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Abstract

This report presents a two-stage camera cal-
ibration method. In the first stage, a new
calibration method for cameras without lens
distortion is used, which is based on the pro-
jective relation of a straight line. The distor-
tion coefficients are corrected in the second
stage. Our method is useful to circumvent
the not convergent problem when consider
all types of distortion together. The experi-
ment generates an accurate calibration.

2 Introduction

Camera calibration is important for the ap-
plication of a vision system to reconstruct-
ing 3-D world information from 2-D im-
ages. Many techniques have been develope-
d for camera calibration. The perspective
transformation matrix method proposed by
Faugeras and Toscani [1] and the method
of the focus of expansion (FOE) presented

by Ma [2] are two typical methods of the
intrinsic calibration for the case of no lens
distortion. The disadvantage of the FOE
method is the difficulty to find the accurate
FOE because of the digital image quantiza-
tion. Several methods considering lens dis-
tortion incorporates the perspective trans-
formation matrix method. The explicit cal-
ibration method of Wei and Ma [3] uses the
cross ratio technique to find the distortion
center and the radial distortion coefficient.

This report presents a two-stage camera
calibration method. The first stage solves
the intrinsic and extrinsic parameters for
a lens with known distortion coefficients,
while the second corrects the distortion co-
efficients. Our new method is established
by using the relationship between a 3-D line
and its projective image line. In the second
stage, we suggest to take into account dif-
ferent types of distortion in sequence.

3 Calibration Method

3.1 First Stage: No Distortion

We first consider a pinhole camera model
without lens distortion. Let Ec and Ei de-
note the camera frame and the image pix-
el frame, respectively. The effective focal
length is denoted by f . The intersection
point of the optical axis and the image plane
is (u0, v0) in pixels.
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Let Pi be an 3-D point with the coordi-
nates (xci, yci, zci) with respect to frame Ec.
The ideal image coordinates of the projec-
tion of the point Pi on the image plane with-
out lens distortion are (ūi, v̄i): ūi − u0 = f

δu

xci
zci = fx

xci
zci ,

v̄i − v0 = f
δv

yci
zci = fy

yci
zci

(1)

where δu and δv are the horizontal and ver-
tical spacing of the image sensor array (m-
m/pixel). Then, u0, v0, fx, and fy are the
intrinsic parameters of a camera.

Let di be a directional vector of the s-
traight line Li. It is known that the pro-
jection images of points on a straight line
on the image plane still form a straight line
for a lens without distortion. Let the ideal
image pixel coordinates of the projection of
the points Pi and Pj be (ūi, v̄i) and (ūj, v̄j),
respectively. The slope of the image line of
the projection of the line Li is then µi/νi,
where µi = ūj − ūi and νi = v̄j − v̄i.

The coordinate transformation from Ew
to Ec is a rotation (denoted by R) and
the distance from the origin of Ew to Ec
is a translation t. It is well known that
p<c>i = Rp<w>i + t<c>, where the super-
script “< · >” denotes the representation of
a vector with respect to a specified frame.

Let rij denotes the (i, j)th entry of R. We
obtain the linear regression form of

As = b (2)

where A = [a1, · · · , am]T , b =
[b1, · · · , bm]T , in which bi = −βid<w>i3 with
βi = µiv̄i − νiūi, and

ai=



νid
<w>
i1

νid
<w>
i2

νid
<w>
i3

−µid<w>i1
−µid<w>i2
−µid<w>i3
βid

<w>
i1

βid
<w>
i2


, s=

1
r33



r11fx + r31u0

r12fx + r32u0

r13fx + r33u0

r21fy + r31v0

r22fy + r32v0

r23fy + r33v0

r31

r32


(3)

provided r33 6= 0. Each line Li is given by
two points (xci, yci, zci) and (xcj, ycj, zcj).The
directional vector d<w>i is the displacement
of the platform and is equal to the difference
of the coordinates of Pi and Pj with respect
to frame Ew. In (2), the ideal image (ūi, v̄i)
of the point Pi is used to form ai.

Given m lines Li, m ≥ 8, then s is the
solution to the least squares (LS) problem:
mins ‖As − b‖, where A = [a1, · · · , am]T

and b = [b1, · · · , bm]T . As s is obtained,
then the orthogonality of the matrix R al-
lows us to obtain r33, r31, r32, u0, v0, fx, fy,
and matrix R in order. The sign of r33 is rea-
sonable to be known in advance. To make
good use of (2), we also assume |r33| ≈ 1 to
keep the components of s not too large.

3.2 Second Stage: Distortion
Coefficients

When a lens has distortion, an observed im-
age can be modeled as an ideal perspective
with some distortion terms [4]. Let the real
image coordinates are (ui, vi). Define ρui ≡
ui−u0, ρvi ≡ vi−v0, and f̃ ≡ fy/fx = δu/δv.
Then the distortion model [4] is

δu(ūi − u0) = δuρui + κ̄1δuρui(ρ2
uiδ

2
u + ρ2

viδ
2
v)

+κ̄2(3ρ2
uiδ

2
u + ρ2

viδ
2
v)

+2κ̄3ρuiρviδuδv

+κ̄4(ρ2
uiδ

2
u + ρ2

viδ
2
v) (4)

δv(v̄i − v0) = δvρvi + κ̄1δvρvi(ρ2
uiδ

2
u + ρ2

viδ
2
v)

+2κ̄2ρuiρviδuδv

+κ̄3(ρ2
uiδ

2
u + 3ρ2

viδ
2
v)

+κ̄5(ρ2
uiδ

2
u + ρ2

viδ
2
v) (5)

where κ̄1 is the radial distortion coefficien-
t, κ̄2 and κ̄3 are the tangential ones and κ̄4

and κ̄5 are the prism o However, these coef-
ficients κ̄i are not identifiable for unknown
δu and δv.

We substitute (4) and (5) into (1) to ob-
tain

A∗iκ = b∗i (6)
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where

κ=


κ1

κ2

κ3

κ4

κ5

≡

κ̄1δ

2
u

κ̄2δu
κ̄3δv
κ̄4δu
κ̄5δv

 , b∗i =

 fxxcizci − ρui
fy
yci
zci − ρvi



A∗i ≡
[
ρui(ρ2

ui + ρ2
vi/f̃

2) 3ρ2
ui + ρ2

vi/f̃
2

ρvi(ρ2
ui + ρ2

vi/f̃
2) 2ρuiρvi

2ρuiρvi ρ2
ui + ρ2

vi/f̃
2 0

ρ2
uif̃

2 + 3ρ2
vi 0 ρ2

uif̃
2 + ρ2

vi

]
(7)

Equation (6) provides a LS method to esti-
mate the distortion coefficients κ, instead of
the original ones κ̄i. According to our expe-
rience, the radial distortion is dominant in
the lens distortion, and the prism one is the
least important. We then propose a modi-
fied iteration way in the following:

Algorithm 1: Camera Calibration.

A1. Let the initial value of κ be 0.
A2. (First Stage) Let κ2 = · · · = κ5 = 0

and substitute them and the estimated
κ1 into (4) and (5) to compute ūi and
v̄i. Then solve u0, v0, fx, fy, R while
considering only the points whose im-
age coordinates are near (0, 0) pixel.

A3. (Second Stage) Assign the parameters
u0, v0, fx, fy, R, and κ as those es-
timated above and reconstruct the 3-D
coordinates of the measured points with
respect to Ec. Let κ2 = · · · = κ5 = 0
and solve κ1 by (6) while considering
only the points whose image coordi-
nates are far away from (0, 0) pixel.

A4. Repeat A2 and A3 until the parameters
converge.

A5. Repeat A2 and A4, but let κ2 and κ3

vary and still keep κ4 = κ5 = 0. If the
parameters converge, go to A6. Other-
wise, stop the algorithm and retain the
estimate result at the end of A4.

A6. Repeat A2 and A3, but let all κ2, . . . , κ5

vary. If the parameters converge, they
are the estimate result. Otherwise, stop

the algorithm and retain the estimate
result at the end of A5.

The 3-D space reconstruction method in
step A3 is similar to the stereo vision
method, only the distance between two cam-
eras is replaced by the displacement of the
camera.

To determine the convergence of the pa-
rameters, we compare the residual errors of
the LS method, instead of the parameter es-
timates, between iterations. Both residual
errors in stages 1 and 2 are taken into ac-
count, since stage 1 uses the central points
and stage 2 does the far points.

4 Experiments

The experiment equipment is a three-
orthogonal-axis platform with a camera
mounted on the z-axis. The 640 × 480 im-
age has the center at (0, 0) pixel. A small
black disk is observed for the subpixel accu-
racy. The camera are moved along the x-,
y-, and z-axis to collect the image points, a
virtual 13 × 13 × 11 point-type cuboid will
be observed. The distance between the ad-
jacent levels in z- axis or the adjacent points
in x- or y-axis is 10 mm. The distance be-
tween the lens and the central point of the
top level (Level 0) is about 70 mm. We use
only eight points for A2. The eight points
are the conners of the largest rhombus and
the ones of the largest rectangle on Level
0 and Level 10, respectively. We select the
longest 14 lines connected by these 8 points.
The candidate points for A3 are those on
Level 0 and outside of a circle with the ra-
dius of 160 pixels, centered at the origin of
the image plane. However, we select only
12 evenly radially distributed points for all
experiments.

Fig. 1 shows typical experiment results.
In Figs. 1(a) and 1(b), the line L1 is the his-
tory of the residual norm of A4, while the
lines L′1 and L

′′
1 are those of A5 and A6, re-

spectively. It is apparent that A6 (i.e., L′′1) is
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not convergent, so κ4 and κ5 should be set to
zero. We also did a usual iteration procedure
that takes κ1, κ2 and κ3 (and all κ1, . . . , κ5,
respectively) into account together in a sin-
gle iteration loop, the result is depicted as
L2 (and L3, respectively). L3 is not con-
vergent like L′′1 . It can be seen that stage
2 converges faster than stage 1. However,
we ask for the convergence of both stages,
so stage 1 determines the required number
of iterations. It follows from Fig. 1(a) that
the numbers of iterations for L1 and L′1 are,
respectively, 27 and 6, while that for L2 is
66. According to our experience, the new
sequential iteration way mostly requires less
iterations and is more efficient.

The average errors and the standard devi-
ations of the 3-D reconstruction coordinates
for the final results of A4 and A5 is shown
in Fig. 1(c) and (d), respectively. The set
of estimated parameters additionally com-
prising the tangential distortion (i.e., L′1) is
always better in accuracy than the one with
only the radial distortion when the conver-
gent parameters can be obtained.

5 Conclusions

This report presents a two-stage camera cal-
ibration method. In the first stage, A new
calibration method for cameras with no lens
distortion is used, which is based on the pro-
jective relation of a straight line. The dis-
tortion coefficients are corrected in the sec-
ond stage. Our method suggests three it-
eration loops, which first considers only the
radial distortion, and then encompasses the
tangential and the prism distortion in se-
quence. This is to circumvent the not con-
vergent problem when consider all types of
distortion together.
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