffer size 120 blocks

The random back-off for publishing (0, 50) seconds
The random back-off for re-publishing (20, 20) minutes

4.2 System Performance and Analysis

4.2.1 The live streaming

First, we examine three commonly used criterions in evaluating a streaming service:
startup delay, end-to-end delay and playback continuity. The startup delay is the time between when
a user tunes to a channel, and when the video content can be played. End-to-end delay, also called
playback delay, is the delay of the video content between the source and the viewer. Continuity index
is the number of segments that arrive before or on the playback deadlines over the total number of
segments a node should receive.

Figure 4-1 depicts the distribution of startup delay of the live streaming nodes in the experiment.
Most of the nodes experience a startup delay less than 20 sec.; the average startup delay is 15 sec.,
which is a satisfactory result for P2P live streaming service. Figure 4-2 depicts the distribution of the
end-to-end delay of the live streaming nodes. Most of the nodes experience an end-to-end delay less
than 15sec., and the average end-to-end delay is 16 sec. Figure 4-3 depicts the statistics of the blocks
received by each live streaming node. The red bars indicate the number of blocks received before the
playback deadlines, the green bars indicate blocks received after the playback time, and the blue bars
indicate blocks not received. The results indicate that most of the nodes have 100% continuity index,

15

i.e., received all blocks that they need. The average continuity index is 98.5%. However, Nodes 19,
26, 29, and 40 experience large numbers of lost blocks; this is due to the underlying TCP errors. Note
that Node 19 experiences a large number of delayed blocks. The reason is still unclear to us.

60

Accumulated ———
a0 1 Distribution

40
The number of nodes 30
0
10

40 50 60
Startup delay (sec.)

Figure 4-1 The distribution of startup delay of live streaming nodes.

Peer count e2e delay distribution
35

30

25

20

15

10

5
0 B B B e e

0~5 5~10 10~15 15~20 20~25 25~50 >50 sec.

Figure 4-2 The distribution of end-to-end delay of live streaming nodes.

16

10000 | ' ' ' " Blocks Received: On time
Elocks Eeceived: Delayved T3
2000 Elocks Feceived: Mot received /2
so00 | | o] 1 = mp
The number of bloclks — LI M mL m
4000 | i - =
2000
]

Mode mdex

Figure 4-3 The block reception distributions of live streaming nodes.

4.2.2 The Time-shift streaming

To alleviate the effects of the initial stage when there are very few nodes and many
unfinished publishing/re-publishing procedures, we only examine the vedio blocks generated
between 30 to 90 minutes in the trial, which represents the stable system state. Fig. 4-4 shows the
number of video files cached at each node; nodes with index in (0,48) are the live streaming nodes,
and nodes with index in (54, 69) are the time-shift streaming nodes. The red bars indicate the number
of file replicas cache on each node, and the green bars indicate the number of file replicas
successfully published on the DHT from each node. Note that there are few nodes suffering from
DHT failures, which make them unable to publish their file availability on the DHT. Each node
caches 61.87 files in average, with standard deviation of 35.54. The results indicate that with the
information of currently active nodes of the system, the caching responsibility obtained a satisfactory
balancing among nodes in the system.

300 . : :

? Found on the nodes ==
250 Found onthe DHT /3
200

The number of replicas 150

100 .

kb

o Il ”|‘||I||||H|I||‘|H|hn|| ||||‘||H‘|||I| ‘||I|H||||II‘H| i ‘I“ ‘|‘|||H|||II|||

0 10 20 30 40 50 60 70
Mode mdex

Figure 4-4 The number of cached files in each node.

17

Fig. 4-5 depicts the distribution of the number of replicas of each cached files on all the live
streaming nodes and the time-shift streaming nodes. The red bars indicate the number of files that
have the corresponding number of replicas cached by all the nodes. The green bars indicate the
number of files that have the corresponding number of replicas successfully published on the DHT.
The results indicate that our publishing and re-publishing algorithms need to be improved. While
most video files have more than 10 replicas cached in all the nodes, only a small percentage of the
files are successfully published 10 times on the DHT. This indicates that re-publishing processes may
need a longer time to stabilize than we have expected.

300 : :

7 Found onthe nodes =3
250 ¢+ Found onthe DHT /43
200

The number of files 150

D'.ﬂﬂﬂnﬂﬂﬂﬂﬂm Hﬂﬂnn n

0 5 10 15 20 25 30

The number of replicas

Figure 4-5 The distribution of replica counts on all the nodes and on the DHT.

Table 4-2 The sources of time-shift streaming blocks.

Node Index

TS01

TS 02

TS 03

TS 04

TS 05

TS 06

TS 07

TS 08

TS 09

TS 10

TS 11

TS 12

TS 13

TS 14

TS 15

TS 16

From peer nodes

3227

2577

3789

0

4893

4830

4178

2742

6014

5356

2904

5330

2516

3524

3667

1796

From the provider

68

40

48

0

203

276

119

61

167

113

25

417

14

106

15

18

Failed to get

54

31

32

0

55

23

66

37

75

43

22

20

13

25

12

14

Emergency

14

0

6

0

148

244

53

8

92

70

397

No peer owner

0

9

9

0

0

16

Table 4-2 lists the number of blocks received from different sources for the time-shift
streaming nodes in the experiment. All time-shift streaming nodes (TS 01-TS 16) have received a
total number of 59033 blocks. 57343 (97.14%) of the received blocks were served by peer nodes.
The provider served another 1690 blocks, 1044 of which were emergency handling, 522 were unable
to obtain from peers, and 123 were not cached by peers. The results indicate that P2P time-shift
streaming service is feasible since 97% of the video blocks are provided by the peers.

5. Conclusion and Future Work

In this report, we had implemented a P2P live/time-shift streaming system and presented a
18

distributed cache management strategies to cache a desired number of video file replicas by a
random back-off publishing/republishing mehod. We also studied the performance of the system on
PlanetLab. Our experiment results show the feasibility of live/time-shift systems. In our small scale
experiments with 64 nodes, the live streaming part achieved a startup delay of 15 seconds, an
end-to-end delay of 16 seconds and an average continuity index over 98%. Moreover, for the
time-shift streaming service, using the streaming provider as an emergency handler, it achieved a
continuity index of 100%, with over 97% of the streaming data were from P2P peers. Our proposed
caching strategies effectively distribute the load of storing the time-shift contents and store at least
ten replicas for most files. However, in this design, publishing cached video files on the DHT has
synchronization problems. Although the problems are alleviated by the random back-off
publishing/republishing, publishing collisions still occur. Some of the cached video files cannot be
successfully published on the DHT. In the future, more investigation is needed on this publishing
issue. In addition, larger experiments of the system would provide more insightful knowledge on P2P
time-shift streaming services.

References

[1] F. Douglis and M.F. Kaashoek, “Scalable Internet Services,” IEEE Internet Computing, vol. 5, no.
4, 2001, pp. 36-37.

[2] A. Vakali, and G. Pallis, “Content delivery networks: status and trends” IEEE Internet
Computing, vol. 7, no. 6, 2003, pp. 68-74.

[3] Xinyan Zhang, et al., “CoolStreaming/DONet: a data-driven overlay network for peer-to-peer
live media streaming” INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings IEEE, vol. 3, pp. 2102-2111. Mar. 2005

[4] Li Zhao, et al., “Gridmedia: A Practical Peer-to-Peer Based Live Video Streaming System”
Multimedia Signal Processing, 2005 IEEE 7th Workshop on, pp. 1-4. Nov. 2005

[5] Bo Li, et al.,, “Inside the New Coolstreaming: Principles, Measurements and Performance
Implications” INFOCOM 2008. The 27th Conference on Computer Communications. IEEE, pp.
1031-1039, Apr. 2008

[6] V. N. Padmanabhan, et al., “Distributing streaming media content using cooperative networking,”
in Proc. 12th international workshop on Network and operating systems support for digital audio
and video, pp. 177-186. Apr. 2002.

[7] M. Castro, et al., “Splitstream: High-bandwidth content distribution in a cooperative
environment,” in Proc. nineteenth ACM symposium on Operating systems principles, pp.
292-303. Oct. 2003.

[8] V. Venkataraman. K. Yoshida, and P. Francis, “Chunkyspread: Heterogeneous Unstructured
Tree-Based Peer-to-Peer Multicast” Network Protocols, 2006. ICNP '06. Proceedings of the
2006 14th IEEE International Conference on, pp 2-11. Nov. 2006

19

[9] Yang Guo, et al., “P2Cast: Peer-to-peer Patching Scheme for VoD Service” Multimedia Tools
and Applications, vol. 33, pp. 109-129, 2007

[10] T.T. Do, K.A. Hua, and M.A. Tantaoui, “P2VoD: providing fault tolerant video-on-demand
streaming in peer-to-peer environment” Communications, 2004 IEEE International Conference
on, vol. 3, pp. 1467-1472, Jun. 2004

[11] Yi Cui, Baochun Li, and K. Nahrstedt, “oStream: asynchronous streaming multicast in
application-layer overlay networks” Selected Areas in Communications, IEEE Journal on,
vol. 6, no. 1, Jan. 2004

[12] C. Dana et al., “BASS: BitTorrent Assisted Streaming System for Video-on-Demand”
Multimedia Signal Processing, 2005 IEEE 7th Workshop on, pp. 1-4. Nov.2005

[13] Yang Guo et al., “PONDER: Performance Aware P2P Video-on-Demand Service” Global
Telecommunications Conference, 2007. GLOBECOM '07. IEEE, pp. 225-230, Nov. 2007

[14] S. Deshpande, and J. Noh, “P2TSS: Time-shifted and live streaming of video in peer-to-peer
systems” Multimedia and Expo, 2008 IEEE International Conference on, pp.649-652. Jun. 2008

[15] F.V. Hecht et al., “LiveShift: Peer-to-Peer Live Streaming with Distributed Time-Shifting”
Peer-to-Peer Computing , 2008. P2P '08. Eighth International Conference on, pp. 187-188, Sept.
2008

[16] D. Gallo et al., “A Multimedia Delivery Architecture for IPTV with P2P-Based Time-Shift
Support” Consumer Communications and Networking Conference, 2009. CCNC 2009. 6th IEEE,
pp. 1-2. Jan. 2009

[17] P. Maymounkov and D. Mazi'eres, “Kademlia: A peerto- peer information system based on the
XOR metric.” Electronic Proceedings for the 1st International Workshop on Peer-to-Peer
Systems, Mar. 2002

[18] Plan-x, http://www.thomas.ambus.dk/plan-x/routing/
[19] VideoLAN — VLC Media Player, http://www.videolan.org/vic/
[20] PlanetLab, http://www.planetlab.org

20

EIE S e

\:;‘ z-\
p ﬁF 20101072 29p

CEEA e S

Rf ¢4t es3t %

=E Y

Ph AR BRAFELR R PR BF IR

PRAEA kPR

3 Bl 98 -2221-E -009 -083 - GRS - B R e e
(¢) BLETBES R BRI B0 IRAE

(# =) P2P Live and Time-shifted Streaming Services

% BB

»;13'; oA
g
(@U%A)

B i E N A

iR

(P 2)RR T BRE R R/ B PR R N L S B VB PR B R TR A
e m e 1 ér_PlanetLabl m FEFRE o AT - kT A
2 Rdy o AR RARAT o BAREL BAS BT R o A p i B
Bhefads at BT 305 16F) 0 BRI L & Bl B4 T a0 o] 0205 0 @ P
SRl o BT 3% 2 08% 0 b AN P ELIRA O (T B A TR AP
o Bl A Al iE100% 0 H P 9T%k p H e &8 3%k P AR -

(# *)We have designed and implementated a P2P live/time-shift streaming
system, and a distributed cache management strategies for time-shift
video cache files. In addition, we study the system’ s performance
and characteristics on the PlanetlLab experiment platform. In our
initial experiments with 64 nodes, the live streaming part achieved a
startup delay of 15 seconds, an end-to-end delay of 16 seconds and a
continuity index over 98%. Moreover, for the time-shift streaming
service, our system achieved a continuity index of 100%, with over
94% of the streaming data were from P2P peers.

A

)

e

PRI E

i/ A

e BLARL I PR AR

P2PrpFipan @ix > 11 % Fra’é:"w—:] x#?ff'u"%F L 32 B AR %Fﬁjl'\ﬁi
PR 5 P2PARLU PR3 $R 375 a0 — # Bf#L %FFJZ‘ T F“}sﬁ‘—T '],

T*

“;}ig‘gott—
&

* o2 o

>

cf‘f

P

SN N7 2o p SR M B

=AY R

G o BT LAl AN G o

WEREHFTTHEFT S EFREL

PELEL EP

33 S5 0 98-2221-E-009-083-

PR LA BT A B B3 R

N

ipgy| P wEBPE
A% p PR LS s | BERE | g |7 PR TR
B (s (27 % gt | & % H oM 2
Aegi) | ENEK) Sl T S
*)
EIE 0 0 100%
o e ARG S] 1 100% 2
¥~ T
Ei e 0 0 100%
P 0 0 100%
o ¢ ﬁ%f g 0 0 100% .
Wk 0 0 100%
Hr ¢ ¥ 0 0 100% s
HAS
5 4 0 0 100% + A
L 3 3 100%
gz g 44 (B 1 1 100% o
=X
(2R BLuersE |0 0 100%
L 0 0 100%
By 2 0 | 0%
o w PAARRBAED | 1 100% =
gﬁ‘nQ E T
it g 0 0 100%
L1 0 0 100% Y
%11 v ‘;i—ﬂ % ¥ 0 0 100% "
W 0 0 100%
BN ?P
" i 0 0 100% “
B
§A & 0 0 100% + =
R 0 0 100%
gprsig A4 |Eaa 0 0 100%
A =
(hEE) [BLeETE |0 0 100% '
Lizeimm 0 0 100%

A s
(Rt B2z
S AoPHE B i
g & EE R
SRS A
Vicne S TSN | 2

5|Jo)

FPER R - BREERF R/ B PR T RS R DA HB IR T e
e PP F 2 {0k > 7 4 Planetlab & 5 P AR sk o - R R BERH
SLELERERES TS S X

’i = %8P

b
T
%‘\
2
=
¥
¥
R
i
I

#R%EL S(7 FRredn)

¥ oA/

)& '{;‘:E%‘,} 3.‘1;’»_315‘;/:% AT e

2L

Fi

Rye2 w#5F

TR e

;
1
4e
g |Fig/a vy
i
p

o lolololololo o

R g AR 34 3 R 474 324

FRFALIMFERVEAMGEAE -EXFH PR T AR LFINA R §
B (g Rict %N dz & E BB PR T) s A
Erugd g &8y Bl AR FRL 0= e o

Gt P E

N

1L PP FERVFAAFARR ~ESY P HFFRIT- 5FEF
=P ik
[(xiE = p % (GGsip 2 100 F 5 *2)
15 % 4 px
BEES A
(]2 & & 7]
,/‘Fl;; .
2. Ay A % A E D A A GE I E A
w2 e wi WMAFL22>f% ER? =
_g;«fu s EE []Y 3 %sl—:* ._ﬂ
g D 2 13 Dzmu’ 4
Hu (12100 % 5)

AT R T BEEFRER U/ F B R N kLo & VAN PR IRAR B O T LA 45N
PPy 3R eg o ¥ Planetlab T & P FR B 0 AT - A ROT TR 2L o Pt R
FE - R R -

%z

3. 3k B g HAIRT AL A
B (R AER R TR A2 R
500 % % ")

N E@
p
A
N
9
ST
4
()

poav P2P B Unk SiAR U e PF L 3R W EF{odd PRPRFE N K SL o AN TR (T - BLEFELR v/
FPER Lk A R AR P RAR PR TR e F 5N h- B g 2 {0 5 0 & Planetlab
T A PREFEK AT - AT FHE ki o AP P BT 0 RS 64 %
@ ¢ o AP kY B Egagih B T05 16§ 0 ABLIRD] L & B Pl e T
g o3 20§y @ B B el i BT 54 2t 8% o d TR F ELR A T Bf%—:?
Aliho> #pFe L a e f BB E 100% 0 H? 9%k p Hos &gk 3%k p MELR o AP
rﬁﬁﬁ%%ﬁWPSmgﬁﬁ?ﬁﬁy@ﬂﬁaﬂz%%z%#ﬁ%%ﬁiﬁ%%ﬁﬂ

27

Mo o gt - TR d k d A TCHATLIET 0 Y 2t D B E 2 POP B AIRAEL PR

