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Abstract: A 1-factor of a graph G = (V,E) is a collection of disjoint edges which contain all
the vertices of V . Given a 2n− 1 edge coloring of K2n, n ≥ 3, we prove there exists a 1-factor
of K2n whose edges have distinct colors. Such a 1-factor is called a ‘‘Rainbow.’’ c© 1998 John
Wiley & Sons, Inc. J Combin Designs 6: 1–20, 1998
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1. INTRODUCTION

A 1-factor in a graph G = (V,E) is a set of pairwise disjoint edges in E which contain
all the vertices in V . A 1-factorization of G is a partition of the edges in E into 1-factors.
These notions can be generalized to hypergraphs: If V = {v1, v2, . . . , vn} is a finite set and
E = {Ei|i ∈ I} is a family of nonempty subsets of V such that ∪i∈I Ei = V , then the pair
(V,E) is a hypergraph with vertex set V and edge setE. A 1-factor of the hypergraph is a
collection of pairwise disjoint edges which contain all the vertices of V . A 1-factorization
of the hypergraph is a partition of the edges of E into 1-factors. If V = {v1, v2, . . . , vn}
andE is the set of all k-element subsets of V then (V,E) is denoted byKk

n and is called the
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complete k-uniform hypergraph on n vertices. Zs. Baranyai [1] has proven that there
exist 1-factorizations of all Kk

kn, k ≥ 2. The reader will note that if k = 2 then K2
2n is

simply the complete graph on 2n vertices.
In 1977 Alexander Rosa suggested the following interesting problem: Given a 1-

factorization, F , of Kk
kn, n ≥ 3, prove there exists a 1-factor in Kk

kn whose edges belong
to n different 1-factors of F . The first author [2] has investigated this problem and has
shown that for any 1-factorization, F , of Kk

kn, k ≥ 2, there exists a 1-factor whose edges
belong to at least n− 1 1-factors of F . There is a colorful way to think of Rosa's problem.
Imagine coloring the edges ofKk

kn in such a way that any two edges have the same color if
and only if they belong to a common 1-factor ofF . Then Rosa's conjecture states that there
exists a 1-factor in Kk

kn with the property that no two of its edges have the same color—a
colorful 1-factor. We will call such a 1-factor a rainbow. This is also commonly called
an orthogonal 1-factor. Formally, an edge coloring of a graph G = (V,E), is a function
φ : E → {1, 2, · · ·} such that adjacent edges have distinct images. A k-edge coloring is an
edge coloring whose image set is {1, 2, . . . , k}. The purpose of this article is to show that
Rosa's conjecture is true for certain complete graphs:

Theorem 1.1. For any 2n−1 edge coloring ofK2n, n ≥ 3, there exists a 1-factor whose
edges have exactly n colors.

It remains an open problem whether rainbows exist in all 1-factorizations of Kk
kn for

k ≥ 3.

2. EXTENDING A PREVIOUS RESULT

We begin the proof of the theorem mentioned above. LetG = (V,E) = K2n be a complete
graph on 2n vertices, n ≥ 3, and F a 1-factorization of G. Assume that φ is a 2n− 1 edge
coloring of G. It has been shown [2] that there exists a 1-factor, F , in G whose edges are
colored with at least n−1 colors. A moment's reflection shows that ifG = K6, no 1-factor
in G can have edges of only two colors. This means that F must have edges of 3 different
colors. We have dispatched the case where G = K6 and now consider G = K2n, n ≥ 4.

For brevity of notation we will denote an edge {vi, vj} as vivj and define edge sets
F = {e1 = v1v2, e2 = v3v4, . . . , en = v2n−1v2n} and F ′ = F \ {e1}. We can assume

FIG. 1.
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that the n− 1 edges of F ′ have colors n+ 1, n+ 2, . . . , 2n− 1, and that edge e1 has color
n+ 1. Let T = {e ∈ E|e is incident with v1 or v2 and φ(e) ≤ n}. Obviously |T | = 2n.

Two cases can occur:

1. one edge in F ′ is incident with exactly four edges in T , or

FIG. 2.
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FIG. 2. (continued)

2. each of at least two edges in F ′ is incident with exactly three edges in T .

Otherwise at most one edge in F ′ is incident with exactly 3 edges in T , and the other n− 2
edges in F ′ are incident with at most two edges in T . This, however, would account for

FIG. 3.
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FIG. 4.
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FIG. 5.
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FIG. 5. (continued)

only 3 + 2(n− 2) = 2n− 1 of the edges of T , a contradiction. The proof breaks into the
two cases stated above:

Case 1. There exists an edge, say e2 = v3v4, in F ′ incident with exactly four edges in
T [Fig. 1(a)]. If φ(v1v3) 6= φ(v2v4), then by replacing v1v2 and v3v4 in F with v1v3 and
v2v4 we have constructed a rainbow inG. A similar argument holds if φ(v1v4) 6= φ(v2v3).
Therefore, without loss of generality, we assume φ(v1v3) = φ(v2v4) = 1 and φ(v1v4) =
φ(v2v3) = 2 and consider the two subcases below:

Subcase 1.1. φ(v3v4) = x > n+ 1.
Let A = E1,2 ∪ E3,4 where E1,2 = {e ∈ E|e is incident with v1 or v2, and φ(e) ∈

{3, 4, . . . , n, x}}, and E3,4 = {e ∈ E|e is incident with v3 or v4, and 3 ≤ φ(e) ≤ n}.
Obviously, |A| = 4(n − 2) + 2. By the pigeon-hole principle there exists an edge, say
v5v6, in F ′′ = F ′ \ {v3v4} which is incident with at least 5 edges in A. We continue the
proof by examining all distinct ways in which 5 edges in A can be incident with the edges
in F . In each case we demonstrate how F can be modified (by adding and deleting edges)
to form a rainbow in G. Since there will be many cases to consider, we handle each case
by drawing a figure of the graph with some accompanying statements that indicate how a
rainbow can be constructed. In every figure, each edge is labeled with its color.

For example, omitting symmetric cases, there are two distinct ways [Fig. 2(a) and 2(b)]
that 5 edges in A can be incident with edges v1v2, v3v4, and v5v6 where deg(v5) = 4,
and deg(v6) = 1. Consider Figure 2(a). The statement ‘‘d 6= e → 1, d, e’’ means if
φ(v4v5) 6= φ(v2v6), then we can add to F edges v1v3, v4v5, and v2v6 (which are colored
1, d, and e, respectively) and delete edges v1v2, v3v4, v5v6 from F to obtain a rainbow.
On the other hand, ‘‘d = e → 2, c, e’’ means that if φ(v4v5) = φ(v2v6), then (F \
{v1v2, v3v4, v5v6}) ∪ {v1v4, v3v5, v2v6} is a rainbow. The cases where the deg(v5) = 1
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FIG. 6.

and deg(v6) = 4 are analogous to the cases represented by Figures 2(a) and 2(b) and as
a result are omitted. Figures 2(c)–2(n) represent distinct ways in which 5 edges in A can
be incident with edges v1v2, v3v4, and v5v6 where deg(v5) = 3, and deg(v6) = 2. We
consider cases where v5 is adjacent to v1, v2, and v3 and where v5 is adjacent to v1, v3, and
v4. We omit the symmetric cases where v5 is adjacent to v1, v2, and v4 and where v5 is
adjacent to v2, v3, and v4. The cases with deg(v5) = 2 and deg(v6) = 3 being analogous,
are also omitted.

Subcase 1.2. φ(v3v4) = n+ 1.
In this case we letA = {e ∈ E|e is incident with one of {v1, v2, v3, v4} and 3 ≤ φ(e) ≤

n}. Clearly, |A| = 4(n−2). By the pigeon-hole principle, either one edge inF ′′ is incident
with at least 5 edges in A, or every edge in F ′′ is incident with exactly 4 edges in A. In
handling subcase 1.1, we never used the edge colored x in constructing any rainbow. As a
result, our previous arguments in subcase 1.1 apply here as well when one edge in F ′′ is
incident with 5 edges of A.
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FIG. 7.

We are left to consider the case where every edge in F ′′ is incident with 4 edges in A.
Call an edge in F ′′ ‘‘type one’’, if one of its vertices is incident with exactly 1 edge in A
(and the other vertex with exactly 3). Call the edge ‘‘type two’’ if both vertices are incident
with exactly two edges in A, and call it ‘‘type three’’ if one of its vertices is incident with
4 edges in A. Every edge in F ′′ belongs to one of the three types. Figures 3(a) to 3(c)
demonstrate how to obtain a rainbow in the cases where F ′′ contains a type one edge, and
so we proceed with the assumption that F ′′ contains only edges of types two and three.

Suppose v5v6 is a type 3 edge and that v5 is incident with 4 edges of A. Consider the
n edges colored 1, 2, . . . , n which are incident with v6. None of these edges is incident
with v1v2 or v3v4 since v5v6 is a type three edge. By the pigeon-hole principle, there is an
edge in F ′′, say v7v8, which is incident with two of the n edges described above. Figure
4 addresses the case in which that edge is type three and Figures 5(a) to 5(e) handle the
cases in which that edge is type two. Notice that the edges of A which contain vertices
v7 or v8 are colored 3 or 4. We can do this without loss of generality since using three or
more colors results in an immediate rainbow by appropriately swapping edges. Note that in
Figures 5(a) to 5(c), the edges of A which contain vertices v7 or v8 are adjacent to exactly
two other vertices. In Figure 5(d) these edges contain exactly 3 other vertices, and in Figure
5(e) these edges contain 4 other vertices. Because of the symmetry of the subgraph induced
by vertices in {v1, v2, v3, v4} and its edge coloring, many subgraphs similar to 5(d) and
5(e) are omitted.
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FIG. 8.

As a result of the remarks above, we assume that all edges in F ′′ are of type two. Let
v5v6 be a type two edge. Figures 6(a) to 6(d) indicate how to obtain a rainbow in the
cases where there are at least 3 vertices in {v1, v2, v3, v4} which are incident with edges
of A containing v5 or v6. Figures 7(a) to 7(c) illustrate the cases in which exactly two
vertices in {v1, v2, v3, v4} are incident with 4 edges of A containing v5 or v6. In each
of these graphs we assume a = d and b = c, otherwise a rainbow is easily found. The
reader should note that these subgraphs are isomorphic if you are allowed to relabel the
colors. We must show that a rainbow can be constructed in each of these cases. Let
Bi,j = {vxvy ∈ F ′′|vivx, vivy, vjvx, vjvy ∈ A}. Without loss of generality, we assume

that v5v6 ∈ B3,4. Obviously |B3,4| ≤ (n−2)
2 since there are n − 2 edges in A which are

incident with v3 and each edge in B3,4 is incident with two of these edges in A.

Suppose |B3,4| = (n−2)
2 , then it is easy to see that |B1,2| is also (n−2)

2 . Recall that each

edge inF ′′ is of type 2 and as a result is incident with exactly 4 edges inA. If |B3,4| = (n−2)
2 ,

then the edges of B3,4 are incident with exactly 2(n− 2) edges in A. This means there are
2(n− 2) edges of A not incident with edges in B3,4. These edges are all incident with v1
or v2. Also there are n− 2 edges in F ′′ \B3,4. Each of these edges is incident with exactly

4 edges in A. We must have B1,2 = F ′′ \ B3,4 and |B1,2| = (n−2)
2 . Let v5v6 be an edge
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FIG. 8. (continued)
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FIG. 9.

in B3,4. Without loss of generality we assume v3v5 = v4v6 = 3 and v3v6 = v4v5 = 4,
otherwise a rainbow is achieved by swapping edges. For instance, if v3v5 = 3 and v4v6 = 4,
then (F \ {v3v4, v5v6}) ∪ {v3v5, v4v6} is a rainbow. Consider the n − 3 edges colored
5, 6, . . . , n, n+ 1 which are incident with v5. At most 2( (n−2)

2 −1) = n−4 of these edges
are incident with edges in B3,4, other than v5v6, and so at least one edge is incident with
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FIG. 9. (continued)

an edge in B1,2. Call that edge v7v8. Figure 8(a) demonstrates how to construct a rainbow
in this case.

On the other hand, suppose we assume that |B3,4| < (n−2)
2 . In this case we consider the

n−4 edges incident with v5 which are colored 5, 6, . . . , n. Now |B3,4| ≤ (n−2)
2 −1 and at

most 2( (n−2)
2 − 2) = n− 6 of these n− 4 edges are incident with edges in B3,4 other than
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FIG. 10.

v5v6. Thus, at least one of the n − 4 edges, say t, is incident with an edge in F ′′ \ B3,4.
This means t is incident with an element of either B1,2, B1,3, B1,4, B2,3, or B2,4. Each of
these situations are handled in Figures 8(a) to 8(d).

Case 2. There exist at least two edges, say v3v4 and v5v6 inF ′ each of which are incident
with exactly 3 edges in T . We examine two subcases [Figure 1(b)–(c)].

Subcase 2.1. Consider Figure 1(b). Without loss of generality we may assumeφ(v1v3) =
φ(v2v4) = 1, φ(v1v5) = φ(v2v6) = 2, φ(v1v4) = 3, and φ(v2v5) = 3 or 4. We also let
φ(v3v4) = x and φ(v5v6) = y and note that x 6= y and at least one of x and y is not equal
to n + 1. In what follows we assume that y 6= n + 1 and the strategy will be to find a
1-factor that includes y (we omit this edge in the accompanying diagrams).

If φ(v2v5) = 3 let E1 = {e = v1vz|φ(e) = 4, 5, . . . , n}, E2 = {e = v2vz|φ(e) =
4, 5, . . . , n}, E3 = {e = v3vz|φ(e) = 2, 4, 5, . . . , n}, and E4 = {e = v4vz|φ(e) =
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FIG. 10. (continued)

4, 5, . . . , n}. Let A = E1 ∪ E2 ∪ E3 ∪ E4, then no edge in A has two vertices in
{v1, v2, v3, v4} otherwise we can easily find a rainbow. Since the edges described above
are distinct, we have |A| = 3(n − 3) + (n − 2) = 4(n − 3) + 1 and by the pigeon hole
principle there exists an edge v7v8 in F ′′ \ {v5v6} which is incident with 5 edges in A.
Without loss of generality we may assume that v7 is incident with 3 or 4 of the edges of A.
Figures 9(a) to (d) handle the cases in which v7 is incident 4 edges of A. Figures 9(e) to
(p) handle the cases in which v7 is incident 3 edges of A and v8 is incident 2 edges of A.
In Figures 9(e, f, h, i, k, l, n, and o) one of the edges incident with v8 is omitted. Since the
missing edge could be incident with 3 other vertices, these figures represent 3 cases.
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FIG. 10. (continued)

If φ(v2v5) = 4 we let E1 = {e = v1vz|φ(e) = 4, 5, . . . , n}, E2 = {e = v2vz|φ(e) =
3, 5, . . . , n}, E3 = {e = v3vz|φ(e) = 2, 4, 5, . . . , n}, and E4 = {e = v4vz|φ(e) =
2, 5, . . . , n}. Note that none of the 1-factors produced in Figure 9 use an edge with color
3. As a result, an analogous argument to that of the previous paragraph together with the
diagrams in Figure 9 apply in this case as well.

Subcase 2.2. Consider Figure 1(c). Without loss of generality we may assumeφ(v1v4) =
3, φ(v1v6) = 4, φ(v1v3) = φ(v2v4) = 1, and φ(v1v5) = φ(v2v6) = 2. Again we let
φ(v3v4) = x and φ(v5v6) = y 6= n + 1. Let E1 = {e = v1vz|z ≥ 7 and φ(e) =
5, 6, . . . , n}, E2 = {e = v2vz|z ≥ 7 and φ(e) = 5, 6, . . . , n}, E3 = {e = v3vz|z ≥ 7
and φ(e) = 4, 5, . . . , n}, and E5 = {e = v4vz|z ≥ 7 and φ(e) = 1, 5, . . . , n}. Note that
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FIG. 10. (continued)

if two vertices in {v1, v2, v3, v5} are joined by an edge colored 1, 4, 5, 6, . . . , n, then we
can immediately find a rainbow. As a result, If A = E1 ∪ E2 ∪ E3 ∪ E5, then we assume
|A| = 4n − 14. Let F ′′′ = F ′′ \ {v5v6}. If there is an edge, say v7v8, in F ′′′ which is
incident with 5 edges in A, then we are able to construct a rainbow using the graphs in
Figure 10. Therefore, we assume that each edge in F ′′′ is incident with at most 4 edges
in A.

Let v7v8 be an edge which is incident with exactly 4 edges in A and let S be the set of
4 edges. If the edges of S are incident with exactly two vertices in {v1, v2, v3, v5} then by
exchanging edges we obtain a 1-factor of a type which was handled in Case 1. For example,
in Figure 11, the edges of S are incident with only v1 and v5. If we remove edges v1v2 and
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FIG. 10. (continued)

v5v6 and add edges v1v5 and v2v6 we obtain a 1-factor in which an edge with a repeated
color (edge v1v5) satisfies the conditions in Case 1.

On the other hand, if the edges of S are incident with 3 or 4 of the vertices in {v1, v2, v3,
v5}, it is easy to see that either v7 or v8 is incident with all 4 edges in S, or two of the edges
in S are disjoint and have different colors. In the latter case, rainbows are easily found. For
example, in Figure 12, we can construct a rainbow by using edges colored a, b, 2, and 3.
The reader is left to check the 5 other possibilities.

We next consider the former case:

1. Each edge in F ′′′ is incident with at most 4 edges in A, and
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FIG. 11.

2. If an edge inF ′′′, say v7v8, is incident with 4 edges inA, then all 4 edges are incident
with v7 or all are incident with v8.

Most of the edges in F ′′′ are incident with 4 edges in A. To see this, call an edge in F ′′′

‘‘type one’’ if it is incident with at most 3 edges in A, otherwise call the edge ‘‘type two.’’
Note that if there are at least 3 type one edges then the largest number of edges in A which
are incident with edges in F ′′′ is (3)(3) + 4(n− 6) = 4n− 15. Since A contains 4n− 14
edges, this would not account for all the edges of A. There must be at most two type one
edges in F ′′′. If vxvy is a type two edge, we call vx a ‘‘degree 4’’ vertex if 4 edges of A
contain vx. Otherwise, call the vertex a ‘‘degree 0’’ vertex. We intend to show that there
is an edge e, containing two degree 0 vertices, such that ϕ(e) ∈ {1, 2, . . . , n}.

Suppose v7v8 ∈ F ′′′ and v7 is a degree 4 vertex. Consider the set of edges B = {e =
v8vx|φ(e) = 1, 2, . . . , n}. At most 4 of these edges are incident with type one edges since

FIG. 12.
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FIG. 13.

there are at most two type 1 edges. It is straightforward to show that if any edge in B is
incident with a vertex in {v1, v2, v3, v4, v5}, then F can be modified to produce a rainbow.
One edge in B might be incident with v6 and so there are at least n− 5 edges in B which
are incident with at most n− 6 edges in F ′′′ other than v1v2, v3v4, v5v6, v7v8 and any type
one edges. We see there is an edge, say v9v10, which is incident with 2 edges in B, and so
one of the two edges is incident with a degree 0 vertex. This is the edge e(=v8v9) alluded
to in the paragraph above. Figure 13 shows how to construct a rainbow in this case.
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