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Abstract 
In this project, we construct an online handwritten recognition system of UML diagrams. We use a 

decision tree to do recognition. According to our observation, the shapes of the notations of UML diagrams 

almost look like rectangles or diamonds. Based on this characteristic, an input notation is first classified to the 

correct category. Then some notation features are extracted from the input notation and used to do final 

recognition. The advantages of our system are that we can accept free style input and our method is simpler 

and more efficient than previous methods. The recognition rate of the top three choices is 91.24%. 

We also present an online handwritten system for music score recognition. Music score is used to record 

a music song. People often used to compose a music score on the sheet of paper. In our system, we propose 

the pen based writing method and use multi-strokes to form a music notation. We extract the height, shape and 

direction from a stroke as the features and recognize it as a symbol. Then the symbol is combined with other 

symbols to form a music notation. The system is robust for a general use and supports enough music notations 

for composition. The recognition rate is 98.35%.  

 

Keyword: handwritten, music score, UML 
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First Year:  An Online Handwritten Recognition System of UML Diagrams 

1. Introduction 

In recent years, the development of the handheld devices and pen-based computing hardware, such as 

PDAs, electronic whiteboards and tablet computers, is grown rapidly, and the handwritten systems which can 

work in the freehand drawing environment are short of demand. There exists some handwritten recognition 

systems in some different applications, including math formula [1], engineering drawings [2], table detection 

[3] and geometric shapes [4-5]. However, the Unified Modeling Language (UML) is widely used in many 

different domains but there is no handwritten recognition system supporting them. 

UML diagrams are widely used in the field of software engineering. Early in the software design cycle, 

software engineers need to sketch UML diagrams to represent the whole structure of the system. Engineers 

may draw these diagrams on paper, whiteboard or computer. There are many Computer Assisted Software 

Engineering (CASE) tools like Rational Rose or Visio to sketch UML diagrams on computer. The 

functionality of these CASE tools is robust but they have some drawbacks. The most serious drawback of 

CASE tools is that their design concepts are technique oriented. Technique oriented design provides strong 

capability but it is not convenient to use. Due to these reasons, we want to build a handwritten recognition 

system which can allow people enjoying the freedom of drawing UML diagrams by hand. 

In 2000, Damm et al. [8] proposed the Knight Project which is a gesture based system for entering and 

editing UML diagrams. Gestures are some simplified shapes designed by the designer to replace the complex 

notations. Due to that all of the shapes are simplified, the advantage of gesture based systems is easy to 

recognize the input notations. However, the user needs to learn what the gestures stand for because they are 

designed by the designer. In Knight Project, the gestures are separated into two classes, compound gestures 

and eager gestures, and they use Rubine’s algorithm [9] to recognize their gestures. The drawbacks of the 

Knight Project are that the gesture based system is not intuitional enough. Besides, they do not illustrate the 

notations supported by their system and there is no experimental result to show their recognition rate. 

In 2001, Lank et al. [10] proposed an online recognition algorithm for UML diagrams. The algorithm is 

composed of the domain dependent kernel and the domain independent kernel. The domain independent 

kernel deals with the preprocessing steps, including capturing the input strokes, stroke grouping and so on, 

and the domain dependent kernel is the part of recognition. In the recognition algorithm, they use size, 

number of strokes, the input order of strokes and the stroke’s bounding box size to recognize the input 

notations. Their algorithm does not allow user drawing the notations in various order because they use the 

input order as a feature. Besides, there is no experimental result to show their recognition rate. 

In 2003, Chen et al. [11] proposed another gesture based recognition system for UML diagrams called 

SUMLOW. The recognition kernel of SUMLOW combines several multi-stroke shape recognition algorithms 

to recognize their gestures. The characteristic of SUMLOW is that they allow user modifying, copying, 

replacing, and deleting input notations via pen-based input technique. Their system has high recognition rate, 

but there are only six experienced UML designers to participate in their experiment. Thus the recognition rate 

is not objective. 

In 2006, Costagiola et al. [12] proposed an online recognition method for hand-drawn diagrams based on 

grammar formalism, namely Sketch Grammars. The method uses a parse tree and the Sketch Grammar to 

recognize input notations. To enhance the recognition rate, the authors propose a language recognizer which 
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can help the original recognizer to select the best interpretation. This method can be adapted to any notation 

besides UML diagrams and has high recognition rate. However, a troublesome problem for this method is 

how the grammars train for new notations. 

2. UML NOTATION DATABASE 

UML diagrams have thirteen different types and more than forty different notations. However, some of 

these notations are used rarely and their shapes are more complex. In the project, we choose 23 notations 

based on UML concepts and the frequency of usage to recognize. These 23 notations are shown in Figure 2.1. 

In the project, we invite 20 persons to draw the 23 notations ten times for each and collect the ink data 

they draw. We randomly choose half of the ink data for training, and the rest for testing. 

 

 

Figure 2.1 Supported notations of the system. 

 

3. PROPOSED METHOD 

 The proposed method is based on a decision tree and shown in Figure 3.1. The whole process consists of 

four major phases： geometric feature extraction, category classifier, notation feature extraction (NFE), and 

final classifier. In the geometric feature extraction phase, some geometric features, such as convex hull, 

bounding rectangle, PA ratio and Area ratio, are extracted from the input notation. In the category classifier 

phase, the features extracted in the previous phase are used to classify the input notation to the belonging 

category. In the notation feature extraction phase, the input notation is divided into primitives and then we 

extract features like direction, location and distance from these primitives. In the final classifier phase, based 

on the extracted features, a similarity measure is provided. Based on the similarity measure, the result notation 

that is most similar to the input notation is determined. 
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Figure 3.1 The proposed method. 

3.1 Geometric Feature Extraction 

According to our observation, the notations supported in the system can be divided into five categories, 

i.e. circle, line, rectangle, diamond, and others, based on their geometric properties. This phase extracts 

geometric features from input notation to classify it to the correct category. The geometric features we used 

include convex hull, bounding rectangle, PA ratio and Area ratio. Each of these features is described below. 

3.1.1 Convex Hull 

The convex hull for a set of points X is the minimal convex set containing X. Figure 3 gives two 

examples to illustrate convex hull. We use the Graham scan algorithm [14] to find the convex hull of the input 

notation. Figure 3.2 (b) shows the convex hull of an input notation “Actor”. The blue line denotes the convex 

hull. After finding the convex hull, we compute its perimeter and the area. These values will be used in the 

following section. 

 

Figure 3.2 Two examples to illustrate convex hull (a) A convex hull of a set of points.  (b) The 
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convex hull of an input notation “Actor”. 

3.1.2 Bounding Rectangle 

The bounding rectangle is the minimum rectangle containing the input notation. We scan all points of 

input notation to find the minimum values of x and y coordinates, and the maximum values of x and y 

coordinates. After finding these coordinates, we use them to establish the bounding rectangle of the input 

notation. Figure 3.3 shows an example of the bounding rectangle of an input notation “Actor”. The bounding 

rectangle is shown by red lines. After finding the bounding rectangle, we compute its perimeter and area. 

These values will be used in the following section. 

 

 

Figure 3.3 An example of the bounding rectangle of an input notation “Actor”.  

3.1.3 PA Ratio 
PA ratio proposed by Kimura [6] is defined as：          

CH
2
CH /AreaPerimeter  ratio =PA ,                             (1) 

where PerimeterCH denotes the perimeter of the convex hull of the input notation, and AreaCH denotes the area 

of the convex hull of the input notation. Note that the perimeter and area partly define the shape of an object. 

This ratio will be a constant for some kinds of shape. For instance, PA ratio = 16 for any square rectangle 

and PA ratio = 4π for any circle. Size independent is the main advantage of PA ratio. In the project, PA ratio 

is used to classify circle and line. 

 

3.1.4 Area Ratio 
Area ratio is also proposed by Kimura [6]. The ratio is defined as： 

BRCH/AreaArea  ratio =Area
 ,                                (2) 

where AreaBR is the area of the bounding rectangle of an input notation. 

Area ratio also has the property of size independent. In the project, we use this ratio to distinguish the 

rectangle and the diamond shape. 

 

3.2 Category Classifier 

After extracting geometric features, we use these features to classify the input notation to the correct 

category. The 23 supported notations are separated to five categories including circle, line, rectangle, diamond, 

and others. The classification of each notation is shown in Figure 3.4. Four different filters, namely circle 
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filter, line filter, rectangle filter and diamond filter, are provided to distinguish the five categories in the 

category classifier. The flowchart of the category classifier is shown in Figure 3.5. 

 

3.2.1 Circle Filter 

In the category classifier, we use the circle filter to check for circles first. In the project, we use PA ratio 

for circle filter. PA ratio of a perfect circle of any size is a scalar 4π. Due to that the input may not be a 

perfect circle, we need to train a threshold range around 4π to classify the input notation. To train the 

threshold, we compute the PA ratio of the notations belonging to the circle category in the training database 

first. Then we find a maximum and a minimum as the upper bound and the lower bound of threshold range.  

 

 

 

Figure 3.4 The classification of each notation. 
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Figure 3.5 The flowchart of the category classifier. 

3.2.2 Line Filter 

If the input notation does not belong to the circle category, it will be checked by the line filter. Here, we 

use PA ratio for line filter. Due to the PerimeterCH of a line is close to twice of the length of input notation and 

the AreaCH of a line is closed to the product of the length of input notation and ∆h which is the maximum 

distance between input stroke and its convex hull, the PA ratio of a line can be approximated by 

h

l

hl

l
ratioPA

∆
=

∆×
≈ 4)2(

 
2

. Since ∆h << l the PA ratio should be large. Here, we take 120 as a threshold value 

obtained by training. Figure 3.6 shows two examples to explain why the PA ratio is greater than a threshold. 

In Figure 3.6, the black line is user’s input and the red line is the convex hull. To avoid the error of dividing 

zero, we set the PA ratio equal to 200 when the area of the convex hull of a line is equal to zero.  

 

Figure 3.6 Two examples to show the PA ratios of lines.  
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3.2.3 Rectangle Filter 

Rectangle filter will be used when the notation does not belong to the circle or line category. In the 

project, we use Area ratio for rectangle filter. According to the fact that the AreaCH of a rectangle is almost 

equal to the AreaBR of the rectangle, the Area ratio of a rectangle is close to 1. Figure 3.7 shows two 

examples to explain the fact mentioned above. In Figure 3.7, the black line is user’s input, the red line is the 

convex hull and the green line is the bounding rectangle. To get a threshold range, we also train the rectangle 

notations in the training database. 

 

 

Figure 3.7 Two examples to show the Area ratios of rectangles.  

3.2.4 Diamond Filter 

If input notation is not considered as a circle, a line or a rectangle, it will be checked by the diamond 

filter. In the project, we use Area ratio for diamond filter. We assume that the notations belonging to the 

diamond category are all upright patterns. The AreaBR of a diamond is nearly two times of the AreaCH of a 

diamond based on our assumption. In other words, the Area ratio of a diamond is nearly 0.5. Figure 3.8 shows 

two examples to explain why the Area ratio of a diamond is nearly 0.5. In Figure 3.8, the black line is user’s 

input, the blue line is the convex hull and the red line is the bounding rectangle. We use a threshold range 

which is trained using the diamond notations in the training database to check whether the input notation 

belongs to the diamond category or not. 

 

Figure 3.8 Two examples to show the Area ratios of diamonds.  

3.2.5 Other Notations 

If the input notation does not belong to any category mentioned above, it will be classified to the others 
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category. In our experiments, after category classification the others category contains Actor and several 

rectangle notations which are ill-written. 

3.3 Notation Feature Extraction 

After the input notation is classified to a category, some notation features will be extracted for the final 

classification. Before extracting notation features, we will first segment the notation into several primitives, 

which will be described in the following subsection. The notation features extracted include the number of 

primitives, the direction of each primitive, the location of each primitive, the length of each primitive, and the 

hollowness of the notation. In the following subsections, we will describe how to extract features. 

3.3.1 Primitive 

A primitive is defined to be the minimum unit of a notation, which may be a line or an arc. The 

advantage of segmenting a notation to primitives is that it is much easier for the shape matching procedure to 

find the matching notation. All the notation features are extracted in primitive level except hollowness. 

To divide a notation to many primitives, we use 4-way chain code and the curvature of each point. The 

4-way chain code is shown in Figure 3.9. First we compute the chain code for each point. Then we compute 

the curvature of each point by 

)
))1()1(())1()1((

)1()1(
(cos  r

22

1-
p i +−−++−−

+−−=
iyiyixix

ixix
C

 ,                (4) 
where x(i), y(i) denotes the x, y coordinates of point pi and Crpi is the curvature of point pi. After 

computing the curvature, we evaluate the curvature difference between two neighboring points to find the 

dominate points, which have curvature difference greater than a threshold. Finally, the notation is divided into 

several segments using the dominate points as cut points, each segment is considered as a primitive of the 

notation. When the notation is segmented to many primitives, we take the number of primitives, N, as the first 

feature. Note that we have two kinds of primitives: line and curve, which are decided by the sequence of chain 

codes of the primitive. To decide what kind of a primitive is, we evaluate the chain code difference between 

each two neighboring points in the chain code sequence and sum all of them. If the summation is larger than a 

threshold, we will decide that it is a curve; otherwise, it is a line. 

 

 

Figure 3.9 4-way chain codes 

 

1 

2 

3 
4 
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3.3.2 Direction and Location Feature 

 

The direction of a line primitive is defined as the chain code which appears most frequently in the 

primitive. If the primitive is an arc or a curve, we set 5 to be its direction. In order to record the directions of 

the extracted primitives as a feature vector, we should give an unique id to each primitive. The primitives get 

their unique ids based on the relative locations on the notation. Since some notations have some rotation 

varieties with 90, 180, and 270 degrees, we provide an algorithm to find relative location.  

First, we extract the directions of primitives. Then the primitives with the same direction are collected 

and sorted according to their top left corner points. Finally, each primitive gets its unique id based on the 

sorted list. When all the primitives get their unique ids, we combine their directions into a direction feature 

vector. An example is shown in Figure 3.11; the blue number in the figure denotes the id of a primitive. The 

provided algorithm is stated below. 

 

When the algorithm is finished, all the primitives have unique ids and we group the directions of 

primitives according to their ids into a vector, DIR, which is considered as the second notation feature. The 

notation in Figure 3.10 has (1, 1, 1, 1, 3, 3) as its direction feature.  

 

Figure 3.10 An example of the relative location of each primitive in a notation with the direction feature 

vector is (1, 1, 1, 1, 3, 3).  

Algorithm to Find Unique Id 

1. Setting variable i to 1.  

2. Collecting the primitives with direction i to a temp list. 

3. Sorting the temp list according to the top left corners point of primitives. 

4. Giving a unique id to each primitive in the sorted temp list according to its order in the list. 

5. Increasing 1 to i. If i is less than 6, go to step 2; otherwise, stop. 

4 

5 

2 

3 

6 
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3.3.3 Length Feature 

The length feature is a binary value which represents that a primitive is long or short. To extract this 

feature, we first find the longest primitive in a notation. Then each primitive is compared to the longest one. If 

the length of the primitive is larger than half of the longest one, it is considered as a long primitive; otherwise, 

it is a short one. The length feature is calculated by 





 <=

otherwise,2

        len(j)max
2
1

     len(i)  1)( j
ifiLEN

                     (5) 

where len(i) denotes the length of the ith primitive, and max len(j) denotes the length of the longest primitive 

in the notation. 

3.3.4 Hollowness 

The hollowness feature is the only feature extracted in the notation level. Hollowness means whether the 

shape is a solid one or not. A hollow shape has a property that there are no points near the gravity center of 

the shape. According to this property, we locate a rectangle with size 60% of the convex hull, and the center 

of the located rectangle is the same as that of the convex hull. If the number of points inside the rectangle is 

smaller than a threshold, the notation is considered as a hollow shape. Otherwise, the notation is not a hollow 

shape. Figure 3.11 shows examples of hollowness. Figure 3.11 (a) is a hollow shape, and Figure 3.11 (b) is a 

solid shape. The hollowness feature, H, is also a binary value and defined by 



 <

=
otherwise,2

  t        P If   1 recH
                                      (6) 

where Prec denotes the number of points inside the located rectangle, and t is a threshold value.  

        

Figure 3.11 Examples of hollowness. (a) A hollow shape. (b) A solid shape 

3.4 Final Classifier 

Feature vectors extracted from the operations described above, including N, DIR, LEN, and H, are taken 

for pattern matching at this phase. 

In order to obtain the most likely notation for the input notation, we use the inverse of 

sum-of-absolute-difference (SAD) as the similarity measure. Let notations T and T’ be the database notation 

and the input notation respectively, the similarity between T and T’ is calculated by 

∑
=

−
=

4

1
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where Fi (Fi’) denotes the ith feature vector of T (T’), and Fi∈{N, DIR, LEN, H}. K i denotes the number of 

elements in the feature vector Fi. 

 Due to the dimension of direction feature vector and the length feature vector are dependent on the 

number of primitives, we will pad zero to the smaller vector between Fi and Fi’ for computing SAD. 

Let
S(T) max arg*

T
=T

, the input notation is considered to be notation T*. 

3.5 MBSAS Algorithm for Database Creation 

The final classifier step uses the inverse SAD to classify the notation. If we calculate SAD between the 

input notation and all the notations in the database which is described in Chapter 2, the processing time will 

be very long. Therefore, we use MBSAS to reduce the database and get some representative feature vectors 

for reducing the processing time. 

Modified Basic Sequential Algorithm Scheme (MBSAS) [13] is a clustering algorithm. More specifically, 

it is an algorithm to group the objects based on attributes. MBSAS does not need to know the number of 

clusters. It contains two phases. The first phase determines the number of clusters; the second phase is the 

pattern classification.  

4. EXPERIMENTAL RESULTS 

In order to evaluate the recognition rate of the proposed method, we invite 20 persons, with poor 

experience using tablet digitizer and tablet PC, to sketch 23 supported notations about ten times for each 

notation. We use a tablet digitizer, Wacom Graphire4 CTE-440, and a tablet PC, HP Compaq tc4200, to 

collect the ink data. In the experiment, we randomly choose half of the ink data for training and the rest for 

testing. Table 1 shows the recognition rate of the proposed method. The first column shows that only the top 

one is chosen and the recognition rate is 84.62%. The second column shows that the top three ones are taken, 

and the recognition rate increases from 84.62% to 91.24%. We can observe that the notations belonging to the 

Line, Circle, and Diamond categories are classified very well. 

In order to show that our proposed method has higher recognition rate than other methods, we compare 

our method to SkGs method [12]. In SkGs method, there are five students to participate the experiment, and 

each student draw 20-25 symbols of Use Case diagram. The recognition method proposed in [12] has two 

parts. The first part only used the Grammar based method to recognize symbol, and the second part combined 

the Grammar based method and the language recognizer. Our results will be compared to these two parts. In 

the comparison, we also invite five persons drawing the symbols supported in SkGs method, and the 

recognition rate is shown in Table 2. In Table 2, we can see that the results of the proposed method are better 

than these two parts besides Actor. Thus, our recognition rate is superior to SkGs method. 
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Table 1. The recognition rate of top 1 choice and top 3 choices. 

Shape Top 1 Accuracy% Top 3 Accuracy% 

Activity 73(73/100) 86(86/100) 

Aggregation 88.78(87/98) 91.84(90/98) 

Activationbar 87.78(79/90) 88.89(80/90) 

Actor 87.78(79/90) 92.22(83/90) 

Branch 90.91(90/99) 100(99/99) 

Class 84.44(76/90) 92.22(83/90) 

Component 73.81(62/84) 86.9(73/84) 

Communication 100(98/98) 100(98/98) 

Dependency 81(81/100) 86(86/100) 

End 92(92/100) 92(92/100) 

Fork 89.29(75/84) 89.29(75/84) 

Generalize 97.96(96/98) 98.98(97/98) 

Initial 77(77/100) 81(81/100) 

Interface 78.65(70/89) 85.39(76/89) 

Lifeline 100(89/89) 100(89/89) 

Node 72.22(65/90) 86.67(78/90) 

Object 87.78(79/90) 88.89(80/90) 

Package 75.56(68/90) 92.22(83/90) 

State 71(71/100) 84(84/100) 

Swimlane 80.9(72/89) 91.01(81/89) 

Transition 94(94/100) 97(97/100) 

Use Case 89.89(80/89) 96.63(86/89) 

Total 84.62 (1816/2146) 91.24 (1958/2146) 
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Table 2. Comparison with SkGs method 

Shape 
SkGs without Language 

Recognizer (%) 

SkGs with Language 

Recognizer (%) 
Proposed Method (%) 

Actor 76.92(10/13) 92.31(12/13) 92.31(12/13) 

Use Case 83.3(45/54) 90.74(49/54) 96.30(52/54) 

Communication 100(21/21) 100(21/21) 100(21/21) 

Dependency 72.73(16/22) 72.73(16/22) 95.45(21/22) 

Generalize 81.82(9/11) 100 (11/11) 100(11/11) 

Transition 88.89(8/9) 88.89(8/9) 100(9/9) 

Total 80.99(98/121) 91.74(111/121) 96.69(117/121) 

 

5. Conclusion 

 

The project proposed an online handwritten recognition system of UML diagrams based on decision tree. 

First, some geometric features are extracted for classifying the input notation to the corresponding category. 

Then we extract several notation features in primitive level and notation level to create the feature vectors. 

Finally, the similarity measure based on SAD is calculated for getting the final result. 

In the system, users can sketch UML diagrams using tablet computer, digital tablet, and mouse. Users 

can sketch any notation in any kind of order in the system. After sketching a notation, the standard notation 

will replace the hand-drawn one and be displayed with the correct position and size. We also support user 

self-definition function which allows user defining gestures representing the UML notations. Besides these 

characteristics, the most important property of the system is that it is relative efficient and simple to other 

methods mentioned above because we use decision tree and reduction database to reduce the comparison 

time. 

Although the system provides many functions of sketching UML diagrams, it is still not enough. In the 

future, we will add more functions, such as forward/backward engineering, modularity, supporting the 

multi-layer diagrams, and supporting more UML notations to make the system become a practical tool.  
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Second Year: An Online Handwritten Recognition System of Music Score 

1. Introduction 

Music score is a handwritten or printed form of music notations, and it is often used in music 

composition and music representation. It consists of staff, clefs, notes, rests, and signatures …, etc.  

The common way to record a music score is to write the score on sheets of papers by pencil or pen. As 

the computer technology grows rapidly, Musicians use computer to aid their composition. In early period, 

optical music recognition (OMR) is used to recognize the music score which is scanned to an image. However, 

the error rate of OMR system is relatively high and the editing work of the music score is slow and tedious 

[15]. Due to the inconvenience of OMR, the online music editing system is proposed. The system can directly 

output the editing resultant to musicians. Besides, more convenient systems are rapidly developing for user to 

write on the tablet. One is the “point and click” system, such as MagicScore Maestro [16] and Allegro [17], 

which selects music notations from menus or icons. Hence, the system can directly input the music notations 

without recognizing them. Nevertheless, the input processes are tedious and complicated due to many pen and 

mouse movements [18]. 

In order to reduce the tedious input processes, gesture-based music score recognition systems are 

developed. Musicians could use specific gestures to represent specific notations defined by systems. Forsberg 

et al. [19] proposed such a system which uses gesture and voice to input the music notations. In the gesture 

part, it combines Calligrapher system [20], Rubine’s gesture recognition system [21] and their recognizer to 

recognize the input gesture. The supported music notations are limited and are not sufficient for professional 

music editors, and some gestures are irrelative to the shapes of the corresponding music notations. This makes 

learning curve long and difficult. Anstice et al. [15] also proposed a gesture-based system called Presto. After 

that, Ng et al. [22] proposed an improved version denoted as Presto2, which improves both usability and 

speed of input, but the gestures in the system have little relation with the actual writing. The recognition 

accuracy of gesture-based system may be acceptable. However, in the gesture-based systems, users must learn 

and remember these miscellaneous gestures. Therefore, the gesture-based system is often very constraining 

for the user. 

Instead of learning miscellaneous gestures, pen-based handwritten systems are developed to catch the 

human writing styles. The characteristic of pen-based systems is that the writing styles is as the same as on 

sheets of papers. There are several methods proposed, like neural network, context-free grammar and SVM. In 

2003, George et al. [18] proposed such a system with artificial neural networks. They used a multi-layer 

perception to learn music notations and extract the features. The inputs of these handwriting systems are 

natural and direct for users, but the error rate may be alarmingly high. Subsequently, music notations can be 

recognized by the trained neural networks. Taubman et al. [23] proposed a handwritten music recognition 

system based on statistical moments. Nevertheless, the current system is not stable and not robust enough for 

a general use. In 2005, Macé et al. [24] proposed a generic method which recognizes the music score by 

context-free grammars and lots of recognizers. Unfortunately, the user must follow the writing orders and 

writing locations that are defined by professional musicians, and it is not friendly for the users that are not 

familiar with the music theory. Miyao and Maruyama [25] proposed a handwritten system based on time 

series data and image features. Their system uses dynamic programming and SVM algorithm to recognize 

handwritten music notations. However, only a small part of music notations is supported in the system. In 
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other way, the system does not support modification operations, such as deleting or moving a notation, and 

this makes the system impractical.  

2. Stroke Database 

A stroke is a collection of points from pen-down to pen-up. A music notation or notation is the basic unit 

to record music, including staff, clefs, notes, rests, and signatures …, etc. When we are writing, there are some 

notations we cannot write in a single stroke, like natural or sharp. We have to write multiple strokes to 

represent a notation. In other way, some notations have innumerable dots, heads, or flags, and we cannot 

assure the exacted strokes in these notations. Here, we divide the strokes into 17 kinds of symbol categories, 

as shown in Table 2.1.  

In Table 2.1(1), categories (1) to (6) are called “simple symbols, “ which means that they could be 

recognized quickly by some extreme properties, like the stroke length. The others are called “complex 

symbols,” which means they need to extract the features and be classified by the complex symbol classifier 

which will be elaborated in the next section. 

In our database, we obtained the strokes using a WACOM digital tablet written by 14 users. The users are 

not expert musicians and do not have any knowledge about the music theory. For robustness, the procedure 

would be carried out at least 1000 times to each user. 

 

 
Table 2.2 shows all the supported music notations in this system. There are four types of notations 

supported. 

Table 2.1 Supported symbols.  

    
 

(1) Dot (2) HLine (3) VLine (4) Slash (Flag) (5) UHook (Flag) 

  
 

  

(6) GClef (7) FClefArc (8) Flat (9) NaturalRt (10) LCheck 

   

(11) StUHook (12) WHead (13) BHead 

  

(14) WRest (15) HRest 
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3. The Proposed Method 

In this system, we recognize the input stroke as a symbol and then combine the symbol with other 

symbols to form a music notation.  

The flow diagram of the symbol recognition is shown in Fig. 3.1. The whole process consists of 4 major 

phases: preprocessing, simple symbol classifier, feature extraction and complex symbol classifier.  

 
After the symbol recognition, the notation recognition is conducted. Based on the semantic information, 

the output symbol would be combined with other existed symbols to form a notation. Finally, the system 

outputs the printed music notation and puts it at the exact location on staff. 

3.1 Preprocessing 

Table 2.2 Supported music notations.  

 (a) Bar line  

 
   

 

(b) Group    

 
 

   

(c) Determinable note 

 
  

  

(d) Uncertain note 

 
   

 

(d) Uncertain note 

 
  

   
 

 
   

 

  

 

Fig. 3.1 Flow diagram of the symbol recognition. 
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In order to reduce the noise and variety in the stroke, we apply the preprocessing, including smoothing 

filter, gap filter and slipped segment remover. 

3.1.1 Smoothing Filter 

The reason why a stroke jagged is that some errors occurred in the digital tablet or the unstable state the 

user is writing in. In order to eliminate these jags, we apply Gaussian filter [26] to make the stroke more 

smooth and keep the global information of corners in the stroke. 

3.1.2 Gap Filter 

Because the digital tablet samples points with a fixed time interval, the writing speed makes the distances 

between two points to be different. There would be some gaps in the stroke. These gaps would affect the 

curvature detection in later process.  

For each two adjacent points, let dx be the x difference between the two points, dy be the y difference 

between the two points. Then if max(dx,dy)>1, we interpolate max(dx,dy) points between them by linear 

interpolation.  

3.1.3 Slipped segment remover 

Slips are the action that user’s pen move to the unexpected direction on the digital tablet. In the 

beginning and ending to write a stroke, it is easy to generate surplus slipped segments. We could remove 

slipped segments by detecting whether the length of the first segment or the last segment in a stroke is shorter 

than a given threshold.  

In order to eliminate the slipped segments, the first step is to find the candidates of slipped segments. Li 

and Hall proposed a method [27] to find dominant points in a stroke using a support region based on 8 ways 

chain codes. Then we divide the stroke into several segments by dominant points. The first segment and last 

one are the candidates of the slipped segments. If the length of the candidate is less than a threshold, it is a 

slipped segment and would be removed. The threshold is set as half of the gap’s height on staff in music score. 

3.2 Simple Symbol Classifier 

By observing the 17 kinds of symbols, we find that some symbols can be classified quickly by the 

extreme properties. We call these symbols as simple symbols, including Dot, the straight line of HLine, VLine, 

the straight line of Slash, the straight line of UHook and GClef. Here, we will discuss how to classify simple 

symbols. 

Among all symbols, the length of GClef is longest obviously. By this property, we could easily recognize 

a stroke as a GClef symbol if the length of the stroke is longer than the length threshold. The length threshold 

is set as 12 times gap’s height. 

 By observing the width and the height of a symbol, the Dot symbol has the smallest width and the 

smallest height in symbols. Therefore, the stroke would be recognized as a Dot symbol if the width and the 

height of the stroke are both shorter than a given threshold. The threshold is set as half of gap’s height on 

staff. 

To classify if a stroke is a straight line, a linearity measure is defined as
 

,
))(),(( ePsPG

L
linearity =  (1)

 

where L denotes the length of the stroke. G() denotes Euclidean distance. P(s) denotes the starting point of the 

stroke and P(e) denotes the ending point of the stroke. If a stroke is a straight line, the linearity should 

approach to 1. Thus, if the linearity is smaller than the threshold, 1.07, we consider the stroke as a straight line 
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and recognize it as HLine, VLine, Slash or UHook according to its slope. Once the stroke is recognized as a 

simple symbol, it would be output and exit the symbol recognition. 

3.3 Feature Extraction 

If a stroke is not classified as a simple symbol, we will do feature extraction from the stroke. Here, we 

take three kinds of features: height, shape and direction. 

3.3.1 Height 

Notations in music theory have height limitation. Since notations are formed by symbols, symbols also 

have the height limitation. We could extract the height of a stroke as a feature for rough classification. 

3.3.2 Shape 

As described in Section 3.1.3, each stroke will be divided into several segments. Every segment has its 

special shape. The number of shapes would be useful for classifying stroke. There are 7 kinds of basic shapes 

shown in Table 3.1.  

 

By the linearity and slopes mentioned in Section 3.2, we could determine if a segment is a horizontal line, 

vertical line, slash or backslash. If the segment does not belong to straight line, it may be a clockwise curve, a 

counter-clockwise curve, or a circle.  

The difference between the straight line and the curve is that the curve changes its direction very often. We 

could accumulate the direction change value to detect what kind of curve the segment is like.  

The last step is to calculate the number of every kind of shapes in the stroke. The vector of dimension 7 

containing numbers of seven shapes is viewed as a shape feature. 

3.3.3 Direction 

The direction is the sequence of writing direction in time order, and it could reflect the writing style of a 

symbol. The direction extracted from the stroke could help us clarify the difference among some symbols with 

similar shapes. We use the 8 way chain codes to represent the direction. We could extract the direction by 

eliminating the duplicate chain codes in the same direction. Note that the dimensions of the direction features 

of different strokes may be different. 

3.4 Complex Symbol Classifier 

Symbols except simple symbols are complex symbols. Features extracted from a stroke, including height, 

shape and direction, are taken for complex symbol matching at this phase. 

Based on these three features, we construct three classifiers separately, including height classifier, shape 

classifier and direction classifier. Because some symbols in some classifiers are similar and are hard to 

separate them, we build a three level decision tree to deal with this problem. The first level is the height 

classifier which roughly classifies symbols by the height feature. The second is the shape classifier which 

classifies symbols by the shape feature. The third level is the direction classifier which classifies symbols by 

Table 3.1 The 7 basic shapes. (1) Horizontal line. (2) Vertical line. (3) Slash.  

 (4) Backslash. (5) Clockwise curve. (6) Counter-clockwise curve.  

 (7) Circle. 

       
(1) (2) (3) (4) (5) (6) (7) 

 



 19 

the direction feature and outputs the recognized result. 

3.4.1 Height Classifier 

The heights of printed music notations are ruled by the music theory. Because the music notations are 

formed by symbols, symbols also have the height limitations in writing. By a height threshold, some symbols 

will be considered as high and some will be considered as low. However, due to the writing distortion, some 

symbols sometimes will be considered as in the high, sometimes low. We consider these symbols with unsure 

heights as variant. Fig. 3.2 shows the symbols in the low group, the high group, and the variant group.  

 

In the height classifier, we use 2 times gap’s height on staff as a threshold to classify symbols into the 

high group and the low group. Fig. 3.3(a) shows the low group in the height classifier. Fig 3.15(b) shows the 

high group in the height group. The symbols surrounded by the dotted line and originally belonging to the 

variant group will be handled later. 

 
When a new stroke is coming, this classifier classifies the stroke to the high group or low group based on 

the height feature. 

3.4.2 Shape Classifier 

In this stage, we group symbols with similar shape features. Fig. 3.16 shows the groups with similar 

shape features. The shape difference, SD, between two shape features is defined as follows: 

 

 

where S1 is the vector of the shape feature 1. S2 is the vector of the shape feature 2. 

As a new stroke is coming, the classifier could measure the shape distance between the stroke and the 

shape templates in each group and applies KNN to find the group with the nearest distance. In H1 of Fig 

3.4(b), there is only one possible symbol in the group, which will be output directly without further 

processing. 

,)()(
7

1

22∑
=

−=
i

iS2iS1SD  (2) 

 

(a) Low 

 
(b) High  

(c) Variant 

Fig. 3.2 Three groups in height. (a) Low group. (b) High group. (c) Variant  

group. 

           
(a) Low group                (b) High group 

Fig. 3.3 Two groups in the height classifier. (a) Low group. (b) High group. 
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3.4.3 Direction Classifier 

In the third level of the decision tree, we would find most likely symbol according to the direction feature. 

We measure the distance between the direction feature of the stroke and the direction templates in database. 

Because the direction features are variable in dimension, the distance measure could be considered as the 

string matching problem. We apply the dynamic programming to obtain the distance. 

Let {a1, a2,.., aI} denotes the direction feature and {bk1, bk2,…, bkJ} denotes the kth template in database. 

The accumulated distance gk(i,j) is calculated as follows: 

Initial values:
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Recurrence formula: 
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where the difference is the chain code difference between chain code ai and chain code bkj. The difference is 

defined in Table 3.2.  

 

Table 3.2 Difference between two chain codes. 

ai \bkj 0  1  2  3  4  5  6  7  

0 0  1  2  3 4 3 2 1  

1 1  0  1 2 3 4 3 2 

2 2  1  0  1 2 3 4 3 

3 3  2 1  0  1 2 3 4 

4 4 3 2 1  0  1 2 3 

5 3 4 3 2 1  0  1 2 

6 2 3 4 3 2 1  0  1 

7 1 2 3 4 3  2 1  0  

 

      
  (a)                                 (b) 

Fig. 3.4 Groups in the shape classifier. (a) For low group. (b) For high group. 
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Using above formula, the distance, gk(I,J), is calculated. After examining the distances with all templates, 

we find the symbol with the nearest distance and output the symbol as the recognized result. 

After examining the distances with all templates, we find the symbol with the nearest distance and output 

the symbol as the recognized result. 

3.5 Notation Recognition 

After a stroke is recognized as a symbol, the notation recognizer will be conducted by combining 

symbols. The output symbol will be combined with previously recognized and unused symbols to form a 

notation based on the semantic information. There are 3 levels in the notation recognition. The other part of 

notation recognition is modification operation. 

3.6.1 Bar Level 

In music theory, a bar is a container containing notes, and a bar line is used to separate bars. In our 

system, the bar would be constructed automatically to hint the user. We combine unused symbols to form a 

bar line in the bar level. In each bar, the pseudo borders of the bar are pre-drawn in our system. We define the 

head and the end of the bar as the reactive area for combining symbols separately. By the shape of bar lines, 

we define the components in Table 3.3 to describe how to form a bar line.  

 

3.6.2 Note Level 

Notes are used to represent the relative duration and pitch of a sound in the music score. Symbols are 

combined to form a note in this level. By the composition of a note in music theory, there are three types of 

notes: determinable, uncertain and incomplete. Determinable note means that the numbers of symbols in it are 

fixed. The uncertain note means there are innumerable dots, heads, or flags in it. The incomplete note is a part 

of a certain note and recorded as a temporary note in this system.  

When a new symbol is coming to this level, we would search the nearest uncertain or incomplete note. 

We do not have to search the determinable note, because it is impossible to add more symbols to it. If the 

distance to the nearest note is too large, we would construct a new empty incomplete note, and add the new 

symbol to it. Then check the symbols with rules in Table 3.4 [25] , which consists of three cases as follows: 

1. If we find a match in the table, then update the note and set its type. 

2. If we could not find a match in the table, and the set of symbols is a subset of a note, then we add the 

symbol to the note and set its type to be incomplete. 

3. If we could not find a match and the set of symbols is not a subset of a note, then the new symbol 

would be discarded. 

Table 3.3 List of bar line with the set of components forming them. 

Bar line name  Component 

Single bar line (   )  1 VLine 

Double bar line (   )  2 VLines 

End bar line (   )  3 VLines 

Repeat sign line(   )  1 Dot, 0 or more VLines 
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3.6.3 Group Level 

In music theory, when two or more notes with filled head and flags appear successively, we could group 

them using a beam to replace the flags. When playing the music score, the notes with beam should be more 

connected than non-beamed notes. As writing, users always draw a horizontal line across the notes to 

represent the grouping action. In the group level, we group the notes to form a beamed note.  

Table 3.4 List of notes with the set of symbols forming them . 

Note name Type Components 

Determinable 2 Dots, 1 FClefArc  FClef 

Determinable 1 FClefArc  

Determinable 2 HLines, 2 VLines 

Determinable 2 Slashes, 2 VLines 

Determinable 1 HLine, 1 Slash, 2 VLines  

Determinable 2 UHooks, 2 VLines  

Determinable 1 HLine, 1 UHook, 2 VLines 

Sharp 

Determinable 1 Slash, 1 UHook, 2 VLines 

GClef Determinable 1 GClef  

1 LCheck, 1 NaturalRt  Natural Determinable 

1 LCheck, 1 8Rest 

Flat Determinable 1 Flat  

Whole note  Uncertain 0 or more Dot(s), 1 or more WHead(s) 

Half note  

 

Uncertain 0 or more Dot(s), 1 VLine, 1 or more 

WHead(s)  

Note with filled head 

 

Uncertain 1 or more BHead(s), 0 or more Dot(s), 

0 or more UHook(s), 1 VLine, 0 or 

more Slash(es)  

 Uncertain 1 or more BHead(s), 0 or more Dot(s), 

0 or more Slash(es), 1 VLine, 0 or 

more UHook (s) 

 Uncertain 1 or more BHead(s), 0 or more Dot(s), 

1 StUHook, 0 or more Uhook(s), 0 or 

more Slash(es) 

 Uncertain 1 or more BHead(s), 0 or more Dot(s), 

1 Lcheck, 0 or more Slash(es), 0 or 

more UHook(s) 

Whole rest  Uncertain 0 or more Dot(s), 1 WRest  

Half rest  Uncertain 0 or more Dot(s), 1 HRest  

Eight rest  

 

Uncertain 1 8Rest, 0 or more Dot(s), 0 or more 

HLine(s) 

Quarter rest  Uncertain 0 or more Dot(s), 1 QRest 
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3.6.4 Modification Operation 

In this stage, we introduce the modification operations for editing the music score.. Instead of buttons, 

we take the advantage of pen based input method and provide some gestures for the modification operations. 

We define two horizontal lines which are higher and lower than the music score, called “border lines.” 

The border lines are the writing borders in the system. The area between two border lines is called “writing 

area,” and the other areas are called “deleting area.” Writing in the writing area is valid, or it is an illegal 

operation. The concept of the modification operations contains two points: (1) if we want to move the location 

or pitch of a note, we could drag parts of a notation or whole notation to the destination directly. (2) If we 

want to delete some parts of the notation or the whole one, just drag it to the deleting area. 

4. Experiment Result 

Experiments are conducted to evaluate the performance of the proposed method. 13801 strokes, collected 

form 14 distinct writers, are used to test our algorithm. 6509 out of 13801 are taken as the training data. The 

remaining 7292 strokes are the testing data. Every stroke in the testing data is examined by symbol 

recognition. Finally, we could get the most similar symbol of the stroke as the output. In our experiments, a 

notebook (Intel T2300 CPU; only single cpu used; 1.66GHz; 1GB memory) and a digital tablet are used. 

In order to measure the performance, we define the “precision” as follows:  

,
IncorrectCorrect

Correct
Precision

+
=  (5) 

The precision for each symbol is shown in Table 4.1. The average precision for the symbols of our 

method is 98.35%, which is better than 97.54% of Miyao- Maruyama’s method [25]. 

 

 

 

Table 4.1 Precision of each symbol (continued). 

Symbol name Our method (%) 

Miyao- Maruyama’s 

method(%) 

WHead 98.46 97.49 

BHead 96.70 99.85 

StUHook 96.90 99.78 

WRest 99.72 99.72 

HRest 100.00 100.00 

QRest 96.41 99.70 

8Rest 95.88 100.00 

Average 98.35 97.54 
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From the misclassified strokes, we find that the misclassification is due to that some users do not have 

any domain knowledge about the music theory, and they are not familiar with writing music notations. 

Sometimes they ignore the detail about the difference between symbols, like the curvature or the corners in a 

stroke. It makes some strokes ambiguous as trying to recognize. For example, if the user ignores the curvature 

between the slash and circle in BHead, the stroke is easily to be recognized as a WHead. 

For the misclassified strokes, we provide the semantic correction to correct the mistakes. There are two 

rules defined in note level of notation recognition. First, while a WHead is misclassified to BHead and 

combine with a Half note, the system would convert BHead to WHead and do the combination. Second, while 

a BHead is misclassified to WHead and combine with Note with filled head, the system would convert 

WHead to BHead and do the combination. By the semantic correction, the precisions of WHead and BHead 

raise to 99.48% and 99.38%. 

The total time of processing the 7292 testing data is about 157.38 seconds. Thus, the average processing 

time is about 0.0216 seconds per stroke. This is faster than Miyao-Maruyama’s method which takes 0.0731 

seconds per stroke by a PC (Pentium 4 CPU; 1.8GHz; 512MB memory). Thus, a user takes less waiting time 

while writing. Furthermore, our method is more suitable to migrate to the handheld devices with touched 

screen which have low computing power, and the user could compose a music score everywhere. 

Table 4.1 Precision of each symbol. (continued). 

Symbol name  Our method (%) 

Miyao- Maruyama’s 

method(%) 

Dot 100.00 99.73 

HLine 97.73 87.31 

VLine 100.00 100.00 

Slash 96.52 96.52 

UHook 100.00 93.85 

GClef 98.80 99.71 

FClefArc 98.55 93.68 

LCheck 99.71 90.81 

NatureRt 97.87 100.00 

Flat 98.69 100.00 

WHead 98.46 97.49 

BHead 96.70 99.85 

StUHook 96.90 99.78 

WRest 99.72 99.72 

HRest 100.00 100.00 

QRest 96.41 99.70 

8Rest 95.88 100.00 

Average 98.35 97.54 
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ፎ൩ࣴزϣᆶচीฝ࣬಄ำࡋǵၲԋႣයҞݩǵࣴزԋ݀ϐᏢೌ܈ᔈҔሽ

ॶȐᙁा௶ॊԋ݀܌ж߄ϐཀကǵሽॶǵቹៜ܈วϐёૈ܄ȑǵࢂց

ӝӧᏢೌයтว܈߄ҙፎճǵЬाวځ܈дԖᜢሽॶǴբᆕӝຑǶ 

1. ፎ൩ࣴزϣᆶচीฝ࣬಄ำࡋǵၲԋႣයҞݩբᆕӝຑ 
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ᇥܴǺ 
 
 
 
 Ǻҙፎճ܈߄ԋ݀ӧᏢೌයтวزࣴ .2

ፕЎǺɎςว߄ ɍ҂ว߄ϐЎዺ ɍኗቪύ ɍค 

Z. H. Ou and L. H. Chen, 2011, "Hiding Data in Tetris", International conference on Machine 

Learning and Cybernetics 2011, Guilin China, 10-13 July. 
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3. ፎ٩Ꮲೌԋ൩ǵೌמബཥǵޗቹៜБय़Ǵຑࣴزԋ݀ϐᏢೌ܈ᔈҔሽ

ॶȐᙁा௶ॊԋ݀܌ж߄ϐཀကǵሽॶǵቹៜ܈วϐёૈ܄ȑȐа
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ӧीฝύךॺϩԃගрΑ UML ጕЋቪᒣسаϷጕޑЋቪᒣسǶӧ

UML ጕЋቪᒣسύǴਥᏵךॺޑᢀჸǴUML ޑკӭъࣁᜪ՟Бࢂ܈ޑკǴ

ӢԜӧҁسύճҔ،ᐋޑБԄǴٰၲډᒣޑਏ݀Ƕ२Ӄךॺᘏ٬ڗҔޣᒡΕკޑ൳

ՖቻǴٰՉಃ໘ޑࢤϩᜪǶௗவᒡΕკᘏךڗॺሡाޑቻǴ܌ځکឦϩᜪύӚ

ঁკޑቻӛໆՉКჹǴջёளډനޑࡕᒣ่݀Ƕҁسϐᓬᗺӧܭёаௗ٬ڙҔޣ

ҺཀޑᒡΕǴ٠ЪᒣޑБݤၨϐࣁ׳ᙁൂԖਏǴ҅ዴ่݀рӧΟӜޑᒣࣁ

91.24%Ƕ 

வጕޑЋቪᒣسࢂҔٰᒵԔޑπڀǴբԔৎதҔܭځബբᆶҬॣࢬ

ǶፕЎύǴךॺ٬Ҕᆶӧર࣬ӕޑਜቪБݤǴճҔӭჄಔӝрॣ಄ဦǶԶჄޑ

ቻԖΟᅿǴଯࡋǴಔԋϐ୷ҁკаϷБӛǴёҔٰᒣрԜჄ܌ឦᜪࠠǴӆஒځಔӝԋ

ࣁЍජ୷ҁബբሡाϐӄॣ಄ဦǴᒣس಄ဦǶҁॣޑሡा܌ 98.35%Ǵ٠Ъගٮ

БߡϷֹ๓ޑঅׯфૈǶ 

നךࡕॺ܌วسޑǴёٮᏢਠܭ௲Ꮲ٬ҔǴќѦࣴ܌วޑᒣБݤǴΨёٮҔܭЋ

 းճҔǶ

 
 

 

 

 

 

 

 

 

 

 

 



 29 

    

୯ࣽံշ୯ࣽံշ୯ࣽံշ୯ࣽံշᚒࣴزीฝΠрৢ୯ᚒࣴزीฝΠрৢ୯ᚒࣴزीฝΠрৢ୯ᚒࣴزीฝΠрৢ୯ሞᏢೌЈளൔሞᏢೌЈளൔሞᏢೌЈளൔሞᏢೌЈளൔ    

                                     ВයǺ100 ԃ 8 Д 1 В    

ǵୖуၸ 

 ಃϺǺ7 Д 9 Вϱрว۳ਲ༜୯ሞᐒǶҗࢂܭಃԛᐱԾΓၟიр୯Ǵख़ଆـǵ

ගԐډΑӝޑӦᗺǶӧޑࡑၸำύǴԖόϿ࣬ϕᇡޑ௲ॺǴӧংᐒਔ൩ς໒ۈፕ۶

ԜࣴޑزϣǶᗨฅѝࢂВதޑ໕ಠǴՠவ௲ॺޑჹ၉ύǴځჴ൩ૈᕇளόϿၗૻǴΨᆉঁࢂ
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ᆶࡌ୯ࣽמεᏢޑำӺ௲ӕჶǶำԴৣӧ೭ϖϺޑՉำύ๏ϒΑךӭࡌᆶႴᓰǴᡣךΜ

ϩགᐟǴΨࡐቼ۩೭ϖϺૈᆶ೭ኬᓬޑذԴৣ࣬ೀǶ 
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җࣴܭҁВ٠ؒԖځдࢲޑǴߡࢂܭӣ܊ډ໔ྗഢ႖ВޑൔǶᗨฅᆶځдᓬޑذᏢޣॺ
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 ಃΟϺǺϞϺύϱ 11 ᗺъǴӧ OMB1 ࢂፕЎǴᚒҞޑΑԾρ߄ԛύวޑ Hiding data in TetrisǶ

၀ԛޑЬৢࢂѠࣽמεᏢޑጰܴ۸௲ǴΨࢂಃϺӧ०ᐒᇡٿޑՏᏢғࡰޑᏤ௲Ƕ

җٿܭϺ൩ςԖၸόϿϕǴӧൔޑၸำύϿΑ٤ᆙޑགǴࡐճӦஒൔֹԋǶ

၀ԛ่ࡕ״Ǵጰ௲ۭدΠΨගΑόϿୢᚒᆶࡌǴߚதགᖴጰ௲ޑႴᓰǶ 

 ಃѤϺǺࢄϺၶډΑ҆ਠٌޑܵԴৣǴ᠋ٌԴৣᇥдҞ҅ӧੇࢩεᏢᏼҺշ௲ǶࢄϺ

Ӣࣁᗋளाྗഢൔޑᜢ߯Ǵ܌аਔ໔КၨцԆǴΨ൩ؒԖࣗሶᐒᆶٌԴৣ௶ᙑǶϞϺޑำ

ᏢғǶޑБӛǴΨᇡΑٌԴৣزࣴޑǴఁၟٌԴৣଆӞǴಠΑΠ۶ԜҞࡕϐ״่
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