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Abstract
In this project, we construct an online handwritteigcognition system of UML diagrams. We use a

decision tree to do recognition. According to observation, the shapes of the notations of UML rdiats
almost look like rectangles or diamonds. Basechandharacteristic, an input notation is first sified to the
correct category. Then some notation features amaated from the input notation and used to dalfin
recognition. The advantages of our system arevileatan accept free style input and our methodnipleir
and more efficient than previous methods. The retiog rate of the top three choices is 91.24%.

We also present an online handwritten system fasienscore recognition. Music score is used to iikcor
a music song. People often used to compose a racsie on the sheet of paper. In our system, weogep
the pen based writing method and use multi-strodxésrm a music notation. We extract the heighgpghand
direction from a stroke as the features and reaegitias a symbol. Then the symbol is combined witter
symbols to form a music notation. The system isisblfior a general use and supports enough musatioms
for composition. The recognition rate is 98.35%.

Keyword: handwritten, music score, UML



First Year: An Online Handwritten Recognition System of UML Diagrams

1. Introduction

In recent years, the development of the handhelicele and pen-based computing hardware, such as
PDAs, electronic whiteboards and tablet compuisrgrown rapidly, and the handwritten systems witiah
work in the freehand drawing environment are sbbrdlemand. There exists some handwritten recognitio
systems in some different applications, includingttimformula [1], engineering drawings [2], tablaeiion
[3] and geometric shapes [4-5]. However, the UdifModeling Language (UML) is widely used in many
different domains but there is no handwritten rextgn system supporting them.

UML diagrams are widely used in the field of softeva&ngineering. Early in the software design cycle,
software engineers need to sketch UML diagram®poesent the whole structure of the system. Enggnee
may draw these diagrams on paper, whiteboard opuaten There are many Computer Assisted Software
Engineering (CASE) tools like Rational Rose or Widio sketch UML diagrams on computer. The
functionality of these CASE tools is robust butytheve some drawbacks. The most serious drawback o
CASE tools is that their design concepts are teglaioriented. Technique oriented design providesgt
capability but it is not convenient to use. Duehese reasons, we want to build a handwritten r@tog
system which can allow people enjoying the freeddmrawing UML diagrams by hand.

In 2000, Damm et al. [8] proposed the Knight Prbjehich is a gesture based system for entering and
editing UML diagrams. Gestures are some simplifkdpes designed by the designer to replace theleomp
notations. Due to that all of the shapes are sfiadli the advantage of gesture based systems ysteas
recognize the input notations. However, the usedsdo learn what the gestures stand for becaegeatie
designed by the designer. In Knight Project, thetiges are separated into two classes, compountdrges
and eager gestures, and they use Rubine’s algof@hto recognize their gestures. The drawbackshef
Knight Project are that the gesture based systamtisntuitional enough. Besides, they do not tllate the
notations supported by their system and there experimental result to show their recognition rate

In 2001, Lank et al. [10] proposed an online recgm algorithm for UML diagrams. The algorithm is
composed of the domain dependent kernel and theaidomdependent kernel. The domain independent
kernel deals with the preprocessing steps, incudapturing the input strokes, stroke grouping sadn,
and the domain dependent kernel is the part ofgr@tion. In the recognition algorithm, they useesiz
number of strokes, the input order of strokes drel dtroke’s bounding box size to recognize the tinpu
notations. Their algorithm does not allow user dngwthe notations in various order because theythise
input order as a feature. Besides, there is norewpatal result to show their recognition rate.

In 2003, Chen et al. [11] proposed another gedtased recognition system for UML diagrams called
SUMLOW. The recognition kernel of SUMLOW combines/sral multi-stroke shape recognition algorithms
to recognize their gestures. The characteristiSOMLOW is that they allow user modifying, copying,
replacing, and deleting input notations via peneldagput technique. Their system has high recagnitate,
but there are only six experienced UML designengaxicipate in their experiment. Thus the recagnitate
IS not objective.

In 2006, Costagiola et al. [12] proposed an onleedgnition method for hand-drawn diagrams based on
grammar formalism, namely Sketch Grammars. The ogetises a parse tree and the Sketch Grammar t
recognize input notations. To enhance the recagnitate, the authors propose a language recognizeh

1



can help the original recognizer to select the bestpretation. This method can be adapted toremgtion
besides UML diagrams and has high recognition tdtevever, a troublesome problem for this method is
how the grammars train for new notations.
2. UML NOTATION DATABASE

UML diagrams have thirteen different types and ntben forty different notations. However, some of
these notations are used rarely and their shagesnare complex. In the project, we choose 23 ranati
based on UML concepts and the frequency of usagectnize. These 23 notations are shown in Figuire

In the project, we invite 20 persons to draw then@gations ten times for each and collect the iatad
they draw. We randomly choose half of the ink datdraining, and the rest for testing.

Structure
Actaor Class Component Interface Dhject Paclkage Mode
Behavior
|:|
Activationbar Activity State Usze Caze
Relationship
—_— | — | - > > >
Agaregation Corrprmunication Dependency Transition Generalize
Others
I
|
I
O @ ° — !
|
|
Branch End Initial Fork Mote Lifeline Swirnlane

Figure 2.1 Supported notations of the system.

3. PROPOSED METHOD

The proposed method is based on a decision tieslawn in Figure 3.1. The whole process consists o
four major phases geometric feature extraction, category classifietation feature extraction (NFE), and
final classifier. In the geometric feature extrantiphase, some geometric features, such as conuex h
bounding rectangle, PA ratio and Area ratio, argaexed from the input notation. In the categomssifier
phase, the features extracted in the previous phiesesed to classify the input notation to theohging
category. In the notation feature extraction phése,input notation is divided into primitives atiten we
extract features like direction, location and dis&from these primitives. In the final classifdrase, based
on the extracted features, a similarity measupgasided. Based on the similarity measure, thelresiation
that is most similar to the input notation is detiered.
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Figure 3.1 The proposed method.

3.1 Geometric Feature Extraction

According to our observation, the notations supzbrh the system can be divided into five categorie
i.e. circle, line, rectangle, diamond, and othdrased on their geometric properties. This phasectst
geometric features from input notation to classifio the correct category. The geometric featwesused
include convex hull, bounding rectangle, PA ratid &rea ratio. Each of these features is desciliebalv.
3.1.1 Convex Hull

The convex hull for a set of points X is the minincanvex set containing X. Figure 3 gives two
examples to illustrate convex hull. We use the @nalscan algorithm [14] to find the convex hull loé input
notation. Figure 3.2 (b) shows the convex hull mfirgput notation “Actor”. The blue line denotes ttenvex
hull. After finding the convex hull, we compute perimeter and the area. These values will be uséoe
following section.

_Z convex hull

(a) (b)

Figure 3.2 Two examples to illustrate convex hal A convex hull of a set of points. (b) The
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convex hull of an input notation “Actor”.
3.1.2 Bounding Rectangle

The bounding rectangle is the minimum rectangletaiomg the input notation. We scan all points of
input notation to find the minimum values of x apdccoordinates, and the maximum values of x and y
coordinates. After finding these coordinates, we thleem to establish the bounding rectangle of tipeiti
notation. Figure 3.3 shows an example of the baowghdectangle of an input notation “Actor”. The bding
rectangle is shown by red lines. After finding th@unding rectangle, we compute its perimeter amed.ar
These values will be used in the following section.

()

Figure 3.3 An example of the bounding rectanglaroinput notation “Actor”.

3.1.3 PA Ratio
PA ratio proposed by Kimura [6] is defined as

PA ratio = Perimeter?, /Area ., )

where Perimetey, denotes the perimeter of the convex hull of thpeiimotation, and Areg denotes the area
of the convex hull of the input notation. Note ttia perimeter and area partly define the shajpa abject.

This ratio will be a constant for some kinds ofghaFor instance, PA ratio = 16 for any squarearegile
and PA ratio = 4 for any circle. Size independent is the main athge of PA ratio. In the project, PA ratio
is used to classify circle and line.

3.1.4AreaRatio
Area ratio is also proposed by Kimura [6]. Theaasi defined as

Arearatio= Area., /Areg,, (2)

where Aregg is the area of the bounding rectangle of an imotation.
Area ratio also has the property of size independarthe project, we use this ratio to distinguibke
rectangle and the diamond shape.

3.2 Category Classifier

After extracting geometric features, we use thesgufes to classify the input notation to the airre
category. The 23 supported notations are sepat@tieee categories including circle, line, rectamgtliamond,
and others. The classification of each notatioshewn in Figure 3.4. Four different filters, namelycle
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filter, line filter, rectangle filter and diamondtér, are provided to distinguish the five catagerin the
category classifier. The flowchart of the categdassifier is shown in Figure 3.5.

3.2.1 CircleFilter

In the category classifier, we use the circle fitte check for circles first. In the project, weeUBA ratio
for circle filter. PA ratio of a perfect circle @ny size is a scalar/2. Due to that the input may not be a
perfect circle, we need to train a threshold raagmund 4r to classify the input notation. To train the
threshold, we compute the PA ratio of the notatibel®nging to the circle category in the trainirajabase
first. Then we find a maximum and a minimum asupper bound and the lower bound of threshold range.

Circle

Line

Driamond

Fectangle D

|

©,
= (=
—_—

“| g ;

Figure 3.4 The classification of each notation.
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Figure 3.5 The flowchart of the category classifier

3.2.2 LineFilter

If the input notation does not belong to the cicdgegory, it will be checked by the line filterei¢, we
use PA ratio for line filter. Due to the Perimeigof a line is close to twice of the length of inmattation and
the Areagy of a line is closed to the product of the lengthnput notation and\h which is the maximum
distance between input stroke and its convex hh PA ratio of a line can be approximated by

21y _ 4l

PA ratio = = ,
@ = Txan T ah . SinceAh << | the PA ratio should be large. Here, we taR8 as a threshold value

obtained by training. Figure 3.6 shows two exampbesxplain why the PA ratio is greater than ashodd.
In Figure 3.6, the black line is user’s input ahd ted line is the convex hull. To avoid the ewbdividing
zero, we set the PA ratio equal to 200 when tha aféhe convex hull of a line is equal to zero.

I
/
Ah
Ah

Figure 3.6 Two examples to show the PA ratiosroddi



3.2.3 Rectangle Filter

Rectangle filter will be used when the notation slo@t belong to the circle or line category. In the
project, we use Area ratio for rectangle filter.cAading to the fact that the AreaCH of a rectanglalmost
equal to the AreaBR of the rectangle, the Areaorafi a rectangle is close to 1. Figure 3.7 shows tw
examples to explain the fact mentioned above. guté 3.7, the black line is user’s input, the rieé s the
convex hull and the green line is the boundingamegle. To get a threshold range, we also traimgb&angle
notations in the training database.

| |-

-

Figure 3.7 Two examples to show the Area ratio®ofangles.

3.2.4 Diamond Filter

If input notation is not considered as a circldina or a rectangle, it will be checked by the dosth
filter. In the project, we use Area ratio for diamdofilter. We assume that the notations belongmghe
diamond category are all upright patterns. The gyed a diamond is nearly two times of the Asgaf a
diamond based on our assumption. In other wor@sAtka ratio of a diamond is nearly 0.5. Figuresh8ws
two examples to explain why the Area ratio of amtbad is nearly 0.5. In Figure 3.8, the black lisauser’s
input, the blue line is the convex hull and the lieé is the bounding rectangle. We use a thresharidge
which is trained using the diamond notations in titeéning database to check whether the input rootat
belongs to the diamond category or not.

Figure 3.8 Two examples to show the Area ratiodiafonds.

3.2.5 Other Notations
If the input notation does not belong to any catggoentioned above, it will be classified to théets
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category. In our experiments, after category di@ssion the others category contains Actor andesalv
rectangle notations which are ill-written.
3.3 Notation Feature Extraction

After the input notation is classified to a catgg@ome notation features will be extracted for fihal
classification. Before extracting notation featynee will first segment the notation into severahptives,
which will be described in the following subsectidrhe notation features extracted include the nunobe
primitives, the direction of each primitive, thecsdion of each primitive, the length of each privaf and the
hollowness of the notation. In the following sulissts, we will describe how to extract features.
3.3.1 Primitive

A primitive is defined to be the minimum unit of rtation, which may be a line or an arc. The
advantage of segmenting a notation to primitivethas it is much easier for the shape matching gutoce to
find the matching notation. All the notation feasiare extracted in primitive level except hollosse

To divide a notation to many primitives, we use dyvehain code and the curvature of each point. The
4-way chain code is shown in Figure 3.9. First wenpute the chain code for each point. Then we coenpu
the curvature of each point by

x(i—1) - x(i +1) )

V(-2 = x(i +2)2 + (y(i -1) - y(i +1)? ’ (4)

where X(i), y(i) denotes the x, y coordinates ofnp@i and Cg; is the curvature of point pi. After
computing the curvature, we evaluate the curvatiifference between two neighboring points to fihe t
dominate points, which have curvature differenceatgr than a threshold. Finally, the notation vsd#id into
several segments using the dominate points asaintsp each segment is considered as a primitivénef
notation. When the notation is segmented to mamyifwves, we take the number of primitives, N, bs first
feature. Note that we have two kinds of primitiviese and curve, which are decided by the sequehchain
codes of the primitive. To decide what kind of arptive is, we evaluate the chain code differeneéneen
each two neighboring points in the chain code secgiand sum all of them. If the summation is latban a
threshold, we will decide that it is a curve; othise, it is a line.

Cy, =cos™(

Figure 3.9 4-way chain codes



3.3.2 Direction and L ocation Feature

The direction of a line primitive is defined as tbleain code which appears most frequently in the
primitive. If the primitive is an arc or a curveewset 5 to be its direction. In order to recorddhections of
the extracted primitives as a feature vector, waikhgive an unique id to each primitive. The ptiuas get
their unique ids based on the relative locationsthen notation. Since some notations have someiantat
varieties with 90, 180, and 270 degrees, we proardalgorithm to find relative location.

First, we extract the directions of primitives. Tihéhe primitives with the same direction are cdkelc
and sorted according to their top left corner miminally, each primitive gets its unique id basedthe
sorted list. When all the primitives get their wngids, we combine their directions into a diractfeature
vector. An example is shown in Figure 3.11; theebtwmber in the figure denotes the id of a prireitiVhe
provided algorithm is stated below.

Algorithm to Find Uniqueld

1. Setting variable to 1.

2. Collecting the primitives with directionto a temp list.

3. Sorting the temp list according to the top leftrans point of primitives.

~+

4. Giving a unique id to each primitive in the sortethp list according to its order in the lis

5. Increasing 1 ta. If i is less than 6, go to step 2; otherwise, stop.

When the algorithm is finished, all the primitiveave unique ids and we group the directions of
primitives according to their ids into a vector,RDIwhich is considered as the second notation feaithe
notation in Figure 3.10 has (1, 1, 1, 1, 3, 3)sslirection feature.

1

4

Figure 3.10 An example of the relative locatioreath primitive in a notation with the direction tiea
vectoris (1, 1,1, 1, 3, 3).



3.3.3Length Feature

The length feature is a binary value which repressémat a primitive is long or short. To extracisth
feature, we first find the longest primitive in atation. Then each primitive is compared to they&st one. If
the length of the primitive is larger than halftbé longest one, it is considered as a long prmritotherwise,
it is a short one. The length feature is calculdgd

LEN (i) = 1 if len(i) < %mjaxlen(j)

2 otherwise, 5)

where len(i) denotes the length of tHeprimitive, and max len(j) denotes the length af thngest primitive
in the notation.
3.3.4 Hollowness

The hollowness feature is the only feature extdhatdhe notation level. Hollowness means whether t
shape is a solid one or not. A hollow shape haopepty that there are no points near the graetyter of
the shape. According to this property, we locatecangle with size 60% of the convex hull, anddbeter
of the located rectangle is the same as that o€dineex hull. If the number of points inside thetamgle is
smaller than a threshold, the notation is constlasea hollow shape. Otherwise, the notation isartodllow
shape. Figure 3.11 shows examples of hollownegsir&i3.11 (a) is a hollow shape, and Figure 3.11s(a
solid shape. The hollowness feature, H, is alsmar value and defined by

_{1 If P < t

2 otherwise, 6)

where R, denotes the number of points inside the locatethngle, and t is a threshold value.

gravity center

./

located rectangle

(@) (b)

Figure 3.11 Examples of hollowness. (a) A hollowagsh (b) A solid shape

3.4 Final Classifier

Feature vectors extracted from the operations destabove, including N, DIR, LEN, and H, are taken
for pattern matching at this phase.

In order to obtain the most likely notation for thaput notation, we use the inverse of
sum-of-absolute-difference (SAD) as the similartgasure. Let notations T and T’ be the databassiont
and the input notation respectively, the similabngtween T and T’ is calculated by

SAD(T) =Y I - 7 S(T)=—+
i=1 K SAD (T) (7)
10



where F (F’) denotes the ith feature vector of T (T’), and/fN, DIR, LEN, H}. K; denotes the number of
elements in the feature vectqar F

Due to the dimension of direction feature vectod #he length feature vector are dependent on the
number of primitives, we will pad zero to the smalvector between;Fand F for computing SAD.

T* = arg max S(T)

Let , the input notation is considered to be notatibn T

3.5 MBSASAIgorithm for Database Creation

The final classifier step uses the inverse SADI&aswfy the notation. If we calculate SAD betweba t
input notation and all the notations in the databakich is described in Chapter 2, the processing will
be very long. Therefore, we use MBSAS to reduceditabase and get some representative featurervecto
for reducing the processing time.

Modified Basic Sequential Algorithm Scheme (MBSAS3] is a clustering algorithm. More specifically,
it is an algorithm to group the objects based dnbates. MBSAS does not need to know the number of
clusters. It contains two phases. The first phaserthines the number of clusters; the second plaite
pattern classification.

4. EXPERIMENTAL RESULTS

In order to evaluate the recognition rate of theppsed method, we invite 20 persons, with poor
experience using tablet digitizer and tablet PCshketch 23 supported notations about ten timesézh
notation. We use a tablet digitizer, Wacom Graphi@lE-440, and a tablet PC, HP Compaq tc4200, to
collect the ink data. In the experiment, we randoatioose half of the ink data for training and tést for
testing. Table 1 shows the recognition rate ofpgteposed method. The first column shows that dméytop
one is chosen and the recognition rate is 84.62%.SEcond column shows that the top three oneslesa,
and the recognition rate increases from 84.62%1t2490. We can observe that the notations belorgirnige
Line, Circle, and Diamond categories are classieq well.

In order to show that our proposed method has higd@gnition rate than other methods, we compare
our method to SkGs method [12]. In SkGs methodgtlaee five students to participate the experimamd,
each student draw 20-25 symbols of Use Case diagram recognition method proposed in [12] has two
parts. The first part only used the Grammar basethod to recognize symbol, and the second part cwdb
the Grammar based method and the language recogBeresults will be compared to these two pdns.
the comparison, we also invite five persons drawihg symbols supported in SkGs method, and the
recognition rate is shown in Table 2. In Table 2, san see that the results of the proposed metieddetier
than these two parts besides Actor. Thus, our ratog rate is superior to SkGs method.
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Table 1. The recognition rate of top 1 choice ap3 choices.

Shape Top 1 Accuracy% Top 3 Accuracy%
Activity 73(73/100) 86(86/100)
Aggregation 88.78(87/98) 91.84(90/98)

Activationbar

87.78(79/90)

88.89(80/90)

Actor 87.78(79/90) 92.22(83/90)
Branch 90.91(90/99) 100(99/99)
Class 84.44(76/90) 92.22(83/90)
Component 73.81(62/84) 86.9(73/84)
Communication 100(98/98) 100(98/98)
Dependency 81(81/100) 86(86/100)
End 92(92/100) 92(92/100)
Fork 89.29(75/84) 89.29(75/84)
Generalize 97.96(96/98) 98.98(97/98)
Initial 77(77/100) 81(81/100)
Interface 78.65(70/89) 85.39(76/89)
Lifeline 100(89/89) 100(89/89)
Node 72.22(65/90) 86.67(78/90)
Object 87.78(79/90) 88.89(80/90)
Package 75.56(68/90) 92.22(83/90)
State 71(71/100) 84(84/100)
Swimlane 80.9(72/89) 91.01(81/89)
Transition 94(94/100) 97(97/100)
Use Case 89.89(80/89) 96.63(86/89)
Total 84.62 (1816/2146) 91.24 (1958/2146)
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Table 2. Comparison with SkGs method

SkGs without Language  SkGs with Language

Shape Proposed Method (%
P Recognizer (%) Recognizer (%) P o)

Actor 76.92(10/13) 92.31(12/13) 92.31(12/13)

Use Case 83.3(45/54) 90.74(49/54) 96.30(52/54)

Communication 100(21/21) 100(21/21) 100(21/21)

Dependency 72.73(16/22) 72.73(16/22) 95.45(21/22)

Generalize 81.82(9/11) 100 (11/11) 100(11/11)

Transition 88.89(8/9) 88.89(8/9) 100(9/9)

Total 80.99(98/121) 91.74(111/121) 96.69(117/121)

5. Conclusion

The project proposed an online handwritten recagngystem of UML diagrams based on decision tree.
First, some geometric features are extracted fssdlying the input notation to the correspondiatggory.
Then we extract several notation features in piaitevel and notation level to create the featuetors.
Finally, the similarity measure based on SAD icakdted for getting the final result.

In the system, users can sketch UML diagrams uisibpt computer, digital tablet, and mouse. Users
can sketch any notation in any kind of order in slygstem. After sketching a notation, the standatadtion
will replace the hand-drawn one and be displayetth Wie correct position and size. We also suppsetr u
self-definition function which allows user definimggestures representing the UML notations. Besibeset
characteristics, the most important property of sigstem is that it is relative efficient and simpbeother
methods mentioned above because we use decis®ranie reduction database to reduce the comparisol
time.

Although the system provides many functions of aieig UML diagrams, it is still not enough. In the
future, we will add more functions, such as forwbatkward engineering, modularity, supporting the
multi-layer diagrams, and supporting more UML niotas to make the system become a practical tool.
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Second Year: An Online Handwritten Recognition System of M usic Score

1. Introduction

Music score is a handwritten or printed form of musotations, and it is often used in music
composition and music representation. It consikstalf, clefs, notes, rests, and signatures ..., etc

The common way to record a music score is to whigescore on sheets of papers by pencil or pen. As
the computer technology grows rapidly, Musiciane aesmputer to aid their composition. In early peyio
optical music recognition (OMR) is used to recogrize music score which is scanned to an image eiMery
the error rate of OMR system is relatively high dhe editing work of the music score is slow andides
[15]. Due to the inconvenience of OMR, the onlinesio editing system is proposed. The system cacttyr
output the editing resultant to musicians. Besidese convenient systems are rapidly developingier to
write on the tablet. One is the “point and click/stem, such as MagicScore Maestro [16] and All¢gi,
which selects music notations from menus or icétence, the system can directly input the musictioota
without recognizing them. Nevertheless, the inpotpsses are tedious and complicated due to mangzk
mouse movements [18].

In order to reduce the tedious input processestugebased music score recognition systems are
developed. Musicians could use specific gesturesgpesent specific notations defined by systerossiderg
et al. [19] proposed such a system which uses gesture@nod to input the music notations. In the gesture
part, it combines Calligrapher system [20], Rulsngésture recognition system [21] and their recoggnio
recognize the input gesture. The supported mudgtioas are limited and are not sufficient for sdional
music editors, and some gestures are irrelativeeshapes of the corresponding music notations. mhkes
learning curve long and difficult. Anstieg al.[15] also proposed a gesture-based system calbesdd? After
that, Nget al. [22] proposed an improved version denoted as &2esthich improves both usability and
speed of input, but the gestures in the system htileerelation with the actual writing. The reaagon
accuracy of gesture-based system may be accepitidever, in the gesture-based systems, usersleaust
and remember these miscellaneous gestures. Theréfier gesture-based system is often very constgain
for the user.

Instead of learning miscellaneous gestures, peaebhandwritten systems are developed to catch the
human writing styles. The characteristic of penedasystems is that the writing styles is as theesason
sheets of papers. There are several methods pehdikseneural network, context-free grammar andviBVh
2003, Georgeet al. [18] proposed such a system with artificial neuratworks. They used a multi-layer
perception to learn music notations and extractféaures. The inputs of these handwriting systemes
natural and direct for users, but the error ratg bwalarmingly high. Subsequently, music notaticaus be
recognized by the trained neural networks. Taubetaal. [23] proposed a handwritten music recognition
system based on statistical moments. Neverthalesgurrent system is not stable and not robusagiméor
a general use. In 2005, Maeé al. [24] proposed a generic method which recognizesntilusic score by
context-free grammars and lots of recognizers. Wafately, the user must follow the writing ordensd
writing locations that are defined by professiomalsicians, and it is not friendly for the userst thge not
familiar with the music theory. Miyao and Maruyarf&b] proposed a handwritten system based on time
series data and image features. Their system ygesnic programming and SVM algorithm to recognize
handwritten music notations. However, only a srpalitt of music notations is supported in the systkm.
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other way, the system does not support modificatiparations, such as deleting or moving a notatoial,
this makes the system impractical.

2. Sroke Database

A stroke is a collection of points from pen-downpen-up. A music notation or notation is the basiit
to record music, including staff, clefs, notesiseand signatures ..., etc. When we are writingetlaee some
notations we cannot write in a single stroke, Ihatural or sharp. We have to write multiple strokes
represent a notation. In other way, some notatlemge innumerable dots, heads, or flags, and weotann
assure the exacted strokes in these notations, Werdivide the strokes into 17 kinds of symbolegaties,
as shown in Table 2.1.

In Table 2.1(1), categories (1) to (6) are callsthple symbols, “ which means that they could be
recognized quickly by some extreme properties, lite stroke length. The others are called “complex
symbols,” which means they need to extract theufeatand be classified by the complex symbol diassi
which will be elaborated in the next section.

In our database, we obtained the strokes using @O\ digital tablet written by 14 users. The users a
not expert musicians and do not have any knowledgelit the music theory. For robustness, the proeedu
would be carried out at least 1000 times to eaeh us

Table 2.1 Supported symbols.

S B N

(1) Dot (2) HLine (3) VLine  (4) Slash (Flag) (5) WHk (Flag)

6 7 b 1 LD

(6) GClef (7) FClefArc (8) Flat (9) NaturalRt (10) LCheck
A RENe DO @D ®
(11) StUHook  (12) WHead (13) BHead

L | 1

(14) WRest (15) HRest

Table 2.2 shows all the supported music notationghis system. There are four types of notations
supported.
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Table 2.2 Supported music notations.

(a) Bar line

(b) Group

- A

(c) Determinable note

b ===

(d) Uncertain note

(d) Uncertain note

e e

3. The Proposed Method

In this system, we recognize the input stroke ayrabol and then combine the symbol with other
symbols to form a music notation.

The flow diagram of the symbol recognition is showrig. 3.1. The whole process consists of 4 major
phases: preprocessing, simple symbol classifiatufe extraction and complex symbol classifier.

i No
Input | Pre- L Simple Classified? Feature [, Complex | Matched
. symbol : - symbol [™ bol
stroke | processing . extraction . symbo
classifier classifier
yes T

Fig. 3.1 Flow diagram of the symbol recognition.

After the symbol recognition, the notation recogmtis conducted. Based on the semantic information
the output symbol would be combined with other &xissymbols to form a notation. Finally, the system
outputs the printed music notation and puts ihatexact location on staff.

3.1 Preprocessing
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In order to reduce the noise and variety in thekstr we apply the preprocessing, including smogthin
filter, gap filter and slipped segment remover.
3.1.1 Smoothing Filter

The reason why a stroke jagged is that some eommgrred in the digital tablet or the unstableestae
user is writing in. In order to eliminate thesegawe apply Gaussian filter [26] to make the strokere
smooth and keep the global information of cornerthe stroke.

3.1.2 Gap Filter

Because the digital tablet samples points witlxeditime interval, the writing speed makes theaticés
between two points to be different. There wouldsbene gaps in the stroke. These gaps would affect th
curvature detection in later process.

For each two adjacent points, bkt be thex difference between the two pointly be they difference
between the two points. Then niaxdxdy)>1, we interpolatenaxdxdy) points between them by linear
interpolation.

3.1.3 Slipped segment remover

Slips are the action that user’s pen move to thexpected direction on the digital tablet. In the
beginning and ending to write a stroke, it is etsyenerate surplus slipped segments. We could vemo
slipped segments by detecting whether the lengtheofirst segment or the last segment in a stielshorter
than a given threshold.

In order to eliminate the slipped segments, thet Btep is to find the candidates of slipped sedsadm
and Hall proposed a method [27] to find dominanh{moin a stroke using a support region based oy
chain codes. Then we divide the stroke into sev@gments by dominant points. The first segmentlastd
one are the candidates of the slipped segmerntise llength of the candidate is less than a thrédshiils a
slipped segment and would be removed. The threstslet as half of the gap’s height on staff in iImgsore.
3.2 Simple Symbol Classifier

By observing the 17 kinds of symbols, we find tBatne symbols can be classified quickly by the
extreme properties. We call these symbols as sisyptéols, including Dot, the straight line of HLjnNéLine,
the straight line of Slash, the straight line of &tk and GClef. Here, we will discuss how to classimple
symbols.

Among all symbols, the length of GClef is longelviously. By this property, we could easily recagni
a stroke as a GClef symbol if the length of thelstris longer than the length threshold. The letigtéshold
is set as 12 times gap’s height.

By observing the width and the height of a symldo&é Dot symbol has the smallest width and the
smallest height in symbols. Therefore, the strokeilal be recognized as a Dot symbol if the width #rel
height of the stroke are both shorter than a gimeshold. The threshold is set as half of gapighteon
staff.

To classify if a stroke is a straight line, a lingameasure is defined as

L
G(P(9).P(@)’ @)
whereL denotes the length of the strok¥) denotes Euclidean distané¥s) denotes the starting point of the
stroke andP(e) denotes the ending point of the stroke. If ak&rgs a straight line, the linearity should
approach to 1. Thus, if the linearity is smallartiihe threshold, 1.07, we consider the strokesaisagght line

linearity =

17



and recognize it as HLine, VLine, Slash or UHookading to its slope. Once the stroke is recognaea
simple symbol, it would be output and exit the sphrecognition.
3.3 Feature Extraction

If a stroke is not classified as a simple symba,will do feature extraction from the stroke. Hexe,
take three kinds of features: height, shape arettion.
3.3.1 Height

Notations in music theory have height limitatiomc® notations are formed by symbols, symbols also
have the height limitation. We could extract thegheof a stroke as a feature for rough classiiocat
3.3.2 Shape

As described in Section 3.1.3, each stroke wildh&ded into several segments. Every segment Isas it
special shape. The number of shapes would be usefdlassifying stroke. There are 7 kinds of basiapes
shown in Table 3.1.

Table 3.1 The 7 basic shapes. (1) Horizontal [{ggVertical line. (3) Slash.
(4) Backslash. (5) Clockwise curve. (6) Counterckivise curve.
(7) Circle.

— |/ N D ¢ O
(3) 4) (5) (6) (7

(1) (2)

)

By the linearity and slopes mentioned in Sectidh &e could determine if a segment is a horizdinal
vertical line, slash or backslash. If the segmemtschot belong to straight line, it may be a claskwurve, a
counter-clockwise curve, or a circle.

The difference between the straight line and timeecis that the curve changes its direction vetgrafWe
could accumulate the direction change value toatl@tbat kind of curve the segment is like.

The last step is to calculate the number of evarg kf shapes in the stroke. The vector of dimanSgio
containing numbers of seven shapes is viewed hagedeature.

3.3.3 Direction

The direction is the sequence of writing directiortime order, and it could reflect the writing letyf a
symbol. The direction extracted from the strokelddelp us clarify the difference among some symath
similar shapes. We use the 8 way chain codes t@sept the direction. We could extract the directny
eliminating the duplicate chain codes in the samecton. Note that the dimensions of the directieatures
of different strokes may be different.

3.4 Complex Symbol Classifier

Symbols except simple symbols are complex symip@atures extracted from a stroke, including height,
shape and direction, are taken for complex symlaithing at this phase.

Based on these three features, we construct thaesifeers separately, including height classifsrape
classifier and direction classifier. Because soiymab®ls in some classifiers are similar and are hard
separate them, we build a three level decision tivedeal with this problem. The first level is theight
classifier which roughly classifies symbols by tieight feature. The second is the shape classifech
classifies symbols by the shape feature. The thirdl is the direction classifier which classif@gnbols by
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the direction feature and outputs the recognizedite
3.4.1 Height Classifier

The heights of printed music notations are ruledh®y music theory. Because the music notations are
formed by symbols, symbols also have the heightdiions in writing. By a height threshold, somendpls
will be considered as high and some will be consideas low. However, due to the writing distortisome
symbols sometimes will be considered as in the,lsggmetimes low. We consider these symbols withurens
heights as variant. Fig. 3.2 shows the symbolaendw group, the high group, and the variant group

(b) High
(a) Low (c) Variant
Fig. 3.2 Three groups in height. (a) Low group.Kigh group. (c) Variant

In the height classifier, we use 2 times gap’s lie@n staff as a threshold to classify symbols thi®
high group and the low group. Fig. 3.3(a) showsldwe group in the height classifier. Fig 3.15(bpsls the
high group in the height group. The symbols surdaahby the dotted line and originally belongingtiie
variant group will be handled later.

(a) Low group (b) High group
Fig. 3.3 Two groups in the height classifier. (@nLgroup. (b) High group.

When a new stroke is coming, this classifier clessithe stroke to the high group or low group blase
the height feature.
3.4.2 Shape Classifier

In this stage, we group symbols with similar shégeures. Fig. 3.16 shows the groups with similar
shape features. The shape differeigig,between two shape features is defined as follows:

SD=i Si)? - S20)?, )

whereSlis the vector of the shape featuré&2is the vector of the shape feature 2.

As a new stroke is coming, the classifier could snea the shape distance between the stroke and th
shape templates in each group and applies KNNntb thhe group with the nearest distance. In H1 of Fi
3.4(b), there is only one possible symbol in theugr which will be output directly without further
processing.
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High

Low
L1 L2 L3 L4 H1 H2 H3

(@) (b)
Fig. 3.4 Groups in the shape classifier. (a) Far dooup. (b) For high group.

3.4.3 Direction Classifier

In the third level of the decision tree, we woultbif most likely symbol according to the directi@afure.
We measure the distance between the directionrieafuthe stroke and the direction templates iraloase.
Because the direction features are variable in dgio@, the distance measure could be considerdbeas
string matching problem. We apply the dynamic paogming to obtain the distance.

Let {ai, &,.., a} denotes the direction feature anio{ b,..., g} denotes theéth template in database.
The accumulated distanggi,)) is calculated as follows:

Initial values:
g, (00)=0
9,(01.0) = ,
5,0 ]) = ®)
Recurrence formula:
9@, 1) =min(g, (1 -1 j -2,9,( - 1i).g, 0, j 1)
+differnecda, b)), (4)

where the difference is the chain code differenevben chain coda and chain codey;. The difference is
defined in Table 3.2.

Table 3.2 Difference between two chain codes.

& \by; 0 1 2 3 4 5 6 7
0 0 1 2 3 4 3 2 1
1 1 0 1 2 3 4 3 2
2 2 1 0 1 2 3 4 3
3 3 2 1 0 1 2 3 4
4 4 3 2 1 0 1 2 3
5 3 4 3 2 1 0 1 2
6 2 3 4 3 2 1 0 1
7 1 2 3 4 3 2 1 0
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Using above formula, the distancg(l,J), is calculated. After examining the distanceswaill templates,
we find the symbol with the nearest distance angudithe symbol as the recognized result.

After examining the distances with all templatee,fimd the symbol with the nearest distance anguiut
the symbol as the recognized result.
3.5 Notation Recognition

After a stroke is recognized as a symbol, the matatecognizer will be conducted by combining
symbols. The output symbol will be combined witlepously recognized and unused symbols to form a
notation based on the semantic information. Theee3devels in the notation recognition. The otpart of
notation recognition is modification operation.
3.6.1 Bar Levd

In music theory, a bar is a container containingegoand a bar line is used to separate bars.rnn ou
system, the bar would be constructed automaticdallyint the user. We combine unused symbols to farm
bar line in the bar level. In each bar, the pseumialers of the bar are pre-drawn in our systemd@éfme the
head and the end of the bar as the reactive arefobining symbols separately. By the shape oflibas,
we define the components in Table 3.3 to descridve o form a bar line.

Table 3.3 List of bar line with the set of compotseiorming them.

Bar line name Component

Single bar line ( | ) 1 VLine

Double bar line Il ) 2 VLines

End bar line (Il ) 3 VLines

Repeat sign Iinéll ) 1 Dot, 0 or more VLines
3.6.2 Note L evel

Notes are used to represent the relative duratinpach of a sound in the music score. Symbols are
combined to form a note in this level. By the cosipon of a note in music theory, there are thygees$ of
notes: determinable, uncertain and incomplete. ®@t@ble note means that the numbers of symbadtsaire
fixed. The uncertain note means there are innuneeddis, heads, or flags in it. The incomplete net part
of a certain note and recorded as a temporaryindtgs system.

When a new symbol is coming to this level, we wosg@rch the nearest uncertain or incomplete note.
We do not have to search the determinable noteusecit is impossible to add more symbols to ith#é
distance to the nearest note is too large, we woalgtruct a new empty incomplete note, and adddve
symbol to it. Then check the symbols with ruleJable 3.4 [25] , which consists of three caseHsvis:

1. If we find a match in the table, then update theeramd set its type.

2. If we could not find a match in the table, and $eé of symbols is a subset of a note, then we laeld t

symbol to the note and set its type to be incoreplet

3. If we could not find a match and the set of symbslaot a subset of a note, then the new symbol

would be discarded.
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Table 3.4 List of notes with the set of symbolsriorg them .

Note name Type Components

FClef Determinable | 2 Dots, 1 FClefArc
Determinable | 1 FClefArc

Sharp Determinable | 2 HLines, 2 VLines
Determinable | 2 Slashes, 2 VLines
Determinable | 1 HLine, 1 Slash, 2 VLines
Determinable | 2 UHooks, 2 VLines
Determinable | 1 HLine, 1 UHook, 2 VLines
Determinable | 1 Slash, 1 UHook, 2 VLines

GClef Determinable| 1 GClef

Natural Determinable| 1 LCheck, 1 NaturalRt
1 LCheck, 1 8Rest

Flat Determinable| 1 Flat

Whole note Uncertain 0 or more Dot(s), 1 or morda&d(s)

Half note Uncertain 0 or more Dot(s), 1 VLine, 1 or more
WHead(s)

Note with filled head | Uncertain 1 or more BHead(s), 0 or more Dot(s),
0 or more UHooK(s), 1 VLine, O or
more Slash(es)

Uncertain 1 or more BHead(s), 0 or more Dot(s),
0 or more Slash(es), 1 VLine, 0 or
more UHooK (s)

Uncertain 1 or more BHead(s), 0 or more Dot(s),
1 StUHook, 0 or more Uhook(s), 0 or
more Slash(es)

Uncertain 1 or more BHead(s), 0 or more Dot(s),
1 Lcheck, 0 or more Slash(es), O or
more UHooK(s)

Whole rest Uncertain 0 or more Dot(s), 1 WRest

Half rest Uncertain 0 or more Dot(s), 1 HRest

Eight rest Uncertain 1 8Rest, 0 or more Dot(s), 0 or more
HLine(s)

Quarter rest Uncertain 0 or more Dot(s), 1 QRest

3.6.3 Group Levd

In music theory, when two or more notes with filleglad and flags appear successively, we could groug
them using a beam to replace the flags. When pialyia music score, the notes with beam should be mo
connected than non-beamed notes. As writing, uakvays draw a horizontal line across the notes to
represent the grouping action. In the group lewelgroup the notes to form a beamed note.
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3.6.4 Modification Operation

In this stage, we introduce the modification operst for editing the music score.. Instead of m&to
we take the advantage of pen based input methograndie some gestures for the modification opersiti

We define two horizontal lines which are higher dmaer than the music score, called “border lines.”
The border lines are the writing borders in theteays The area between two border lines is calledtitwy
area,” and the other areas are called “deleting.’ab'riting in the writing area is valid, or it isn illegal
operation. The concept of the modification operaioontains two points: (1) if we want to move ltheation
or pitch of a note, we could drag parts of a notator whole notation to the destination directB) [f we
want to delete some parts of the notation or thelevbne, just drag it to the deleting area.
4. Experiment Result

Experiments are conducted to evaluate the perforenahthe proposed method. 13801 strokes, collected
form 14 distinct writers, are used to test our Athm. 6509 out of 13801 are taken as the traimiatp. The
remaining 7292 strokes are the testing data. Ewtmgke in the testing data is examined by symbol
recognition. Finally, we could get the most sim#ggmbol of the stroke as the output. In our expents, a
notebook (Intel T2300 CPU; only single cpu use@6GHz; 1GB memory) and a digital tablet are used.

In order to measure the performance, we definégrexision” as follows:

Precision= Correct : (5)
Correc + Incorrec

The precision for each symbol is shown in Table #ie average precision for the symbols of our

method is 98.35%, which is better than 97.54% ofddi Maruyama’s method [25].

Table 4.1 Precision of each symlifobntinued)
Miyao- Maruyama’s

Symbol name Our method (%) method (%)
WHead 98.46 97.49
BHead 96.70 99.85
StUHook 96.90 99.78
WRest 99.72 99.72

HRest 100.00 100.00
QRest 96.41 99.70

8Rest 95.88 100.00
Average 98.35 97.54
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Table 4.1 Precision of each symb@ontinued)
Miyao- Maruyama’s

Symbol name Our method (%) method(%)
Dot 100.00 99.73
HLine 97.73 87.31
VLine 100.00 100.00
Slash 96.52 96.52
UHook 100.00 93.85
GClef 98.80 99.71
FClefArc 98.55 93.68
LCheck 990.71 90.81
NatureRt 97.87 100.00
Flat 98.69 100.00
WHead 98.46 97.49
BHead 96.70 99.85
StUHook 96.90 99.78
WRest 99.72 99.72
HRest 100.00 100.00
QRest 96.41 99.70
8Rest 95.88 100.00
Average 98.35 97.54

From the misclassified strokes, we find that theataissification is due to that some users do ne¢ ha
any domain knowledge about the music theory, amy #wre not familiar with writing music notations.
Sometimes they ignore the detail about the diffeedmetween symbols, like the curvature or the asrimea
stroke. It makes some strokes ambiguous as trgimgdognize. For example, if the user ignores threature
between the slash and circle in BHead, the str®lkeasily to be recognized as a WHead.

For the misclassified strokes, we provide the séimaorrection to correct the mistakes. There are t
rules defined in note level of notation recognitidfirst, while a WHead is misclassified to BHeadl an
combine with a Half note, the system would conB#tead to WHead and do the combination. Second gwhil
a BHead is misclassified to WHead and combine Wtte with filled head, the system would convert
WHead to BHead and do the combination. By the sémaarrection, the precisions of WHead and BHead
raise to 99.48% and 99.38%.

The total time of processing the 7292 testing datbout 157.38 seconds. Thus, the average pragessi
time is about 0.0216 seconds per stroke. Thisstefahan Miyao-Maruyama’s method which takes 01073
seconds per stroke by a PC (Pentium 4 CPU; 1.8GHAVIB memory). Thus, a user takes less waiting time
while writing. Furthermore, our method is more ahbie to migrate to the handheld devices with todche
screen which have low computing power, and the cseld compose a music score everywhere.
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