FRRRTIE L | ¢ AT LA gi[jél%iﬁ%

%q,, iawx‘r,g._\',y\ UML I—S"-'_@.zg ,E'E'J'-i,:“. ﬁ.z"t»

el BuA R O FEAE

34 sl NSC 98-2221 —E—009—117—MY2
NEYRF 98« 08* 01p 2x 100 07%* 31p

LE B IR E
ERidA g

«F‘é_-xl—}:&ﬁ fgl‘_'l_}'l/{ﬂ’{#__}[\,;rpém&ﬁ 3 B3
Blrsipmyd -JiEes @A g I Es
ﬁiﬁuﬂfi—%ﬁ% LR F A
BlripEmy 4 JliEems f g4

AEFLFA(RE PUFERes) I GEE O R

AR L RN T AL

(AR E Sy o @R 2 - i

Di;ﬂl‘ FEIOLAFEY CEEL -
'giﬁg?\;i'“?«fﬁf ’?z\»;;{n}v £ - 0>

Dmxﬁzb IFZE'”)‘LEH }](;:rmg; - i
Ja JE 1K/f§§¢JF£H‘)L§ A EH R /\‘Jiﬁ?lﬁ"”‘§~;l 5 2k
% % T ;]Jl]‘%’—l‘l/_:ﬁ ‘7]~) ,E’:‘ r"rv 2 F’B ﬁ?

[J#Hz2 B 2w FEMAE |- - =

'—\.\
«“/
2
-
.
Pty

REE AL FRIAS ()

A3

L L

R Y AP - B EHEET AL RS AR R PR R EHEE T
ORA) 5L L AR L F A WA Tl ik kP U e 5 R Bl ek o
FANPHEIRY L BB R KB F - RSN R F A R R
g e B AT AR BRI e B EV S T @I AR RS R o A f 2 REL
BT LR FEL LR 0 PR F R D LA HE o LRSS IR ET 2
LeyER s & 91.24%-

Bi4Ed @ - 2HE T s M~ L Baem

= ~ Abstract

We construct an online handwritten recognition eysbf UML diagrams. We use a decision tree to
do recognition. According to our observation, thapes of the notations of UML diagrams almost look
like rectangles or diamonds. Based on this chaiatite an input notation is first classified tcethorrect
category. Then some notation features are extrafrted the input notation and used to do final
recognition. The advantages of our system are watan accept free style input and our method is
simpler and more efficient than previous methodse Tecognition rate of the top three choices is
91.24%.

Keyword: UML, online, handwrittemecognition

1. Introduction
1.1 Motivation

In recent years, the development of the handhelite®e and pen-based computing hardware, such
as PDAs, electronic whiteboards and tablet compuisrgrown rapidly, and the handwritten systems
which can work in the freehand drawing environmaetshort of demand. There exists some handwritten
recognition systems in some different applicationsluding math formula [1], engineering drawin@$, [
table detection [3] and geometric shapes [4-5]. elmv, the Unified Modeling Language (UML) are
widely used in many different domains but thereashandwritten recognition system supporting them.

UML diagrams are widely used in the field of softez&ngineering. Early in the software design
cycle, software engineers need to sketch UML diagréo represent the whole structure of the system.
Engineers may draw these diagrams on paper, wlatdbor computer. There are many Computer
Assisted Software Engineering (CASE) tools likei&al Rose or Visio to sketch UML diagrams on
computer. The functionality of these CASE toolsrabust but they have some drawbacks. The most
serious drawback of CASE tools is that their designcepts are technique oriented. Technique odente
design provides strong capability but it is notwement to use. Due to these reasons, we wantild d&u
handwritten recognition system which can allow pe@mjoying the freedom of drawing UML diagrams
by hand.

1.2 Previous Works

In 2000, Damm et al. [8] proposed the Knight Prbjehich is a gesture based system for entering
and editing UML diagrams. Gestures are some simaglishapes designed by the designer to replace the
complex notations. Due to that all of the shapessanplified, the advantage of gesture based sygsiem
easy to recognize the input notations. However, uber needs to learn what the gestures stand for
because they are designed by the designer. In KRiglject, the gestures are separated into tweetas
compound gestures and eager gestures, and thejuliee’s algorithm [9] to recognize their gestures.
The drawbacks of the Knight Project are that th&ge based system is not intuitional enough. Bssid
they do not illustrate the notations supportedhmirtsystem and there is no experimental resushtow
their recognition rate.

In 2001, Lank et al. [10] proposed an online recgm algorithm for UML diagrams. The
algorithm is composed of the domain dependent kexm& the domain independent kernel. The domain
independent kernel deals with the preprocessingsstmcluding capturing the input strokes, stroke
grouping and so on, and the domain dependent késnile part of recognition. In the recognition
algorithm, they use size, number of strokes, tipatiorder of strokes and the stroke’s bounding $ia&
to recognize the input notations. Their algorithoesl not allow user drawing the notations in various
order. Besides, there is no experimental resughtiw their recognition rate.

In 2003, Chen et al. [11] proposed another gedbased recognition system for UML diagrams
called SUMLOW. The recognition kernel of SUMLOW cbimes several multi-stroke shape recognition
algorithms to recognize their gestures. The charestic of SUMLOW is that they allow user modifying
copying, replacing, and deleting input notationa pen-based input technique. Their system has high
recognition rate, but there are only six experiend®L designers to participate in their experiment.

In 2006, Costagiola et al. [12] proposed an onleeognition method for hand-drawn diagrams
based on grammar formalism, namely Sketch Gramnides.method uses a parse tree and the Sketch
Grammar to recognize input notations. To enhaneeadkognition rate, the authors propose a language
recognizer which can help the original recognizese¢lect the best interpretation. This method @n b
adapted to any notation besides UML diagrams amsdhigh recognition rate. However, a troublesome
problem for this method is how the grammars tramniew notations.

2. UML NOTATION DATABASE

UML diagrams have thirteen different types and ntben forty different notations. However, some
of these notations are used rarely and their shapesnore complex. In this project, we choose 23
notations based on UML concepts and the frequehagage to recognize. These 23 notations are shown
in Figure 2.1.

In the project, we invite 20 persons to draw thendgations ten times for each and collect the ink
data they draw. We randomly choose half of thedata for training, and the rest for testing.

Structure
Actor Class Component Interface Ohject Package Mode
Behavior
Activationbar Activity State Uze Case
Relationship
— | — - > & >
Agaregation Comtnunication Dependency Transition Generalize
Others
I
I
I
<> @ s — !
|
|
Branch End Initial Fork Muote Lifeline Swirnlane

Figure 2.1 Supported notations of the system.

3. PROPOSED METHOD

The proposed method is based on a decision trdeshown in Figure 3.1. The whole process
consists of four major phasegeometric feature extraction, category classifietation feature extraction
(NFE), and final classifier. In the geometric featextraction phase, some geometric features, asich
convex hull, bounding rectangle, PA ratio and Arato, are extracted from the input notation. Ie th
category classifier phase, the features extraatetheé previous phase are used to classify the input
notation to the belonging category. In the notafeature extraction phase, the input notation vsdeid
into primitives and then we extract features lilkection, location and distance from these prineisivin
the final classifier phase, based on the extrafgatlires, a similarity measure is provided. Basedhe
similarity measure, the result notation that is nsa®ilar to the input notation is determined.

Pen

y

[Geometric Featur]
v

Category Classifi

| NFE | [NFE | | NFE | | NFE] [NFE |
v
[Final][Final] [Final] [Final][Final]
Classifier) | Classifier Classifier Classifier] | Classifier
Resul Resul Resul Resul Resul

Figure 3.1 The proposed method.

3.1 Geometric Feature Extraction
According to our observation, the notations supmbrin the system can be divided into five
categories, i.e. circle, line, rectangle, diamardj others, based on their geometric properties. gifase
extracts geometric features from input notationclassify it to the correct category. The geometric
features we used include convex hull, boundingaregle, PA ratio and Area ratio. Each of these featu
Is described below.
2

3.1.1 Convex Hull

The convex hull for a set of points X is the mininoanvex set containing X. Figure 3 gives two
examples to illustrate convex hull. We use the @nalscan algorithm [14] to find the convex hull lbét
input notation. Figure 3.2 (b) shows the convex bibn input notation “Actor”. The blue line deest
the convex hull. After finding the convex hull, wempute its perimeter and the area. These valués wi
be used in the following section.

SRy

wn\ ex hull

a
Figure 3.2 Two examples to i ustrate convex haljlA cér?vex hull of a set of points.
(b) The convex hull of an input notatiokctor”.

3.1.2 Bounding Rectangle

The bounding rectangle is the minimum rectanglgaiomg the input notation. We scan all points
of input notation to find the minimum values of mday coordinates, and the maximum values of x and y
coordinates. After finding these coordinates, we tiiem to establish the bounding rectangle ofipeti
notation. Figure 3.3 shows an example of the bawnhdectangle of an input notation “Actor”. The
bounding rectangle is shown by red lines. Aftediing the bounding rectangle, we compute its peemet
and area. These values will be used in the follgveection.

O

Figure 3.3 An example of the bounding rectanglaroinput notation “Actor”.

3.1.3 PA Ratio
PA ratio proposed by Kimura [6] is defined as
PA ratio = Perimeterd, /Area,, 1)

where Perimetey; denotes the perimeter of the convex hull of thpimotation, and Arega denotes the
area of the convex hull of the input notation. Nibtat the perimeter and area partly define the sslohjan
object. This ratio will be a constant for some ldraf shape. For instance, PA ratio = 16 for anyasgu
rectangle and PA ratio =74 for any circle. Size independent is the main athga of PA ratio. In the
project, PA ratio is used to classify circle aneli

3.1.4AreaRatio
Area ratio is also proposed by Kimura [6]. Theoasi defined as

Arearatio=Area.,/Areg, (2)

where Aregg is the area of the bounding rectangle of an imptation.
Area ratio also has the property of size independarthe project, we use this ratio to distinguish
the rectangle and the diamond shape.

3.2 Category Classifier

After extracting geometric features, we use thesgufres to classify the input notation to the adrre
category. The 23 supported notations are sepatatéde categories including circle, line, rectaagl
diamond, and others. The classification of eactatimt is shown in Figure 3.4. Four different fiker
namely circle filter, line filter, rectangle filtemnd diamond filter, are provided to distinguisle five
categories in the category classifier. The flowtlathe category classifier is shown in Figure. 3.5

Circle

Line

Diamond

Fectangle D

|

©)
| = (|
T >t =

Figure 3.4 The classification of each notation.

3.2.1CircleFilter
In the category classifier, we use the circle fitte check for circles first. In the project, weeuBA

ratio for circle filter. PA ratio of a perfect clecof any size is a scalar4 Due to that the input may not
be a perfect circle, we need to train a threshaldye around # to classify the input notation. To train
the threshold, we compute the PA ratio of the mmtatbelonging to the circle category in the tnagni
database first. Then we find a maximum and a mimnas the upper bound and the lower bound of
threshold range. Input

]

@rcle Filter @S_, Circle Category \
- - . Yes
Line Filter w Line Category

No

Rectangle Filte Rectangle Category

Diamond |:i|Yes DiamondCategory

K No » Others Category

Figure 3.5 The flowchart of the category classifier

3.2.2LineFilter

If the input notation does not belong to the circd¢egory, it will be checked by the line filtereie,
we use PA ratio for line filter. Due to the Perieret; of a line is close to twice of the length of input
notation and the Areg of a line is closed to the product of the lengthnput notation and\h which is
the maximum distance between input stroke and daisvex hull, the PA ratio of a line can be
. o (21)® _ 4l
approximated byPA ratio = < AR AR
120 as a threshold value obtained by training. f&igu6 shows two examples to explain why the P# rat
is greater than a threshold. In Figure 3.6, thekblae is user’s input and the red line is thewanhull.
To avoid the error of dividing zero, we set the Rio equal to 200 when the area of the convexdfidl

line is equal to zero.
1
!
Ah
Ah

Figure 3.6 Two examples to show the PA ratiosreddi

. SinceAh << | the PA ratio should be large. Here, we take

4

3.2.3 Rectangle Filter

Rectangle filter will be used when the notationsloet belong to the circle or line category. In the
project, we use Area ratio for rectangle filter.cAading to the fact that the AreaCH of a rectarigle
almost equal to the AreaBR of the rectangle, theaAmatio of a rectangle is close to 1. Figure Bdws
two examples to explain the fact mentioned abavé&idure 3.7, the black line is user’s input, thd line
is the convex hull and the green line is the boogdectangle. To get a threshold range, we also tina
rectangle notations in the training database.

Figure 3.7 Two examples to show the Area ratiocfangles.

3.2.4 Diamond Filter

If input notation is not considered as a circléna or a rectangle, it will be checked by the dient
filter. In the project, we use Area ratio for diamgofilter. We assume that the notations belongmthée
diamond category are all upright patterns. The g¢@dh a diamond is nearly two times of the Asgaf a
diamond based on our assumption. In other wor@sAtiea ratio of a diamond is nearly 0.5. Figure 3.8
shows two examples to explain why the Area ratia dfamond is nearly 0.5. In Figure 3.8, the bl
is user’'s input, the blue line is the convex hultdahe red line is the bounding rectangle. We use a
threshold range which is trained using the diamuotdtions in the training database to check whetreer
input notation belongs to the diamond categoryatr n

Figure 3.8 Two examples to show the Area ratiodiafonds.

3.2.5 Other Notations

If the input notation does not belong to any catgguoentioned above, it will be classified to the
others category. In our experiments, after categtagsification the others category contains Actod
several rectangle notations which are ill-written.

3.3 Notation Feature Extraction

After the input notation is classified to a catgga@ome notation features will be extracted for the
final classification. Before extracting notatioraferes, we will first segment the notation into exaV
primitives, which will be described in the follovgrsubsection. The notation features extracted declu
the number of primitives, the direction of eacmptive, the location of each primitive, the lengtheach
primitive, and the hollowness of the notation. he tfollowing subsections, we will describe how to
extract features.

3.3.1 Primitive

A primitive is defined to be the minimum unit ofn@tation, which may be a line or an arc. The
advantage of segmenting a notation to primitiveghist it is much easier for the shape matching
procedure to find the matching notation. All thaatimn features are extracted in primitive levetept
hollowness.

To divide a notation to many primitives, we use dyvwehain code and the curvature of each point.
The 4-way chain code is shown in Figure 3.9. Rirstcompute the chain code for each point. Then we
compute the curvature of each point by

cr, = cos(x(i - 1) - x(i +1))

| Jx(i =1) = x(i + D)2 + (y(i - 1) - y(i +1)°
5

: 3)

where X(i), y(i) denotes the x, y coordinates ofnpgi and Cg; is the curvature of point pi. After
computing the curvature, we evaluate the curvalifference between two neighboring points to fihd t
dominate points, which have curvature differenaatgr than a threshold. Finally, the notation vsdaid

into several segments using the dominate pointaiapoints, each segment is considered as a premiti
of the notation. When the notation is segmentemaday primitives, we take the number of primitiviis,

as the first feature. Note that we have two kinfdpromitives: line and curve, which are decidedthg
sequence of chain codes of the primitive. To demtat kind of a primitive is, we evaluate the chain
code difference between each two neighboring pamtke chain code sequence and sum all of them. If
the summation is larger than a threshold, we vatide that it is a curve; otherwise, it is a line.

3
4
2

Figure 3.9 4-way chain codes

3.3.2 Direction and L ocation Feature
The direction of a line primitive is defined as ttieain code which appears most frequently in the
primitive. If the primitive is an arc or a curveewet 5 to be its direction. In order to recorddhrections
of the extracted primitives as a feature vector, skeuld give an unique id to each primitive. The
primitives get their unique ids based on the redatocations on the notation. Since some notatiave
some rotation varieties with 90, 180, and 270 degjreve provide an algorithm to find relative looati
First, we extract the directions of primitives. Théhe primitives with the same direction are
collected and sorted according to their top lefineo points. Finally, each primitive gets its urequl
based on the sorted list. When all the primitivestheir unique ids, we combine their direction® ia
direction feature vector. An example is shown igufe 3.10; the blue number in the figure denotesdh
of a primitive. The provided algorithm is stateddve

Algorithm to Find Uniqueld

1. Setting variable to 1.

2. Collecting the primitives with directionto a temp list.

3. Sorting the temp list according to the top leftranms point of primitives.

4. Giving a unique id to each primitive in the sortethp list according to its order in the lis
5. Increasing 1 ta. If i is less than 6, go to step 2; otherwise, stop.

~+

4

Figure 3.10 An example of the relative locatioreath primitive in a notation with the direction
feature vectoris (1,1, 1, 1, 3, 3).

When the algorithm is finished, all the primitiveave unique ids and we group the directions of
primitives according to their ids into a vector,Rplwhich is considered as the second notation ffeatu
The notation in Figure 3.10 has (1, 1, 1, 1, 33its direction feature.

3.3.3 Length Feature

The length feature is a binary value which repres#rat a primitive is long or short. To extradsth
feature, we first find the longest primitive in atation. Then each primitive is compared to thegkst
one. If the length of the primitive is larger thaalf of the longest one, it is considered as a lomitive;

6

otherwise, it is a short one. The length featualsulated by
. . 1 .
LEN (i) = 1 if len(i) < Emjaxlen(J)
2 otherwise, (4)

where len(i) denotes the length of th& drimitive, and max len(j) denotes the length of fbngest
primitive in the notation.

3.3.4 Hollowness

The hollowness feature is the only feature extchatdhe notation level. Hollowness means whether
the shape is a solid one or not. A hollow shapeahpsoperty that there are no points near the gravi
center of the shape. According to this property,looate a rectangle with size 60% of the convex, hul
and the center of the located rectangle is the sasniat of the convex hull. If the number of psint
inside the rectangle is smaller than a threshablel niotation is considered as a hollow shape. Otkeyw
the notation is not a hollow shape. Figure 3.1liga@ hollow shape, and Figure 3.11 (b) is a ssiidpe.
The hollowness feature, H, is also a binary vahet defined by

1 R < t
2 otherwise, (5)

where R denotes the number of points inside the locatethngle, and t is a threshold value.
gravity center

Sa
located rectangle

a (b)
Figure 3.11 Examples ogf %ollowness. (a) A hollovash (b) A solid shape

3.4 Final Classifier

Feature vectors extracted from the operations tdestiabove, including N, DIR, LEN, and H, are
taken for pattern matching at this phase. We usenverse of sum-of-absolute-difference (SAD) as th
similarity measure to obtain the most likely nasatfor the input notation. Let notations T and € the
database notation and the input notation respdgtitree similarity between T and T’ is calculateg b

SAD (T):i‘Fi'_F“ 1

K, S(M =35 (T), (6)
where F (F’) denotes the ith feature vector of T (T’), and/fN, DIR, LEN, H}. K; denotes the number
of elements in the feature vector Pue to the dimension of direction feature veaad the length
feature vector are dependent on the number of fiviesi we will pad zero to the smaller vector betwe
F and F for computing SAD. Let* = arg max T) , the input notation is considered to be notatibn T

3.5 MBSASAIgorithm for Database Creation

The final classifier step uses the inverse SADIagsify the notation. If we calculate SAD between
the input notation and all the notations in theatdase which is described in Chapter 2, the praugssi
time will be very long. Therefore, we use MBSASraaluce the database and get some representative
feature vectors for reducing the processing timediffled Basic Sequential Algorithm Scheme (MBSAS)
[13] is a clustering algorithm. More specificaliiyjs an algorithm to group the objects based trbaites.
MBSAS does not need to know the number of clustecantains two phases. The first phase determines
the number of clusters; the second phase is therpatlassification.

4. EXPERIMENTAL RESULTS

In order to evaluate the recognition rate of theppsed method, we invite 20 persons, with poor
experience using tablet digitizer and tablet PGkistch 23 supported notations about ten timegdoh
notation. We use a tablet digitizer, Wacom Graphitd E-440, and a tablet PC, HP Compag tc4200, to
collect the ink data. In the experiment, we randoafioose half of the ink data for training and tbst

7

for testing. Table 1 shows the recognition ratéhef proposed method. The first column shows thbt on
the top one is chosen and the recognition rateti6286. The second column shows that the top three
ones are taken, and the recognition rate increfiees 84.62% to 91.24%. We can observe that the
notations belonging to the Line, Circle, and Diawmh@ategories are classified very well.

Table 1. The recognition rate of top 1 choice a3 choices.

Shape Top 1 Accuracy% Top 3 Accuracy%
Activity 73(73/100) 86(86/100)
Aggregation 88.78(87/98) 91.84(90/98)
Activationbar 87.78(79/90) 88.89(80/90)
Actor 87.78(79/90) 92.22(83/90)
Branch 90.91(90/99) 100(99/99)
Class 84.44(76/90) 92.22(83/90)
Component 73.81(62/84) 86.9(73/84)
Communication 100(98/98) 100(98/98)
Dependency 81(81/100) 86(86/100)
End 92(92/100) 92(92/100)
Fork 89.29(75/84) 89.29(75/84)
Generalize 97.96(96/98) 98.98(97/98)
Initial 77(77/100) 81(81/100)
Interface 78.65(70/89) 85.39(76/89)
Lifeline 100(89/89) 100(89/89)
Node 72.22(65/90) 86.67(78/90)
Note 70.79(63/89) 91.01(81/89)
Object 87.78(79/90) 88.89(80/90)
Package 75.56(68/90) 92.22(83/90)
State 71(71/100) 84(84/100)
Swimlane 80.9(72/89) 91.01(81/89)
Transition 94(94/100) 97(97/100)
Use Case 89.89(80/89) 96.63(86/89)
Total 84.62 (1816/2146) 91.24 (1958/2146)
Table 2. Comparison with SkGs method

SkGs without Language SkGs with Language
Shape Recognizer (%) Recognizer (%) Proposed Method (%)
Actor 76.92(10/13) 92.31(12/13) 92.31(12/13)
Use Case 83.3(45/54) 90.74(49/54) 96.30(52/54)
Communication 100(21/21) 100(21/21) 100(21/21)
Dependency 72.73(16/22) 72.73(16/22) 95.45(21/22)
Generalize 81.82(9/11) 100 (11/11) 100(11/11)
Transition 88.89(8/9) 88.89(8/9) 100(9/9)
Total 80.99(98/121) 91.74(111/121) 96.69(117/121)

We compare our method to SkGs method [12] to shioat bur proposed method has higher
recognition rate than others. In SkGs method, tlaeeefive students to participate the experimend, a
each student draw 20-25 symbols of Use Case diagraenrecognition method proposed in [12] has two
parts. The first part only used the Grammar basethod to recognize symbol, and the second part
combined the Grammar based method and the langaaggnizer. Our results will be compared to these
two parts. In the comparison, we also invite figons drawing the symbols supported in SkGs method
and the recognition rate is shown in Table 2.Tisellte of the proposed method are better than tvese
parts besides Actor in Table 2. Thus, our recogmitate is superior to SkGs method.

5. Conclusion
The project proposed an online handwritten recagmsystem of UML diagrams based on decision

8

tree. First, some geometric features are extractedlassifying the input notation to the corresgiog
category. Then we extract several notation featurgsrimitive level and notation level to createeth
feature vectors. Finally, the similarity measuredzhon SAD is calculated for getting the final tesu

In the system, users can sketch UML diagrams utgbtet computer, digital tablet, and mouse.
Users can sketch any notation in any kind of onde¢he system. After sketching a notation, the déad
notation will replace the hand-drawn one and beldiged with the correct position and size. We also
support user self-definition function which allowser defining gestures representing the UML natatio
Besides these characteristics, the most importamepty of the system is that it is relative effici and
simple to other methods mentioned above becauseserelecision tree and reduction database to reduce
the comparison time.

Although the system provides many functions of iielg UML diagrams, it is still not enough. In
the future, we will add more functions, such asvind/backward engineering, modularity, supportimg t
multi-layer diagrams, and supporting more UML niotas to make the system become a practical tool.

54 2t

[1] L. FH. Chen and Y. P. Yin, “A System for On-line d®gnition of Handwritten Mathematical
Expressions,” Computer Processing of Chinese ameh@it Languages, Vol. 6, No. 1, pp. 19-39,
1992.

[2] G. Hutton, M. Cripps, D. Elliman, and C. Higgin® Strategy for On-line Interpretation of
Sketching Engineering Drawings,” Fourth Intl. Cooh Document Analysis and Recognition, pp.
771-775, 1997.

[3] Z. Lin, J. He, Z. Zhong, R. Wang, and H. Shum, bTféaDetection in Online Ink Notes,” IEEE
Transactions on Pattern Analysis and Machine igtsilce, Vol. 28, No. 8, pp. 1341-1346, 2006.

[4] T. Kimura, A. Apte, and V. Vo, “Recognizing Multieske Geometric Shapes an Experimental
Evaluation,” Proceedings of the ACM conference oselJInterface and Software Technology
(UIST'93), pp. 121-128, 1993.

[5] M. Fonseca and J. Jorge, “Using Fuzzy Logic todgaize Geometric Shapes Interactively,” The
Ninth IEEE International Conference on Fuzzy Systevfol. 1, pp. 291-296, 2000.

[6] UML in Wikipedia : http://en.wikipedia.org/wiki/Ufied_Modeling_Language

[7] Object Management Group : http://www.uml.org/

[8] C. Damm, K. Hansen, M. Thomsen, and M. Tyrstede&ilve Object-Oriented Modeling Support
for Intuition, Flexibility and Collaboration in CAS Tools,” ECOOP 2000-Object-Oriented
Programming 14th European Conference, Vol. 1850, pp. 27-48020

[9] D. Rubine, “Specifying Gestures by Example,” Peairgs of SIGGRAPH'91, pp. 329-337, 1991.

[10] E. Lank, J. Thorley, S. Chen, and D. Blostein, ‘i Recognition of UML Diagrams,” The Sixth
IEEE International Conference on Document Analgsid Recognition, pp. 356-360, 2001.

[11] Q. Chen, J. Grundy, and J. Hosking, “An E-whitebloApplication to Support Early Design-Stage
Sketching of UML Diagrams,” IEEE Symposium on Hum@entric Computing Language and
Environments, pp. 219-226, 2003.

[12] G. Costagliola, V. Deufemia, and M. Risi, “A Mulyer Parsing Strategy for On-line Recognition
of Hand-drawn Diagrams,” IEEE Symposium on Visuahguages and Human-Centric Computing
(VL-HCC’06), pp. 103-110, 2006.

[13] S. Theodoridis and K. Koutroumbas, Pattern RecagniAcademic Press, 2006.

[14] T. Cormen, C. Leiserson, R. Rivest, and C. Steimptuction to Algorithms, MIT Press, 2001.

FEEE

,

P
A FARGER G EFATRZVERN T AV E TR E AL P g #§
g ﬁ*l—®@“iﬁ%ﬂ”UML\,moiﬂﬁﬁ%%“j%%ﬁﬂm e KRR
- BB i ﬁ%ﬁﬁ%%%ﬁﬁﬁﬁmﬁﬁﬁﬁﬂA%Qﬁﬂiﬁﬁﬂmfﬁ@ A
TF FR iSRS L o A JhKLZ %m‘p»‘ AT UL @Y ;ﬁ E N Ml mﬁg,] r oo TR FERGT X R
2w g A ﬁg E"ﬁ P I FEAE Wotem = LawgERF 5 91.24%-
AP E B PR U ’ﬁ?]/\ UML @35 > £ 1)@ % A
PR REE BAARHER oo

{ AT P i g

pU R

10

AR EARERK

7 asfl [7HEesE P :99E 501 31 p
L4 LA R X ByERot UML & Ty 2 ks
P F L
34 %35 0 NSC 98-2221—E—009—117—MY2
FMAE ke
#ﬁﬁw%%ﬁ_%?iﬁ“&%UMLiﬁﬁ
Fm oA glrer |[REE
Pl ird Yo AP - B UML A SRRk e R

K O ARAEAFAIEEFFAY G
3. rEE

F P

A o UML ch@P) 5 L 4 s A58 5 F 25 5|
B ke) ~‘J_§‘;;]=§j—:'~h4 SO R D FER ek o § A A PR
& g~ B e e RABEF R - rbﬁ»m/w\ 7o 1
WA B A0 7 & o e T A 8T L BRI ot e 38
b wF EFD RS aFERE %k o & ,Z‘f SLZ BB AT R R
* ﬁi:ﬁé*‘ “'E"r"f’lﬁ;f])\ s TR RS R G E G o AR
BE DA = LaEsE s 91.24%-

< ! We construct an online handwritten recognition esysbf UML
diagrams. We use a decision tree to do recognifdaaording to ou
observation, the shapes of the notations of UMIgmdiens almost log
like rectangles or diamonds. Based on this chamatite an inpu
notation is first classified to the correct catggdrhen some notatiq
features are extracted from the ibhpwtation and used to do fif
recognition. The advantages of our system arevileatan accept fr¢
style input and our method is simpler and moreciedfit than previoy
methods. The recognition rate of the top threeadwis 91.24%.

s x l}L

GRILES: &3
b4

gl

PASY

2

.

w

A FTEEE

I Sk - S

PR BE

RRSEVE- Xt
g o
B A pim A &7 UML ehid g o

e * decision treefr reduction databasg: > # 5Lt i pF

CR AN R Gl

e

U

* ey e

#R 2 E

¥ o
AP E B R 2 gy~ UML O IR Y F G

AT TR S SRS ST SN R S S N

{

. # BFH = %3

FHEB- Ao - PESEFLEAAE - piF FEOEE SR

} —

R E i (deAtief P) o

FE BT FRIZARP G o

Z?‘{,é?”‘afﬁfﬂ—ﬁ‘ﬁr’é?’o

11

