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中文摘要 

 隨著寬頻網路的普及，多媒體串流服務已成為一蓬勃發展的網際網路應用，但此類系統的

可延展性是重要的研究個問題。點對點式架構是目前解決可擴展性問題中最效的方法，並應用

在許多的多媒體實況串流服務以及隨選視訊串流服務。雖然目前已經有相當多的點對點影音串

流研究，但是點對點的移時串流服務，也就是提供使用者能夠在沒有預錄的情況下觀看任意過

去時間點上的多媒體串流服務，目前只有少數研究。在此篇報告中，我們設計實作一點對點實

況/移時串流系統，提出針對移時服務串流資料塊的分散式的快取管理策略，並在 PlanetLab

平台上進行實驗，分析此一系統的可行性及效能。我們的實驗數據顯示，在規模為 64 節點的

實驗中，我們系統中個別節點的啟動延遲平均為 16 秒，訊號源到各節點的端到端平均延遲小

於 20 秒，而串流接收的連續係數平均大於 98%。由於使用訊號源備份作為緊急資料源，移時

串流節點的連續係數高達 100%，其中 97%來自其他節點，3%來自訊號源。然而，我們設計的隨

機延後發佈儲存移時視訊資料於 DHT的方法有嚴重的同步問題；有相當比例的儲存資料無法成

功發佈。未來，我們需要一個有效率的發佈方法，並進行更大規模的測試。 

 

Abstract 

With the increasing prevalence of broadband Internet access, multimedia streaming services 

have been among the most popular Internet applications in recent years, but the system scalability 

has always been an issue to solve. P2P architecture has been one of the most promising solutions 

addressing the scalability problem, and has been widely applied on live streaming services and 

video-on-demand (VoD) services. However, currently there are very few studies in P2P streaming 

systems that provide time-shift streaming services, where users can watch video streaming programs 

with an arbitrary offset of time. In this report, we present the design and implementation a P2P 

live/time-shift streaming system, and a distributed cache management strategies for time-shift video 

cache files. In addition, we study the system’s performance and characteristics on the PlanetLab 

experiment platform. In our initial experiments with 64 nodes, the live streaming part achieved a 

startup delay of 15 seconds, an end-to-end delay of 16 seconds and a continuity index over 98%. 

Moreover, for the time-shift streaming service, our system achieved a continuity index of 100%, with 
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over 94% of the streaming data were from P2P peers. However, our random back-off publishing 

strategies for cached video segments have synchronization problems, which lead to incomplete 

publishing results. New publishing strategy needs to be developed, and large-scale of experiments 

need to be conducted. 

1. Introduction 

With the increasing prevalence of broadband Internet access, multimedia streaming service has 

been a very popular Internet application in recent years, but the system scalability has always been 

an issue to solve. In the early developments of media streaming applications, client-server 

architecture suffers from scalability problems; as the number of users increases, the servers are 

quickly overloaded [1]. Content delivery networks (CDNs) with strategically placed proxies have 

been developed to balance the loading of the servers, but they are too costly for general applications 

[2]. IP multicast being probably the most efficient vehicle, its deployment, however, is very limited 

due to many practical issues, such as the lack of IP multicast supporting infrastructures and the lack 

incentives for network operators to carry streaming data traffic [3]. Application-level multicast, by 

constructing an overlay network with unicast connections between peer nodes in the system, has 

been proposed to deal with the scalability issue and used in many Internet applications. 

Currently, there are mainly two types of streaming services: live streaming and VoD (video on 

demand) streaming. Live streaming is similar to watching broadcast TV programs; users tune to a 

selected channel, and the users tuning to the same channel synchronously receive the same content. 

By contrast, in VoD streaming, a user selects to watch any video clip any time at the user’s will. 

Therefore, contents delivered to VoD users are asynchronous even for the users watching the same 

video clip.  

Another type of streaming service is time-shift streaming service, which provides the ability for 

a user to watch contents broadcasted in the past; it is like a digital video recorder (DVR) but the user 

does not need to program the DVR in advance. P2P time-shift streaming can be taken as a special 

case of P2P VoD streaming. For P2P VoD streaming, video programs are pre-generated and their 

lengths are known. The video programs are originally stored in dedicated VoD servers. By contrast, 

in P2P time-shift streaming, the video contents are generated constantly and transmitted to live 

program viewers. There may not be dedicated servers to store the video contents for time-shift 

viewers to retrieve them at later time. Therefore, the live program viewers need to coordinately cache 

the video contents, and thus an efficient peer cache management strategy is needed. 

However, there are very few researches on streaming systems that provide both live streaming 

and time-shifted streaming. In this report, we present the design and implementation of a P2P system 

providing both live streaming and time-shift streaming functionality. We also propose a distributed 

cache management strategy to store video contents for time-shift users. In addition, we performed 

experiments on the PlanetLab platform to study the performance and characteristics of our system. 

We believe that our work provides valuable knowledge of P2P live/time-shift streaming system for 

further development on time-shift streaming services. 
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The remaining of this report is organized as follows. Section 2 describes the current work in 

P2P streaming studies related to our research. Section 3 presents the design and implementation of 

our system in details. Section 4 presents the experiment results for system performance. Conclusions 

and future work are presented in Section 5. 

2. Related Work 

There have been comprehensive studies on P2P systems. Steaming services based on P2P 

technologies are also very popular. We will briefly describe the current developments of P2P live 

streaming systems, P2P VoD streaming systems, and P2P streaming systems with time-shift function. 

2.1 P2P live streaming 

In P2P live streaming service, peers require the synchronized delivery of streaming media 

content. One of the important design issue is to form an overlay structure for efficient content 

delivery mechanism. CoopNet [6] adopts a centralized model; the source node is responsible to 

collect information from the joining nodes and maintain a multi-tree structure. Using a 

multiple-description-coding (MDC) technique, each tree to transmit different MDC descriptions. 

However, CoopNet is not a pure P2P system, but a complement to a client-server framework; the 

multi-tree overlay is only invoked when the server is unable to handle the load imposed by clients.  

In SplitStream [7], the streaming content is split into multiple stripes and independent multicast 

trees are constructed for delivering a stripe on each tree. By constructing a forest of multicast trees, 

where an interior node in one tree is a leaf node in all the remaining trees, the video forwarding load 

can be evenly spread across all participating nodes. However, such node-disjointness is a property 

hard to achieve, especially in heterogeneous environments [8]. In GridMedia [4], the bootstrap 

procedure uses a rendezvous point to assist peer nodes to join the overlay. A newly joined node first 

contacts the rendezvous point to obtain a list of nodes that have already joined the overlay. Then, it 

measures the end-to-end delay to each node in the list and selects a number of node as partners, with 

the probability of a node being selected is in inverse to the end-to-end delay. This allow the node to 

select nearby peer nodes as partners. In DONet/CoolStreaming [3], a newly joined node first contacts 

an origin node and the origin node randomly selects a deputy and redirects the new node to the 

deputy. The new node can obtain a list of partner candidates from the deputy and establish 

partnership with these candidates. For video transmission, the video stream is divided into segments 

of uniform length, and the availability of segments in the buffer of a node is represented as a bitmap 

called Buffer Map (BM). Each node continuously exchanges its BM with its partners and then 

schedules video pulling operations accordingly. The scheduling algorithm takes both availability and 

partners’ upload ability into consideration. The block with the least number of available providers 

will be pulled first, from the partner with the highest available and sufficient bandwidth among the 

multiple potential providers, if any.  

2.2 P2P VoD streaming 

Video-on-Demand (VoD) service provides users the functionality to watch any programs at any 



4 
 

time. One of the design issues of P2P VoD service is what a peer should cache to share the load of 

the VoD servers and how to find such cached contents from the peers. In P2Cast [9], peers watching 

the same video clip within a time interval form a session in a single-tree fashion, each peer caches 

the beginning part of the video program and a newly joined peer can be patched with the cached 

beginning part from its parent’s buffer. In P2Vod [10], peers form generations, where in each 

generation, peers have synchronized buffer start. A newly joined peer tries to join a generation, or 

form a new generation appended to an older generation. Generations are numbered, from G1 as the 

oldest generation and Gn as the youngest generation. Nodes in these generations excluding the server 

form a video session. In a session, if there is no client that still has the first block of the video, the 

session will be closed, and a new video session is created for newly joined clients. Both P2Cast and 

P2Vod only support start-from-beginning VoD viewing. oStream [11] provides peers the ability to 

watch from arbitrary positions, but since the system inserts new peers into the system, video 

disruption is noticeable on the child nodes of the new peers. 

BASS [12] applied BitTorrent protocol to download video content, with the VoD server to 

support emergency contents, which are too close to the playback deadline but are not arrived yet. 

Their simulation results indicate that this mechanism reduces 34% of the bandwidth of the server 

when the users’ average outgoing bandwidth is about the same as video bit-rate. However, the 

required bandwidth from the server still increases linearly as the number of users increases. 

PONDER [13] also adopts a mesh-based approach similar to BitTorrent, and applies new 

mechanisms to accommodate VoD service. While BitTorrent treats all data units, called chunks, with 

equal importance, PONDER partitions the video into equal sized sub-clips, each of which contains 

hundreds of chunks. The sub-clip close to the playback deadline is given a higher priority to 

download, so that the urgent data can be downloaded first. PONDER also gives up the tit-for-tat 

incentives of BitTorrent; peers are served based only on their needs without considering their 

contributions. This maximizes the amount of data that can be downloaded before the playback time. 

PONDER achieves 70% saving of server bandwidth with users’ average outgoing bandwidth being 

about 80% of video bit-rate, and up to 93% saving for users’ average outgoing bandwidth being 

112% of the video bit-rate. 

2.3 P2P live streaming with time-shift streaming support 

To the best of our knowledge, P2TSS [14], LiveShift [15] and an IPTV variation [16] are the 

few existing researches on providing both live streaming and time-shift streaming. P2TSS presents 

two distributed cache algorithms: Initial Play-out Position Caching (IPP) and Live Stream Position 

Caching (LSP). It allows peers to decide which video block to be cached locally to share with other 

peers. Their simulation results indicate that P2TSS achieves low server stress by utilizing the peer 

resource. However, in IPP, the video availability is not uniform for each video block, while in LSP, 

though the availability is uniform for each video block, it requires extra bandwidth and more 

connections for each peer to fill its distributed streaming cache. 

LiveShift is a software prototype. It is a live streaming system based on a multiple-tree overlay. 

As a peer receives the video contents and the video segment reaches a pre-defined size, the segment 
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is stored and the peer adds a reference to the segment in a DHT. Although they have presented a 

demonstration scenario, but there is no detailed analytic results of the system. 

IPTV is an integrated media delivery architecture that provides four basic functionalities of 

video delivery: linear TV, video on demand (VoD), time-shifted TV (tsTV) and network personal 

video recorder (nPVR). The system adopts native IP multicast for linear TV, and distributed caching 

and P2P mechanism for VoD, tsTV and nPVR services. 

3. System Design & Implementation 

3.1 System overview 

By studying related research on P2P live streaming and P2P VoD streaming systems, we believe 

that our system needs to cope with the following issues: live streaming, content caching, publishing, 

searching and fetching, which we sorted into three major topics as follows. 

1. Live streaming framework 

A live streaming framework provides a base for our system, because it supports live streaming 

service and the live streaming nodes would store the received contents for the future use of time-shift 

streaming viewers. Since many live streaming frameworks have been comprehensively studied, we 

would not create a brand new live streaming system; instead, we adopted the design of the latest 

DONet/Coolstreaming with modifications to suit our needs. 

2. Caching strategy and cache replacement policy 

Live streaming nodes need to cache the contents they have watched to support time-shift 

streaming nodes, and thus the caching strategy is an important issue of the system design. Two 

factors, cached data redundancy and time-shift service span, have been considered. It is clear that 

having all live streaming nodes caching all the contents they have watched provides the most data 

redundancy, but the shortest service span as an overall system, because each node only has a limited 

storage space. On the other hand, having only one replica cached in the system provides a storage 

space equal to the sum of all nodes’ storage space, but this provides poor data redundancy. The 

departure or failure of a node means the loss of its cached data. Therefore, a mechanism that keeps a 

balance between the two factors is needed, and thus we propose a probability algorithm to keep a 

desired number of replicas in the system. 

3. Time-shift content search/fetching mechanism 

The cached content must be located before it can be retrieved, we adopted Kademlia [17-18] 

distributed hash table (DHT) for content publishing and content search. With the published 

knowledge stored in the DHT, time-shift contents can be fetched from multiple sources in an 

efficient and load-balancing manner. 

3.2 System architecture  

Figure 3-1 depicts the architecture of our system. The system consists of three types of nodes: 
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bootstrap server, provider and viewer. The bootstrap server maintains a list of available channels and 

a list of participating nodes of each channel, in order to bootstrap the newly joined nodes. A provider 

is also a source node of live streaming data, and it registers its channel information with the bootstrap 

server. When a viewer joins the system, it first obtains the information of available channels and 

participating nodes from the bootstrap server, and then retrieves the desired video contents for live or 

time-shift streaming. 

Signaling

Live streaming

TS streaming

Channel 1

Live Streaming

Channel 1

Time-shift Streaming

Channel 

Provider

Live 

Viewer

Time-shift 

Viewer

Live 

Viewer

Live 

Viewer

Time-shift 

Viewer

Bootstrap 

Server

DHT

 
Figure 3-1  The system architecture. 

 

Figure 3-2 depicts the block diagram of a node; a node can be a channel provider or a viewer. 

The player-buffer relationship depends on the type of the node. For a provider, the player encodes the 

original video stream into packet stream, and the stream data is put in the buffer for data transmission 

and genertaing its buffering status. For a viewer, the video content is also put in the buffer for data 

transmission, generating buffering status and playback. To share video content among peers, the 

buffered content can be transmitted to other peers for live streaming or time-shift streaming. The live 

streaming part handles the content transmission for live streaming, and cooperates with the time-shift 

streaming part to cache and publish the contents. Transmissions are carried out over TCP connections 

to avoid data losses in the network layer. Kademlia DHT is used to publish the cahed content, and its 

messages are transmitted over UDP packets. 
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Figure 3-2  The block diagram of a node. 

 

3.3 The streaming transmission unit 

The streaming transmission flow of our system is depicted in Figure 3-3. The video stream is 

generated from a video source. A video provider encodes the video contents into continuous packets 

and transmits the video packets to the viewer nodes. Each viewer node receives the video packets, 

and the video player decodes the received packets back to video. It is intuitive to replay the packets 

using a buffer-then-play scheme for both live and time-shift P2P streaming. However, the packet 

receiving times at the provider needs be recorded, so that the video packets can be played back 

synchronously. Therefore, we record the duration of each video packet. 

Video
Source

Packet Packet Packet...

Provider ViewerP2P overlay

Encodes

Video
Player

 

Figure 3-3  The streaming packet transmission flow. 

 

At the video source, the video is encoded into UDP packets by a VLC media player [19]. The 
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UDP packets are then sent to the video provider, via local loopback interface. The video provider 

measures each packet’s duration. Since it is inefficient to track each packet individually, continuous 

packets received in a second are packed into a video block. Furthermore, in order to support 

time-shift streaming, 10 consecutive blocks, with the starting block’s timestamp aligned to 10’s 

multiples, are packed into a video file for local storage purpose. The file is named after the 

information given by the channel provider, along with a timestamp. For example, a video file with 

name “ProviderName_Channel1_20100620182520” stands for 10 blocks of Channel 1 provided by 

ProviderName, with timestamp 2010/06/20 18:25:20. Figure 3-4 shows the structures of a video 

block and a video file. 

Duration Packet Length Packet length of UDP packet payload

Timed PacketTimestamp Timed Packet Timed Packet ... Timed Packet

Block Length Block Block Length Block ... Block Length Block

Packet with timing information:

Packing timed packet to block:

Packing blocks to file for storage:  
Figure 3-4  The structures of a video block and a video file. 

2.2 Live streaming framework based on DONet/Coolstreaming 

We adopted the design of the latest DONet/Coolstreaming as the live streaming framework to 

deliver live contents. In the following, we present the characteristics of the latest 

DONet/Coolstreaming, and our modifications as well. 

1. Node hierarchy 

Each live steaming node maintains three levels of nodes known to it: members, partners and 

parents. Members give the node a partial view of currently active nodes in the system, but no 

connection is established between the node and the known members. Connections are established 

between partners to exchange block availability information. Parent-child relations are formed when 

connections are established for video block transmission. Apparently a node’s parents and children 

are a subset of its partners set. 

2. Multiple sub-streams 

The video stream is encoded and packed into continuous blocks, each of which is one-second 

long and time-stamped. The blocks are decomposed into S sub-streams, by grouping blocks whose 

timestamps have the same modulo of S. By dividing the stream into multiple sub-streams, each 

sub-stream can be retrieved from different parent nodes independently, which means a node can 

retrieve data from up to S nodes. Figure 3-5 shows a video stream divided into four sub-streams with 

S=4. In our design, the video stream is divided into 8 substreams. 
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Figure 3-5 Sub-stream decomposition. 

3. Joining procedure 

When a node joins, it first contacts the bootstrap server and retrieves a list of available channels. 

After selecting a channel, the node retrieves a partial list of the currently active nodes in the channel, 

and put the nodes on a list as its membership cache. Then the node randomly selects some of the 

nodes as its partners. Partners exchange their membership cache and the video block availability 

information periodically. In our design, a newly joined node first obtains the video block availability 

from its partners. Since each partner node may receive the video sub-streams at different paces, for 

each sub-stream, the node determine the fastest pace (i.e., the newest block) among its partners. The 

node would set its playback time point to be the slowest of all the fastest sub-streams, so that all the 

blocks the node would request have been received by some of its partners. After that, for each 

sub-stream, the node would subscribe the sub-stream from a partner whose pace is the closest to the 

initial playback time point. This would allow the node to receive all substreams at about the same 

pace. 

4. Hybrid push-pull mechanism 

To form a parent-child relationship, the node subscribes a sub-stream with a partner. When a 

partner node receives a subscription message with a designated starting timestamp, the partner 

becomes the parent node of the subscriber node and stores the subscriber’s information, including its 

IP, communication port number and data port number in a sub-stream subscriber list. The parent 

node starts sending to the subscriber all blocks in the subscribed sub-stream starting from the 

timestamp requested. The parent can be either the provider or another peer node. If it is the provider, 

it pushes a block to the subscribers whenever it finishes packing a new block. If it is another node, it 

pushes a block to the subscribers whenever it receives a new block. The subscription contract ends 

when the subscriber sends an unsubscribing message, or when the parent node is unable to push 

blocks to the subscriber because of underlying network problems. 

5. Parent re-selection 

As the subscription increases, a node may be overloaded and lags in pushing blocks to its 

subscribers. A node can detect such lagging by comparing sub-stream receiving status of its parents, 

or comparing sub-stream receiving status between itself and its partners. The node compares the pace 

of each substream with the average of all sub-streams. If the largest difference among all sub-streams 
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is over a threshold, the node replaces the sub-stream that has the largest difference by subscribing to 

the partner whose timestamp of the substream is the nearest to the average. As shown in the lower 

part of Figure 3-6, the node compares the receiving status in its buffer with a partner’s buffer, and 

can discover that its sub-stream 2 is lagging behind the partner’s sub-stream 2 by three blocks. If the 

lagging range is larger than a certain threshold, which may indicate the parent node is overloaded, 

the parent re-selection procedure is triggered, and a new parent node will be selected to support the 

lagging sub-stream and the original subscription is cancelled. The new parent node can be selected 

from the current partners if there’s any, or from current parents with better buffering status, if there’s 

no available partners. 

...13951

...141062

...151173

...161284

Sub-stream 1

Sub-stream 2

Sub-stream 3

Sub-stream 4

Current Node’s Buffer

...13951

...141062

...151173

...161284

Sub-stream 1

Sub-stream 2

Sub-stream 3

Sub-stream 4

Some Partner’s Buffer

Block not received

Block received
 

Figure 3-6  Comparing sub-stream status in parent re-selection. 

 

3.4 Distributed cache management strategy 

The goal of our distributed cache management strategy is to effectively keep a desired number 

of replicas for the cached contents. The strategy is composed of two parts: publishing/re-publishing 

policy and content caching based on probability. 

1. Content publishing/re-publishing policy 

After a video file is collected for future time-shift viewers, the node publishes the ownership 

information on the DHT. However, the provider node caches all video contents but never publishes 

the ownership information. The provider node would act as a backup node; its cached contents can 

only be accessed at emergency. For example, when a block is 5 seconds to the time-shift playback 
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deadline but had not been received, or when there is no owner of a desired video file published on 

the DHT. Since the system would keep multiple replicas for each video file, the published record on 

the DHT is a list of <IP, Port, Last_Update_Time> triples. Fig.3-5 depicts the relations between a file 

name and its owner list found on the DHT, and the structure of the owner list. 

File name

IP Port Last_Update_TimeRecord 1

...

160-bit key

SHA-1

GET(key)

IP Port Last_Update_TimeRecord 2

IP Port Last_Update_TimeRecord 10

 
Figure 3-7  Getting the owner list from the DHT. 

 

When a node wants to update a list, it first tries to get the list from the DHT. If the list does not 

exist, it creates a new one. Then the node removes the record of two types: (1) the record put by itself 

in the past, and (2) the out-of-date records, which can be determined by comparing the records’ 

Last_Update_Time with the current time. In our system, we consider a record out-dated if the record 

is last updated more than thirty minutes ago. This thirty-minute interval would give the node enough 

time to do multiple updates by the republishing policy described later. After that, the node checks the 

number of replica. If the number has reached the desired number of replicas, the node deletes its 

cached file; otherwise, it adds its record to the list, and put the list back to the DHT. However, the 

accesses of the DHT from the peers are not coordinated, which means a published record may be 

overwritten by another node. This is a well-known write-after-write data hazard, and will be referred 

to as publishing collision. 

To deal with the publishing collisions, each node will back-off for a random interval before 

publishing to reduce such collisions. For the first time when a node updates a list, it will have a 

random back-off time uniformly distributed in (0, 50) sec. A node also republishes its cached files. 

The republishing operation is similar to the initial publishing operation, but is done periodically in 

order to keep the lists up to date and to alleviate the effects of over-written publishing. A node will 

periodically do the republishing operation with a random back-off time uniformly distributed in [600, 

1200) sec. As we described above, the records on the DHT have a thirty-minute out-of-date threshold. 
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This means that each node can perform at least one republishing operation before the record is 

out-dated. The algorithm for random caching and random back-off for publishing is listed as follows.  

01 while(waitngForBlocks) 

02  block = node.receiveBlock(); 

03  buffer.put(block); 

04  if(block and nearby blocks can be dumped) 

05   viewerKnowledge = MAX(parent.size()+partner.size(), viewerCount); 

06   rand = a random integer generated between (0, viewerKnowledge] 

07   if(rand < replicasRequired) 

08    dump blocks to local storage; 

09    random back-off for DHT publishing; 

10    fileOwnerList = DHT.get(filename); 

11    remove out-dated entry and this node’s entry in fileOwnerList 

12    if(DHT.get(filename).size() < replicasRequired) 

13     FileOwnerList.add(this node); 

14     DHT.put(filename, fIleOwnerList); 

15    else 

16     delete dumped file 

17    end if 

18   end if 

19  end if 

20 end while 

Algorithm 3-1  Random caching and random back-off for publishing. 

 

2. Caching based on probability 

To distribute the responsibility of caching streaming contents and keep a desired number of 

replicas in the system, we adopted a probability algorithm to determine whether a file should be 

cached or not. Assume that the system wants to keep R replicas, and the system has N viewers. It is 

clear that each node should cache the received content with a probability of R/N. Since R is a 

constant, the discovery of N is the issue here. 

To estimate N, first, a local knowledge based on the design of DONet/Coolstreaming is used. 

Since each node keeps connections with its partners and parents, these nodes must be active nodes in 

the system. Therefore, the node has the first parameter as the value of the number of partners plus the 

number of parents. In addition, the number of the current active viewers can be obtained by a 

modified node-startup procedure. When a node joins the system, heartbeat messages are periodically 

sent to the bootstrap server to update the membership cache, and the number of active viewers is 

piggybacked to the node in the reply messages. With the two values, N is selected as the larger one of 

the two. The local knowledge helps the node to react fast to the change of active nodes, especially 

when the size of viewer is small, since they would form an almost fully-connected mesh structure; 

and the number of the current active viewers helps the node to make better decisions when the size of 
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viewers becomes larger. 

3.5 Time-shift streaming 

For time-shift streaming, we adopt per-block pulling mechanism for content retrieval. After a 

node decides the channel and the starting time to watch, the name of the video file containing the 

required content is known. By querying with the file name on the DHT, the node obtains a list of the 

file owners. Then, the node would try to pull up to 4 blocks every sec., each from a randomly 

selected owner in the owner list. The reason why there’s a limit on the number of pulling blocks in 

each sec. is that the available cached content may be much larger the buffer’s capacity, so that it is 

necessary to keep the pulling timestamp staying in a distance with the playback timestamp. For 

emergency handling, contents close to playback deadline but not received will be pulled directly 

from the provider. To ease the load of live streaming peers, we need to enhance the cooperation 

between time-shift peers. It means time-shift peers can share video content with time-shift peers that 

their watching points are near. 

To share contents with near time-shift peers, time-shift peers form groups. A group consists of 

peers watching close-by video contents, i.e., their viewing time points are within a threshold. The 

center of a group is defined to be the median of the newest and the oldest viewing time points of the 

peers in the group. The radius of a group is the larger value of ten minutes or the distance from the 

center to the oldest viewing time points. A peer joins a group if its viewing time point is in the 

group's radius. If there is no such a group, the peer creates a group and makes itself as the center of 

the group. When a peer joins a group, the group adjusts its center. 

The peers in a group exchange buffer map information with each other. The peer watches the 

older video contents can fetch contents from the peer watching newer contents. If their buffer maps 

are overlapped, peers watching older contents can fetch video blocks into their own buffer. If not 

overlapped, peers watching older contents can also prefetch video files beyond its buffer capacities 

and store them into local disks in the same way as live streaming peers store video files for time-shift 

viewers. The stored video files are likely to be used for time-shift playback by the peer itself and by 

other peers. 

3.6 System Implementation 

We have implemented the system in Java 1.6 using a request-reply model. The nodes 

communicate with each other with request messages, and the recipients repond with corresponding 

reply messages. The bootstrap server creates a ServerSocket for incoming messaging connections, 

Threads are created for each incoming connection and received messages are handled and replied to 

the connecting node. On the other hand, a provider/viewer node creates two ServerSockets, one for 

incoming messaging connections and the other for block transmission connections. 

A message consists of the message type and the required options of the message. Messages are 

transmitted over TCP with Java Socket. The messages used in our system are listed below. 

(1) Channel Registration 

A channel provider registers its information with the bootstrap server. The options include 



14 
 

this node’s messaging port number, channel provider’s name and channel description. The 

bootstrap server replies with whether the registration is successful or not. 

(2) Channel List 

A viewer requests for the available channels registered at the bootstrap server. The options 

include the node’s messaging port number, channel provider’s name and channel description. 

The bootstrap server replies with a list of available channels’ provider names and channel 

descriptions. 

(3) Channel Join 

For live streaming, this message is used for channel joining procedure; the options include 

this node’s control port number, channel provider’s name and channel description. The 

bootstrap server replies with a list of currently active nodes in the channel. For time-shift 

streaming, the message is used for DHT joining procedure, where the bootstrap server replies a 

DHT bootstrap node for the DHT bootstrap procedure. 

(4) Buffermap Exchange 

The message is used for buffer map information exchanges between nodes. The options 

includes this node’s control port number and buffer map. The recipient replies with its buffer 

map. 

(5) Sub-stream Subscription 

This message is used for sub-stream subscription. The options include this node’s 

messaging port number, block transmission port number, subscribing timestamp and its buffer 

map of subscribing sub-stream. The recipient replies with the subscription result. 

(6) Sub-stream Un-subscription 

This message is used for sub-stream un-subscription. The options include this node’s 

messaging port number and the index of the un-subscribing sub-stream. The recipient replies 

with the un-subscription result. 

(7) Time-shift Block Request 

This message is used for time-shift streaming viewer nodes to request a block from other 

nodes. The options include the node’s messaging port number, block transmission port number 

and its requesting timestamp. The recipient replies with the requested result and (1) if it has the 

block, the requested block is sent to the requesting node, or (2) if it does not has the block, it 

informs the node to request from the source. 

4. Performance Measurements 

4.1 Experiment Environment 

To evaluate the system performance, we performed experiments on PlanetLab, an open global 

research network [20]. The streaming provider was located in the Internet Communication 

Laboratory, NCTU. 48 PlanetLab nodes were used as live streaming viewers, and 16 PlanetLab 

nodes were used as time-shift streaming viewers; most of them were located in the United States. 
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The video stream bit rate is 400 kbps, the number of sub-streams is 8, and each node can connect to 

up to 24 other nodes as partners. The buffer size of each node is 120 blocks The random back-off 

time of first time publishing is uniformly distributed in (0, 50) sec. The random back-off for 

republishing is uniformly distributed in (10, 20) min. The system intends to keep 10 replicas for each 

block. Time-shift nodes cache each received block with probability 0.5. Table 4-1 lists the system 

parameters used in our system.  

In the experiment, we first started the bootstrap server and streaming provider, and then all 64 

nodes joined the system as a Poisson process, with an expected inter-arrival time of 60 seconds. For 

each time-shift node, it randomly selected a time between the time when the streaming started and 

the time it joined the system as the playback point. The experiment lasted 2 hours, and we assumed 

no peer churn. 

 Table 4-1  Experiment system parameters. 

System parameter Value 

Video streaming bit-rate 400 kbps 

The number of sub-streams 8 

The maximum number of partners 24 

The number of replicas to keep 10 

Buffer size 120 blocks 

The random back-off for publishing (0, 50) seconds 

The random back-off for re-publishing (10, 20) minutes 

 

4.2 System Performance and Analysis 

4.2.1 The live streaming 

 First, we examine three commonly used criterions in evaluating a streaming service: 

startup delay, end-to-end delay and playback continuity. The startup delay is the time between when 

a user tunes to a channel, and when the video content can be played. End-to-end delay, also called 

playback delay, is the delay of the video content between the source and the viewer. Continuity index 

is the number of segments that arrive before or on the playback deadlines over the total number of 

segments a node should receive.  

Figure 4-1 depicts the distribution of startup delay of the live streaming nodes in the experiment. 

Most of the nodes experience a startup delay less than 20 sec.; the average startup delay is 15 sec., 

which is a satisfactory result for P2P live streaming service. Figure 4-2 depicts the distribution of the 

end-to-end delay of the live streaming nodes. Most of the nodes experience an end-to-end delay less 

than 15sec., and the average end-to-end delay is 16 sec. Figure 4-3 depicts the statistics of the blocks 

received by each live streaming node. The red bars indicate the number of blocks received before the 

playback deadlines, the green bars indicate blocks received after the playback time, and the blue bars 

indicate blocks not received. The results indicate that most of the nodes have 100% continuity index, 
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i.e., received all blocks that they need. The average continuity index is 98.5%. However, Nodes 19, 

26, 29, and 40 experience large numbers of lost blocks; this is due to the underlying TCP errors. Note 

that Node 19 experiences a large number of delayed blocks. The reason is still unclear to us. 

 
Figure 4-1  The distribution of startup delay of live streaming nodes. 

 

 
Figure 4-2  The distribution of end-to-end delay of live streaming nodes. 
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Figure 4-3  The block reception distributions of live streaming nodes. 

4.2.2 The Time-shift streaming 

 To alleviate the effects of the initial stage when there are very few nodes and many 

unfinished publishing/re-publishing procedures, we only examine the vedio blocks generated 

between 30 to 90 minutes in the trial, which represents the stable system state. Fig. 4-4 shows the 

number of video files cached at each node; nodes with index in (0,48) are the live streaming nodes, 

and nodes with index in (54, 69) are the time-shift streaming nodes. The red bars indicate the number 

of file replicas cache on each node, and the green bars indicate the number of file replicas 

successfully published on the DHT from each node. Note that there are few nodes suffering from 

DHT failures, which make them unable to publish their file availability on the DHT. Each node 

caches 61.87 files in average, with standard deviation of 35.54. The results indicate that with the 

information of currently active nodes of the system, the caching responsibility obtained a satisfactory 

balancing among nodes in the system. 

 
Figure 4-4  The number of cached files in each node. 
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Fig. 4-5 depicts the distribution of the number of replicas of each cached files on all the live 

streaming nodes and the time-shift streaming nodes. The red bars indicate the number of files that 

have the corresponding number of replicas cached by all the nodes. The green bars indicate the 

number of files that have the corresponding number of replicas successfully published on the DHT. 

The results indicate that our publishing and re-publishing algorithms need to be improved. While 

most video files have more than 10 replicas cached in all the nodes, only a small percentage of the 

files are successfully published 10 times on the DHT. This indicates that re-publishing processes may 

need a longer time to stabilize than we have expected. 

 
Figure 4-5  The distribution of replica counts on all the nodes and on the DHT. 

 

Table 4-2  The sources of time-shift streaming blocks. 

Node Index TS 01 TS 02 TS 03 TS 04 TS 05 TS 06 TS 07 TS 08 TS 09 TS 10 TS 11 TS 12 TS 13 TS 14 TS 15 TS 16 

From peer nodes 3227 2577 3789 0 4893 4830 4178 2742 6014 5356 2904 5330 2516 3524 3667 1796 

From the provider 68 40 48 0 203 276 119 61 167 113 25 417 14 106 15 18 

Failed to get 54 31 32 0 55 23 66 37 75 43 22 20 13 25 12 14 

Emergency 14 0 6 0 148 244 53 8 92 70 3 397 1 1 3 4 

No peer owner 0 9 9 0 0 9 0 16 0 0 0 0 0 80 0 0 

 

 Table 4-2 lists the number of blocks received from different sources for the time-shift 

streaming nodes in the experiment. All time-shift streaming nodes (TS 01-TS 16) have received a 

total number of 59033 blocks. 57343 (97.14%) of the received blocks were served by peer nodes. 

The provider served another 1690 blocks, 1044 of which were emergency handling, 522 were unable 

to obtain from peers, and 123 were not cached by peers. The results indicate that P2P time-shift 

streaming service is feasible since 97% of the video blocks are provided by the peers. 

5. Conclusion and Future Work 

In this report, we had implemented a P2P live/time-shift streaming system and presented a 
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distributed cache management strategies to cache a desired number of video file replicas by a 

random back-off publishing/republishing mehod. We also studied the performance of the system on 

PlanetLab. Our experiment results show the feasibility of live/time-shift systems. In our small scale 

experiments with 64 nodes, the live streaming part achieved a startup delay of 15 seconds, an 

end-to-end delay of 16 seconds and an average continuity index over 98%. Moreover, for the 

time-shift streaming service, using the streaming provider as an emergency handler, it achieved a 

continuity index of 100%, with over 97% of the streaming data were from P2P peers. Our proposed 

caching strategies effectively distribute the load of storing the time-shift contents and store at least 

ten replicas for most files. However, in this design, publishing cached video files on the DHT has 

synchronization problems. Although the problems are alleviated by the random back-off 

publishing/republishing, publishing collisions still occur. Some of the cached video files cannot be 

successfully published on the DHT. In the future, more investigation is needed on this publishing 

issue. In addition, larger experiments of the system would provide more insightful knowledge on P2P 

time-shift streaming services.  
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