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Abstract: A 1-factor of a graph G = (V| F) is a collection of disjoint edges which contain all
the vertices of V. Given a 2n — 1 edge coloring of K,,,n > 3, we prove there exists a 1-factor
of K5, whose edges have distinct colors. Such a 1-factor is called a ‘‘Rainbow.”” © 1998 John
Wiley & Sons, Inc. J Combin Designs 6: 1-20, 1998
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1. INTRODUCTION

A 1-factor in a graph G = (V, E) is a set of pairwise disjoint edges in £ which contain
all the vertices in V. A 1-factorization of G is a partition of the edges in E into 1-factors.
These notions can be generalized to hypergraphs: If V' = {v1,vs, ..., v, } isafinite set and
E = {E;|i € T} is a family of nonempty subsets of V such that U;c; E; = V/, then the pair
(V, E) is a hypergraph with vertex set V and edge set E. A 1-factor of the hypergraph is a
collection of pairwise disjoint edges which contain all the vertices of V. A 1-factorization
of the hypergraph is a partition of the edges of E into 1-factors. If V' = {v1,va,...,v,}
and F is the set of all k-element subsets of V then (V, E) is denoted by K and is called the
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2 WOOLBRIGHT AND FU

complete k-uniform hypergraph on n vertices. Zs. Baranyai [1] has proven that there
exist 1-factorizations of all K¥  k > 2. The reader will note that if k¥ = 2 then K3, is
simply the complete graph on 2n vertices.

In 1977 Alexander Rosa suggested the following interesting problem: Given a 1-
factorization, F, of K l’jn, n > 3, prove there exists a 1-factor in K ,’jn whose edges belong
to n different 1-factors of F. The first author [2] has investigated this problem and has
shown that for any 1-factorization, F, of K ,’gn, k > 2, there exists a 1-factor whose edges
belong to at least n — 1 1-factors of F. There is a colorful way to think of Rosa's problem.
Imagine coloring the edges of K7 in such a way that any two edges have the same color if
and only if they belong to a common 1-factor of 7. Then Rosa's conjecture states that there
exists a 1-factor in K ,’jn with the property that no two of its edges have the same color—a
colorful 1-factor. We will call such a 1-factor a rainbow. This is also commonly called
an orthogonal 1-factor. Formally, an edge coloring of a graph G = (V, E), is a function
¢: E — {1,2,---} such that adjacent edges have distinct images. A k-edge coloring is an
edge coloring whose image setis {1,2,..., k}. The purpose of this article is to show that
Rosa's conjecture is true for certain complete graphs:

Theorem 1.1.  Forany 2n—1 edge coloring of Ka,,,n > 3, there exists a 1-factor whose
edges have exactly n colors.

It remains an open problem whether rainbows exist in all 1-factorizations of K} for
k> 3.

2. EXTENDING A PREVIOUS RESULT

We begin the proof of the theorem mentioned above. Let G = (V, E) = Ko,, be a complete
graph on 2n vertices, n > 3, and F a 1-factorization of G. Assume that ¢ is a 2n — 1 edge
coloring of GG. It has been shown [2] that there exists a 1-factor, F, in G whose edges are
colored with at least n — 1 colors. A moment's reflection shows that if G = Kg, no 1-factor
in G can have edges of only two colors. This means that ' must have edges of 3 different
colors. We have dispatched the case where G = K¢ and now consider G = Ka,,,n > 4.
For brevity of notation we will denote an edge {v;,v;} as v;v; and define edge sets
F = {e1 = viva,€2 = v304, ..., = Uapn_10a,} and F' = F \ {e;}. We can assume
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that the n — 1 edges of F” have colors n + 1,7+ 2,...,2n — 1, and that edge e; has color
n+ 1. Let T = {e € Ele is incident with v; or v9 and ¢(e) < n}. Obviously |T'| = 2n.
Two cases can occur:

1. one edge in F’ is incident with exactly four edges in T', or

azd->1,4ad azd-o1,a,d

a=d-2cd a=d->2cd

(d) (e) U]

cxrd-1t,cd ard-o>1,a d

¢c=d—>2 a,d a=d—»> 2 a, e

@ ) ®

FIG. 2.
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b#e->1,b,e bxd-1,b,d bres2b, e

b=e—>22¢e b=d-2¢d b=eo1,ce

® ® ®

czxe—>1,¢c e azxd-o>1,a,d
c=e—>2 b e a=d—>2a, e
(m) n)

FIG. 2. (continued)

2. each of at least two edges in F” is incident with exactly three edges in T'.

Otherwise at most one edge in F” is incident with exactly 3 edges in 7', and the other n — 2
edges in F” are incident with at most two edges in T'. This, however, would account for

a . °

i

cxd—o>1,¢cd cxd—>2c¢d cxd-o>n+1,¢,d
c=d—>2 b, d c=d->1,bd c=d->1,ad
@ () ©)

FIG. 3.
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Immediate rainbow: 3, 4, 2, n+2

(®)

FIG. 5. (continued)

only 3+ 2(n — 2) = 2n — 1 of the edges of T', a contradiction. The proof breaks into the
two cases stated above:

Case 1. There exists an edge, say e; = vsvy, in F’ incident with exactly four edges in
T [Fig. 1(a)]. If ¢(v1v3) # P(vavy), then by replacing vy ve and v3v, in F with v;vs and
V904 We have constructed a rainbow in G. A similar argument holds if ¢(v1v4) # ¢d(vavs).
Therefore, without loss of generality, we assume ¢(v1v3) = P(vavs) = 1 and @(vyv4) =
¢(v2v3) = 2 and consider the two subcases below:

Subcase 1.1. ¢(vsvy) =2 > n+ 1.

Let A = Eq2 U E34 where E; o = {e € Ele is incident with vy or vs, and ¢(e) €
{3,4,...,n,z}}, and E3 4 = {e € Ele is incident with v3 or v4, and 3 < ¢(e) < n}.
Obviously, |A| = 4(n — 2) + 2. By the pigeon-hole principle there exists an edge, say
vsvg, in F'' = F’\ {v3zvys} which is incident with at least 5 edges in A. We continue the
proof by examining all distinct ways in which 5 edges in A can be incident with the edges
in F'. In each case we demonstrate how F' can be modified (by adding and deleting edges)
to form a rainbow in GG. Since there will be many cases to consider, we handle each case
by drawing a figure of the graph with some accompanying statements that indicate how a
rainbow can be constructed. In every figure, each edge is labeled with its color.

For example, omitting symmetric cases, there are two distinct ways [Fig. 2(a) and 2(b)]
that 5 edges in A can be incident with edges vj vz, v3v4, and vsve where deg(vs) = 4,
and deg(vg) = 1. Consider Figure 2(a). The statement ‘‘d # e¢ — 1,d,e’’ means if
d(v4v5) # P(vav6), then we can add to F' edges vy vs, v405, and vovg (Which are colored
1, d, and e, respectively) and delete edges vvs, v3v4, V5v6 from F' to obtain a rainbow.
On the other hand, “‘d = e — 2,¢,e’” means that if ¢(vqv5) = @(vavg), then (F \
{v1v2, V304, V506 }) U {0104, V305, 206} is a rainbow. The cases where the deg(vs) = 1
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a#c—>1,a,¢ a#¢c—>2a,c
a=¢c->2 b, ¢ a=c->n+1 b,c
@ (b)

bxec—>1,b ¢ azc—>1,ac
b=c—>2a,c¢c a=¢c—>2b,c¢
© (d)
FIG. 6.

and deg(vg) = 4 are analogous to the cases represented by Figures 2(a) and 2(b) and as
a result are omitted. Figures 2(c)-2(n) represent distinct ways in which 5 edges in A can
be incident with edges vyv2, v3v4, and vsvg where deg(vs) = 3, and deg(vg) = 2. We
consider cases where vj is adjacent to vy, vo, and vs and where v5 is adjacent to vy, vs, and
vy. We omit the symmetric cases where v5 is adjacent to vy, va, and vy and where v is
adjacent to vy, v3, and vy. The cases with deg(vs) = 2 and deg(vg) = 3 being analogous,
are also omitted.

Subcase 1.2. ¢(v3vy) =n + 1.

In this case we let A = {e € E|e is incident with one of {vy, v2, v3,v4} and 3 < ¢(e) <
n}. Clearly, |A| = 4(n—2). By the pigeon-hole principle, either one edge in F"’ is incident
with at least 5 edges in A, or every edge in F is incident with exactly 4 edges in A. In
handling subcase 1.1, we never used the edge colored x in constructing any rainbow. As a
result, our previous arguments in subcase 1.1 apply here as well when one edge in F”' is
incident with 5 edges of A.
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FIG. 7.

We are left to consider the case where every edge in F” is incident with 4 edges in A.
Call an edge in F” “‘type one”’, if one of its vertices is incident with exactly 1 edge in A
(and the other vertex with exactly 3). Call the edge ‘type two’” if both vertices are incident
with exactly two edges in A, and call it ‘‘type three’’ if one of its vertices is incident with
4 edges in A. Every edge in F”' belongs to one of the three types. Figures 3(a) to 3(c)
demonstrate how to obtain a rainbow in the cases where F”’ contains a type one edge, and
so we proceed with the assumption that F”/ contains only edges of types two and three.

Suppose vsvg is a type 3 edge and that vy is incident with 4 edges of A. Consider the
n edges colored 1,2,...,n which are incident with vg. None of these edges is incident
with vy vy or v3v4 since vsvg is a type three edge. By the pigeon-hole principle, there is an
edge in I, say vyvs, which is incident with two of the n edges described above. Figure
4 addresses the case in which that edge is type three and Figures 5(a) to 5(e) handle the
cases in which that edge is type two. Notice that the edges of A which contain vertices
vy or vg are colored 3 or 4. We can do this without loss of generality since using three or
more colors results in an immediate rainbow by appropriately swapping edges. Note that in
Figures 5(a) to 5(c), the edges of A which contain vertices v; or vg are adjacent to exactly
two other vertices. In Figure 5(d) these edges contain exactly 3 other vertices, and in Figure
5(e) these edges contain 4 other vertices. Because of the symmetry of the subgraph induced
by vertices in {v1, va, v3,v4} and its edge coloring, many subgraphs similar to 5(d) and
5(e) are omitted.
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FIG. 8.

As a result of the remarks above, we assume that all edges in I are of type two. Let
vsvg be a type two edge. Figures 6(a) to 6(d) indicate how to obtain a rainbow in the
cases where there are at least 3 vertices in {vy, v, v3,v4} which are incident with edges
of A containing v or vg. Figures 7(a) to 7(c) illustrate the cases in which exactly two
vertices in {v1, va, U3, v4} are incident with 4 edges of A containing vs or vg. In each
of these graphs we assume a = d and b = c¢, otherwise a rainbow is easily found. The
reader should note that these subgraphs are isomorphic if you are allowed to relabel the
colors. We must show that a rainbow can be constructed in each of these cases. Let
B, ; = {vyvy € F"|vjvy, 00y, vjv,,vjv, € A}. Without loss of generality, we assume

(n—2)

that vsvs € B3 4. Obviously |B3 4| < =5~ since there are n — 2 edges in A which are

incident with v3 and each edge in Bs 4 is incident with two of these edges in A.

Suppose |Bs 4| = (";2) , then it is easy to see that | By 2| is also @ Recall that each

edgein F” is of type 2 and as aresultis incident with exactly 4 edgesin A. If | B3 4| = (";2) ,
then the edges of Bs 4 are incident with exactly 2(n — 2) edges in A. This means there are
2(n — 2) edges of A not incident with edges in Bj 4. These edges are all incident with v,

or vy. Also there are n — 2 edges in F'\ B3 4. Each of these edges is incident with exactly
4 edges in A. We must have By o = F” \ B34 and |By 2| = (”—52) Let vsvg be an edge
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in B3 4. Without loss of generality we assume v3vs = v4v6 = 3 and v3vg = v4v5 = 4,
otherwise arainbow is achieved by swapping edges. For instance, if vsvs = 3 and vyvg = 4,
then (F'\ {vsvy, vsv6}) U {v3v5,v406} is a rainbow. Consider the n — 3 edges colored
5,6,...,n,n+ 1 which are incident with v5. At most 2(“’—52) —1) = n—4 of these edges
are incident with edges in B3 4, other than vsve, and so at least one edge is incident with
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FIG. 9. (continued)

an edge in B . Call that edge v7vg. Figure 8(a) demonstrates how to construct a rainbow
in this case.

On the other hand, suppose we assume that | Bs 4| < @ In this case we consider the

n — 4 edges incident with v5 which are colored 5, 6, ..., n. Now | B3 4| < ("—;2) —land at

most 2(@ —2) = n — 6 of these n — 4 edges are incident with edges in Bs 4 other than
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d#e—>d e xvy b*e->x vy b e
bxe-sb e 1y
d=e—c, e 2, x b=e— c e 4 x
b=e—>e d 3y
@ (&) ©
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b=e-d, e 4x b=e-—ae3y b=e—ce 3,y
@ (e) U]
FIG. 10.

vsvg. Thus, at least one of the n — 4 edges, say t, is incident with an edge in F"’ \ Bs 4.
This means ¢t is incident with an element of either B 2, B1 3, B1 4, B2 3, or By 4. Each of
these situations are handled in Figures 8(a) to 8(d).

Case 2. There exist at least two edges, say v3v,4 and vsvg in F” each of which are incident
with exactly 3 edges in 7. We examine two subcases [Figure 1(b)—(c)].

Subcase 2.1. Consider Figure 1(b). Withoutloss of generality we may assume ¢(v,v3) =
d(vavy) = 1, d(v1v5) = d(vavg) = 2, p(v1v4) = 3, and ¢p(vavs) = 3 or 4. We also let
¢(v3vy) = z and ¢(vsvg) = y and note that x # y and at least one of z and y is not equal
to n + 1. In what follows we assume that y # n + 1 and the strategy will be to find a
1-factor that includes y (we omit this edge in the accompanying diagrams).

If p(vovs) = 3let By = {e = viv.|p(e) = 4,5,...,n}, B = {e = vyv,|¢(e) =
4,5,...,n}, B3 = {e = vzv,|pp(e) = 2,4,5,...,n}, and By = {e = vgv.|d(e) =
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czec, e Xy brd—b dxy bze-sb e xy

b=d—oa d 3y

c=e—ae 1y b=e—:a,e,3,y

o
) o

b#d->b,d 2 x aze—>a e xy bxd-b, d 2 x

b=d—>c d 4 x a=e->bhe 4x b=d->c¢dxy

[} 4] U]

FIG. 10. (continued)

4,5,...,n}. Let A = E; U Ey U E3 U Ey, then no edge in A has two vertices in
{v1, va, v3,v4} otherwise we can easily find a rainbow. Since the edges described above
are distinct, we have |A| = 3(n — 3) + (n — 2) = 4(n — 3) + 1 and by the pigeon hole
principle there exists an edge vyvs in F” \ {vsvg} which is incident with 5 edges in A.
Without loss of generality we may assume that v7 is incident with 3 or 4 of the edges of A.
Figures 9(a) to (d) handle the cases in which v7 is incident 4 edges of A. Figures 9(e) to
(p) handle the cases in which v7 is incident 3 edges of A and vg is incident 2 edges of A.
In Figures 9(e, f, h, i, k, 1, n, and o) one of the edges incident with vg is omitted. Since the
missing edge could be incident with 3 other vertices, these figures represent 3 cases.
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bze—>be 2 x bzd-b, d 4 x aze—sa exy
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FIG. 10. (continued)

If p(vavs) = 4 we let By = {e = vivy|gp(e) = 4,5,...,n}, Ea = {e = vav,|d(e) =
3,5,...,n} Es = {e = vsvy|gp(e) = 2,4,5,...,n}, and By = {e = vv,|p(e) =
2,5,...,n}. Note that none of the 1-factors produced in Figure 9 use an edge with color
3. As aresult, an analogous argument to that of the previous paragraph together with the
diagrams in Figure 9 apply in this case as well.

Subcase 2.2. Consider Figure 1(c). Withoutloss of generality we may assume ¢(v1v4) =
3,(,25(1)11)(;) = 47¢(U1’U3) = QZ)(”U21)4) = 1, and ¢(U1U5) = ¢(UQU6) = 2. Again we let
¢(vsvg) = z and P(vsve) = y # n+ 1. Let By = {e = viv,]z > 7 and ¢(e) =
5,6,...,n}, Ey = {e = vau,|z > T and ¢(e) = 5,6,...,n}, B3 = {e = vzv,|z > 7
and ¢(e) = 4,5,...,n}, and F5 = {e = v4v,|z > 7 and ¢(e) = 1,5,...,n}. Note that
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cre—c e 2, X bxd->b dxy bre—ob e Xy
c=e—acely b=d->cd 4x b=e—c e 4x
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b=e-ce3?2 b=doc dxy

U] ) ®

FIG. 10. (continued)

if two vertices in {v1,v2,vs3,v5} are joined by an edge colored 1,4,5,6,...,n, then we
can immediately find a rainbow. As a result, If A = F; U E5 U F5 U Ej5, then we assume
|A| = 4n — 14. Let F"" = F" \ {vsvg}. If there is an edge, say vrvs, in F'” which is
incident with 5 edges in A, then we are able to construct a rainbow using the graphs in
Figure 10. Therefore, we assume that each edge in F"” is incident with at most 4 edges
in A.

Let v7vg be an edge which is incident with exactly 4 edges in A and let S be the set of
4 edges. If the edges of S are incident with exactly two vertices in {v1, va, v3, U5 } then by
exchanging edges we obtain a 1-factor of a type which was handled in Case 1. For example,
in Figure 11, the edges of S are incident with only v; and v5. If we remove edges v, v and
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bteob e 2 x
bzd-b, d 4 x
b=e-ocexy axd—>a d23
b=d-ad 3y
a=d-cd 4 x

w @ @

c#d—c,d 4 x

c=d->a d23

]

FIG. 10. (continued)

vsve and add edges vy vs and vovg we obtain a 1-factor in which an edge with a repeated
color (edge v1vs) satisfies the conditions in Case 1.

On the other hand, if the edges of S are incident with 3 or 4 of the vertices in {v1, v, v3,
vs }, it is easy to see that either v7 or vg is incident with all 4 edges in .S, or two of the edges
in S are disjoint and have different colors. In the latter case, rainbows are easily found. For
example, in Figure 12, we can construct a rainbow by using edges colored a, b, 2, and 3.
The reader is left to check the 5 other possibilities.

We next consider the former case:

1. Each edge in F"” is incident with at most 4 edges in A, and
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FIG. 11.

2. Ifanedgein F'", say v;us, is incident with 4 edges in A, then all 4 edges are incident
with v7 or all are incident with vg.

Most of the edges in F'” are incident with 4 edges in A. To see this, call an edge in F"”’
“‘type one’’ if it is incident with at most 3 edges in A, otherwise call the edge *‘type two.”’
Note that if there are at least 3 type one edges then the largest number of edges in A which
are incident with edges in "’ is (3)(3) + 4(n — 6) = 4n — 15. Since A contains 4n — 14
edges, this would not account for all the edges of A. There must be at most two type one
edges in F". If v,v, is a type two edge, we call v, a ‘‘degree 4’* vertex if 4 edges of A
contain v,. Otherwise, call the vertex a ‘‘degree 0’” vertex. We intend to show that there

is an edge e, containing two degree O vertices, such that p(e) € {1,2,...,n}.
Suppose vrvg € F and vy is a degree 4 vertex. Consider the set of edges B = {e =
vgvz|p(e) = 1,2,...,n}. Atmost4 of these edges are incident with type one edges since

FIG. 12.
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there are at most two type 1 edges. It is straightforward to show that if any edge in B is
incident with a vertex in {v1, va, v3, v4, U5 }, then F' can be modified to produce a rainbow.
One edge in B might be incident with vg and so there are at least n — 5 edges in B which
are incident with at most n — 6 edges in F'" other than v1vs, v3v4, v5vg, v7vs and any type
one edges. We see there is an edge, say vgv19, which is incident with 2 edges in B, and so
one of the two edges is incident with a degree 0 vertex. This is the edge e(=wvgvyg) alluded
to in the paragraph above. Figure 13 shows how to construct a rainbow in this case.
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