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中英文摘要及關鍵詞 

 

 
摘  要 

 
本研究計畫分兩部分，第一部分為潛伏成長模型(LGM)中level-1誤差共變異結構之鑑

定，我們提出一有效的誤差共變異結構之鑑定方法，該法係基於卡方差異檢定以及自

我相關與偏自我相關檢定，所鑑定結果合乎模型配適與精簡之訴求，並有效降低模型

誤設的可能性，另亦具體說明並示範如何利用SAS PROC CALIS進行level-1誤差共變異

結構之配適，在操作技術上具應用價值，有益於潛伏成長模型之實證研究；第二部分

利用LGM從事投資人情緒實證研究，我們引進潛伏成長模型分析證劵市場投資人情緒

變化趨勢，並提出基於個股資料量測投資人情緒水平與情緒趨勢的方法，包括評估指

標之建立以及信度與效度分析，投資人情緒之分析有利於掌握證券市場干預時機，在

市場管理上具參考價值。 
 
關鍵詞：潛伏成長模型，誤差共變異結構，卡方差異檢定，自我相關，偏自我相關，

穩態，模型誤設，投資人情緒，周轉率，流動性，首次公開發行，驗證性因素分析，

信度，收斂效度，區別效度，套利機制，市場干預。 

 
 

Abstract 
 
This study consists of two parts. The first part is to propose an effective approach to identify 
the level-1 error covariance structure of a latent growth model (LGM). The approach is 
based on the chi-square difference test and the tests for autocorrelations and partial 
autocorrelations. The error covariance structure identified is as simple as possible under the 
condition of achieving model fit. The possibility of model misspecification can be reduced. 
In addition, a tutorial on using SAS PROC CALIS to fit error covariance structures of latent 
growth models has been provided. It is useful for empirical studies using LGM. The second 
part of this study is to conduct an empirical research for investor sentiment by using LGM. 
Moreover, how to measure investment sentiment is specifically addressed, including the 
establishment of appropriate indicators and the assessment of reliability and validity. 
Analyses of investment sentiment are informative for policy makers to capture the timing to 
conduct intervention to stabilize securities markets. 
 
Keywords: latent growth modeling (LGM), error covariance structure, chi-square difference 
test, autocorrelation, partial autocorrelation, stationarity, model misspecification, investor 
sentiment, turnover ratio, liquidity, initial public offering (IPO), confirmatory factor analysis 
(CFA), reliability, convergent validity, discriminant validity, arbitrage mechanism, market 
intervention. 
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1. Using SAS PROC CALIS to Fit Level-1 Error Covariance 
Structures of Latent Growth Models 

 
1.1 Introduction 

 
The latent growth model (LGM) plays an important role in repeated-measure analysis over 

a limited occasion in large sample data (e.g., Meredith & Tisak, 1990; Muthén & Khoo, 1998; 
Preacher, Wichman, MacCallum, & Briggs, 2008, p. 12; Singer & Willett, 2003, p. 9). The 
model can not only characterize intraindividual (within-subject) change over time but also 
examine interindividual (between-subject) difference by means of random growth coefficients, 
and is a typical application of hierarchical linear modeling (HLM). The within-subject errors 
over time and the between-subject errors are conventionally referred to as level-1 and level-2 
errors, respectively. LGM can also be handled by using structural equation modeling (SEM) 
(e.g., Bauer, 2003; Boolen & Curran, 2006; Chan, 1998; Curran, 2003; Duncan, Duncan, & 
Hops, 1996; Mehta & Neal 2005; Meredith & Tisak, 1990; Willet & Sayer, 1994). SEM and 
HLM stem from different statistical theory, and each has developed its own terminology and 
standard ways of framing research questions. However, there exists much overlap between the 
two methodologies under some circumstances. Typically, when a two-level data structure 
arises from the repeated observations of a variable over time for a set of individuals (such that 
time is hierarchically nested within each individual), SEM is analytically equivalent to HLM 
(e.g., Bauer, 2003; Bovaird, 2007; Curran, 2003; MacCallum, Kim, Malarkey, & 
Kiecolt-Glaser, 1997; Raudenbush, 2001; Rovine & Molenaar, 2000; Willett & Sayer, 1994). 
The SEM approach provides advantages over the HLM approach in examining model fit, 
modeling the change over time for latent constructs, with the curve-of-factors model, 
embeding LGM into a larger latent variable model, with the factor-of-curves model, and 
incorporating measurement models for latent predictors (e.g., Bauer, 2003; Bollen & Curran, 
2006, Chap. 7, 8; Bovaird, 2007; Chan, 1998; Curran, 2003; Duncan, Duncan, & Strycker, 
2006, Chap. 4; MacCallum, et al., 1997; Raudenbush, 2001; Rovine & Molenaar, 2000). 
However, the SEM approach suffers from a tedious and error-prone data management task. 
Many steps are needed to properly structure the data and the SEM code quickly becomes 
unwieldy. In contrast, the HLM approach allows for simpler model specification, is 
computationally more efficient, and can easily be expanded to higher-level growth models for 
manifest variables (Curran, 2003; Wu, West, & Taylor, 2009). Detailed comparison between 
HLM and SEM can be seen in Bauer (2003) and Curran (2003).  

Specialized software for SEM such as EQS (Bentler & Wu, 2005), LISREL (Jöreskog & 
Sörbom, 2001), Mplus (Muthén & Muthén, 2007), Mx (Neale, Boker, Xie, & Maes, 2003), 
and SAS PROC CALIS (SAS Institute Inc., 2010) are readily available. HLM (Raudenbush, 
Bryk, & Congdon, 2005), MLwiN (Rasbash et al., 2000), and SAS PROC MIXED (SAS 
Institute Inc., 2010) are typical software for HLM. Due to the isomorphism between SEM and 
HLM for the same growth model, parameter estimates with SEM and those with HLM should 
be equivalent. Any minor variations can be attributed to different computational methods used 
(standard maximum likelihood (ML) estimation or full information maximum likelihood 
(FIML) estimation for SEM and restricted maximum likelihood estimation for HLM). 
Relevant discussions have been given in Bauer (2003), Bovaird (2007), Curran (2003), and 
Mehta and Neale (2005).  

Level-1 errors could be autocorrelated. Autocorrelations, considered to be nuisance 
parameters, might result from carryover effects, memory effects, practice effects, or other 
unmodeled associations, and might not be present when a more complex model or a more 
appropriate time structure is used (Grimm & Widaman, 2010; Sivo & Fan, 2008). For 
example, the growth curve ARMA(p, q) model has been proposed to absorb error 
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autocorrelations (e.g., Sivo, Fan, & Witta, 2005; Sivo & Fan, 2008). When level-1 errors are 
autocorrelated, misspecification of their covariance structure has a substantial impact on the 
inference for model parameters (Ferron, Dailey, & Yi, 2002; Kwok, West, & Green, 2007; 
Murphy & Pituch, 2009). However, correct covariance structure is difficult to specify by 
theory (Kwok et al., 2007, p. 588). Therefore, a specification search becomes needed. Littell 
et al. (2006, Chap. 5) illustrated two types of tools with SAS PROC MIXED to help select a 
covariance structure. First are graphical tools to visualize correlation patterns among residuals. 
Second are information criteria measuring the relative fit of competing covariance structures. 
AIC (Akaike, 1974) and BIC (Schwarz, 1978) are commonly used descriptive measures. The 
model that minimizes AIC or BIC is preferred. Before using these methods, researchers 
should first rule out covariance structures that are obviously inconsistent with the 
characteristics of the data. On the other hand, although linear growth curve models are often 
fitted because of their ease in estimation, theory may suggest that more complex growth 
models be used, as they can better capture developmental patterns. Correctly specifying the 
growth model might lead to a simple covariance structure (Grimm & Widaman, 2010). 
Moreover, when the growth model is misspecified, statistical inference during the search 
process can be misleading (Yuan & Bentler, 2004). Therefore, the growth model should be 
well determined before searching for an “optimal” covariance structure for level-1 errors. 

A variety of processes underlying level-1 errors may be specified (e.g., Newsom, 2002; 
Singer & Willett, 2003, Chap. 7; Wolfinger, 1996). SAS PROC MIXED contains more than 
30 different types of level-1 preprogrammed error processes. However, some important 
processes are unavailable and any modification of existing processes is not allowed. In 
contrast, there exists much flexibility in PROC CALIS when specifying error covariance 
structures. For example, the second-order autoregressive process, not available in PROC 
MIXED, can be handled with PROC CALIS. The strength of PROC CALIS is always 
accompanied with technical coding work, which needs to be specifically addressed, and is the 
focus of this study. In addition to PROC CALIS, any comparable SEM software could be 
used. 

There seems to be no commonly acceptable criteria for assessing model fit based on the 
indices such as AIC and BIC resulting from PROC MIXED. In contrast, there is some 
agreement on the cutoff criteria of conventional fit indices based on the likelihood ratio test in 
SEM such as RMSEA, CFI, and NNFI (TLI) (e.g., Hu and Bentler, 1999). However, since in 
SEM-based LGM, the factor loadings are usually fixed at time points rather than freely 
estimated, and the fit of the model to the mean structure should be reflected as well, 
assessment of model fit by using conventional SEM-based fit indices should be cautious 
(Mehta & Neale, 2005; Wu, West, & Taylor, 2009). When every individual is observed at the 
same fixed set of time points (called balanced) with no missing values (called complete), ML 
estimation is used; otherwise FIML estimation is used (Wu, West, & Taylor, 2009). With 
FIML estimation, the model-implied means and covariances are computed for each individual, 
and the maximum likelihood chi-square fit function is obtained by summing −2 log likelihood 
across all of the individual data vectors (Bovaird, 2007). For balanced and complete data, 
FIML simplifies to ML, and, in this case, RMSEA, CFI, and NNFI among the SEM-based fit 
indices have shown good potential performance in evaluating the fit of LGM (Wu & West, 
2010; Wu, West, & Taylor, 2009). For unbalanced designs or missing data, conventional 
guidelines for adequate fit with these indices may be misleading (Wu, West, & Taylor, 2009). 

During the search process, we need instruments for the implementation of fitting various 
types of error covariance structures. The primary motivation to use PROC CALIS is to take 
advantage of its flexibility in specifying level-1 error covariance structures and its capability 
to deal with growth modeling for both manifest variables and latent constructs. PROC CALIS 
performs better than PROC MIXED, but more sophisticated coding work is required. The 
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purpose of this study is to address this issue by giving a tutorial on the syntax using PROC 
CALIS to fit many types of level-1 error covariance structures in LGM for a manifest variable 
as well as for a latent construct. Illustrations will be conducted with the data generated from 
two given latent growth models. SAS is a general-purpose and publicly available software. Its 
ability to do data management and analysis within a single package would make the 
instruments we provide attractive to many researchers. 

 
1.2 Latent Growth Models 

 
In this section, we briefly introduce the LGM with a variety of level-1 error covariance 

structures through a typical example depicted in Figure 1-1. In the figure, y1 – y4 denote the 
repeated measures of y on four occasions and X a level-2 predictor. 

iαη  is the unobserved 
intercept representing the initial status for individual i, and 

iβη  the unobserved slope 
showing the individual’s linear rate of change per unit increase in time. 

iαη  and 
iβη  are 

both latent factors. The level-1 model can be written as  
 

*= +yy Λ η ε ,                             (1-1) 
 

where 1 2 3 4[    ]y y y y ′=y , *

1 2 3 4

1    1    1    1
      λ λ λ λ

⎡ ⎤′ = ⎢ ⎥⎣ ⎦yΛ , [  ]α βη η ′=η , and 1 2 3 4[    ]ε ε ε ε ′=ε . tλ  is the 

measurement time points (t = 1, 2, 3, 4) and ε  denotes level-1 errors. The solid line with 
four arrowheads presented in Figure 1-1 indicate that tε  are pairwise correlated. The factor 
loading associated with initial status are all fixed at 1, whereas those associated with the slope 
are set at the value tλ  to reflect the particular time point t for individual i . A common coding 
of tλ  for different time points is to set 1λ  = 0 for baseline and 1t tλ = −  for the follow-ups. 
For this model, subject i’s growth trajectory is a straight line,  

i itα βη λη+ , tλ  = 0, 1, 2, 3. (For 
simplicity, subscript i is omitted for the rest part of this section.) The loading matrix *

yΛ  
containing fixed values has a superscript * to distinguish from the traditional notation used for 
the unknown loadings in confirmatory factor analysis (CFA). The model is a restricted CFA 
model.  

The level-2 model can be written as 
 

0= + +xΓ Γ x ηη ζ ,                           (1-2) 
 
where 0 00 01[  ]γ γ ′=Γ , 10 11[  ]γ γ ′=xΓ , [ ]X=x , and [  ]

α βη ηζ ζ=ηζ . Growth factors αη  and 

βη  (a random intercept and a random slope) are both predicted by a time invariant 
subject-level covariate X. 00γ  and 10γ  denote, respectively, the intercept and slope of the 
regression of αη  on X, 01γ  and 11γ  are those of βη  on X, and 

αηζ  and 
βηζ are level-2 

errors. Two or more time invariant predictors of change may be included. Since it is not our 
focus, for simplicity, we consider only one predictor here. ηζ  and ε  are assumed to be 
uncorrelated. The models can be rewritten in combined form as 
 

* *
0( )y y η= + + +xΛ Γ Γ x Λ εy ζ ,                        (1-3) 
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based on which the model-implied mean vector μ  and the model-implied covariance matrix 
Σ  of the manifest variables y1–y4 and X can be expressed as functions of the model 
parameters as follows (Bollen & Curran, 2006, p. 134-135): 
 

*
0( )⎡ ⎤+⎡ ⎤

= = ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

y y x x

x x

Λ Γ Γμ
μ

μ
μ

μ
,                       (1-4) 

 
* * *

*

( )⎡ ⎤′′ + +
⎢ ⎥=
⎢ ⎥′′⎣ ⎦

y x xx x y y x xx

xx x y xx

Λ Γ Σ Γ Ψ Λ Θ Λ Γ Σ
Σ

Σ Γ Λ Σ

ηζ ε
,                 (1-5) 

 
where εΘ  and Ψ

ηζ
denote the variance-covariance matrices of ε and ζη, respectively, and 

xμ  and xxΣ  denote, respectively the mean vector and the variance-covariance matrix of 
predictors ( Xμ=xμ  and 2

Xσ=xxΣ  for this model since there is only one predictor). 
The level-1 errors, 1ε , 2ε , 3ε , and 4ε , are assumed to be normally distributed with zero 

means. The general error covariance matrix (ECM) is unstructured, and is given by 
 

1

2 1 2

3 1 3 2 3

4 1 4 2 4 3 4

2

2

2

2

ε

ε ε ε

ε ε ε ε ε

ε ε ε ε ε ε ε

σ

σ σ

σ σ σ

σ σ σ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Θε .                         (1-6) 

 
The corresponding option given in SAS PROC MIXED is TYPE=UN. Other types of ECM, 
with fewer parameters may be desirable. The level-2 errors 

αηζ  and 
βηζ are assumed to be 

normally distributed with zero means. Their covariance matrix is usually specified as 
unstructured (Murphy & Pituch, 2009):   
 

2

2

η η ηα α β

η η ηα β β

ζ ζ ζ

ζ ζ ζ

σ σ

σ σ

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

Ψ
ηζ

.                           (1-7) 

 
1.2.1 Types of the level-1 error covariance structure and SAS statements 
 

Any type of the level-1 ECM ( εΘ ) can be expressed as a set of linear and/or nonlinear 
constraints on the parameters involving the covariance structure. SAS PROC MIXED 
provides a REPEATED statement, in which many types of the level-1 error covariance 
structure can be specified through the TYPE= option (e.g., Singer, 1998). However, some 
important processes such as higher-order autoregressive and moving average ones are not 
included. Moreover, PROC MIXED cannot handle LGM for constructs.1 To improve, use 
PROC CALIS. The STD, COV, and PARAMETERS statements in PROC CALIS can be used 
together to specify any type of ECM. The STD statement defines variances to estimate for 

                                                 
1 Although PROC NLMIXED could be used to fit linear or nonlinear LGM for constructs (e.g., Blozis, 2006), 
no option is available in the procedure for specifying types of ECM. Relevant coding is laborious. 
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exogenous and error variables. The COV statement defines covariances to estimate for 
exogenous and error variables. The PARAMETERS statement defines additional parameters 
that are not specified in the models, and uses both the original and additional parameters for 
modeling ECM. In other words, each specific type of ECM is composed of functions of the 
original and additional parameters. The SAS statements in PROC CALIS for fitting different 
types of the level-1 error covariance structures, including AR(1) (the first-order 
autoregressive), MA(1) (the first-order moving average), ARMA(1,1) (the first-order 
autoregressive moving average), AR(2) (the second-order autoregressive), MA(2) (the 
second-order moving average), ARH(1) (heterogeneous AR(1)), TOEPH (heterogeneous 
Toeplitz), and UN (unstructured), with four equally spaced occasions are summarized in 
Table 1-1. AR(1), MA(1), ARMA(1,1), AR(2), and MA(2) are members of the ARMA family. 
Documentation for LGM with ARMA(1,1), TOEPH, and AR(2) for level-1 errors is given as 
follows:  

 
Example 1: ARMA(1,1). The ARMA(1,1) process is defined as 1 1 1 1t t t tε φ ε ν θν− −= + − , where 

1φ  denotes the autoregressive parameter, 1θ  the moving average parameter, and tν  an i.i.d. 
disturbance process (Box, Jenkins, & Reinsel, 1994, p. 77). Its interpretation is that the level-1 
error at time t can be predicted by the level-1 error at time t–1 and the independent 
disturbance at time t–1. The resulting ECM is given by 

 

12

2 1

3 2 1

1
1

1
1

ε

ρ
σ

ρ ρ
ρ ρ ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Θε ,                         (1-8) 

 
where 2

εσ  denotes the common variance of tε , t = 1, 2, 3, 4, and kρ  denotes their 

autocorrelation coefficient at lag k, given by 1 1 1 1
1 2

1 1 1

( )(1 )
(1 2 )
φ θ φ θρ

φ θ θ
− −

=
− +

, 1 1,k kρ φ ρ −=  k = 2, 3, 

with the constraints of 1| | 1φ <  and 1| | 1θ < . Program 1 in Appendix 1-A demonstrates how to 
use PROC CALIS for modeling LGM with the ARMA(1,1) covariance structure for level-1 
errors and the unstructured covariance for level-2 errors for four equally spaced time points. 
The UCOV and AUG options are specified to analyze the mean structures in an uncorrected 
covariance matrix. The dataset to be analyzed is augmented by an intercept variable 
INTERCEPT that has constant values equal to 1. The LINEQS statement given below is used 
to specify the level-1 model (the restricted CFA model) shown in Equation 1-1 and the level-2 
model shown in Equation 1-2. 
 
LINEQS 
   Y1 = 1 F_Alpha + 0 F_Beta + E1, 
   Y2 = 1 F_Alpha + 1 F_Beta + E2, 
   Y3 = 1 F_Alpha + 2 F_Beta + E3, 
   Y4 = 1 F_Alpha + 3 F_Beta + E4, 
   F_Alpha = GA00 INTERCEPT + GA01 X + D0, 
   F_Beta = GA10 INTERCEPT + GA11 X + D1; 
 
where F_ALPHA and F_BETA represent latent factors 

iαη  and 
iβη . Factor loadings are 
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fixed values (in *
yΛ ). Level-1 errors 1ε – 4ε  are named E1–E4, and level-2 errors 

αη
ζ  and 

βη
ζ  are named D0 and D1. GA00, GA01, GA10, and GA11 represent estimates of growth 

parameters 00γ , 01γ , 10γ , and 11γ .  
  By Equation 1-8, level-1 error variances are equal, their autocovariances at lag 1 are equal, 
and their autocovariances at lag 2 are equal as well. Level-2 error variances/covariances are 
unstructured, as shown in Equation 1-7. Therefore, the STD and COV statements are given as 
follows: 
 
STD 
   E1=VARE, E2=VARE, E3=VARE, E4=VARE, D0=VARD0, D1=VARD1; 
COV 

E1 E2=COV_lag1, E2 E3=COV_lag1, E3 E4=COV_lag1,   
E1 E3=COV_lag2, E2 E4=COV_lag2, 
E1 E4=COV_lag3,  
D0 D1=COVD0D1; 

 
in which VARE represents the estimate of the common variance 2

εσ  of the four level-1 errors, 
and VARD0 and VARD1 the estimates of the variances, 2

ηα
ζσ  and 2

ηβ
ζσ , of the two level-2 

errors. COV_lag1 and COV_lag2 represent, respectively, the common level-1 error 
autocovariance estimates at lag 1 and lag 2. COV_lag3 is the estimate of the error 
autocovariance at lag 3. CD0D1 is the estimate of 

η ηα β
ζ ζσ , the covariance of 

αη
ζ  and 

βη
ζ .  

Since there exist extra parameters in ECM, they need to be defined and the work can be 
achieved by using the PARAMETERS statement given by  

 
PARAMETERS  

PHI1 RHO1; 
   COV_lag1=RHO1*VARE;  

COV_lag2=PHI1* COV_lag1;  /* i.e., COV_lag2=PHI1*RHO1* VARE; */ 
   COV_lag3=PHI1* COV_lag2;  /* i.e., COV_lag3=(PHI1**2)*RHO1*VARE; */ 
 
in which PHI1 and RHO1 represent the estimates of 1ρ  and 1φ , defined through their 
relationships with the autocovariances shown in Equation 1-8. ‘COV_lag1=RHO1*VARE’ 
corresponds to the requirement that the common autocovariance at lag 1 be equal to 2

1εσ ρ . 
The syntax corresponding to the requirements for the autocovariances at lag 2 (= 2

1 1εσ φ ρ ) and 
lag 3 (= 2 2 2

1 2 1 1ε εσ φ ρ σ φ ρ= ) is given in a similar way.  
The constraint of 1| | 1φ <  is specified by the following BOUNDS statement:  

 
BOUNDS 

 –1. < PHI1 < 1.; 
 

Example 2: TOEPH. The ECM resulting from heterogeneous Toeplitz is given by 
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1

2 1 2

3 1 3 2 3

4 1 4 2 4 3 4

2

2
1

2
2 1

2
3 2 1

ε

ε ε ε

ε ε ε ε ε

ε ε ε ε ε ε ε

σ

σ σ ρ σ

σ σ ρ σ σ ρ σ

σ σ ρ σ σ ρ σ σ ρ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Θε ,                 (1-9) 

 
where 

tεσ denotes the standard deviation for tε , t = 1, 2, 3, 4, and kρ  the autocorrelation at 
lag k, k = 1, 2, 3. The level-1 error variances are unequal but the autocorrelations at the same 
lag are equal. The STD and COV statements are given as follows:  
 
STD 
   E1=VARE1, E2=VARE2, E3=VARE3, E4=VARE4, 
   D0=VARD0, D1=VARD1; 
COV 
   E1 E2=COVE1E2, E1 E3=COVE1E3, E1 E4=COVE1E4, 

 E2 E3=COVE2E3, E2 E4=COVE2E4, E3 E4=COVE3E4,  
D0 D1=COVD0D1; 

 
in which VARE1–VARE4 represent the estimates of the four level-1 error variances, and 
VARD0 and VARD1 those of the two level-2 error variances. COVE1E2–COVE3E4 
represent the corresponding level-1 error autocovariance estimates, and COVD0D1 the 
level-2 error autocovariance estimate. Since the error covariances 

t tε εσ
′
 of tε  and tε ′  is 

given by 
t t t t t tε ε ε ε ε εσ σ σ ρ

′ ′ ′
=  and the autocorrelations at the same lag are constrained to be 

equal, the following PARAMETERS statement needs to be added: 
 
PARAMETERS  

RHO1 RHO2 RHO3; 
   COVE1E2=SQRT(VARE1)*SQRT(VARE2)*RHO1; 
   COVE2E3=SQRT(VARE2)*SQRT(VARE3)*RHO1; 
   COVE3E4=SQRT(VARE3)*SQRT(VARE4)*RHO1;  
   COVE1E3=SQRT(VARE1)*SQRT(VARE3)*RHO2; 
   COVE2E4=SQRT(VARE2)*SQRT(VARE4)*RHO2; 
   COVE1E4=SQRT(VARE1)*SQRT(VARE4)*RHO3; 
  
where RHO1, RHO2, and RHO3 are estimates of 1ρ , 2ρ , and 3ρ . The LINEQS statement 
used for this example is the same as that given in Example 1.  
 
Example 3: AR(2). It is not possible to model AR(2) for level-1 errors by using PROC 
MIXED, but the task can be done by using PROC CALIS, with the statements shown in Table 
1-1. The AR(2) process, given by 1 1 2 2t t t tε φ ε φ ε ν− −= + + , where 1φ  and 2φ  are 
autoregressive parameters and tν  an i.i.d. process (Box, Jenkins, & Reinsel, 1994, p. 54), 
leads to the following level-1 ECM: 
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,                       (1-10) 

 
where 2

εσ  denotes the common variance of tε , t = 1, 2, 3, 4, and kρ  denotes their 
autocorrelation at lag k, given by 0 1,ρ =  1 1 2/ (1 )ρ φ φ= − , and 1 1 2 2 ,  2,  3,k k k kρ φ ρ φ ρ− −= + =  
with the constraints of 2| | 1φ < , 2 1 1φ φ+ < , and 2 1 1φ φ− < . It follows that the 
autocovariances at lag 1, 2, and 3, denoted respectively by 1σ , 2 ,σ  and 3σ , are given by 

2
1 1 ,εσ ρ σ= 2 2 2 2

2 2 1 1 2 1 1 2 ,ε ε ε εσ ρ σ φ ρ σ φ σ φ σ φ σ= = + = + and 2 2 2
3 3 1 2 2 1 1 2ε ε εσ ρ σ φ ρ σ φ ρ σ φ σ= = + =   

2 1φ σ . Note that the last two constraints are specified by using the LINCON statement. 
Relevant SAS statements are given as follows: 
 
STD 
   E1-E4=4*VARE, /* i.e., E1=VARE, E2=VARE, E3=VARE, E4=VARE */ 

D0=VARD0, D1=VARD1; 
COV 

E1 E2=COV_lag1, E2 E3=COV_lag1, E3 E4=COV_lag1, 
E1 E3=COV_lag2, E2 E4=COV_lag2, E1 E4=COV_lag3,  
D0 D1=CD0D1; 

PARAMETERS PHI1 PHI2;  
   RHO1= PHI1/(1–PHI2);  

COV_lag1=RHO1*VARE; 
   COV_lag2=PHI1*COV_lag1+ PHI2 *VARE;  

COV_lag3=PHI1*COV_lag2+PHI2*COV_lag1; 
LINCON 

PHI2 + PHI1 < 1., PHI2 –PHI1 < 1.; 
BOUNDS 

–1. < PHI2 < 1.; 
 

  In addition to those presented in Table 1-1, more level-1 error covariance structures for 
equally spaced data, including ARMA(p, q) (autoregressive moving average of order (p, q)), 
CS (compound symmetry), TOEP(q) (Toeplitz with q bands, q = 1,…, 4, in which the first q 
bands of the matrix are to be estimated, setting all higher bands equal to zero), CSH 
(heterogeneous CS), TOEPH(q) (heterogeneous Toeplitz with q bands, q = 1, …, 4), and 
UN(q) (UN with q bands, q = 1, …, 4), are summarized in Appendix 1-B. In particular, 
TOEP(1) indicates i.i.d. level-1 errors. SAS statements in PROC CALIS for each of them can 
be obtained in a similar way as shown in Table 1-1. 

The level-1 error covariance structures displayed in Table 1-1 and Appendix 1-B are 
frequently seen in the LGM literature (e.g., Beck & Katz, 1995; Blozis, Harring, & Mels, 
2008; Dawson, Gennings, & Carter, 1997; Eyduran & Akbas, 2010; Ferron et al., 2002; 
Goldstein, Healy, & Rasbash, 1994; Heitjan & Sharma, 1997; Keselman, Algina, Kowalchuk, 
& Wolfinger, 1998; Kowalchuk & Keselman, 2001; Kwok et al., 2007; Littell, Henry, & 
Ammerman ,1998; Littell, Rendergast, & Natarajan, 2000; Mansour, Nordheim, & Rutledge, 
1985; Murphy & Pituch, 2009; Orhan, Eyduran, & Akbas, 2010; Rovine & Molennaar,1998, 
2000; Singer & Willett, 2003, Chap. 7; Velicer & Fava, 2003; Verbeke & Molenberghs, 1997; 
West & Hepworth, 1991; Willett & Sayer, 1994; Wolfinger, 1993, 1996; Wulff & Robinson, 
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2009). The SAS statements provided can facilitate the implementation of their specification. 
 

1.2.2 Illustration 
 

An illustration is given based on the dataset generated from the linear growth model shown 
in Figure 1-1 with the ARH(1) level-1 error covariance structure and the UN level-2 error 
covariance structure. Population parameters are given in Table 1-2. The sample size of 300 
was used (Muthén & Muthén, 2002). The RANDNORMAL function in SAS PROC IML was 
used to generate multivariate normal data based on the population model-implied mean 
vector μ , shown in Equation 1-4, and the population model-implied variance-covariance 
matrixΣ , shown in Equation 1-5, of y and x. The population mean vector and covariance 
matrix as well as sample mean and covariance are reported in Table 1-2. 

The parameter estimates resulting from fitting ARH(1) with PROC CALIS (the SEM 
approach) and PROC MIXED (the HLM approach), given in Table 1-3, are very close and 
verify each other. Furthermore, the fit results from PROC CALIS (chi-square = 11.076 with 
df = 6, p = .086; CFI = .998; NNFI = .996; RMSEA = .05) indicate good model fit. 

 
1.3 Second-Order Latent Growth Models 

 
A second-order latent growth model can be a curve-of-factors model or a factor-of-curves 

model (e.g., Duncan, Duncan, & Strycker, 2006, Chap. 4; Hancock, Kuo, & Lawrence, 2001). 
The curve-of-factors model is used to investigate the growth trajectory of a construct over 
time. It incorporates the multiple indicators (items) representing the latent construct observed 
at different time points into the model. Repeated latent constructs are termed the first-order 
factors and growth factors (i.e., random intercept and slope) are termed the second-order 
factors. The factor-of-curves model includes higher order common factors for random 
intercepts and random slopes associated with manifest variables used in LGM. In this model, 
growth factors are the first-order factors and the underlying common intercept and common 
slope are the second-order factors, accounting for common developmental patterns. Both the 
curve-of-factors model and the factor-of-curves model can be well handled by using PROC 
CALIS.  

In this section, the second-order demonstration is given for the curve-of-factors model. The 
model has several advantages (Blozis, 2006; Preacher et al., 2008; Sayer & Cumsille, 2001). 
First, the model explicitly recognizes the presence of measurement errors in repeated 
measures and captures the growth of repeated constructs adjusted for the presence of these 
errors. Second, the model allows the separation of variation due to departure from the 
trajectory (temporal instability) and unique variation due to measurement error (unreliability). 
Third, the model permits the test of longitudinal factorial invariance.  

For example, let latent construct F be measured by three indicators, observed at four 
occasions, denoted by 1 3 ,t ty y−  t = 1, 2, 3, 4. The latent constructs 1F – 4F  at the four 
occasions are the first-order factors, and the growth factors, denoted by αη  and βη , are the 
second-order factors. Let ξ, measured by indicators x1 – x3, be a time-invariant latent predictor 
for the growth factors. The second-order curve-of-factors LGM is pictorially presented in 
Figure 1-2, and can be expressed in matrix form as 
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                          (1-11)  

           
where 11 21 31 12 22 32 13 23 33 14 24 34 1 2 3 1 2 3 4[            ] ,   [     ] ,  [       ] ,y y y y y y y y y y y y x x x F F F F′ ′ ′= =xy F =

[  ] ,α βη η ′η = 11 21 31 12 22 32 13 23 33 14 24 34[            ]ε ε ε ε ε ε ε ε ε ε ε ε ′=ε , 1 2 3[   ]δ δ δ ′=δ , =ζF  

1 2 3 4
[       ]F F F Fζ ζ ζ ζ ′ , and [ζ  ζ ]

α βη η ′=ζη . yΛ  and xΛ  in the measurement model denote the 
loading matrices showing the relations of indicators to their underlying constructs. One of the 
indicators for each construct is selected as the reference indicator and its loading is fixed to 1 
at each time point for scaling purpose (Blozis, 2006; Sayer & Cumsille, 2001; Chan, 1998). 

*
yΛ  denotes the loading matrix (with fixed values) of F  on η . 0Γ  and ξΓ  denote, 

respectively, the vector of intercepts and slopes of the regressions of the growth factors η  on 
the latent predictor ξ . ε  and δ  denote, respectively, the measurement errors for F and ξ . 
ζF  and ζη  denote, respectively, the errors reflecting the departure of the repeated latent 
constructs from the trajectory and the errors associated with the random intercept and slope. 
ε  and ζF  are level-1 errors, and δ  and ζη  are level-2 errors. The assumptions include (a) 
ε , ζF , δ , and ζη  are uncorrelated; (b) 

1
ζF , 

2
 ζF , 

3
ζF , and 

4
ζF  are uncorrelated; (c) The 

measurement errors associated with different indicators are uncorrelated. However, those 
associated with the same indicator at different points in time are allowed to covary; (d) ζ

αη  
and  ζ

βη  are correlated (see, e.g., Blozis, 2006; Bollen & Curran, 2006, p. 249; Preacher et al., 
2008, p. 63; Sayer & Cumsille, 2001). The correlated measurement errors are depicted in 
Figure 1-2 by the linkage of three solid lines with four arrowheads, one line for each indicator. 
Based on the above assumptions, the structures of Ψ

Fζ
 and Θδ  are both TOEPH(1), the 

structure of Ψ
ηζ
 is UN, and the covariance structure of the correlated measurement errors 

needs to be identified.  
Weak factorial invariance is usually assumed in the second-order LGM to allow 

meaningful interpretations of growth trajectories. Weak factorial invariance requires the 
equality of the loadings in the measurement model for the same indicator across time (Blozis, 
2006; Bollen and Curran, 2006, p. 255; Chan, 1998; Hancock et al., 2001; Preacher et al., 
2008, p. 63; Sayer & Cumsille, 2001). 

Program 2 in Appendix 1-A demonstrates using PROC CALIS to fit a second-order linear 
trajectory model for four equally spaced time points, in which AR(1) is specified for three 
series, 1tε , 2 tε , and 3tε , t = 1, 2, 3, 4, TOEPH(1) is specified for ζF and δ , and UN is 
specified for ζη . The LINEQS statement, based on Equation 1-11, is given below. It is an 
extended version from that in Program 1 by incorporating the measurement models for F and 
the latent predictor ξ .  

 
LINEQS 
   Y11 = 1 F1 + EY11,  Y21 = LY21F1 F1 + EY21,  Y31 = LY31F1 F1 + EY31, 
   Y12 = 1 F2 + EY12,  Y22 = LY22F2 F2 + EY22,  Y32 = LY32F2 F2 + EY32, 
   Y13 = 1 F3 + EY13,  Y23 = LY23F3 F3 + EY23,  Y33 = LY33F3 F3 + EY33, 
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   Y14 = 1 F4 + EY14,  Y24 = LY24F4 F4 + EY24,  Y34 = LY34F4 F4 + EY34, 
   X1 = 1 F7 + EX1,    X2 = LX2F7 F7 + EX2,     X3 = LX3F7 F7 + EX3, 
   F1 = 1 F_Alpha + 0 F_Beta + EZF1,  

F2 = 1 F_Alpha + 1 F_Beta + EZF2,  
   F3 = 1 F_Alpha + 2 F_Beta + EZF3,  
   F4 = 1 F_Alpha + 3 F_Beta + EZF4,    
  F_Alpha = GA00 INTERCEPT + GA10 F7 + EZF5, 

   F_Beta = GA01 INTERCEPT + GA11 F7 + EZF6, 
   F7 = F7_int INTERCEPT + EZF7; 
 
where F1−F4 are the first-order factors at the four occasions, F_ALPHA and F_BETA 
represent the second-order latent factors 

iαη  and 
iβη . Yjt denotes the observed score on the 

jth indicator for F at occasion t, j = 1, 2, 3; t = 1, 2, 3, 4. Xj (j = 1, 2, 3) denotes the observed 
score on the jth indicator for construct ξ, named F7. The loadings of Y1t on Ft (t = 1, 2, 3, 4) 
are fixed to 1. LYjtFt represents the estimate of the first-order loading of Yjt on Ft, j = 2, 3; t 
= 1, 2, 3, 4. EYjt denotes the corresponding measurement error. Similarly, the loadings of X1, 
X2, and X3 on F7 are 1, LX2F7, and LX3F7, respectively. EX1−EX3 are the corresponding 
measurement errors. Second-order factor loadings are fixed values (in *

yΛ ). Level-1 errors 

1 2 3
, , F F Fζ ζ ζ , and 

4Fζ  are named EZF1–EZF4, and level-2 errors 
αη

ζ  and 
βη

ζ  are named 

EZF5 and EZF6. F7_int denotes the mean of F7, and EZF7 is the deviation of F7 from its 
mean.  

The parameters in AR(1) for jtε , j = 1, 2, 3, include error variance 2
jεσ  and the 

autocorrelation at lag 1 1 jεφ . The resulting ECM for ε  is given by 
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which can be reexpressed as follows to facilitate readability: 
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⎣ ⎦

 
where 1 j

k
εφ is the autocorrelation at lag k for jtε , k = 1, 2, 3; t = 1, 2, 3, 4; j = 1, 2, 3, with the 

constraints of 1| | 1
jεφ < . For each indicator, their error variances at different time points are 

equal, their error autocovariances at lag 1 are equal, and their error autocovariances at lag 2 
are equal as well. Therefore, the STD and COV statements are given as follows:   
 
STD 
   EY11−EY14=4*VARE1, EY21−EY24=4*VARE2, EY31−EY34=4*VARE3, 
   EX1=VAREX1, EX2=VAREX2, EX3=VAREX3, 
   EZF1=VARZF1, EZF2=VARZF2, EZF3=VARZF3, EZF4=VARZF4, 

EZF5=VARE_Intercept, EZF6=VARE_Slope, EZF7=VARZF7; 
COV 

/* for the level-1 measurement errors associated with indicator 1 */ 
   EY11 EY12=COV1_lag1, EY12 EY13=COV1_lag1, EY13 EY14=COV1_lag1,  
   EY11 EY13=COV1_lag2, EY12 EY14=COV1_lag2, EY11 EY14=COV1_lag3, 

/* for the level-1 measurement errors associated with indicator 2 */ 
   EY21 EY22=COV2_lag1, EY22 EY23=COV2_lag1, EY23 EY24=COV2_lag1,  
   EY21 EY23=COV2_lag2, EY22 EY24=COV2_lag2, EY21 EY24=COV2_lag3, 

/* for the level-1 measurement errors associated with indicator 3 */ 
EY31 EY32=COV3_lag1, EY32 EY33=COV3_lag1, EY33 EY34=COV3_lag1,  

   EY31 EY33=COV3_lag2, EY32 EY34=COV3_lag2, EY31 EY34=COV3_lag3, 
/* for the level-2 errors associated with growth factors */ 

EZF5 EZF6=CZF5ZF6; 
 

in which VARE1, VARE2, and VARE3 represent, respectively, the estimates of the common 
variances 

1

2
εσ , 

2

2
εσ , and 

2

2
εσ . VAREX1−VAREX3 represent the estimates of variances of 

1 3δ δ− . VARZF1−VARZF4 represent the estimates of variances of 
1 4F Fζ ζ− . 

VARE_Intercept, VARE_Slope, and CZF5ZF6 represent, respectively, the estimates of 
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variances and covariance of the second-order factor errors 
αη

ζ  and 
βη

ζ . VARZF7 

represents the estimate of variance of the latent predictor ξ . COV1_lag1, COV1_lag2, and 
COV1_lag3 represent, respectively, the estimates of common autocovariance at lags 1, 2, 3 
for 1tε . Similarly, COV2_lag1, COV2_lag2, and COV2_lag3 represent those for 2tε , and 
COV3_lag1, COV3_lag2, and COV3_lag3 represent those for 3tε . 

The following PARAMETERS statement is needed to bring three additional parameters, 
11εφ , 

21εφ , and 
31εφ , based on Equation 1-13: 

 
PARAMETERS  PHI1  PHI2  PHI3; 

/* for the level-1 measurement errors associated with indicator 1 */ 
COV1_lag1=PHI1*VARE1;  COV1_lag2= (PHI1**2)*VARE1;  
COV1_lag3=(PHI1**3)*VARE1; 

/* for the level-1 measurement errors associated with indicator 2 */ 
COV2_lag1=PHI2*VARE2;  COV2_lag2=(PHI2**2)*VARE2;  
COV2_lag3=(PHI2**3)*VARE2; 

/* for the level-1 measurement errors associated with indicator 3 */ 
COV3_lag1=PHI3*VARE3;  COV3_lag2=(PHI3**2)*VARE3; 

   COV3_lag3=(PHI3**3)*VARE3; 
 
in which PHI1, PHI2, and PHI3 represent the estimates of 

11εφ , 
21εφ , and 

31εφ . ‘COV1_lag1= 
PHI1*VARE1’ corresponds to the requirement that the common autocovariance at lag 1 for 

1tε  be equal to 
1 1

2
1ε εφ σ . ‘COV1_lag2=(PHI1**2)*VARE1’ corresponds to the requirement 

that the common autocovariance at lag 2 be equal to
1 1

2 2
1ε εφ σ . 

‘COV1_lag3=(PHI1**3)*VARE1’ corresponds to the requirement that the autocovariance at 
lag 3 be equal to

1 1

3 2
1ε εφ σ . The relevant statements for 2tε  and 3tε  are given similarly.  

  The constraints of 
11| | 1εφ < , 

21| | 1εφ < ,
31| | 1εφ <  are specified by the following BOUNDS 

statement: 
 
BOUNDS 

–1.< PHI1<1.,  –1.< PHI2<1.,  –1.< PHI3<1.;  
 
Under the assumption of weak factorial invariance, the LINCON statement should be 

added to equalize the loadings for the same indicator across occasions as follows: 
 

LINCON   
LY21F1=LY22F2, LY21F1=LY23F3, LY21F3=LY24F4,  
LY31F1=LY32F2, LY31F1=LY33F3, LY31F3=LY34F4; 

 
1.3.1 Illustration  
 

Another illustration is given with another dataset of size 300 generated from the 
second-order LGM in Figure 1-2. The population parameters with the AR(1) covariance 
structure for level-1 error processes 1tε , 2tε , and 3tε  and the sample covariance matrix of y 
and x resulting from the simulated dataset are presented in Table 1-4. The RANDNORMAL 
function in PROC IML was used again to generate multivariate normal data based on the 
population model-implied mean vector and variance-covariance matrix of y and x in Figure 
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1-2 (see Appendix 1-C for the derivation). The parameter estimates by fitting AR(1) for 1tε , 

2tε , and 3tε  are summarized in Table 1-5. The resulting parameter estimates are all close to 
the corresponding population values specified in Table 1-4 and the model fit is excellent 
(chi-square = 90.49 with df = 109, p = .9009; CFI =1.0; NNFI =1.0; RMSEA <.0001). 
 
1.4 Conclusion 

 
We present a systematic coding for various level-1 error covaraince structures in LGM by 

using SAS PROC CALIS. The joint use of the STD, COV, PARAMETERS, LINCON, and 
BOUNDS statements in PROC CALIS can be extended for other types of ECM in a similar 
way to meet analysts’ need. The advantages to use PROC CALIS include its flexibility in 
specifying ECM and its capabilities to better assess model fit for balanced complete data and 
to deal with latent constructs. A tutorial on the syntax has been provided for manifest 
variables and latent constructs. It is our hope that the coding provided will help applied 
researchers with LGM studies.  

Although our demonstration is based on linear growth models, SAS statements in PROC 
CALIS for specifying level-1 ECM are applicable for quadratic and polynomial growth 
models. Theory may suggest appropriate growth models. As mentioned previously, 
misspecification of the growth model can lead to incorrect selection of the error covariance 
structure. The coding provided is useful when the growth model has been well determined 
and the level-1 error covariance structure is to be identified.  
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2. Identifying Level-1 Error Covariance Structures in Latent 
Growth Modeling 

 
 

2.1 Introduction 
 

The processes underlying level-1 errors can be categorized as stationary and nonstationary. 
An error process { tε } is stationary if the mean of tε  and the covariance of tε  and t kε −  are 
both time-invariant, where k is an arbitrary integer. More specifically, { tε } is stationary if (a) 
E( tε ) = εμ , which is a constant, always assumed to be zero, and (b) 2

0( )tVar εε σ σ= =  and 
( , )t t k kCov ε ε σ− = , k > 0. That is, the variances are equal and the covariances at lag k are equal. 

It follows that 0/k kρ σ σ= , 0k ≥ . kσ  and kρ  are called, respectively, the autocovaraince 
and autocorrelation of tε  at lag k (See, e.g., Box, Jenkins, & Reinsel, 1994, Chap. 3). Table 
1-1 and Appendix 1-B summarize error covariance structures for equally spaced data, 
frequently seen in LGM studies. Stationary structures include those resulting from ARMA 
processes, Toeplitz with q bands, q = 1, …, T. denoted by TOEP(q), and compound symmetry, 
denoted by CS. TOEP(T), also simply denoted by TOEP, is the saturated stationary structure 
(the most general stationary structure). Nonstationary structures include TOEPH(q) 
(heterogeneous TOEP(q)), CSH (heterogeneous CS), ARH(1) (heterogeneous AR(1)), and 
UN(q) (unstructured with q bands). TOEPH(T) is simply denoted by TOEPH. UN(T), simply 
denoted by UN, is the saturated nonstationary structure.  
 
2.2 An Effective Approach for Identifying an “Optimal” Level-1 Error Covariance 

Structure 
 

As indicated in Grimm and Widaman (2010), although linear growth curve models are 
often fit because of their ease in estimation, theory may suggest that more complex models be 
used, as they have interpretable parameters and can better capture developmental patterns. 
Correctly specifying the growth model might lead to a simple covariance structure. In this 
case, using a simpler growth model and searching for an “optimal” autocorrelational structure 
is not worthwhile.  

Assuming that the growth pattern has been well determined, researchers still need to deal 
with the problem of specification of the error covariance structure. Since little theoretical 
knowledge about the error covariance structure is available, a specification search needs to be 
conducted. Those that are clearly inconsistent with data characteristics should first be ruled 
out (Littell et al., 2006, p. 177). For example, TOEP(1) and TOEPH(1) are inappropriate if 
error covariances are significant. The ARMA family are inappropriate if the process is 
nonstationary.  

An approach to search for an “optimal” level-1 structure from those shown in Table 1-1 
and Appendix 1-B is proposed, assuming that the data are equally spaced in time. The 
approach attempts to identify a structure that is as simple as possible under the condition of 
achieving model fit. The procedure is implemented as follows: 

 
Stage 1: Testing for stationarity of the error process. 
 

The conditions of stationarity include the equality of error variances and the equality of 
error autocovariances at any lag. For example, for the model shown in Figure 1-1, the null 
hypothesis of stationarity is given by H0: 

1 2 3 4 2 1 3 2 4 3

2 2 2 2 ,  ,ε ε ε ε ε ε ε ε ε εσ σ σ σ σ σ σ= = = = =  
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3 1 4 2
 .ε ε ε εσ σ=  Stationarity can be tested by using the chi-square difference test, where the 
difference of the chi-square fit statistic constrained by H0 and the unconstrained chi-square fit 
statistic is distributed as the chi-square distribution with degrees of freedom being the number 
of constraints under H0 (df = 6 for the above example). The former can be obtained by fitting 
TOEP and the latter by fitting UN.  

 
Stage 2: Identifying an “optimal” level-1 error covariance structure.  

 
The sequential chi-square difference test (SCDT, adapted from Anderson & Gerbing, 1988) 

is used. If stationarity, tested in Stage 1, is supported, then identify the structure from the 
stationary class; otherwise identify the structure from the nonstationary class. In addition to 
SCDT, the tests for autocorrelations and partial autocorrelations are used to help identify the 
order of an AR(p) or MA(q) process when stationarity is satisfied.  

The saturated stationary structure is TOEP, and the saturated nonstationary structure is UN. 
The structure to be identified is as simple (parsimonious) as possible under the condition that 
it is nested within the saturated structure and it produces no significantly worse model fit than 
the saturated structure. Structure search is conducted sequentially, starting from the simplest 
(i.e., the most constrained) model and then a less constrained one. The simplest stationary 
structure is TOEP(1), also known as variance components (VC) (Murphy & Pituch, 2009), 
and the simplest nonstationary structure is TOEPH(1) (= UN(1)). At each step, the chi-square 
difference test is used to examine if the model fit with the current temporary structure, 
denoted by MT, is significantly different from the model fit with the saturated structure, 
denoted by MS. The null hypothesis showing no fit difference between the temporary structure 
and the saturated structure is denoted by H0: MT = MS. If the test is significant, indicating 
significantly worse model fit resulting from the current MT, then update MT with a less 
constrained one and compare the model fit between the new MT and MS. The process is 
terminated by returning the temporary structure as the final structure when the test is 
nonsignificant. 

A structure nested within MS implies that the structure is just the MS with some constraints. 
For example, AR(1) is equivalent to TOEP with the constraints of setting 1

k
kρ ρ=  for k > 1. 

CS is equivalent to TOEP with the constraints of setting kρ to be equal for k > 0. TOEP(2) is 
equivalent to TOEP with the constraints of setting kρ to be zero for k > 1. The criterion to 
compare the degree of being constrained between two structures nested within MS is the 
number of parameters. The structure with fewer parameters is the more constrained one. It is 
likely that there are two or more structures with the same number of parameters. For example, 
MA(1), TOEP(2), CS, and AR(1) are all stationary structures with two parameters. MA(1) is 
equivalent to TOEP with the constraints of setting 2

1 1 1/ (1 )ρ θ θ= − +  and 0, 1k kρ = > . 
MA(1) differs from TOEP(2) in that it hypothesizes a particular structure for 1ρ rather than 
assuming just an association. Although MA(1) is structurally different from TOEP(2), their 
chi-square fit statistics are identical because their fit functions are the same and their 
parameters are one-to-one related. If MA(1) can be identified by using a different approach 
(to be addressed below), there is no need to consider TOEP(2) during the search process 
because it cannot improve fit at all. On the other hand, CS requires that the autocorrelations at 
lag k (k > 0) be all equal. Although autocorrelations kρ  are allowed to exist for 1k > , they 
are constrained to be identical. If CS has been well identified, we need not consider AR(1) or 
MA(1). Typically, adjacent errors tend to be more correlated than errors farther apart in time 
(e.g., Diggle, Liang, & Zeger, 2002, p. 82; Guttman, 1954; Littell et al., 2006, p. 175). Thus, 
AR(1) should be more frequently used than MA(1), TOEP(2), and CS because its 
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autocorrelation function decays exponentially.  
AR(p) and MA(q) can be identified by using traditional time series methodology. Once 

they are identified, they are further compared with MS (TOEP) to check model fit. The 
autocorrelation function (ACF) is used to identify MA(q) and the partial autocorrelation 
functions (PACF) to identify AR(p) (e.g., Box, Jenkins and Reinsel, 1994, Chap. 10). The 
ACF of an MA(q) process (q ≥ 1) has a cutoff after lag q (that is, the autocorrelation at lag k is 
zero for k > q). However, its PACF has no cutoff. In contrast, the PACF of an AR(p) process 
(p ≥ 1) has a cutoff after lag p. Its ACF does not exhibit any cutoff. The cutoff point for an 
MA (AR) process can be determined by examining the significance/nonsignificance of the 
sample autocorrelations (partial autocorrelations) at lags k, k = 1, …, T−1. If ACF and PACF 
both have a cutoff after lag 0, then TOEP(1) is identified. If autocorrelations and partial 
autocorrelations are significant at all lags (i.e., with no cut-off), then neither MA(q) nor AR(p) 
is appropriate, and we need to proceed to identify an ARMA(p,q). Table 2-1 summarizes the 
decision rule.  

 If MA(q) is identified but AR(p) is not, then MA(q) is further compared with TOEP to 
check the model fit by using the chi-square difference test. MA(q) is selected as the final 
structure only when the test is non-significant. If AR(p) is identified but MA(q) is not, then it 
is further compared with TOEP. AR(p) is selected as the final structure only when its fit is not 
significantly different from the fit by TOEP. If MA(q) and AR(p) are both identified, they 
both need to be compared with TOEP. The one with acceptable model fit and fewer 
parameters is selected as the final structure. The identification of an MA(q) process must pass 
the examination of ACF and the chi-square difference test. Similarly, the identification of an 
AR(p) process must pass the examination of PACF and the chi-square difference test. When 
MA(q) and AR(p) are both identified and with the same order, that is, p = q, then the structure 
with the smaller AIC (Akaike, 1974) is selected. If neither MA(q), identified by using ACF, 
nor AR(p), identified by using PACF, achieves model fit, then go to the next step to examine  
ARMA(p,q) (p≠0, q≠0) processes. 

According to the degree of parsimony, the ARMA(p,q) (p≠0, q≠0) processes to be 
examined are in the order of ARMA(1,1), (ARMA(2,1), ARMA(1,2)), (ARMA(3,1), 
ARMA(2,2), ARMA(1,3)), …, and (ARMA(p,q), p+q = T−2), all nested within TOEP. The 
processes within the same parenthesis are those with the same number of parameters. 
(ARMA(p,q), p+q = T−1) are not candidates because they have the same number of 
parameters as TOEP, leading to zero degree of freedom for the chi-square difference test. The 
structures without significantly different model fit from the saturated stationary structure 
TOEP may not be unique. 

In sum, specification search is carried out sequentially, for stationary structures, in the 
order of TOEP(1), CS, AR(p)/MA(q), ARMA(1,1), (ARMA(2,1), ARMA(1,2)), (ARMA(3,1), 
ARMA(2,2), ARMA(1,3)), …, and (ARMA(p,q), p+q = T–2), all nested within TOEP, and, 
for nonstationary structures, in the order of TOEPH(1), (TOEPH(2), CSH, ARH(1)), 
TOEPH(3), …, (TOEPH(T), UN(2)), …, and UN(T–1), all nested within UN. If the number of 
structures identified is more than one, then the determination is based on AIC. The structure 
that minimizes AIC is selected. 

A flowchart for identifying an “optimal” level-1 error covariance structure is given in 
Figure 2-1. The procedure to determine the order of ARMA(p,q) is included within a 
dash-line box in the figure. 
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2.3 Illustrations 
 
2.3.1 Illustration 1 
 

The first illustration is based on a dataset generated from the linear growth model shown in 
Figure 1-1 with the ARH(1) level-1 error structure and the UN level-2 error structure. 
Population parameters and the sample covariance matrix of y1–y4 and X are given in Table 2-2. 
The sample size of 300 was used (Muthén & Muthén, 2002). The influential results by 
following the procedure given above are also summarized in Table 2-2. 

We first tested for stationarity. Since stationarity was rejected by using the chi-square 
difference test (the chi-square difference 2

6dfχΔ =Δ = 2
7dfχ = (TOEP) − 2

1dfχ = (UN) = 58.411 − 
5.17 = 53.241, p < .0001), we proceeded with a sequential search within the nonstationary 
class. We started by fitting TOEPH(1). Since the model fit with TOEPH(1) was significantly 
worse than the model fit with UN, the saturated nonstationary structure ( 2

6dfχΔ =Δ  = 25.789, p 
< .0001), TOEPH(1) was inappropriate. MT was updated with a less constrained one than 
TOEPH(1). TOEPH(2), CSH, and ARH(1), all having (T+1) = 5 parameters, are the second 
simplest structures. Since TOEPH(2) and CSH also resulted in significantly worse model fit 
than UN ( 2

5dfχΔ =Δ  = 14.771 (p = .011) and 13.206 (p = .022)), neither one was appropriate. 

Fitting ARH(1) led to nonsignificant results ( 2
5dfχΔ =Δ = 5.906, p = .315). Therefore, the 

sequential search was terminated by choosing ARH(1) as the level-1 error covariance 
structure. The improvement of ARH(1) over TOEPH(1) could be verified by the significant 
chi-square difference ( 2

1dfχΔ =Δ = 19.883, p < .0001), the adequate model fit with ARH(1) 

( 2
6dfχ = = 11.076, p = .086) and the inadequate model fit with TOEPH(1) ( 2

7dfχ = = 30.96, p 
= .0002). The final structure identified, ARH(1), is just the one specified in the population 
model. 

  
2.3.2 Illustration 2 

 
In the second illustration, four datasets (each with N = 300) were generated from the linear 

growth model in Figure 1-1 with four cases of the level-1 covariance structures: AR(1), 
AR(2), MA(2), and ARMA(1,1). Population parameters are summarized in Table 2-3. Results 
of identifying an “optimal” level-1 error covariance structure based on each of the four 
datasets are reported in Table 2-4.  

For the dataset generated from the AR(1) process (Case 1), we first test for stationarity. 
Since stationarity was supported ( 2

6dfχΔ =Δ = 2
7dfχ = (TOEP) − 2

1dfχ = (UN) = 6.321−3.292 = 3.029, 
p = .805), we proceeded with a specification search within the stationary class. We started by 
fitting TOEP(1). Since TOEP(1) produced significantly worse model fit than TOEP (the 
saturated stationary structure) ( 2

3dfχΔ =Δ  = 85.035, p < .0001), TOEP(1) was excluded. CS was 

then fitted. The resulting chi-square difference was still significant ( 2
2dfχΔ =Δ  = 72.067, p 

< .0001) and CS was inappropriate. Examining the sample ACF and PACF, we found that the 
autocorrelations were significant at lags 1 and 2 but not at lag 3. The ACF had a cutoff after 
lag 2. Moreover, the partial autocorrelations were significant at lag 1 only. The PACF showed 
a cutoff after lag 1. Thus, both AR(1) and MA(2) were identified. Since AR(1) is more 
parsimonious than MA(2), AR(1) was first compared with TOEP. The chi-square difference 
test indicated nonsignificance ( 2

2dfχΔ =Δ = .145, p = .930). Hence, AR(1) was selected as the 
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final process. It is unnecessary to compare MA(2) with TOEP because AR(1) has been well 
identified and is more parsimonious than MA(2). Fitting AR(1) also led to acceptable overall 
model fit ( 2

9dfχ = = 6.466, p = .693). 
For the dataset generated from the AR(2) process (Case 2), stationarity was supported 

( 2
6dfχΔ =Δ = 3.573, p = .734). We then conducted a specification search for an “optimal” 

structure within the stationary class. We still started by fitting TOEP(1) and then CS. They 
were inappropriate because of the significantly worse model fit than TOEP ( 2χΔ = 283.894 
and 282.134, p < .0001). Examining the sample ACF and PACF, we found that the PACF had 
a cutoff after lag 2 and ACF had no cutoff (The autocorrelations were significant at all lags). 
Therefore an AR(2) process was identified. Since the model fit between AR(2) and TOEP 
was nonsignificant ( 2

1dfχΔ =Δ = .088, p = .766), AR(2) was identified as the final process. The 

overall model fit with AR(2) was satisfactory ( 2
8dfχ = = 4.853, p = .773).  

For the dataset generated from the MA(2) process (Case 3), stationarity was supported 
again ( 2

6dfχΔ =Δ = 3.142, p = .791). During the identification process, TOEP(1) and CS were 

excluded because they produced the worse model fit than TOEP ( 2χΔ = 20.645, p < .0001 for 
both TOEP(1) and CS). Subsequently, the ACF showed a cutoff after lag 2 and the PACF 
showed no cutoff, suggesting the adoption of the MA(2) process. Since the model fit between 
MA(2) and TOEP was nonsignificant ( 2

1dfχΔ =Δ = .018, p = .893), MA(2) was selected as the 

final structure. The overall model fit with MA(2) was satisfactory ( 2
8dfχ = = 5.51, p = .702). 

For the dataset generated from the ARMA(1,1) process (Case 4), stationarity was supported 
( 2

6dfχΔ =Δ = 2.722, p = .842). During the search process, TOEP(1) and CS were excluded 

because of significantly worse model fit ( 2χΔ = 213.409 and 169.279, p < .0001). Moreover, 
neither the ACF nor the PACF had a cutoff (The autocorrelations and partial autocorrelations 
were significant at all lags), and therefore the SCDT was conducted to identify an ARMA 
process, starting from ARMA(1,1). Since the model fit between ARMA(1,1) and TOEP was 
nonsignificant ( 2

1dfχΔ =Δ = .059, p = .808), ARMA(1,1) was the final choice. Its overall model 

fit was satisfactory ( 2
8dfχ = = 3.6, p = .892).  

It appears that the final level-1 error covariance structure identified in each case was just 
that specified in the population model and the corresponding parameter estimates were close 
to their parameter values. The results have reflected the usefulness of the approach proposed. 
 
2.4 Discussion 

 
As mentioned previously, the impact of the misspecification of the level-1 error covariance 

structure is substantial. It thus becomes important to correctly identify an error covariance 
structure. However, relevant issues were not specifically addressed in the LGM-related 
literature. In this study, we have proposed an effective approach to deal with its identification. 
The test for stationarity, the sequential chi-square difference test, and the tests for 
autocorrelations and partial autocorrelations are used, based on the principle of improving 
parsimony after model fit has been achieved. The approach has been illustrated with 
simulated data. The satisfactory results reflect the usefulness of the approach. It is 
recommended that the approach be used in LGM empirical studies to reduce the possibility of 
model misspecification.  

To implement the approach, we need SEM software that allows nonlinear constraints on 
parameters. SAS PROC CALIS (SAS Institute Inc., 2010), LISREL (Jöreskog & Sörbom, 
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2001), EQS (Bentler & Wu, 2005), and Mplus (Muthén & Muthén, 2007) are readily 
available. 

Our demonstrations were based on a simple linear growth model. If alternative growth 
forms (e.g., a quadratic growth model) can better capture developmental patterns, they should 
be used instead of the simple linear form (Grimm & Widaman, 2010). The approach proposed 
in this study applies as well for higher-order growth models.  

A second-order factor structure is used to investigate the growth trajectory of a construct 
over time. It incorporates the multiple indicators (items) representing the latent construct 
observed at different time points into the model, which is known as the second-order latent 
growth model (e.g., Blozis, 2006; Bollen & Curran, 2006, Chap. 8; Chan, 1998; Hancock, 
Kuo, & Lawrence, 2001; Preacher et al., 2008, Chap. 3; Sayer & Cumsille, 2001). Repeated 
latent constructs are termed the first-order factors and growth factors (i.e., intercept and slope) 
are termed the second-order factors. Weak factorial invariance is assumed in the second-order 
LGM to allow meaningful interpretations of growth trajectories. Weak factorial invariance 
requires the equality of the loadings in the measurement model for the same indicator across 
time. The measurement errors associated with different indicators are assumed to be 
uncorrelated. However, those associated with the same indicator at different points in time are 
allowed to covary. The covariance structures of correlated measurement errors need to be 
identified, and can be done by using the approach proposed in this study.  

There exist some limitations of this study. First, the data are assumed to be equally spaced 
in time Secondly, when two or more structures are identified, the structure that minimizes 
AIC is selected. The decision rule is not an objective one. How to determine the final 
selection under the situation with a suitable statistical test needs further investigation. Thirdly, 
an “optimal” level-1 structure is selected from those shown in Table 1-1 and Appendix 1-B. 
The reasons to choose those stationary and nonstationary structure candidates include that 
they are commonly seen in the LGM literature and that the stationary ones are nested within 
TOEP and the nonstationary ones are nested within UN, satisfying the nested relationship 
required by the chi-square difference test. How to deal with other types of structures needs to 
be further studied. 



 

 21

3. Assessing the Change in Investor Sentiment over Time 
 

3.1 Introduction 
 

The history of the financial market is peppered with many remarkable events, such as the 
Great Crash of 1929, the Internet bubble of the 1990s, and the U.S. housing bubble that burst 
in 2007. Just prior to these events, the markets were full of optimistic forecasting. In 1929 
before the Great Crash, the world was experiencing high commercial growth. In the 1990s, 
the decade when Internet and e-commerce technologies emerged, technology stocks on 
Nasdaq rose to unprecedented levels during a two-year period. In the U.S. housing bubble, 
housing prices peaked in 2005-2006, started to drop substantially in 2007–2008, and led to 
global financial turmoil in 2008 (Saxton 2008). All of these events started from optimistic 
trends that were followed by severe crashes. These dramatic fluctuations had considerable 
difficulty matching the traditional efficient market theory and motivated the emergence of the 
new field of behavioral finance.  

Behavioral finance theory claims that irrational sentiment exists in the market. There are 
“irrational investors” or “noise traders” (Black 1986, DeLong et al. 1990). During good times, 
irrational investors become more optimistic as they are reinforced by others jumping on the 
bandwagon (Brown and Cliff 2004). When stock prices have been driven up, noise traders 
might become even more bullish tomorrow, and arbitragers must take the risk of a further 
price rise when they have to buy back the stock. The risk will limit their willingness to bet 
against noise traders. These optimistic investors will continuously boost market sentiment, 
and the market will become more and more inefficient. When bad times come, noise traders 
become overly pessimistic, as they believe others fire-selling various assets will eventually 
ruin investor confidence in the market. The higher level of noise trading, the more inefficient 
the market becomes.  

 
3.2 Investor Sentiment on Stocks 
  
3.2.1 Change of sentiment over time 

 
Noise trader theory has emerged as an alternative view to efficient market theory. In noise 

trader theory, the financial market is not expected to be efficient. Rather, systematic and 
significant deviations from efficiency persist for a long period (Shleifer 2000). The basis for 
efficient market theory rests on three assumptions. First, investors are assumed to be rational 
and therefore will value securities rationally. Second, to the extent that some investors are 
irrational, their trades are random and thus the effects are canceled out by each other. Third, 
even if investors are irrational in a similar way, the rational arbitrageurs will nullify the 
influence of irrational behavior.  

However, efficient market theory is challenged both theoretically and empirically. A 
number of financial anomalies, including the excess volatility of asset prices, the mean 
reversion of stock returns, and the underpricing of closed-end mutual funds, demonstrate 
considerable evidence that many investors are not rational and do not follow theoretical 
efficient market hypotheses. 

It is difficult to sustain the case that all investors are rational. Noise trader theory assumes 
that there are two types of investors in the markets: rational investors and irrational investors. 
Irrational investors react to irrelevant information and form their own demand on securities. 
Those investors, called “noise traders”, are influenced by a combination of cognitive biases 
and psychological habits such as overconfidence (Alpert and Raiffa 1982), overreaction, and 
trend tracing. They trade on noise more than relevant information (Black 1986). Noise traders 
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follow the pseudo-signals (Black 1986) coming from diverse sources of information such as 
advice from stock-brokers and financial gurus, falsely believing that they are following 
reliable "insider information", which will enable them to forecast future returns of risky assets. 
Investor sentiment results from psychological cognitive biases (Kahneman and Tversky 1979), 
which can lead investors to buy more stocks even when the price has already risen or sell 
more stocks even when the price has already dropped. Beliefs based on psychological 
perception rather than normative economic models are called investor sentiment. Investor 
sentiment can be considered to be the expectations of irrational market participants. 

Psychological evidence shows that people do not deviate from rationality randomly, but 
rather deviate in the same way (Kahneman and Tversky 1979). Moreover, Shiller (1984) 
claims that investing in speculative assets is a social activity, so it is plausible that investors’ 
behavior would be influenced by social movements. The evidence for a social movement 
driving the bull market between the late 1940s and late 1960s would be the growing number 
of individuals who participated in the market. When noise traders behave socially and exhibit 
common reaction to rumors, the problem of deviating from rationality becomes even more 
severe. The trading strategies based on pseudo signals, popular models, cognitive biases, and 
psychological habits are correlated and lead to an aggregate demand shift. 

Social movements are dynamic processes (Shiller 1984). Mutual reinforcement through the 
exchange of information will form a condition for the emergence of a uniform response to 
stimulate investor sentiment to move in the same way. Investor sentiment is formed through a 
process over time (Smidt 1968, Brown and Cliff 2005). Irrational investors will be greatly 
influenced by others joining in the noise trading. The uptrend or downtrend of investor 
sentiment could reflect the existence of social movements and thus investors will 
continuously deviate from rationality.  

 
3.2.2 The influence of industry type on the change in sentiment over time 
 

Noise traders consider investing to be a social activity (Shiller 1984). They are influenced 
by social trends, especially when dealing with popular topics. Investors are anxious to buy 
shares of any firms that are in new “glamour” industries and have enormous growth potential 
(Cooper et al. 2001). Investment in high-technology industries plays a major role in 
encouraging new technology and has a great chance of bringing about considerable economic 
profit in the future. Therefore, high-tech stocks should receive more noise trades than 
non-high-tech stocks. Ofek and Richardson (2003) indicate that Internet stocks are owned 
relatively more often by individual investors, who are regarded as noise traders (Black 1986). 
Individual investors might merely snap up Internet or other high-tech stocks (Dorn 2009). It 
can be expected that the average linear growth trend of sentiment for high-tech stocks is 
steeper than that for non-high-tech stocks.  

 
3.2.3 The influence of stock size on the change in sentiment over time  

 
The stocks with stronger retail concentrations may be traded more irrationally. Kumer and 

Lee (2006) find that smaller firms, lower priced firms, and firms with less institutional 
ownership are associated with stronger retail trading activities. Due to the sparse information 
available about smaller firms, the market may be less efficient (Hirshleifer 2001). Therefore, 
we predict that the average rate of change in sentiment for small-size stocks is greater than 
that for large-size stocks.  
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3.2.4 The influence of margin trading on the change in sentiment over time 
 
A theoretical argument for efficient markets is based on arbitrage. Even if sentiment is 

correlated across irrational investors, arbitrageurs may take the other side of the demand and 
bring the market to equilibrium. However, according to behavioral finance, real world 
arbitrage is risky and limited. Figlewski (1979) indicates that it might take a very long time 
for noise traders to lose most of their money if arbitrageurs bear the fundamental risk in 
betting against them. Shiller (1984) and Campbell and Kyle (1987) focus on arbitrageurs' 
aversion to fundamental risk in discussing the effect of noise traders on stock market prices. 
They find that aversion to fundamental risk can by itself severely limit arbitrage, even when 
arbitrageurs have infinite horizons. Moreover, to arbitrageurs, sentiment itself is another 
source of risk (DeLong et al. 1990). Noise traders can create their own space. They may earn 
more expected returns from their own influence. Thaler (1999) claims that the precondition of 
an efficient market is that only rational investors will sell short when stock prices are higher 
than intrinsic values. In fact, both rational and irrational investors can trade by margin. If 
noise traders, instead of rational investors, dominate margin trading, they will have more 
ability to enhance their sentiment by margin buying, and thereby make change in the 
sentiment more pronounced. Thus, margin trading made by noise traders will make markets 
deviate even more from efficient market equilibrium. In this case, it is expected that the 
average growth trend of sentiment for stocks with ease of margin trading would be steeper 
than that for stocks without ease of margin trading. On the other hand, if margin trading is 
made mostly by rational investors, showing no lasting sentiment, the average growth trend of 
sentiment for stocks with ease of margin trading would not be salient.  

Irrational investors tend to choose high-tech stocks as their main investing targets and they 
could further leverage their money through margin trading. Therefore, the difference of the 
average rate of change in sentiment between the groups with and without ease of margin 
trading for high-tech stocks is greater than that for non-high-tech stocks. 

 
3.3 Methods  
 
3.3.1 Measures 
 

Investor sentiment may be investigated by using surveys. UBS/Callup conducts surveys to 
household investors. The University of Michigan consumer confidence index, also based on 
surveys, is used to reflect consumers’ confidence, and is highly correlated with the 
UBS/Callup Index. The J. P. Morgan investor confidence index is another one to see investor 
sentiment. Besides, investor sentiment may be captured by observing patterns of market 
trades including mutual fund flows, closed-end fund discounts, volume of initial public 
offerings (IPOs), first-day returns on IPOs, and trading volume, etc.  

The existing measures have some drawbacks. First, the newsletter survey should be 
considered only if the news could affect the beliefs of market traders (Brown and Cliff 2004). 
Second, the measures such as the average closed-end fund discount, volume of IPOs, the 
average first-day return on IPOs, and composite indices of the above (e.g., Lee et al.1991, 
Ritter 1991, Neal and Wheatley 1998, Brown and Cliff 2004, 2005, Baker and Wurgler 2006) 
target the entire market rather than individual stocks. Although they aggregate market data, 
most of them consist of only selected stocks, which restrict their representativeness of the 
entire market. Baker and Wurgler (2006) argue that different stocks are subject to different 
levels of sentiment because of either different shocks on sentiment-based demands or different 
arbitrage constraints. The intensity of investor sentiment may vary with different stocks. To 
conduct the analysis of sentiment based on individual stocks, it is necessary to find an 
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appropriate stock-specific sentiment proxy. 
Baker and Stein (2004) note that if short-selling is costly or forbidden, irrational investors 

will be active to trade and thus add liquidity only when they are optimistic and betting on 
rising stocks. On the other hand, when irrational investors are pessimistic, the short-selling 
constraint keeps them out of the market. High liquidity could be considered as a symptom that 
the market is dominated by irrational investors. Scheinkman and Xiong (2003) state that 
volume reveals underlying differences of opinions, which is in turn related to valuation levels 
when short selling is difficult. Therefore, market turnover is a simple and effective proxy for 
this concept. Although margin trading in the Taiwan security market has been going on for 
many years, the naked short selling is forbidden, and the requirements of the regular short 
selling are stricter than those of margin buying. This implies that short selling in Taiwan is 
costly. In this study, turnover ratio is used as a proxy for investor sentiment. Turnover ratio 
data were collected for individual stocks. However, levels of turnover ratio may partially 
reflect fundamentals of stocks. To remove such effects, at least partially, we use earnings per 
share (EPS) as a measure for fundamentals and incorporate EPS into the model as a control 
variable. 

 
3.3.2 Latent growth modeling 
 

Latent growth modeling (LGM) plays an important role in repeated-measure analysis over 
a limited occasions in large sample data (e.g., Singer and Willett 2003, p.9, Preacher et al. 
2008, p.12). LGM requires that data on a focal variable be collected from individuals at 
multiple points in time (Chan 1998), and is a typical application of the structural equation 
modeling (SEM) (e.g., Chan 1998, Bauer 2003, Curran 2003, Mehta and Neal 2005). SEM is 
popular in psychology, management and marketing, but not in finance, although Titman and 
Wessels (1988), Maddala and Nimalendran (1995), and Chang et al. (2009) have notably used 
SEM in corporate finance. The sentiment involves both level and change (Brown and Cliff, 
2004). It is formed through a process over time (Smidt 1968, Brown and Cliff 2005). As 
mentioned previously, analysis for the growth trajectory of investor sentiment can provide 
useful information for management, but it was not specifically addressed in the finance 
literature. Thus, the purpose of this study is to demonstrate the use of LGM for assessing the 
change in investor sentiment over time on individual stocks and predicting the patterns of 
longitudinal changes. 

LGM can not only characterize intraindividual (within-stock) change over time but also 
examine interindividual (between-stock) difference by means of a random intercept and 
random slopes. The within-stock errors over time and the between-stock errors (representing 
random effects for the intercept and slopes) are conventionally referred to as the level-1 and 
level-2 errors, respectively.  

The first-level submodel, describing individual change, controlling for EPS, is given by 
 

     0 1 ,  1, 2,..., ,it i i t t itY TIME EPS t Tβ β φ ε= + + + =                   (3-1) 
 
where T is the total number of time points, TIMEt represents a particular time point t and 
serves as an explanatory variable, time points are usually equally spaced, set as 0, 1, …, T–1, 
Yit is the level of turnover ratio for stock i at time t, and itε  the corresponding error. 0iβ  and 

1iβ  denote, respectively, the intercept (initial status) and slope (rate of change) of the linear 
growth trajectory of sentiment for stock i. They are random because stocks differ in their 
initial sentiment levels and linear trajectory. φ  denotes the fixed regression parameter for the 
control variable EPS. The model in Equation (3-1) indicates Yit can be depicted as a linear 
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function of time, EPS, and itε . itε  is called the first level error associated with stock i at 
time t (intrastock), reflects departure from the growth trajectory for stock i. itε ’s are serially 
correlated for stock i. The structure of autocovariance of itε , assumed to be identical for all 
stocks, needs to be identified. Although AR(1) (the first-order autoregressive) may be the 
most commonly used one (Littell et al. 2006, p. 175), ARH(1) (heterogeneous AR(1)) is more 
appropriate since error variances and autocovariances may not be homogeneous. The error 
covariance matrix for T = 4 based on ARH(1) is given by 
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,                      (3-2) 

 
where kρ  denotes the autocorrelation at lag k, k = 1, 2, 3, ,  0.k

k kρ ρ= >  When error 
variances are equal (

1 2 3 4

2 2 2 2
ε ε ε εσ σ σ σ= = = ), ARH(1) reduces to AR(1). 

The second-level submodel, describing interstock differences in intrastock change, is 
given by 
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                          (3-3) 

 
where 00γ  and 10γ  denote, respectively, the means of 0iβ  and 1iβ , and 0iζ  and 1iζ  the 
corresponding level-2 errors. It is assumed that 0iζ  and 1iζ  have a bivariate normal 
distribution with E( 0iζ ) = 0, E( 1iζ ) = 0, Var( 0iζ ) =

0

2
ζσ , Var( 1iζ ) = 

1

2
ζσ , and Cov( 0iζ , 1iζ ) 

=
0 1ζ ζσ , and 0iζ  and 1iζ  are uncorrelated with itε . 

0

2
ζσ , 

1

2
ζσ  and 

0 1ζ ζσ  are the variances 
and covariance of the random effects reflecting interstock differences. A positive value of 10γ  
indicates that the average linear growth trend of sentiment across the entire market is 
increasing, reflecting an optimistic tendency. In contrast, a negative value of 10γ  reflects that 
the market is pessimistic. If 10γ  = 0, then the market sentiment is unchanged. The maximum 
likelihood method is usually used to make inference for the growth parameters 00γ  and 10γ  
as well as the level-1 and level-2 error variances and covariances. 

The submodel in Equation (3-3) is often called the unconditional model since explanatory 
characteristics of stocks that affect the pattern of change are not included. It is denoted by 
Model (A) in this study. Interstock differences in growth could be attributed to systematic 
characteristics if 0iβ  and 1iβ  are related to time-invariant predictors. For the case of one 
level-2 predictor ξ , we have the following conditional model: 
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where 00γ  and 01γ  represent, respectively, the level-2 intercept and slope of ξ  with 
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respect to the initial status, and 10γ  and 11γ  represent those with respect to the rate of 
sentiment change over time. 0iζ  and 1iζ  are level-2 errors, with the same assumptions as 
those seen in Equation (3-3). In particular, 11γ  is the difference of the average rate of 
sentiment changes by a unit increase of ξ . The growth parameters in this case include 00γ , 

01γ , 10γ , and 11γ . 
In the Taiwan stock market, the permissible amount of margin trading for the component 

stocks of exchange-traded fund or MSCI (Morgan Stanley Capital International Inc.) Taiwan 
index is twice more than the permissible amount of margin trading for other stocks. Therefore, 
margin trading is easier to implement for the component stocks than others. The component 
stocks are classified as those with ease of margin trading (EMT), and the others are those 
without ease of margin trading (NEMT). In this study, three level-2 predictors, the industry 
type (with the levels of ‘high-tech (HT)’ and ‘non-high-tech (NHT)’), stock size (with the unit 
of billion shares), and the ease of margin trading (with the levels of ‘Yes (EMT)’ and ‘No 
(NEMT)’), are considered. Dummy variable D1 is defined for the industry type by letting D1 = 
1 for HT and D1 = 0 for NHT. Dummy variable D2 is defined for the ease of margin trading by 
letting D2 = 1 for EMT and D2 = 0 for NEMT. Furthermore, the dummy representations for 
the groups of (1) high-tech stocks with ease of margin trading (HT-EMT), (2) high-tech stocks 
without ease of margin trading (HT-NEMT), (3) non-high-tech stocks with ease of margin 
trading (NHT-EMT), and (4) non-high-tech stocks without ease of margin trading 
(NHT-NEMT) are given by 

 
Group  D1 D2

 
D1D2

 

1: HT-EMT 1 1 1 
2: HT-NEMT 1 0 0 
3: NHT-EMT 0 1 0 
4: NHT-NEMT 0 0 0 

 
Let models (B), (C), and (D) denote, respectively, those with one level-2 predictor by 
substituting D1 (the industry type), stock size, and D2 (the ease of margin trading) into ξ  in 
Equation (3-4). Model (E) is the model with predictors D1, D2, and their cross-product, given 
by 0 00 01 1 02 2 03 1 2 0 i i i i i iD D D Dβ γ γ γ γ ζ= + + + +  and 1 10 11 1 12 2 i i iD Dβ γ γ γ= + + +  13 1 2 1i i iD Dγ ζ+ . 

The first-level and the second-level submodels are simultaneously fitted and estimated by 
using SEM. Since the p-value of the chi-square test for assessing the model fit is always small 
for large samples, leading to the rejection of an adequate model, two criteria indicating 
acceptable model fit, ‘CFI (the comparative fit index) ≥ 0.95’ and ‘SRMR (the standardized 
root mean square residual) ≤ 0.09’, are recommended (e.g., Iacobucci 2010).  

 
3.3.3 Data 
 
Individual investors, who are regarded as noise traders, spend far less time on investment 
analysis and rely heavily on a different set of information. Individual investors tend to buy or 
sell stock in concert with each other (Black 1986). Higher individual trading is associated 
with higher liquidity commonality and faster movement of investor sentiment (Choel and 
Yang 2010). A market with a high proportion of individual investors should be the target for 
analyzing investor sentiment. The data used for demonstration come from the Taiwan stock 
market, which contains about 70% individual investors (See Appendix 3-A). 

Appendix 3-B shows the J. P. Morgan investor confidence indices (denoted by J. P. ICI in 
this study) and the volume of IPOs, a commonly used sentiment indicator, from January, 2005 
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through December, 2008 in the Taiwan market. It appears that J. P. ICI and the volume of 
IPOs display inconsistent tendency for each year. In particular, there exists an obvious upward 
trend of the volume of IPOs from September, 2007 to December, 2007, and the peak occurs in 
December 2007. However, J. P. ICI is 109.9 in September 2007 and 104.5 in December 2007, 
showing a downward trend. There exists inconsistency between the former (being optimistic) 
and the latter (being pessimistic). LGM, a more sophisticated approach, will be used to further 
examine the growth trajectory of sentiment during this period. The monthly turnover data 
from September, 2007 to December, 2007 for 692 stocks in the Taiwan market, obtained from 
the Taiwan Economic Journal Data Bank (TEJDB), are used. The heterogeneity of sentiment 
trajectories discovered by using LGM can interpret the inconsistency, and the issue will be 
discussed in detail in Section 5.3. 

According to Taiwan Stock Exchange Corporation (TWSE) Key Points for Classifying and 
Adjusting Categories of Industries of Listed Companies, announced by TWSE in 2007, 52 
semiconductor stocks belong to the industries of wafer fabrication, IC design, packing and 
testing, materials, and equipment manufacturing. These industries constitute the high-tech 
industry in Taiwan (Hsinchu Science Park Administration 2008).  

 
3.4 Results 
 

The results by using Model (1-A) (the combination of Model (1) and Model (A)) through 
Model (1-E) (the combination of Model (1) and Model (E)) based on the sample of 692 stocks 
are summarized in Table 3-1. Fit indices indicate acceptable fit for all models. Moreover, the 
level-1 error variances and covariances based on the ARH(1) structure and the level-2 error 
variances and covariances are all significant. The significance of the level-2 error variances 
and covariances supports the variability of intercept and slope. The estimate of the average 
rate of change in sentiment resulting from Model (1-A) based on the entire sample (692 
stocks) is significantly negative ( 10γ̂ = −1.7980). Therefore, the average linear growth trend of 
sentiment for the entire market during the period from September 2007 to December 2007 is 
declining, reflecting the pessimistic mood of investors (see Figure 3-1 (1-A)).  

With Model (1-B), the difference between the average rates of sentiment change for HT and 
NHT stocks ( 11γ̂ = 3.6353) is highly significant. The average slopes for HT and NHT stocks 
are 1.5678 (= −2.0675 + 3.6353) and −2.0675, respectively, and are presented in Figure 3-1 
(1-B). The former shows a significantly optimistic trend (p < 0.01), exhibiting the bandwagon 
effect during this period, and the latter a significantly pessimistic trend (p < 0.01). Figure 3-1 
(1-B) also contrasts the sentiment levels of HT and NHT stocks. The average sentiment levels 
of HT stocks at individual time points are higher than the corresponding ones of NHT stocks. 
Their difference is an increasing function of time. 

According to the results by Model (1-C), the increment of the average rate of change in 
sentiment is highly significant ( 11γ̂ = 0.2206) for a unit increase of stock size, leading to a 
smoother slope. Figure 3-1 (1-C) shows that, although the average linear trends for the stocks 
whose sizes are below the first quartile (Q1 = 0.133 billion shares) and for those whose sizes 
are above the third quartile (Q3 = 0.5335 billion shares) are both negative, the former is 
steeper than the latter.  

The results by Model (1-D) indicate that the difference of the average rates of change in 
sentiment between EMT and NEMT stocks is significant ( 11γ̂ = 2.1771). The stocks with 
NEMT show a significantly downward trend ( 10γ̂  = −2.3632) but those with EMT do not 
(Their average slope is −2.3632 + 2.1771 = –0.1861 (p = 0.5870)). Margin trading might be 
used more by rational investors than irrational investors, leading to non-significant sentiment 
change over time.  
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In Model (1-E), for high-tech stocks without ease of margin trading, the average linear 
sentiment trend is non-significant ( 10γ̂ + 11γ̂ = −2.4320 + 1.6625 = –0.7695, p = 0.3844); the 
average linear sentiment trend for high-tech stocks with ease of margin trading becomes 
significantly upward (= 10γ̂ + 11 12 13ˆ ˆ ˆγ γ γ+ + = −2.4320 + 1.6625 + 1.5469 + 2.9072 = 3.6846, p < 
0.01). Margin trading may be utilized mainly by noise traders for high-tech stocks, thereby 
causing a marked increase in the optimistic trend of sentiment (see also Figure 3-1 (1-E)). In 
addition, the average linear sentiment trend for NHT-EMT stocks is significantly different 
than that for NHT-NEMT stocks ( 12γ̂  = 1.5469). The former is –0.8851 (p = 0.0151), and the 
latter is –2.4320 (p < 0.01). Although the average sentiment trends are both negative, 
pessimism is alleviated by rational investors through margin trading. The pattern is similar to 
that of Figure 3-1 (1-D). 

 
3.5 Discussion  
 

The empirical findings support the predictions mentioned in Section 3.2. The average linear 
growth trend of investor sentiment for the entire Taiwan stock market during the study period 
is declining. However, growth trends of sentiment for individual stocks are diverse, depending 
on their characteristics. There exist greater decline in investor sentiment for stocks with 
smaller sizes. The stocks with NEMT show, on average, a downward trend. Moreover, 
high-tech stocks show optimistic atmosphere. The heterogeneity of the change in sentiment 
over time for different stocks leads to some important implications on arbitrage. Relevant 
issues for IPOs are also discussed in this section. 

 
3.5.1 Arbitrage mechanisms and market intervention 
 

The success of arbitrage is based on two conditions. First, rational investors are the main 
players in the market. Second, short selling is allowed (with a sufficient supply of shares to do 
so) so that rational investors can arbitrage away any deviation from fundamental values. 
Haruvy and Noussair (2006) conclude that the availability of short selling may eliminate the 
bubble-and-crash phenomenon and induce prices to track fundamentals. However, market 
traders have different degrees of rationality, and lack of short-selling for some stocks would 
constrain rational traders. The existence of noise trading and the restriction of arbitrage (e.g., 
prohibition of margin trading) lead to the occurrence of sentiment. 

Investors usually get more transparent information about EMT stocks, which can help 
arbitrageurs judge their values with more confidence. Thus, the EMT stocks should be able to 
be traded more efficiently than NEMT stocks. However, if noise traders dominate margin 
trading for some stocks, they can magnify their sentiment by margin buying, and drive the 
change in sentiment over time even more severely. A possible explanation why the average 
sentiment trajectory for HT-EMT stocks is steeper than that for HT-NEMT stocks is that 
margin trading is utilized mainly by noise traders for high-tech stocks. Under this situation, it 
is risky for arbitrageurs to sell short, and arbitrage becomes limited. The margin-trading 
behaviors of noise traders will reduce market efficiency. 

In summary, the function of arbitrage depends on the sentiment of noise traders and stock 
characteristics. Past studies argue that sentiment would make markets deviate from efficient 
equilibrium, and suggest that noise trades should be eliminated. However, since noise trading 
cannot be avoided, when sentiment is found to be over-optimistic or over-pessimistic (by 
examining its growth trajectory), policy makers should take necessary actions to make it “cool 
down”. 

Regulations about margin trading, such as short sales restrictions, are hot topics discussed 



 

 29

in financial markets. However, the role of these regulations on market valuation has long been 
debated. Academics studying efficient market theory usually state that short-selling is 
undertaken by rational arbitrageurs, and help markets to correct short-term deviations of stock 
prices from fundamentals (e.g. Diether et al., 2008). On the other hand, other people believe 
that trading on margin does not play a particularly helpful role in stabilizing the overall stock 
market (e.g. Lamont and Stein 2004). We have found some empirical evidence to support the 
view that in the case of the high-tech industry, ease of margin trading may enhance the 
accumulation of sentiment. 

From the perspective of market monitoring, Stiglitz (1989) and Summers and Summers 
(1989) consider that a significant part of market volatility reflects "noise trading", instruments 
discouraging noise trading such as “transactions tax” should contribute to reductions in 
volatility and improve the functioning of speculative markets. Reductions in noise trading will 
increase market efficiency. On the other hand, Black (1986) claims that noise trading could 
contribute to the enhancement of liquidity, and many empirical works such as Glosten and 
Migrom (1985), Admati and Pleiderer (1988), Berkman and Eleswarapu (1998), Greene and 
Smart (1999), and Liang (1999) demonstrate this argument. To sum up, noise trading causes 
market volatility and liquidity simultaneously, and no matter what rules to prevent noise 
trading are enforced, the market cannot be both efficient and liquid.  

This study finds that not all noise trading would cause high liquidity. Only when the 
sentiment trend is optimistic and increasing would the market liquidity be increased. In 
contrast, a pessimistic trend would diminish market liquidity. Both optimistic and pessimistic 
sentiment trends would be the target of policy instruments for regulating market trading. The 
continuities of sentiment trends influence the practice of efficient markets and the stability of 
financial markets regardless of whether the sentiment trend is optimistic or pessimistic. The 
former may cause bubble-and-crash and the latter would increase the liquidity risk. Therefore, 
in addition to facilitating arbitrage mechanisms, governments should take necessary actions to 
avoid over-optimistic or over-pessimistic sentiment spreading in the markets. In order to 
stimulate markets, government could encourage institutional investors to participate in trade 
and make markets more active; likewise governments could take steps to stave off liquidity 
risk caused by over-pessimistic sentiment. For example, monetary policy would be influential 
on investor sentiment in bear market period (Kurov 2010). The influence of margin purchases 
and short selling on sentiment trends would be instructive to governments. If margin trading 
magnifies the over-optimistic sentiment, governments should restrict short selling or margin 
purchases. On the other hand, if the sentiment trend is caused by the limits on arbitrage, 
governments should relax the constraints. The strategies may be applied to the entire market, 
specific industries, or individual stocks, depending on the situation.  

 
3.5.2 Relevant issues for IPOs 
 

The impact of investor sentiment is acute in hot markets. Kaustia and Knüpfer (2008) 
indicate that investor sentiment drives IPO demand. When there exist overoptimistic investors 
and short-selling constraints, both the IPO price and the aftermarket price will be driven 
above the stock’s fundamental value (Derrien 2005, Cornelli et al. 2006, Ljungqvist et al. 
2006, Dorn 2009). Security issuers and security underwriters will choose the timing with 
optimistic sentiment to issue IPOs. On the contrary, pessimistic sentiment creates no stimuli 
for issuing IPOs. Since IPOs represent only the stocks with optimistic sentiment, the volume 
of IPOs should not be used as an indicator of the sentiment for the entire market. 

As mentioned previously, J. P. ICI reflect a pessimistic trend, but the volume of IPOs gives 
an optimistic signal from September, 2007 to December, 2007. According to the results by 
Model (1-A), the sentiment trend for the entire market is decreasing. The result is consistent 
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with that indicated by J. P. ICI, but not with that indicated by the volume of IPOs. Although 
the volume of IPOs for the entire market is increasing during the period, reflecting the 
optimistic trend of sentiment, they are still the “minority” of the market. Interestingly, the 
increasing volume of IPOs and the optimistic trend of sentiment for the high-tech industry 
obtained by using Model (1-B) agree with each other. Since optimistic sentiment may not 
exists for all industries, it is likely that using the volume of IPOs as a sentiment measure for 
the entire market will lead to a different conclusion about the growth trajectory of sentiment.  

Regarding IPO practice, security underwriters in both Korea and Taiwan provide 
withdrawal options (put-back option) for individual investors as an incentive to invest. 
Investors have a withdrawal option to return IPO shares to the issuers if the IPO aftermarket 
price drops significantly. Investors’ option to withdraw reduces the information asymmetry 
between informed investors and uninformed investors but increases the firm-commitment 
underwriting risk (Lin et al. 2010), especially when investor sentiment declines. The market 
response in Korea is more pronounced during high sentiment periods, particularly for 
small-size, young, highly volatile, and low-profit stocks (Kim and Byun 2010). Although the 
regulatory change has given an incentive to lower underwriting fees, underwriters still charge 
higher fees for small-size companies issuing IPOs (Ahn et al. 2007). LGM incorporating 
stock characteristics can help better assess growth trajectories of sentiment, based on which 
the timing, the prices, and underwriting fees of issuing IPOs can be better determined. 

 
3.6 Conclusion 
 

Assessing the sentiment change over time in stock markets is important. Although 
measures of investor sentiment have been proposed based on market aggregate indicators, 
they may not well reflect the sentiment for the entire market. Irrational investors have 
different expectations for different stocks. Their sentiment-based expectations may vary with 
stock characteristics. In this study, we have demonstrated using latent growth modeling to 
examine interstock differences in intrastock sentiment change over time. The approach, 
aiming at the entire market, is on the basis of individual stocks. Analysis is conducted 
simultaneously for all individual stocks by using the turnover data, thereby making the 
empirical work more sophisticated. The results for the market in Taiwan during the period 
from September 2007 to December 2007 indicate that the average linear growth trend of 
sentiment depends on stock characteristics, including the industry type (high-tech / 
non-high-tech) and stock size, and whether margin trading is easy to implement. Although the 
volume of IPOs can reflect investor sentiment, it may apply only for a specific group (such as 
the high-tech industry demonstrated in this study) and should not be used as an indicator of 
the sentiment for the entire market.  

Based on the results by LGM, policy implications about arbitrage mechanisms and market 
intervention and some relevant issues regarding IPOs have been discussed.   There exist 
some directions for future research. First, the level-1 linear growth model can be extended to 
a broader class of polynomial functions for a longer period. Besides, more industry types and 
more stock characteristics such as capitalization, profitability, and company growth can be 
introduced in the level-2 model. These characteristics can be combined with the ease of 
margin trading (EMT/NEMT) to see their interactive influence on the sentiment change over 
time. Second, measures for investor sentiment and its growth trajectory should be developed, 
with satisfactory reliability and validity. Finally, market inefficiency resulting from sentiment 
needs to be further empirically examined. Kim and Byun (2010) find that investor sentiment 
affects the valuation of stocks in the Korea market. It is interesting to see the effects of the 
change in sentiment over time on stock returns and how the effects are moderated by stock 
characteristics. SEM may be used again for this purpose. 
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 4. On the Measurement of the Change in Investor Sentiment over 
Time for Individual Stocks 

 
4.1 Introduction 
 

How the stock market bubbles start is an interesting issue in behavior finance. Examples of 
bubble stemming from optimistic investor sentiment trend might include 1987 Black Monday, 
internet bubble and the ensuing Nasdaq and telecom crashes in the late 1990s, and the U.S. 
housing bubble, leading to the global financial turmoil in 2008 (Saxton, 2008). Shiller (1990) 
conducts a survey, and finds that the main reason of the market crash during the week of 
October 19, 1987 is that it is overpriced. Arbitrage did not work to drive price to the 
equilibrium. Galbraith (1954) and Kindleberger (1978) emphasizes the irrational element 
inducing the public to invest in the bull “over-heating” market. The eagerness to buy stocks is 
driven by irrational euphoria among individual investors. Those aforementioned well-known 
stock market events show that the continuously optimistic sentiments trend resulting from 
general rise in prosperity cause the rise in stock prices, followed by severe crashes.  

Noise traders are the irrational investors in financial market. They are not based on 
fundamental information (Shiller, 1984). Moods and emotions interact with cognitive 
processes when people make decisions. Noise traders believe they can forecast future returns 
of risky assets. During good time, they may still be optimistic even though the stocks they 
hold are fundamentally poor because they are affected by “good atmosphere”. During bad 
time, on the other hand, they may become pessimistic even though the stocks they hold are 
fundamentally sound because their confidence is shaken by “bad atmosphere”. Their 
sentiment, called investor sentiment (IS), is a belief about future asset values that is not 
justified by the facts (Baker and Wurgler, 2007). The belief leads them to irrationally buy or 
sell more stocks, and their trading behavior are potential to affect stock price (Barber et al., 
2009). 

Investing could be considered as a social activity. Human interactions spread moods and 
emotions, which cause uniformity in financial decision-making (Prechter, 1999). The spread 
of moods is similar to the spread of diseases, thus, investors’ behavior would be influenced by 
social movements (Shiller, 1984). Noise traders behave socially and follow each others’ 
mistakes by interact with others. Mutual reinforcement through interaction with others will 
finally stimulate IS to move in the same way for a period of time. The presence of noise 
traders in financial markets then causes prices and risk levels to deviate from expected levels 
even though rational traders exist, and can limit the willingness of arbitragers to bet against 
noise traders. For example, increasing sentiment is associated with social mood like optimism 
and hope which lead to overconfidence and euphoria. Optimistic investors will boost market 
sentiment continuously for a period of time, thereby making the market more and more 
inefficient, and lead to an eventual market crash.  

Dealing with the IS trend rather than simply a snapshot on the process is appealing. The 
dynamic process by which social movements work takes time. That is, IS trend is formed 
through a process over time (e.g., Smidt 1968, Brown and Cliff 2005). Observing IS levels 
individually cannot capture IS trend over a period of time. Moreover, the lasting optimistic or 
pessimistic IS trend implies that people do not deviate from rationality randomly, but in the 
same way, demonstrating the existence of social movements. Persistent optimism may push 
prices a long way away from fundamentals and produce anomaly, followed by bubbles and 
crashes. Thus, IS trend should receive more attention than IS level. Although a number of 
researchers such as Grossman and Stiglitz (1980), Black (1986), DeLong et al. (1990), 
Campbell and Kyle (1993), Barberis et al. (1998), Daniel et al. (1998), and Hong and Stein 
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(1999) have formally modeled the role of sentiment and conducted empirical studies for 
sentiment, the dynamic change over time has rarely been discussed in the literature. 

Investor sentiment is a latent construct that cannot be measured directly. Market indicators 
used as sentiment proxies have been proposed in the financial literature. Some studies used 
the principle component analysis for the market indicators to obtain a composite index (e.g., 
Brown and Cliff 2004, Baker and Wurgler 2007, Chen et al. 2010). However, how IS is 
appropriately measured (with acceptable reliability and validity) is not well addressed.  

Confirmatory factor analysis (CFA), the measurement model in structural equation 
modeling (SEM), is useful for assessing reliability and validity of measures of a latent 
construct. SEM has been widely applied in behavior studies, but is rarely seen in finance. 
Titman and Wessels (1988), Maddala and Nimalendran (1995), and Chang et al. (2009) used 
the approach similar to SEM in corporate finance. 

An important issue in investor sentiment is the measurement (Baker and Wurgler, 2007), 
and is the focus of this research. It differs from previous research in that IS trend, rather than 
IS level, is measured and the measurement is based on individual stocks rather than the entire 
market. Construct validity and reliability based on multiple indicators are assessed for both of 
the IS trend and the IS levels. The proxies for IS are reviewed and summarized. The case by 
case regression is used to analyze the IS trend based on each of the IS indicators identified. 
The output resulting from the case by case regression is then input for CFA. The common 
factor of indicator-based IS trends is extracted and its model fit is assessed. The usefulness of 
the results obtained is illustrated with an application to investigate the relationship between IS 
trend and stock return. The situations when IS trend can influence return are examined. 
Relevant policy implications are discussed.. 
 
4.2 Literature Review 
 
4.2.1 The sentiment indicators in empirical studies 

 
In empirical studies, there are some indices used for measuring IS. IS may be reflected by 

those based on surveys such as the UBS/Callup index and The University of Michigan 
consumer confidence index. On the other hand, IS may be captured by price-based variables 
such as mutual fund flows (Brown et al. 2002), closed-end fund discounts (CEFD) (Zweig, 
1973; Lee et al., 1991; Neal and Wheatley, 1998; Lowry, 2003), volume of initial public 
offerings (IPOs) and first-day returns on IPOs (Stigler, 1964; Ritter, 1991; Baker and Wurgler, 
2000). Liquidity-based indicators like trading volume and market turnover (Campbell et al., 
1994; Cooper, 1999; Gervais et al., 2001; Chordia and Swaminathan, 2000, Lee and 
Swaminathan, 2000, Baker and Stein, 2002) are also widely used. A few studies use the 
principle component analysis for the aforementioned aggregate market indicators to obtain a 
composite index for IS (e.g., Brown and Cliff, 2004; Baker and Wurgler, 2006; Baker and 
Wurgler, 2007; Chen et al. 2010).  

Although aggregate market indicators integrate the data for individual stocks, most of them 
consist of only selected stocks and their representativeness of the entire market is 
questionable. According to previous studies, investor sentiment vary with stock characteristics. 
Baker and Wurgler (2007) argue that different stocks are subject to different levels of 
sentiment because of different shock characteristics or different arbitrage constraints. Ofek 
and Richardson (2003) report that internet stocks are owned relatively more often by 
individual investors, who are regarded as noise traders in the literature. Individual investors 
might merely snap up stocks in the internet or other high-tech industries (Dorn, 2009). Thus, 
sentiments stemming from high-tech stocks are relatively higher. Besides, the stocks with 
stronger individual concentrations may be traded more irrationally. Kumar and Lee (2005) 
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find that smaller firms, lower priced firms, or firms with lower institutional ownership, are 
associated with stronger noise trading activities. The sparser information available about 
smaller firms will make the market less efficient (Hirshleifer, 2001). Stocks with smaller sizes 
or stocks in high-tech industry tend to be more sensitive to waves of investor sentiment. 
Therefore, the indicators reflecting stock characteristics should be able to capture the 
sentiment trend more precisely than aggregate market indicators and the analysis of sentiment 
will be conducted based on individual stocks.  

 
4.2.2 Measurement in psychometrics 

 
IS reflects the moods and emotions of noise traders.  Measurement error of such a 

construct is a severe problem throughout the social sciences (Peter, 1981). A number of steps 
have been suggested in the measure development process (Churchill, 1979; Gerbing and 
Anderson, 1988). These steps, such as reliability and validity test, emphasize that traversing 
the distance from the conceptual to the operational requires a systematic process. The 
operational measure of a latent construct is indirect (Nunnally, 1978). As the abstractness of a 
construct increases, the distance between the conceptual and the operational definitions 
increases. The fundamental objective in measurement is to produce observed scores which 
approximate true level of investor sentiment as closely as possible. The quality of measures 
depends on the evidence supporting their goodness, which takes the form of reliability or 
validity index (Churchill, 1979). Reliability and validity denote the accuracy or precision of a 
measuring instrument, and how well it measures that it purports to measure (Kerlinger, 1986). 
Following the tradition of psychometrics for the measuring latent constructs (e.g., Guilford, 
1954; Nunnally, 1978; Churchill 1979), it is much better to use multi-item measures instead of 
single-item measures since no single item could provide a perfect representation of a concept. 
Multiple-item measures are inherently more reliable because they enable computation of 
correlations between items. The positive correlation and high average correlation (i.e., a high 
coefficient alpha) indicate the internal consistency of all the items in representing the 
presumed underlying construct. Besides, multiple-item measure captures more information 
than that can be provided by a single-item measure. Multiple-item measure is more likely to 
tap all facets of the construct of interest (Baumgartner and Homburg, 1996, p. 143) to capture 
the domain of interest to achieve content validity (Hinkin, 1999), and provides more response 
categories than the single-item measure. The more abstract is a construct, the more indicators 
are needed.  

There exist two main concerns for assessed IS in psychometrics. First, most studies used 
single indirect indicator rather than multiple indicators. Second, for those studies taking into 
account multiple indicators, principle component factor analysis is used to form a composite 
measure of IS. However, it is only a part of preliminary stages in measure development, and 
provides preliminary information about unidimensionality. It should be followed by 
confirmatory factor analysis (CFA) (Hinkin, 1998). CFA could test reliability, validity, 
specified models of the relationship between items and factors, as well as the overall index of 
fit between the proposed model and the data. In order to highlight the heterogeneity of stocks 
and follow the rules of psychometrics, sentiment indicators reflecting stock characteristics are 
employed in this study. 

 
4.3 Methods 
 
4.3.1 IS indicators 
 

Surveys and market indicators (such as dividend premium, CEFD, the volume of IPOs, 
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first-day returns on IPOs, the equity share in new issues, and market turnover) are frequently 
used for measuring IS, but are mostly based on the data for the entire market. Since, as we 
have mentioned, IS can vary with stock characteristics, analysis of IS based on individual 
stocks can lead to more sophisticated results. However, from the aspects of IS for individual 
stocks, it is costly to obtain by surveys. On the other hand, most market indicators are 
unavailable for individual stocks. Even when they are available, the data may not exist for the 
required time period. For example, the availability of IPO and the dividend premium for 
individual stocks depends on time. In addition, new equity issues, the number of IPOs and 
CEFD appear for only selected stocks. Since the availability of market turnover is easy to 
achieve for each stock, it can serve as an IS indicator. 

Market liquidity could be an IS indicators if short-selling is costly or forbidden (Baker and 
Stein 2004). Irrational investors will be active to trade and thus add liquidity only when they 
are optimistic and betting on rising stocks. On the contrary, when the irrational investors are 
pessimistic, the short-selling constraint keeps them out of market. Hence, high liquidity could 
be considered as a symptom that the market is dominated by irrational investors. Scheinkman 
and Xiong (2003) mention that liquidity reveals the common belief, which are in turn related 
to valuation levels when short-selling is difficult. In Taiwan securities market, naked short 
selling is forbidden, and the initial short selling margin ratio is 190%. This implies that short 
selling in Taiwan is costly. Market liquidity is an appropriate IS indicator in normal 
circumstance. Therefore, liquidity is a simple and effective proxy for IS. 

The turnover rate of trading volume and the turnover rate of trading value are two 
commonly used liquidity indicators. Because noise traders trade more actively (with greater 
number of transactions), the number of transactions is additionally taken into account to avoid 
the misinterpretation of high turnover rate caused by little block trades (i.e., huge volume of 
single order). More specifically, the number of transactions / outstanding shares, called the 
turnover rate of transaction frequency in this study, is the third IS indicator, introduced in this 
study. Note that turnover ratios may partially reflect fundamentals of stocks. To remove such 
influences, at least partially, we use earnings per share (EPS) as a measure for fundamentals 
and use the residuals from the regression of the three market turnover indices (turnover rates 
of trading volume, trading value, and transaction frequency) on EPS as our IS indicators. 

Only a few potential noisy proxies, such as, market price to book value ratio (e.g., Baker 
and Wurgler, 2007; Brennan and Wang, 2010; Hirshleifer, 2001) and short-selling turnover 
ratio (Chen, 2010) have been mentioned in previous literatures. However, only if noise traders 
are the main players and there exists limit of arbitrage, could stock price be influenced by 
sentiment. In most cases, there are both noise traders and rational investors in the stock 
market. Thus market price to book value ratio (PBR) should not be used to measure sentiment 
in most of time. Similarly, unless the market is occupied by noise traders and the margin 
trading is taken by irrational investors, short-selling turnover ratio (SSTR) should not be used 
to measure sentiment. Their limitations will be further discussed later in Section 4.4.2. 

 
4.3.2 Measurement of IS trend 
 

IS trend for an individual stock means the change in IS level over time. For each stock 
during the time period, the case by case regression (OLS) (Bollen and Curran, 2006, Sec. 2.4) 
with time as the independent variable and one IS indicator as the dependent variable is used to 
assess its IS trend by the estimated regression coefficient (slope). A positive value of the 
regression coefficient indicates that the IS linear trend for an individual stock is increasing, 
reflecting an optimistic sentiment. In contrast, a negative value of the regression coefficient reflects that the sentiment is pessimistic. If the coefficient is equal to zero, then the sentiment 
is unchanged. 
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Alternatively, IS trend could be assessed by the relative increment between the initial IS 
level and the final IS level. However, the advantage of the case by case approach is that it 
takes into account all IS levels during the period and the estimated regression coefficient for 
each individual is unbiased. 

The conventional principal component approach to obtain factor scores uses different 
weights for the original indicators. They are data-specific and cannot be replicated across 
studies (Hair et al., 2010, p. 126-128). To improve, the scores of IS trend are obtained by 
computing the summated scores or the mean scores associated with its three indicators (Hair 
et al., 2010, p. 126-128). Another reason to use the summated scores is that reliability for a 
construct is always defined on the sum of indicators used to measure the construct (Lord and 
Novick 1968, Chap. 9). The slopes resulting from the case-by-case approach (OLS) are first 
scaled to remove the effects of different units before summated or mean scores are calculated. 
 
4.3.3 Confirmatory factor analysis 
 

In social sciences, it is frequently of interest to examine relationships for latent constructs. 
However, a latent construct cannot be directly measured, but can be represented by one or 
more observable indicators. CFA is a tool for testing how well indicators represent their 
underlying constructs (Hair et al., 2010, p. 693). The use of CFA should be based on 
measurement theory. CFA provides information for assessing reliability and construct validity. 
Higher reliability indicates lower measurement error. To adequately capture the construct 
domain, multiple indicators should be used instead of only a single indicator. Moreover, the 
use of multiple indicators can help avoid identification problems (Hair et al., 2010, p. 698). 
CFA provides various indices for assessing model fit.  

A model for measuring constructs, taking into account measurement errors, is called a 
measurement model, and is formulated by using CFA. Let x1, x2, … xJ denote the observed 
scores of J indicators for measuring a construct, denoted by F. Centered by its mean

ixμ and 
based on classical test theory (CTT), ix  can be formulated as (e.g., Joreskog, 1974; 
McDonald, 1999, p. 78; Reuterberg and Gustafsson, 1992) : 

 
                    ,  1,  ...,  ,

ii x i ix F i Jμ λ δ− = + =                         (4-1) 
 
where iλ  denotes the loading of ix  on F and iδ  the measurement error associated with xi. 
It is assumed that the underlying latent construct F is uncorrelated with iδ  (

iFδσ = 0), iδ  are 
uncorrelated ( 0,  

i j
i jδ δσ = ≠ ), and 2 1Fσ = . It follows that iλ  is the covariance 
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Coefficient alpha (Cronbach 1951) is another commonly used reliability index for a construct. 
It is defined as 
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CR can be estimated using CFA by 
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where îλ  are estimated loadings and 2ˆ
iδσ  are estimated error variances. Higher reliability is 

associated with lower measurement error. Unless the reliability is 100 percent (i.e., no 
measurement error), the true construct relationship will always be underestimated (Hair et al. 
2010, p. 637). While a reliability of 0.7 should serve as an absolute minimum for newly 
developed measures, a reliability considerably higher than 0.7 is recommended in applied 
research (Hinkin, 1998). 

Internal consistency means the degree of interrelatedness (intercorrelation) among 
indicators. Homogeneity means unidimensionality, implying that indicators all reflect the 
same unique construct. That is, they can be explained by only one underlying construct (Hair 
et al. 2010, p.696). When there are two or more constructs, no cross-loading is allowed. Each 
indicator loads only on its underlying construct. Coefficient α is a function of internal 
consistency and the number indicators (Cortina, 1993; Osburn, 2000). Since high α may be 
obtained when the number of indicators is large for those with low internal consistency or 
even with multi-dimensions (Cortina, 1993), reliability should be assessed after homogeneity 
has been established (Gerbing and Anderson, 1988). 

When there is only one construct, unidimensionality can be assessed by using the principal 
component factor analysis, followed by CFA (Hair et al. 2010, p. 125, 696). The former is to 
see if there exists only one common factor, usually based on the ‘eigenvalue -greater-than- 
one’ criterion, and the latter is to assess convergent validity. Convergent validity reflects the 
extent to which indicators actually represent the underlying construct they are designed to 
measure (Hair et al., 2010, p. 689). A simple way to assess convergent validity is to test for 
significance of estimated loadings (Anderson and Gerbing, 1988) using the t-statistic (= the 
estimated loading / standard error of the estimated loading), which is asymptotically normal. 
If the estimated loadings are all significantly non-zero (|t| > 1.96), then convergent validity is 
supported. Unidimensionality is achieved if only one factor is identified by the principal 
component factor analysis and convergent validity is supported by CFA. Moreover, CFA 
provides various indices for assessing model fit. Two criteria indicating acceptable model fit, 
‘CFI (the comparative fit index) ≥ 0.95’ and ‘SRMR (the standardized root mean square 
residual) ≤ 0.09’, are recommended (e.g., Iacobucci, 2010). 
  Once reliability and validities are all supported, subsequent analysis involving the construct 
can be conducted, using the summated scores as the data for the construct. Standardized data 
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should be used for those with different measurement units. 
 
4.3.4 Data 
 

The data used for illustration are collected from the Taiwan stock market from September 
2007 to December 2007, composed of 692 stocks. Monthly transaction data for individual 
stocks are obtained from the TEJDB (Taiwan Economic Journal Data Bank). As with several 
emerging stock markets, the Taiwanese stock market had historically set several limitations on 
foreign investment. For instance, in 1990, the government required documents should be 
attached, before investment, for the securities Competent Authority and Central Bank of 
Taiwan to review and approve. The level of foreigner juridical ownership is limited, therefore 
in terms of trading share or holding share, the main players in Taiwan stock market were 
individuals. Individual investors, who are regarded as noise traders (Black, 1986), spend far 
less time on investment analysis and rely heavily on a different set of information. Such 
investors tend to buy or sell stock in concert with each other. Barber et. al, (2006) analyzed 
trading records in Taiwan stock market during 1995 to 1999, individual investors in Taiwan 
may trade more actively. 

However, since September 30, 2003, the investment rules for foreign investors have been 
changed gradually. First, for facilitate internationalization, the aforementioned review and 
approve system was changed to registration system. After that, foreign investors can invest in 
the stock market after simply registering with the Taiwan Stock Exchange Corporation 
(TWSE) instead of be reviewed and approved by securities competent authority and central 
bank of Taiwan. In addition, in 2004, the US SEC approved TWSE as a “designated offshore 
securities market”, which assisted listed companies in raising funds from overseas. Therefore, 
the level of juridical ownership in Taiwan has accelerated to more than 50% and the 
percentage of trading value has increased from 20% to 30%, indicating the structure of 
investors in Taiwan stock market has altered. 

There are two reasons to choose the period from September 2007 to December 2007. First, 
in the aspect of arbitrage cost, TWSE launched a centralized securities borrowing and lending 
(SBL) system in June 2003 to meet the needs of institutional investors. Starting July 2007, 
securities firms and securities finance companies are allowed to conduct SBL business acting 
as principal. Investors thus have alternative channels, not only borrowing from the TWSE 
SBL system but also from the aforementioned institutions. In addition, the tax rate of SBL 
trading was decreased on August 20, 2007. Thus, since September 2007, institutional 
investors could make margin trading with lower cost and various channels to borrow 
securities. Second, from the perspective of arbitrage efficiency, if the level of ownership of 
rational investors is higher than noise trader, then the arbitrage can work easily, through 
margin trading by rational investors. The level of judicial ownership reached to 59.74% in 
2007, which is close to the highest record (60.16%) happening in financial crisis in 2008. In 
addition, if sentiment trading could be found in the period with low ratio of individual 
investors (67.06%), only next to the lowest record - 64% in financial crisis in 2008. We can 
infer that sentiment trading exists in other periods of time with higher ratio of individual 
investors. 

 
4.4 Results 
 
4.4.1 Trend reliability and validity 

 
The correlations among the IS indicators are highly correlated, providing an overall clue of 

internal consistency between indicators (Table 4-1). Table 4-2 presents the results of principal 
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component factor analysis. The percentage of variation explained in first factor are between 
94.08% to 97.45% for each time period, implying unidimensionalilty. Table 4-3 indicates that 
coefficient α and CR both exceed 0.7 for each time period, indicating satisfactory reliability of 
the IS levels. All indicators load significantly on their underlying construct–investor sentiment, 
demonstrating convergent validity of the IS levels.  

The correlations among the trend of the three IS indicators are highly correlated, providing 
an overall clue of internal consistency between indicators (Table 4-4). Results of the principal 
component factor analysis for IS trend, which assessed by case by case regression, are 
presented in Table 4-5, the percentage of variation explained in first factor is 95.27% in IS 
trend, implying unidimensionalilty. Results of the reliability and convergent validity 
assessment for the IS trends based on the three indicators are reported in Table 4-6. 
Coefficient α and CR of trends are all greater than 0.7, indicating that the reliabilities are 
acceptable. Moreover, the factor loadings of the three IS trajectories on their common factor 
are all significant. Therefore, the convergent validity of the IS trend is achieved. 

According to the output from the case by case regression approach, the mean trend of the 
three IS indicators across all individual stocks is −4.4358, a value showing pessimistic trend. 
It is consistent with the  results of the survey for investor sentiment in Taiwan conducted by 
the Shih Hsin university Department of Finance (2011). The sentiment index drops form 
−2.13 in October 2007 to −104.72 in Decomber 2007. 
 
4.4.2 Issues of PBR and SSTR 

 
Table 4-7 shows that, based on CFA, the trend of PBR and SSTR do not exhibit satisfactory 

convergent validity, indicating that these two indicators do not represent sentiment. Thus these 
two indicators are not suitable for observing behavior of noise traders. Table 4-8 shows that, 
also based on CFA, the correlation coefficient of PBR trend, SSTR trend, and IS trend are not 
significiant, showing that these 3 factors that uncorrelated, demonstrating discriminant 
validity. 

Noise trader theory indicates that, when arbitrage is limited, the IS trend can affect stock 
return. If the market is dominated by noise traders, leading to arbitrage limit, PBR and SSTR 
could be used as proper sentiment proxies. The ratio of judicial ownership (59.74%) in the 
Taiwan market may not meet the requirement of the dominance by noise trades, and therefore 
PBR and SSTR are not internally consistent with other IS indicators. Previous studies show 
stocks in high-tech industries or stocks with high individual holdings tend to have bigger 
waves of investor sentiment. In Taiwan, the optoelectronic industry is deemed as a high-tech 
industry (Hsinchu Science Park Administration, 2009), and is mainly owned by individuals 
(with 64.66% individual holdings). Thus, the stocks in this industry are used in this study. As 
shown in Table 4-9, the model fit (CFI = 0.96, SRMR = 0.0295) and reliability indices 
(coefficient alpha = 0.69, CR = 0.85) are acceptable based on the five indicators. However, 
the factor loading associated with the IS trend based on SSTR is not significant (t = −0.6489 < 
1.96), not supporting convergent validity, and therefore it should be removed. The reliability 
indices based on the rest of the four indicators are higher (coefficient alpha = 0.72, CR = 0.92), 
and convergent validity is achieved (t > 1.96 for each of the indicators). The model with the 
four indicators for IS, coupled with SSTR as a control, also show an adequate fit (CFI = 0.96, 
SRMR = 0.0295). Accordingly, for the situation when stocks belong to the high-tech industry 
and are mainly owned by individuals, PBR (but not SSTR) could be used as an indicator for 
measuring the IS trend. It is noteworthy that neither PBR nor SSTR should be used for the 
entire market. 
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4.5 Applications 
 
This section discusses the influence of the heterogeneity of stocks on arbitrage, mispricings 

and market bubbles, and the timing of market intervention. Efficient market theory indicates 
that arbitrage can work all the time. On the contrary, Shleifer and Vishny (1997) mention that 
both the absolute and the relative values of stocks are much harder to calculate than those of 
fixed income securieties. Therefore, arbitrage opportunities are harder to identify in stock 
markets than in bond or foreign exchange markets. Limit of arbitrage is often seen in stock 
market. In fact, the previous studies show that investor sentiment varies with stock 
characteristics. Thus, the effectiveness of arbitrage depends on stock characteristics. 
Illustration, related issues, and policy implications are addressed in this section. 

 
4.5.1 IS trend and effectiveness of arbitrage 

 
IS Trend could be considered as the evidence demonstrating the existence of social 

dynamics. When the noise traders are the main players, arbitrage would be limited. Thus, for 
those stocks with mainly noise traders, IS trend could influence return. The role of margin 
trading varies with stock characteristics. While margin trading is made by noise traders, 
arbitrage mechanism will strengthen the influence of sentiment trend on return. On the 
contrary, if margin trading is made by rational investors, who own more stocks than 
individuals, arbitrage is easier to work. In the Taiwan stock market, judical investors prefer 
the component stocks in the exchange-traded fund or the MSCI (Morgan Stanley Capital 
International Inc.) Taiwan index. The permissible amount of margin trading for those stocks 
are twice more than the permissible amount of margin trading for other stocks. Thus the 
component stocks are considered as those with ease of margin trading (EMT), and the others 
are considered as those without ease of margin trading (NEMT). 

In order to illustrate the function of arbitrage mechanisms in different industries, 
Optoelectronics stocks are considered as stocks mainly owned by noise traders (NT), and 
financial and insurance stocks, with 64% judicial holdings, are considered as stocks mainly 
owned by rational traders (RT). The regression is used to test the influence of sentiment trend 
on return for different types of stocks. Dummy variable E1 is defined by letting E1 = 1 for NT 
and E1 = 0 for RT. Dummy variable E2 is defined by letting E2 = 1 for the category with the 
ease of margin trading (EMT) and E2 = 0 for the category without the ease of margin trading 
(NEMT). The dummy representations for the four types of stocks are given as follows: 

 
Type E1 E2 E1E2 

NT-NEMT 1 0 0 
NT-EMT 1 1 1 
RT-NEMT 0 0 0 
RT-EMT 0 1 0 

 
Table 4-10 presents the results of the regression analysis. From the overall perspective, the 

results indicate that IS trend can positively account for stocks return (regression coefficient 
=0.0206 with p <0.01). It means that limit of arbitrage exist in entire market.  From the 
perspective of high noise holdings, the result shows that, for the type of NT, sentiment trend 
positively influence return (regression coefficient for NT = 0.0367 with p < .0001), and, for 
the type of RT, the influence of sentiment trend on return is not significant (regression 
coefficient for RT = –0.0032 with p =0.8757). It appears that arbitrage mechanism works (i.e., 
can eliminate the influence of IS trend on return) for RT stocks only. In other words, arbitrage 
limit exists for NT stocks. Moreover, although the IS trend affects return for both types of 
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NT-EMT (regression coefficient = 0.1211 with p < .01) and NT-NEMT (regression coefficient 
= 0.0405 with p < .05), the influence of the former is greater (the difference of the regression 
coefficients is 0.0806, p < .10). It is noteworthy that arbitrage mechanism, ineffective for 
stocks with mainly noise traders, can even reinforce the influence of IS trend on return. As a 
result, whether arbitrage mechanism can effectively function depends on the stock 
characteristics. 

 
4.5.2 Discussion  
 

Noise trader theory points out that change of IS and limit to arbitrage will cause mispricing. 
Baker and Wurgler (2007) show that, IS could affect current market return and predict 
subsequent market returns. Thus, mispricing factors must be included in asset pricing 
(Brennan and Wang, 2010). However, in asset pricing practice, there exist limitations for 
current IS proxies. For example, it is costly to conduct IS survey for individual stocks. The 
appropriateness of existing market indicators need to be examined by using psychometric 
approaches. Our research results facilitate asset pricing for practitioners.. 

From the perspective of individual stock pricing, the investor sentiment, successfully 
measured by the indicators developed in this study, can be used as a mispricing factor. 
Limited arbitrage is required when using this mispricing factor. The relationship between IS 
trend and return can be used to help identify the stocks with limited arbitrage potential. From 
the viewpoint of market bubble formation, an empirical study conducted by Baker and 
Wurgler (2007) indicates that, if the current IS is high, then the current returns are high but 
subsequent returns are low. It seems that even the current market price deviates from 
fundamental value due to IS, market mechanism will draw it back at the subsequent period. If 
market mechanism can function, market bubble and crash would not happen. However, 
famous market bubbles always start from continuously optimistic sentiment, leading to 
irrational rise of market price. Thus, the positive relationship between IS trend and stock 
return discovered in this study would facilitate analyzing the formulation process of market 
bubble. 

Efficient Market theory dictates that trade price is determined by free commercial activity 
by the two side parties, thus reflecting fundamental value. So, on the premise of the 
above-mentioned price mechanism, there is no need for government’s interference with the 
market. However, the results of the survey about market collapse in October 1987 released by 
the U.S. government in 1988 revealed that, for the most part, it is resulted from investor 
psychology; thus, the circuit breaker mechanisms were established by the U.S. government to 
eliminate the psychological scare of the investors, that becomes the source of the market 
intrvention of governments. For example, a market-wide trading halt of New York Stock 
Exchange, in the event of a 10% decline in the Dow Jones Industrial Average (DJIA), would 
be one hour. The London Stock Exchange’s circuit breaker system automatically halts any 
stock that is trading unusually lower or higher than 3% for five minutes. 

According to the report by International Organization of Securities Commissions in 2010, 
many emerging markets and developed markets adopt circuit breaker mechanisms to deal 
with investors’ panic problems. The supporters ( e.g. Greenwald and Stein, 1991) claimed that 
circuit breakers provide investors with a cooling off period to calm fear and panic. On the 
contrary, the opponents (Lee et al, 1994) argued that halts are unhelpful for price discovery 
and do not actually reduce volatility in trading following the lifting of the halt. For instance, if 
fundamental information arrives at the time of the circuit breaker, the price adjustment 
process is delayed. Because no information is transmitted through trading if there is a halt, 
this may in turn increase price uncertainty. 

Those mechanisms work in such a way that significant fluctuations in a securities’ or index 
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price would trigger an automatic halt in the trading of the security or a suspension of the 
entire market. However, market collapses is resulted from constantly price deviation caused 
by optimistic IS trend. Therefore, in addition to remedy mechanisms such as circuit breaker, 
prevention mechanisms should be taken to ease the influence of IS trend on stock price. This 
study presents a way to find out the stocks of which prices are effected by optimistic IS trends 
easily. Management tools such as taking advance collection of funds, decreasing margin 
purchase ratio could be taken to keep off continuous price rise, and cause market collapses.    

Besides, in terms of circuit breaker mechanism, the market price indicator show that the 
price fluctuation is not necessary resulted from investors’ panic. Though the market price may 
be influenced by sentiment, the influence will not be found on every stock. Therefore, this 
mechanism is started based on price fluctuations without determining whether the causes of 
the fluctuations are resulted from IS. The results of this study will be helpful in the 
improvement of the shortcomings in this mechanism.  

First, for the starting base of this mechanism, in addition to considering the price 
fluctuations, IS should be also included to clarify if the cause of the price fluctuations is 
resulted from emotions and decide if the stop mechanism should be started. Secondly, as far 
as "the practical range" of this mechanism concerned, the method of this paper can be adopted 
to find out the stock characteristic group affected by IS susceptibly for practice. Furthermore, 
in terms of circuit breakers for individual stocks, the practical operation for circuit breaker is 
based on the timely dynamic information to determine if the trading should be stopped. The 
IS indicator with reliability and validity provided in this paper can meet this demand.  

In summary, the purpose of the market intervention is to eliminate the impact of the 
psychological factors of the investors against the price mechanism. If IS can be included in 
the base range of the market intervention, it will be helpful to improve the effectiveness of 
interventions. Above all, the results and the analysis methods of this study will help the 
improvement of the performance of the mechanism. 

 
4.6 Conclusion  

 
As suggested by Baker and Wurgler (2007), measuring investor sentiment and 

understanding the variation in investor sentiment over time are important work to help 
interpret limited arbitrage. In this study, psychometric methods are used for assessing 
reliability and validity of levels and trends of investor sentiment for individual stocks. 
Turnover rate of trading volume, turnover rate of trading value, and turnover rate of 
transactions, three liquidity indicators, have been found to be appropriate proxies to measure 
IS for individual stocks. In addition, return can be affected by IS trends, depending on stock 
characteristics. The results imply that there exists heterogeneity in arbitrage among different 
stocks. Arbitrage is limited for those stocks in high-tech industry with high individual 
holdings. According to noise trader theory, irrational investors trade in the same way, causing 
a limit to arbitrage. Another implication of this study is that investor sentiment can serve as a 
preventive criterion for market supervisors to implement circuit breaker mechanisms. Instead 
of observing stock price, market supervisors should capture investor sentiment so that market 
efficiency can be improved. If an optimistic IS trend persists, the market price will deviate 
from fundamental values, and the deviation may finally lead to market collapse. Therefore, 
market intervention is needed when stock price is affected by IS trend. In the future, more 
sophisticated analytical techniques such as latent growth modeling, a typical application of 
SEM, can be used to analyze the influence of stock characteristics on IS trend. The 
information obtained can help build market intervention rules to make IS trend smoother. 
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Table 1-1 
SAS Statements in PROC CALIS for Specifying Different Types of the Level-1 Error 

Covariance Structure with Four Occasions 

Structure (Θε ) and 
ECM  

Statements in PROC CALIS 

AR(1): 
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E1=VARE, E2=VARE, E3=VARE, E4=VARE,  
D0 =VARD0, D1 =VARD1; 

COV 
E1 E2=COV_lag1, E2 E3=COV_lag1, E3 E4=COV_lag1, 
E1 E3=COV_lag2, E2 E4=COV_lag2, E1 E4=COV_lag3, 
D0 D1=CD0D1; 

PARAMETERS  PHI1; 
COV_lag1= PHI1*VARE; COV_lag2=(PHI1**2)*VARE;
COV_lag3= (PHI1**3) *VARE; 

BOUNDS 
–1. < PHI1 < 1. ; 

MA(1): 

1 1 1,  | | 1t t tε ν θν θ−= − < ; 

12

1

1

1
1

,
0 1
0 0 1

ε

ρ
σ

ρ
ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

1
2
1

1 (1 )
, θ

θ
ρ −

+
= 0, 1.k kρ = >  

STD 
E1=VARE, E2=VARE, E3=VARE, E4=VARE,  
D0 =VARD0, D1 =VARD1; 

COV 
E1 E2=COV_lag1, E2 E3=COV_lag1,  
E3 E4=COV_lag1, D0 D1=CD0D1; 

PARAMETERS  THE1; 
COV_lag1= (–THE1/(1+ THE1**2))*VARE;  

BOUNDS 
–1. < THE1 < 1. ; 

ARMA(1,1): 

1 1 1 1

1 1

,
      | | 1,  | | 1;

t t t tε φ ε ν θν
φ θ

− −= + −
< <

  

12

2 1

3 2 1

1
1

1
1

ε

ρ
σ

ρ ρ
ρ ρ ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

,

1 1 1 1
1 2

1 1 1

( )(1 ) ,  
(1 2 )
φ θ φ θρ

φ θ θ
− −

=
− +

 

1 1,  1.k k kρ φ ρ −= >  

STD 
   E1=VARE, E2=VARE, E3=VARE, E4=VARE, 

D0=VARD0, D1=VARD1; 
COV 

E1 E2=COV_lag1, E2 E3=COV_lag1, E3 E4=COV_lag1, 
E1 E3=COV_lag2, E2 E4=COV_lag2, E1 E4=COV_lag3, 
D0 D1=CD0D1; 

PARAMETERS  PHI1 RHO1; 
   COV_lag1=RHO1*VARE;  

COV_lag2=PHI1* COV_lag1; 
   COV_lag3=PHI1* COV_lag2; 
BOUNDS 

–1. < PHI1 < 1.; 
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Table 1-1 (Continued) 

Structure (Θε ) and 
ECM  

Statements in PROC CALIS  

AR(2): 1 1 2 2t t t tε φ ε φ ε ν− −= + + , 

2 2 1 2 1| | 1, 1, 1;φ φ φ φ φ< + < − <  

12

2 1

3 2 1

1
1

1
1

ε

ρ
σ

ρ ρ
ρ ρ ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

,

0 1,ρ =  

1 1 2/ (1 ),ρ φ φ= −  

1 1 2 2 ,  1,k k k kρ φ ρ φ ρ− −= + >  
 

STD 
  E1-E4=4*VARE, D0=VARD0, D1=VARD1; 
COV 

E1 E2=COV_lag1, E2 E3=COV_lag1, E3 E4=COV_lag1, 
E1 E3=COV_lag2, E2 E4=COV_lag2, E1 E4=COV_lag3,  
D0 D1=CD0D1; 

PARAMETERS PHI1 PHI2;  
  RHO1= PHI1/(1–PHI2); COV_lag1=RHO1*VARE; 
  COV_lag2=PHI1*COV_lag1+ PHI2 *VARE;  

COV_lag3=PHI1*COV_lag2+PHI2*COV_lag1; 
LINCON 

PHI2 + PHI1 < 1., PHI2 –PHI1 < 1.; 
BOUNDS 

–1. < PHI2 < 1.; 

MA(2): 

1 1 2 2t t t tε ν θν θ ν− −= − − , 

2 2 1 2 1| | 1, 1, 1;θ θ θ θ θ< + < − <  

12

2 1

2 1

1
1

,
1

0 1

ρ
σ

ρ ρ
ρ ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

1 1 2 2
2 2 2 2
1 2 1 2

1 2(1 ) (1 )
,  ,θ θ θ θ

θ θ θ θ
ρ ρ− + −

+ + + +
= =  

0, 2k kρ = > ,  

STD 
   E1=VARE, E2=VARE, E3=VARE, E4=VARE, 

D0=VARD0, D1=VARD1; 
COV 

E1 E2=COV_lag1, E2 E3=COV_lag1, E3 E4=COV_lag1, 
E1 E3=COV_lag2, E2 E4=COV_lag2, D0 D1=CD0D1; 

PARAMETERS  THE1 THE2;    
COV_lag1=((–THE1+THE1*THE2)/ 

(1+THE1**2+THE**2))*VARE;  
COV_lag2=(–THE2/(1+THE1**2+THE2**2))*VARE; 

LINCON 
THE2+ THE1 < 1., THE2 –THE1 < 1.; 

BOUNDS 
 –1. < THE2 < 1. ; 

ARH(1) (heterogeneous AR(1)):  

1

2 1 2

3 1 3 2 3

4 1 4 2 4 3 4

2

2

2 2

3 2 2

ε

ε ε ε

ε ε ε ε ε

ε ε ε ε ε ε ε

σ

σ σ ρ σ

σ σ ρ σ σ ρ σ

σ σ ρ σ σ ρ σ σ ρ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

STD 
   E1=VARE1, E2=VARE2, E3=VARE3, E4=VARE4, 
   D0=VARD0, D1=VARD1; 
COV 
   E1 E2=COVE1E2, E1 E3=COVE1E3, E1 E4=COVE1E4, 

 E2 E3=COVE2E3, E2 E4=COVE2E4, E3 E4=COVE3E4, 
D0 D1=CD0D1; 

PARAMETERS RHO; 
   COVE1E2=SQRT(VARE1)*SQRT(VARE2)*RHO; 
   COVE1E3=SQRT(VARE1)*SQRT(VARE3)*RHO**2; 
   COVE1E4=SQRT(VARE1)*SQRT(VARE4)*RHO**3; 
   COVE2E3=SQRT(VARE2)*SQRT(VARE3)*RHO; 
   COVE2E4=SQRT(VARE2)*SQRT(VARE4)*RHO**2; 
   COVE3E4=SQRT(VARE3)*SQRT(VARE4)*RHO;  
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Table 1-1 (Continued) 
Structure (Θε ) and 

ECM 
Statements in PROC CALIS 

TOEPH (heterogeneous Toeplitz): 

1

2 1 2

3 1 3 2 3

4 1 4 2 4 3 4

2

2
1

2
2 1

2
3 2 1

ε

ε ε ε

ε ε ε ε ε

ε ε ε ε ε ε ε

σ

σ σ ρ σ

σ σ ρ σ σ ρ σ

σ σ ρ σ σ ρ σ σ ρ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

STD 
   E1=VARE1, E2=VARE2, E3=VARE3, E4=VARE4, 
   D0=VARD0, D1=VARD1; 
COV 
   E1 E2=COVE1E2, E1 E3=COVE1E3, E1 E4=COVE1E4, 

 E2 E3=COVE2E3, E2 E4=COVE2E4, E3 E4=COVE3E4, 
D0 D1=CD0D1; 

PARAMETERS RHO1 RHO2 RHO3; 
   COVE1E2=SQRT(VARE1)*SQRT(VARE2)*RHO1; 
   COVE1E3=SQRT(VARE1)*SQRT(VARE3)*RHO2; 
   COVE1E4=SQRT(VARE1)*SQRT(VARE4)*RHO3; 
   COVE2E3=SQRT(VARE2)*SQRT(VARE3)*RHO1; 
   COVE2E4=SQRT(VARE2)*SQRT(VARE4)*RHO2; 
   COVE3E4=SQRT(VARE3)*SQRT(VARE4)*RHO1;  
 

UN: 

1

2 1 2

3 1 3 2 3

4 1 4 2 4 3 4

2

2

2

2

ε

ε ε ε

ε ε ε ε ε

ε ε ε ε ε ε ε

σ

σ σ

σ σ σ

σ σ σ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

STD 
   E1=VARE1, E2=VARE2, E3=VARE3, E4=VARE4, 
   D0=VARD0, D1=VARD1; 
COV 
   E1 E2=COVE1E2, E1 E3=COVE1E3, E1 E4=COVE1E4, 

 E2 E3=COVE2E3, E2 E4=COVE2E4, E3 E4=COVE3E4, 
D0 D1=CD0D1; 

Note. The level-2 ECM, 
2

2
ηα

η

η η ηα β β

ζ

ζ ζ ζ

σ

σ σ

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

ζΨ , is estimated with type = UN. kρ  denotes the 

autocorrelation coefficient at lag k. SAS PROC MIXED provides only the options of ARMA(1,1) and 
AR(1) for the ARMA family.  
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Table 1-2 
Population Parameters of the Model in Figure 1-1 with the Level-1 Error Covariance 

Structure of ARH(1) and the Sample Covariance Matrix of y1–y4 and X Resulting from a 
Dataset of Size 300 Generated from the Model 

*

1 0
1 1
1 2
1 3

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

yΛ , 10

11

4
6

γ
γ

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
xΓ , 2 1Xσ= =xxΣ ,  

0Xμ= =xμ , 00
0

01

10
4

γ
γ

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
Γ , 

2

2

15
 

7 10
ηα

η η ηα β β

ζ

ζ ζ ζ

σ

σ σ

⎡ ⎤ ⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
Ψ

ηζ
, 

1

2 1 2

3 1 3 2 3

4 1 4 2 4 3 4

2

2

2 2

3 2 2

ε

ε ε ε

ε ε ε ε ε

ε ε ε ε ε ε ε

σ

σ σ ρ σ

σ σ ρ σ σ ρ σ

σ σ ρ σ σ ρ σ σ ρ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Θε
 

1 2 3 4

2 2 2 236, 25, 49, 64ε ε ε εσ σ σ σ= = = = , 

ρ = .7 

Population Model-Implied Mean Vector and Covariance Matrix (Equations 4 and 5) 

 y1 y2 y3 y4 X 

y1 67.000     

y2 83.000 164.000    

y3 113.580 240.500 388.000   

y4 140.464 312.600 501.200 695.000  

X  4.000  10.000 16.000  22.000 1.000 

Mean 10.000  14.000 18.000  22.000  .000 

Sample Mean Vector and Covariance Matrix 

 y1 y2 y3 y4 X 

y1 66.557     
y2 80.505 157.888    
y3 109.910 233.411 385.350   
y4 140.643 307.945 501.530 703.510  
X 3.103   8.685  14.137  19.714  .855 

Mean  9.834  14.098  17.524 21.167 –.001 
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Table 1-3 
Summary of the Results by Fitting ARH(1) for Level-1 Errors and UN for Level-2 

Errors  Based on the Sample Covariance Matrix Shown in Table 1-2 by Using PROC 
CALIS and PROC MIXED 

Assessment of model fit by 

PROC CALIS  PROC MIXED 
2χ  df  2

rP χ>  CFI NNFI RMSEA  AIC BIC 

11.076 6 .086 .998 .996 .050  7825.5 7870.0 
Parameter estimates by fitting ARH(1) for Θε  and UN for Ψ

ηζ
 

 
Parameters 

Estimates by using 
PROC CALIS 

Estimates by using 
PROC MIXED 

Θε =

1

2 1 2

3 1 3 2 3

4 1 4 2 4 3 4

2

2

2 2

3 2 2

ε

ε ε ε

ε ε ε ε ε

ε ε ε ε ε ε ε

σ

σ σ ρ σ

σ σ ρ σ σ ρ σ

σ σ ρ σ σ ρ σ σ ρ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

**

* *

* * **

* **

***

 40.56  
 25.47   29.37
 27.68   31.93   63.84
24.48   28.24    56.46  91.79

ˆ .74 .ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=

**

*

**

**

***

40.43  
 25.37   29.27
 27.59   31.83    63.63
24.40    28.15     56.27  91.49

ˆ .74 .

a

a a

a a a

ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=

Ψ
ηζ
= 

2

2
ηα

η η ηα β β

ζ

ζ ζ ζ

σ

σ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 *** ***
14.53   
 9.21 8.85

⎡ ⎤
⎢ ⎥⎣ ⎦

 *** ***
14.48   
 9.18 8.82

⎡ ⎤
⎢ ⎥⎣ ⎦

 

00 01

10 11

γ γ
γ γ

⎡ ⎤
⎢ ⎥⎣ ⎦

 
*** ***

*** ***

10.18 3.86
3.68  6.48

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
*** ***

*** ***

10.17 3.86
 3.68  6.47

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

a Test for significance cannot be achieved. *p < .05, **p < .01, ***p < .001. 
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Table 1-4 
Population Parameters of the Model in Figure 1-2 with the Level-1 Error Covariance 

Structure of AR(1) and the Sample Covariance Matrix Resulting from a Dataset of Size 
300 Generated from the Model 

11

21

31

12

22

32

13

23

33

14

24

34

0 0 0
1.00 0 0 00 0 0
 .75 0 0 00 0 0
 .85 0 0 00 0 0 0 1.00 0 0

0 0 0 0  .75 0 0
0 0 0 0  .85 0 0
0 0 0 0 0 1.00 0

0 0  .75 00 0 0
0 0  .85 00 0 0
0 0 0 1.000 0 0 0 0 0  .7

0 0 0
0 0 0

y

y

y

y

y

y

y

y

y

y

y

y

λ
λ
λ

λ
λ
λ

λ
λ
λ

λ
λ
λ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

yΛ

5
0 0 0  .85

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 

1

2*

3

4

1 1 1 0
1 1 1 1
1 1 1 2
1 1 1 3

T
T
T
T

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦

yΛ ,
1

2

3

1
.75
.70

x

x x

x

λ
λ
λ

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

Λ , 

00
0

01

12
1

γ
γ

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
Γ , 10

11

6
.5ξ

γ
γ

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
Γ , 

2 4ξ ξσ= =Φ , 13=ξμ , 

1 2 3

2 2 2[ ] [.81 .36 1.00]Diag Diagδ δ δσ σ σ= =Θδ

 

2

2

[ ]

.80     .25 .60

Cov
α β

ηα

η η ηα β β

η η

ζ

ζ ζ ζ

ζ ζ

σ

σ σ

′=

⎡ ⎤ ⎡ ⎤⎢ ⎥= = ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

Ψ
ηζ

 

1 2 3 4

2 2 2 2[ ]

      [.25 .36 .49 .64]
F F F F

Diag

Diag
ζ ζ ζ ζσ σ σ σ=

=

Ψ
Fζ , 

1

1 1 1

1 1 1 1 1

1 1 1 1 1 1 1

2

2 2 2

2

11 12 13 14 21 22 23 24 31 32 33 34

2

2 2
1

2 2 2 2
1 1

3 2 2 2 2 2
1 1 1

2

2 2
1

2
1

[                                                ]

0 0 0 0

0 0 0 0
     

0 0 0 0

Cov

ε

ε ε ε

ε ε ε ε ε

ε ε ε ε ε ε ε

ε

ε ε ε

ε ε

ε ε ε ε ε ε ε ε ε ε ε ε

σ

φ σ σ

φ σ φ σ σ

φ σ φ σ φ σ σ

σ

φ σ σ

φ σ

′=

=

Θε

2 2 2 2

2 2 2 2 2 2 2

3

3 3 3

3 2 3 3 3

3 3 3 2 3 3 3

2 2 2
1

3 2 2 2 2 2
1 1 1

2

2 2
1

2 2 2 2
1 1

3 2 2 2 2 2
1 1 1

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

ε ε ε

ε ε ε ε ε ε ε

ε

ε ε ε

ε ε ε ε ε

ε ε ε ε ε ε ε

φ σ σ

φ σ φ σ φ σ σ

σ

φ σ σ

φ σ φ σ σ

φ σ φ σ φ σ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦ . 

1 1

2
1 .5,  .25,ε εφ σ= =         

2 2

2
1 .7,   .36,ε εφ σ= =          

3 3

2
1 .6,   .40ε εφ σ= = . 
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Table 1-4 (Continued) 

Population Model-Implied Mean Vector and Covariance Matrix 

 y11 y21 y31 y12 y22 y32 y13 y23 y33 y14 y24 y34 x1 x2 x3 

y11 145.30
y21 108.79 81.95
y31 123.29 92.47 105.20
y12 157.18 117.79 133.49 171.51
y22 117.79 88.59 100.12 128.45 96.69
y32 133.49 100.12 113.71 145.57 109.18 124.14
y13 169.36 126.98 143.91 184.88 138.56 157.04 200.94
y23 126.98 95.41 107.93 138.56 104.17 117.78 150.52 113.25
y33 143.91 107.93 122.46 157.04 117.78 133.72 170.59 127.94 145.40
y14 181.58 136.16 154.32 198.66 148.95 168.81 215.78 161.74 183.30 233.59
y24 136.16 102.25 115.74 148.95 111.89 126.61 161.74 121.56 137.48 175.01 131.61
y34 154.32 115.74 131.26 168.81 126.61 143.63 183.30 137.48 156.05 198.34 148.75 168.99
x1 24.00 18.00 20.40 26.00 19.50 22.10 28.00 21.00 23.80 30.00 22.50 25.50 4.81
x2 18.00 13.50 15.30 19.50 14.63 16.58 21.00 15.75 17.85 22.50 16.88 19.13 3.00 2.61
x3 16.80 12.60 14.28 18.20 13.65 15.47 19.60 14.70 16.66 21.00 15.75 17.85 2.80 2.10 2.96

Mean 90.00 67.50 76.50 97.10 72.83 82.54 104.20 78.15 88.57 111.30 83.48 94.61 13.00 9.75 9.10

Sample Mean Vector and Covariance Matrix 

 y11 y21 y31 y12 y22 y32 y13 y23 y33 y14 y24 y34 x1 x2 x3 

y11 147.01               
y21 109.81 82.57              
y31 124.47 93.16 105.99             
y12 158.66 118.63 134.42 172.82            
y22 118.87 89.22 100.79 129.40 97.42           
y32 134.12 100.36 113.97 145.95 109.46 123.87          
y13 171.53 128.31 145.36 186.96 140.12 157.94 203.88         
y23 127.89 95.91 108.45 139.39 104.82 117.87 152.01 113.85        
y33 144.92 108.44 123.04 157.91 118.44 133.76 172.06 128.45 145.84       
y14 182.10 136.18 154.29 198.88 149.11 168.06 216.81 161.76 183.06 232.49      
y24 137.16 102.74 116.25 149.83 112.54 126.66 163.35 122.20 137.99 175.04 132.28     
y34 154.50 115.60 131.06 168.81 126.64 142.83 183.98 137.38 155.67 197.21 148.66 167.89    
x1 24.39 18.28 20.68 26.40 19.74 22.29 28.51 21.27 24.07 30.08 22.68 25.53 4.94   
x2 18.66 14.02 15.81 20.15 15.14 17.04 21.80 16.29 18.42 23.11 17.45 19.60 3.10 2.77  
x3 18.01 13.47 15.28 19.36 14.55 16.40 20.93 15.60 17.69 22.20 16.73 18.85 3.07 2.34 3.22

Mean 91.24 68.43 77.64 98.60 73.96 83.90 105.81 79.37 89.96 113.04 84.81 96.12 13.21 9.92 9.30
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Table 1-5 
Summary of the Results by Fitting AR(1) for Level-1 Errors 1tε , 2tε , and 3tε  and UN for 

Level-2 Errors Based on the Sample Covariance Matrix Shown in Table 1-4 by Using PROC 
CALIS 

           Assessment of model fit   

2χ   df  2
rP χ>  CFI NNFI RMSEA 

 90.49 109 .9009 1.0 1.0 <.0001 

Parameter estimates by fitting AR(1) for 1ε , 2ε ,and 3ε  

***

***

***

***

***

***

***

***

1.00 0 0 0
 .75 0 0 0
 .85 0 0 0

0 1.00 0 0
0  .75 0 0
0  .85 0 0ˆ
0 0 1.00 0
0 0  .75 0
0 0  .85 0
0 0 0 1.00
0 0 0  .75
0 0 0  .85

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

yΛ , ***

***

1.00      
ˆ .75

.70
x

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

Λ , 

***

0 ***

13.08ˆ
1.05

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
Γ , 

***

***

5.86ˆ
.47

ξ

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
Γ , 

***ˆ 4.22ξ =Φ , ***ˆ 13.20=ξμ , 
*** *** ***ˆ [.847 .375 .988 ]Diag=Θδ , 

** ***
.88ˆ

.40 .67
⎡ ⎤= ⎢ ⎥⎣ ⎦

Ψ
ηζ

, 

** *** *** ***ˆ .300 .361 .466 .699Diag ⎡ ⎤= ⎣ ⎦Ψ
Fζ

***

*** ***

** *** ***

* ** *** ***

***

*** ***

*** *** ***

*** *** *** ***

***

*** ***

.271

.137 .271

.069 .137 .271

.036 .069 .137 .271

0 0 0 0 .367

0 0 0 0 .254 .367ˆ
0 0 0 0 .176 .254 .367

0 0 0 0 .122 .176 .254 .367

0 0 0 0 0 0 0 0 .422

0 0 0 0 0 0 0 0 .243 .422

0 0 0 0 0 0 0

=Θε

*** *** ***

*** *** *** ***

0 .140 .243 .422

0 0 0 0 0 0 0 0 .081 .140 .243 .422

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1 1

*** 2 ***
1̂ ˆ.508 ,  .271 ,ε εφ σ= =       

2 2

*** 2 ***
1̂ ˆ.693 , .367 ,ε εφ σ= =      

3 3

*** 2 ***
1̂ ˆ.576 , .422ε εφ σ= =  

*p < .05, **p < .01, ***p < .001. 
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Table 2-1 
Identification of the Orders p and q for AR(p) and MA(q) Processes for Level-1 Errors 

Based on ACF and PACF a 
Sample ACF Sample PACF Process Identified 

cut-off after lag 0 cut-off after lag 0 TOEP(1) 

without cut-off cut-off after lag p AR(p) 

cut-off after lag q without cut-off MA(q) 

cut-off after lag q cut-off after lag p AR(p) or MA(q) 

without cut-off without cut-off ARMA(p, q) 

a p ≤ T–1, q ≤ T–1 (T is the total number of time points). A cut-off is determined by the 
occurrence of non-significance of a sample autocorrelation / partial autocorrelation.  
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Table 2-2 
Population Parameters of the Model in Figure 1-1 with the Level-1 Error Covariance 

Structure of ARH(1) and the Results of Identifying an “Optimal” Level-1 Error Covariance 
Structure Based on a Dataset with N =300 Generated from the Population Model 

*

1 0
1 1
1 2
1 3

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

yΛ , 10

11

4
6

γ
γ

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
xΓ , 2 1Xσ= =xxΣ , 0Xμ= =xμ , 

00
0

01

10
4

γ
γ

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
Γ ,

2

2

15
 

7 10
ηα

η η ηα β β

ζ

ζ ζ ζ

σ

σ σ

⎡ ⎤ ⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

Ψ
ηζ

, 

1

2 1 2

3 1 3 2 3

4 1 4 2 4 3 4

2

2

2 2

3 2 2

ε

ε ε ε

ε ε ε ε ε

ε ε ε ε ε ε ε

σ

σ σ ρ σ

σ σ ρ σ σ ρ σ

σ σ ρ σ σ ρ σ σ ρ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Θε
 

1 2 3 4

2 2 2 236, 25, 49, 64ε ε ε εσ σ σ σ= = = = , 
ρ = .7 

Population covariance matrix (Equation 5) Sample Covariance Matrix 

 y1 y2 y3 y4 X y1 y2 y3 y4 X 

y1 67.00  66.56  
y2 83.00 164.00  80.51 157.89  
y3 113.58 240.50 388.00 109.91 233.41 385.35 
y4 140.45 312.60 501.20 695.00 140.64 307.95 501.53 703.51

 X  4.00 10.00 16.00 22.00 1.00   3.10   8.69  14.14   19.71 .86 
Mean 10.00 14.00 18.00 22.00 .00   9.83  14.10  17.52 21.17 .00 

Test for stationarity 
Structure #Para. 2χ  df  dfΔ  2χΔ  2

r dfP χΔ> Δ  

UN (unconstrained) 10    5.170 1 -- -- -- 
TOEP (constrained by stationarity) 4 58.411 7 6 53.241 <.0001 

SCDT 
  0 : = UNTH M  Model fit 

Step Structure #Para. 2χ  df  dfΔ  2χΔ  2
r dfP χΔ> Δ   2

rP χ>   AIC 

0 UN 10 5.170 1 -- -- --  .023  3.170
1 TOEPH(1) 4 30.960 7 6 25.789 < .0001   .0002 16.959
2 TOEPH(2) 5 19.941 6 5 14.771 .011  .003  7.941
 CSH 5 18.376 6 5 13.206 .022  .005  6.376
 ARH(1) 5 11.076 6 5  5.906 .315  .086  –.924

Parameter estimates by fitting ARH(1) for Θε  and UN for Ψ
ηζ
 

00γ̂  10γ̂  11γ̂  2ˆ
ηαζσ  2ˆ

ηβζσ ˆ
η ηα βζ ζσ  ρ̂  

1

2ˆεσ  
2

2ˆεσ  
3

2ˆεσ  
4

2ˆεσ  
10.18*** 3.68*** 6.48*** 14.53 8.85*** 9.21*** .74*** 40.56** 29.37* 63.84** 91.79** 

Note. {TOEPH(1), (TOEPH(2), CSH, ARH(1))}TM = , 2χΔ = the chi-square difference between the 
constrained model and the unconstrained model, dfΔ = the difference of degrees of freedom, 2

r dfP χΔ> Δ  
denotes the p-value of the chi-square difference test. 
*p < .05, **p < .01, ***p < .001. 
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Table 2-3 
Population Parameters of the LGM in Figure 1-1 with Four Cases of ARMA(p, q) for the 
Level-1 Error Covariance Structure 

*

1 0
1 1
1 2
1 3

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦
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4

γ
γ

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
Γ , 

2

2

1
 

.5 1
ηα

η η ηα β β

ζ

ζ ζ ζ

σ

σ σ

⎡ ⎤ ⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥ −⎣ ⎦⎣ ⎦
Ψ

ηζ
, 12

2 1

3 2 1

1
1

,
1

1

ε

ρ
σ

ρ ρ
ρ ρ ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Θ ε
2
εσ = 4. 

Case ARMA(p, q) 1φ  2φ  1θ  2θ  

1 AR(1) –.4 -- -- -- 

2 AR(2)  .4 –.7 -- -- 

3 MA(2) -- -- –.4 .–.5 

4 ARMA(1,1) –.5 --  .5 -- 
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Table 2-4 
Results of Identifying an “Optimal” Level-1 Error Covariance Structure Based on Each of the 
Four Datasets with N =300 Generated from the LGM with Population Parameters Given in 
Table 2-3 

Case 1: AR(1) 

Population covariance matrix (Equation 5) Sample covariance matrix 

 y1 y2 y3 y4 X y1 y2 y3 y4  X 
y1 21.00 38.50 65.00 87.00 4.00 20.95 38.71 64.25 86.68 3.98
y2 38.50 105.00 159.50 223.00 10.00 38.71 102.74 155.02 218.26 9.77
y3 65.00 159.50 263.00 354.50 16.00 64.25 155.02 253.91 344.43 15.55
y4 87.00 223.00 354.50 495.00 22.00 86.68 218.26 344.43 484.26 21.49
X  4.00  10.00  16.00  22.00  1.00 3.98 9.77 15.55 21.49 0.98

Mean  10.00   14.00   18.00   22.00    .00 9.86 13.87 18.10 21.82 –.01
Test for stationarity 

Structure #Para. 2χ  df dfΔ  2χΔ  2
r dfP χΔ> Δ

UN (unconstrained) 10 3.292 1 -- -- -- 
TOEP (constrained by stationarity) 4 6.321 7 6 3.029 .805 

ACF / PACF a 
 Lag-1 Lag-2 Lag-3 

ACF –.499***  .278** –.069 

PACF –.508*** .037  .265 
-1

-0.75
-0.5

-0.25
0

0.25
0.5

0.75
1

1 2 3

Lag

PA
C

F

-1
-0.75

-0.5
-0.25

0
0.25

0.5
0.75

1

1 2 3

Lag

A
CF

SCDT 
 0 : T SH M M=  Model fit 

Step Structure #para 2χ  df dfΔ 2χΔ  2
r dfp χΔ> Δ   2

rp χ>  AIC 

0 TOEP 4  6.321 7 -- -- -- .503 –7.679 
1 TOEP(1) 1 91.356 10 3 85.035 < .0001 <.0001 71.359 
2 CS 2 78.358 9 2 72.067 < .0001 <.0001 60.358 
3 AR(1) 2  6.466 9  2  .145 .930 .693 –11.533 

Parameter estimates based on the LGM with AR(1) for ε  

00γ̂  01γ̂  10γ̂  11γ̂  
2ˆ
ηαζσ  2ˆ

ηβζσ  ˆ
η ηα βζ ζσ  1̂φ  2ˆεσ  

  9.92*** 4.07***      4.05*** 5.97*** 1.16*** 0.97*** –.58*** –.51*** 3.80*** 

† p < .10, * p < .05, ** p < .01, *** p < .001.  
a The boxes with solid line and dash line in plots represent significance and nonsignificance, respectively. 
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Table 2-4 (Continued) 

Case 2: AR(2) 

Population covariance matrix (Equation 5) Sample covariance matrix 

 y1 y2 y3 y4   X y1 y2 y3 y4  X 
y1 21.00 41.44 61.58 85.87 4.00 19.95 40.03 59.21 82.23 3.84 
y2 41.44 105.00 162.44 219.58 10.00 40.03 101.16 154.81 208.63 9.55 
y3 61.58 162.44 263.00 357.44 16.00 59.21 154.81 247.72 336.54 15.10 
y4 85.87 219.58 357.44 495.00 22.00 82.23 208.63 336.54 465.81 20.75 
X 4.00 10.00 16.00 22.00 1.00 3.84 9.55 15.10 20.75 0.95 

Mean  10.00   14.00   18.00   22.00    .00    9.64   13.42 17.15 20.78    –.06 
Test for stationarity 

Structure #Para. 2χ  df dfΔ  2χΔ  2
r dfP χΔ> Δ

UN (unconstrained) 10 1.192 1 -- -- -- 

TOEP (constrained by stationarity) 4 4.765 7 6  3.573 .734 

ACF / PACF a 

 Lag-1 Lag-2 Lag-3 

ACF  .339***  –.430**  –.285† 

PACF  .434***   –.730*** –.351 

-1
-0.75

-0.5
-0.25

0
0.25

0.5
0.75

1

1 2 3

Lag
PA

CF
-1

-0.75
-0.5

-0.25
0

0.25
0.5

0.75
1

1 2 3

Lag

A
CF

SCDT 

 
0 : T SH M M=  Model fit 

Step Structure #para 2χ  df dfΔ 2χΔ  2
r dfp χΔ> Δ   2

rp χ>  AIC 

0 TOEP 4 4.765  7 -- -- -- .677 –9.235 
1 TOEP(1) 1 288.699 10 3 283.894 < .0001 < .0001 268.699 
2 CS 2 286.899  9 2 282.134 < .0001 < .0001 268.899 
3 AR(2) 3 4.853 8 1   .088 .766  .773 –11.147 

Parameter estimates based on the LGM with AR(2) for ε  

00γ̂  01γ̂  10γ̂  11γ̂  
2ˆ
ηαζσ  2ˆ

ηβζσ    ˆ
η ηα βζ ζσ 1̂φ  2̂φ  2ˆεσ  

9.89*** 4.04*** 4.02*** 5.98*** .0.77* .91** –.31 .43*** –.72*** 3.70* 

† p < .10, * p < .05, ** p < .01, *** p < .001.  
a The solid-line and dash-line boxes in plots represent significance and nonsignificance, respectively. 
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Table 2-4 (Continued) 

Case 3: MA(2) 

Population covariance matrix (Equation 5) Sample covariance matrix 

 y1 y2 y3 y4 X y1 y2 y3 y4  X 
y1 21.00 42.20 65.42 87.50  4.00 21.39  43.49 68.41 92.15  4.20
y2 42.20 105.00 163.20 223.42 10.00 43.49 109.43 172.26 237.71 10.65
y3 65.42 163.20 263.00 358.20 16.00 68.41 172.26 281.29 385.47 17.29
y4 87.50 223.42 358.20 495.00 22.00 92.15 237.71 385.47 536.50 23.92
X  4.00 10.00 16.00 22.00  1.00 4.20 10.65 17.29 23.92  1.09

Mean 10.00 14.00  18.00  22.00    .00  9.54  13.30  16.89  20.59  –.07 
Test for stationarity 

Structure #Para. 2χ  df dfΔ  2χΔ  2
r dfP χΔ> Δ

UN (unconstrained) 10 2.345 1 -- -- -- 

TOEP (constrained by stationarity)  4 5.492 7 6 3.142 .791 

ACF / PACF a 
    

Lag-1 

 

Lag-2 

 

Lag-3 

ACF   .386***  .381***  .033 

PACF  –.296*** .409*  –.561* 

SCDT 
 

0 : T SH M M=  Model fit 

Step Structure #para 2χ  df dfΔ 2χΔ  2
r dfp χΔ> Δ   2

rp χ>  AIC 

0 TOEP 4  5.492 7 -- -- --  .600 –8.508 

1 TOEP(1) 1 26.137 10 3 20.645 < .0001  .004 6.137 

2 CS 2 26.137 9 2 20.645 < .0001  .002 8.137 
3 MA(2) 3  5.510 8 1  .018 .893  .702 –10.508 

Parameter estimates based on the LGM with MA(2) for ε  

00γ̂  01γ̂  10γ̂  11γ̂  
2ˆ
ηαζσ  2ˆ

ηβζσ  ˆ
η ηα βζ ζσ  1̂θ  2̂θ  2ˆεσ  

  9.84*** 4.10*** 3.82*** 6.06*** 1.30† .85*** –.53† –.45*** –.52*** 3.94***

† p < .10, * p < .05, ** p < .01, *** p < .001.  
a The solid-line and dash-line boxes in plots represent significance and nonsignificance, respectively. 
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Lag
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Table 2-4 (Continued) 

Case 4: ARMA(1,1) 

Population covariance matrix (Equation 5) Sample covariance matrix 

 y1 y2 y3 y4  X y1 y2 y3 y4  X 
y1 21.00 37.64 65.43 86.79 4.00 22.26 40.17 68.79 91.51 4.24 
y2 37.64 105.00 158.64 223.43 10.00 40.17 111.57 167.48 237.19 10.60 
y3 65.43 158.64 263.00 353.64 16.00 68.79 167.48 272.55 369.92 16.73 
y4 86.79 223.43 353.64 495.00 22.00 91.51 237.19 369.92 521.52 23.16 
X 4.00 10.00 16.00 22.00 1.00 4.24 10.60 16.73 23.16 1.05 

Mean  10.00   14.00   18.00   22.00   0.00 10.15 14.41 18.61 22.76 0.05 
Test for stationarity 

Structure #Para. 2χ  df dfΔ  2χΔ  2
r dfP χΔ> Δ

UN (unconstrained) 10  0.819 1 -- -- -- 

TOEP (constrained by stationarity)  4 3.541 7 6 2.722 .842 

ACF / PACF a 
    

Lag-1 

 

Lag-2 

 

Lag-3 

ACF –.636*** .448** –.152* 

PACF –.592***  .334***  .376* -1
-0.75

-0.5
-0.25

0
0.25

0.5
0.75

1

1 2 3PA
CF

Lag
-1

-0.75
-0.5

-0.25
0

0.25
0.5

0.75
1

1 2 3

A
CF

Lag

SCDT 
 

0 : T SH M M=  Model fit 

Step Structure #para 2χ  df dfΔ 2χΔ  2
r dfp χΔ> Δ   2

rp χ>  AIC 

0 TOEP 4  3.541   7 -- -- -- .831 –10.459 
1 TOEP(1) 1 216.950  10 3 213.409 <.0001 <.0001 196.950 
2 CS 2 172.820   9 2 169.279 <.0001 <.0001 154.820 
3 ARMA(1,1) 3 3.600 8 1   .059 .808  .892 –12.400 

Parameter estimates based on the LGM with ARMA(1,1) for ε  

00γ̂  01γ̂  10γ̂  11γ̂  
2ˆ
ηαζσ  2ˆ

ηβζσ  ˆ
η ηα βζ ζσ  1̂φ  1̂θ  2ˆεσ  

 9.98*** 3.89*** 4.06*** 5.96*** 1.02* . 1.09*** –.56** –.55*** .49* 3.97*** 

† p < .10, * p < .05, ** p < .01, *** p < .001.  
a The solid-line and dash-line boxes in plots represent significance and nonsignificance, respectively. 
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Table 3-1 
Results of Fitting Growth Models 

 Parameter estimate 

Parameter     Model (1-A)     Model (1-B)     Model (1-C)     Model (1-D) Model (1-E) 

φ      0.5285**        0.2922 0.5369***      0.3960* 0.2198 

00γ  16.5027*** 15.7508*** 17.5647*** 16.9042*** 16.0873***

01γ  16.1630*** −1.3485***    −0.4882    21.9911***

02γ    −0.8883 

03γ     −10.3162**  

10γ  −1.7980*** −2.0675*** −1.9733*** −2.3632*** −2.4320*** 

11γ  3.6353*** 0.2206***    2.1771***      1.6625** 

12γ       1.5469***

13γ       2.9072**

1

2
εσ  75.6618*** 74.2979*** 73.7251*** 73.8213*** 73.5453***

2

2
εσ  95.8847*** 96.0294*** 95.3825*** 97.5293*** 98.0433***

3

2
εσ  33.4317*** 35.3216*** 33.5084*** 33.8775*** 35.8736***

4

2
εσ  40.4354*** 36.4832*** 40.1770*** 41.8058*** 37.7967***

ρ  0.2895*** 0.2923*** 0.2857*** 0.2985*** 0.3038***

0

2
ζσ  224.1011*** 204.7596*** 218.4588*** 224.5650*** 201.8265***

1

2
ζσ           5.1383**        4.1179**       5.1481**       4.2153**     3.8823*    

0 1ζ ζσ     −9.2642*  −13.7503***     −8.6261        −9.1876**   −12.4987***

CFI 0.9904       0.9893      0.9905      0.9934    0.9901 

SRMR 0.0361      0.0326 0.0327 0.0258     0.0250 

Note. Dummy variable D1 = 1 for high-tech stocks and D1 = 0 for non-high-tech stocks. Dummy 
variable D2 = 1 for stocks with ease of margin trading and D2 = 0 for stocks without ease of margin 
trading. Level-1 submodel is given by 

0 1 ,  1, 2,..., .it i i t t itY TIME EPS t Tβ β φ ε= + + + =                 (1) 

Level-2 submodels are given by 
0 00iβ γ= 0 ,iζ+ 1 10 1i iβ γ ζ= + ,                              (A) 

0 00 01 1 0 ,i i iDβ γ γ ζ= + + 1 10 11 1 1 i i iDβ γ γ ζ= + + ,                (B) 

0 00 01 0 1 10 11 1 ,  i i i i i isize sizeβ γ γ ζ β γ γ ζ= + + = + + ,              (C) 

0 00 01 2 0 1 10 11 2 1 ,  i i i i i iD Dβ γ γ ζ β γ γ ζ= + + = + + ,                 (D) 

0 00 01 1 02 2 03 1 2 0i i i i i iD D D Dβ γ γ γ γ ζ= + + + + , 1 10 11 1 12 2 13 1 2 1 i i i i i iD D D Dβ γ γ γ γ ζ= + + + + .  (E) 

One-sided tests were conducted for 11γ  in Models (1-B), (1-C), and (1-E), for 13γ  in Model (1-E), 
and for error variances.  
* p < 0.1; **p < 0.05; *** p < 0.01. 
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Table 4-1 
Correlation Matrices of the IS Indicators for Each Time Level 

 IS indicator 

 x1 x2 x3 

2007/09    

x1 1.0000 0.9980*** 0.9290*** 

x2  1.0000 0.9308*** 

x3   1.0000 
    

2007/10    

x1 1.0000 0.9935*** 0.8890*** 

x2  1.0000 0.9033*** 

x3   1.0000 
    

2007/11    

x1 1.0000 0.9936*** 0.9436*** 

x2  1.0000 0.9352*** 

x3   1.0000 
    

2007/12    

x1 1.0000 0.9981*** 0.9559*** 

x2  1.0000 0.9536*** 

x3   1.0000 
    

Note. x1, x2 and x3 denote, respectively, during each time period of three IS indicators (turnover rate of 
trading volume, turnover rate of trading value and number of transaction / outstanding shares). 
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Table 4-2 
Results of the Exploratory Factor Analysis for the Three IS Indicators for Individual 

Months. 

IS indicator 2007/09 2007/10 2007/11 2007/12 

x1 0.9917 0.9851 0.9934 0.9950 

x2 0.9923 0.9899 0.9906 0.9943 

x3 0.9682 0.9526 0.9732 0.9798 

Eigenvalue 2.9056 2.8579 2.9152 2.9386 

Proportion of total 
variance explained 0.9685 0.9526 0.9717 0.9795 

Note. x1, x2 and x3, three IS indicators, denote, respectively turnover rate of trading volume, turnover 
rate of trading value, and number of transaction / outstanding shares. One factor was extracted for x1, 
x2 and x3 at each individual month, based on the criterion of ‘Eigenvalue > 1’. 

 



 

 67

Table 4-3 
Results of the Confirmatory Factor Analysis for the Three IS Indicators for Individual 

Months 

IS indicator 2007/9 2007/10 2007/11 2007/12 

     
x1

a 0.9980*** 0.9934*** 1.0000*** 1.0000*** 
x2

a 1.0000*** 1.0000*** 0.9936*** 0.9981*** 
x3

a 0.9308*** 0.9033*** 0.9436*** 0.9559*** 

Model fit:     

CFI 1.0000 0.9954 0.9996 1.0000 

SRMR 0.0000 0.0020 0.0011 0.0005 

Reliability:     

  Coefficient α 0.9837 0.9750 0.9837 0.9895 

  Composite reliability 0.9842 0.9770 0.9860 0.9898 

Note. x1, x2 and x3, three IS indicators, denote, respectively turnover rate of trading volume, turnover rate 
of trading value, and number of transaction / outstanding shares. Standardized coefficient α and 
composite reliability are reported because of different measurement units of the indicators.  
a standardized factor loadings were presented. 
* p < 0.1; **p < 0.05; *** p < 0.01. 
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Table 4-4 
Correlation Matrix of the IS Linear Trends for the Three Indicators 

  Trend of x1 Trend of x2 Trend of x3 

Trend of x1 1.0000 0.9897*** 0.8995*** 

Trend of x2  1.0000 0.8940*** 

Trend of x3   1.0000 

Note. x1, x2 and x3, three IS indicators, denote, respectively turnover rate of trading volume, turnover rate 
of trading value, and number of transaction / outstanding shares. Standardized coefficient α and 
composite reliability are reported because of different measurement units of the indicators. 
* p < 0.1; **p < 0.05; *** p < 0.01. 
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Table 4-5 
Results of the Exploratory Factor Analysis for the Trends of the Three IS Indicators 

Variable Factor 1 

Trend of x1 0.9874 

Trend of x2 0.9859 

Trend of x3 0.9532 

Eigenvalue 2.8555 

Proportion of total variance explained 0.9518 

Note. x1, x2 and x3, three IS indicators, denote, respectively turnover rate of trading volume, turnover rate 
of trading value, and number of transaction / outstanding shares. One factor was extracted, based on the 
criterion of ‘Eigenvalue > 1’. 
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Table 4-6 
Results of the Confirmatory Factor Analysis for the Trends of the Three IS Indicators 

Variable 
1

Fβ  

Trend of x1
a 0.9973*** 

Trend of x2
a 0.9923*** 

Trend of x3
a 0.9009*** 

Model fit:  

CFI 1.0000 

SRMR 0.0000 

Reliability:  

  Coefficient α 0.9746 

  Composite reliability 0.9756 

Note. x1, x2 and x3, three IS indicators, denote, respectively turnover rate of trading volume, turnover rate 
of trading value, and number of transaction / outstanding shares. 

1
Fβ denotes the latent factor for the 

trends of the three IS indicators.. Standardized coefficient α and composite reliability are reported because 
of different measurement units of the indicators. 
a standardized factor loadings were presented. 
* p < 0.1; **p < 0.05; *** p < 0.01. 
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Table 4-7 
Results of the Convergent Validity Analysis for the Trends of the Three IS Indicators and 

Those of PBR and SSTR 

 
Variable 1

Fβ  

Trend of x1
a         0.9960*** 

Trend of x2
a         0.9972*** 

Trend of x3
a         0.8988*** 

Trend of PBR −0.0494 

Trend of SSTR −0.0214 

Model fit: 
 

CFI 0.9958 

SRMR 0.0034 

Reliability:  

  Coefficient α 0.6654 

  Composite reliability 0.7832 

Note. x1, x2 and x3, three IS indicators, denote, respectively turnover rate of trading volume, turnover rate 
of trading value, and number of transaction / outstanding shares. PBR represents Price / book value. 
SSTR represents the short-selling turnover ratio. 

1
Fβ denotes the latent factor for the trends of the three 

IS indicators.. Standardized coefficient α and composite reliability are reported because of different 
measurement units of the indicators.  
a standardized factor loadings were presented.  
* p < 0.1; **p < 0.05; *** p < 0.01. 
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Table 4-8 
Results of the Discriminant Validity Analysis between the IS Trend and the Trends of PBR 

and SSTR 

 
Variable Trend of PBR Trend of SSTR 1

Fβ  
Trend of PBR   1.0000  

Trend of SSTR  0.0893*  1.0000  

1
Fβ  −0.0132 −0.0191 1.0000 

Note. x1, x2 and x3, three IS indicators, denote, respectively turnover rate of trading volume, turnover rate 
of trading value, and number of transaction / outstanding shares. PBR represents Price / Earnings Ratio. 
SSTR represents the short-selling turnover ratio. 

1
Fβ denotes the latent factor for the trends of the three 

IS indicators.. Standardized coefficient α and composite reliability are reported because of different 
measurement units of the indicators. Model fit results: CFI = 0.9986; SRMR = 0.0034. 
a standardized factor loadings were presented.  
* p < 0.1. 
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Table 4-9 
Results of the Convergent Validity Analysis for the IS Trends by the Three Liquidity 

Indicators and PBR and SSTR for the Optoelectronic Stocks 

 
1

Fβ  
1

Fβ  
IS trend based on   

x1         0.9996***         0.9996*** 

x2         0.9926***         0.9926*** 

x3         0.9578***         0.9578*** 

PBR         0.3964*** 0.3964*** 

SSTR −0.1037  

Model fit   

CFI 0.9661    0.9661 

SRMR 0.0295    0.0295 

Reliability index   

  Coefficient α 0.6859    0.7117 

  Composite reliability 0.8449    0.9225 

Note. x1, x2 and x3, three IS indicators, denote, respectively turnover rate of trading volume, turnover rate 
of trading value, and number of transaction / outstanding shares. PBR represents Price / Earnings Ratio. 
SSTR represents the short-selling turnover ratio. 

1
Fβ denotes the latent factor for the trend based on IS 

indicators.. Standardized coefficient α and composite reliability are reported because of different 
measurement units of the indicators. The stocks belonging to the optoelectronic industry are selected 
because they are high-tech stocks and mainly owned by noise traders (with 64.66% individual holdings). 
Standardized factor loadings are presented. For the model with the indicators except SSTR, SSTR is used 
as a control variable, and the covariance of IS trend based on SSTR and 1

Fβ  = －0.1037.   
* p < 0.1; **p < 0.05; *** p < 0.01. 
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Table 4-10 
The Regression of Return on IS Trend for Different Types of Stocks 

Type Regression Coefficient 

Entire Market  0.0206*** 

Type of traders  

NT  0.0367*** 

RT –0.0032 

Type of traders and margin trading  

NT-EMT   0.1211** 

NT-NEMT   0.0405** 

RT-EMT  –0.1007 

RT-NEMT   0.0832 

Note. NT denotes Optoelectronics stocks, representative of those held more by individual investors (noise 
traders). RT denotes financial and insurance stocks, representative of those held more by judicial 
investors (rational investors). EMT and NEMT, denote, respectively, stocks with and without ease of 
margin trading. NT-EMT denotes the type with NT and EMT. NT-NEMT, RT-EMT, and RT-NEMT are 
defined similarly.   
* p < 0.1; **p < 0.05; *** p < 0.01. 
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Figure 1-1. Linear latent growth model with four repeated measures and a predictor X 
(adapted from Bollen and Curran (2006, p. 128) and Preachers et al. (2008, p. 29)). 
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Figure 1-2. A second-order linear latent growth model with one time-invariant latent 
predictor and four repeated latent constructs, each measured by three indicators (adapted 
from Chan (1998) and Preachers et al. (2008, p. 63)). 
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Figure 2-1.  A flow chart for identifying an “optimal” level-1 error covariance structure. 
TOEP is the saturated stationary structure and UN is the saturated nonstationary model. 



 

 78

MT denotes a temporary structure, nested within the saturated structure. MT is updated 
sequentially according to the following order: 
(a) for stationary structures: TOEP(1) →  CS →  AR(p)/MA(q) →  ARMA(1,1) →  

(ARMA(2,1), ARMA(1,2)) →  (ARMA(3,1), ARMA(2,2), ARMA(1,3))  . . . . → →  
(ARMA(p,q), p+q = T–2). The flow to determine the order of ARMA(p,q) is contained in the 
dash-line box. 

(b) for nonstationary structures: 
TOEPH(1) →  (TOEPH(2), CSH, ARH(1)) →  TOEPH(3) . . . . → →  (TOEPH(T), 
UN(2))  . . . . → →  UN(T–1). 
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(1-A) (1-B) (1-C) 

 

 (1-D)  (1-E)  

 

Figure 3-1. Average linear growth trend of sentiment by group. Ŷ  denotes the predicted turnover ratio after controlling for EPS. 
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Appendix 1-A 
Sample SAS Programs for LGM by Using PROC CALIS 

___________________________________________________________________________ 
Program 1 
A SAS Program for the LGM Shown in Figure 1-1 by Fitting ARMA(1,1) for Level-1 
Error Covariance Structure 
 
/* The dataset used for PROC CALIS should be a multi-variable dataset rather than a 

multi-record dataset (Singer, 1998) */ 
 
PROC CALIS UCOV AUG; 

LINEQS 
      Y1 = 1 F_Alpha + 0 F_Beta + E1, 
      Y2 = 1 F_Alpha + 1 F_Beta + E2, 
      Y3 = 1 F_Alpha + 2 F_Beta + E3, 
      Y4 = 1 F_Alpha + 3 F_Beta + E4, 
      F_Alpha = GA00 INTERCEPT + GA01 X + D0, 
      F_Beta = GA10 INTERCEPT + GA11 X + D1; 

STD 
      E1=VARE, E2=VARE, E3=VARE, E4=VARE, X=VARX, 

D0=VARD0, D1=VARD1; 
COV 

E1 E2=COV_lag1, E2 E3=COV_lag1, E3 E4=COV_lag1,  
E1 E3=COV_lag2, E2 E4=COV_lag2, E1 E4=COV_lag3,  
D0 D1=COVD0D1; 

PARAMETERS PHI1 RHO1; 
      COV_lag1=RHO1*VARE;  

COV_lag2=PHI1* COV_lag1; 
      COV_lag3=PHI1* COV_lag2; 

BOUNDS 
–1. < PHI1 < 1.; 

VAR Y1 Y2 Y3 Y4 X; 
TITLE ‘Linear Growth Modeling with Four Occasions by Specifying’; 
TITLE2 ‘ARMA(1,1) for Level-1 Error Covariance Structure’; 

RUN; 
 
 
Program 2 
A SAS Program for the Second-Order LGM Shown in Figure 1-2 by Fitting AR(1) for 
the Level-1 Error Covariance Structure Associated with Each Indicator 
 
PROC CALIS UCOV AUG;  
   LINEQS 
     Y11 = 1 F1 + EY11,  Y21 = LY21F1 F1 + EY21,  Y31 = LY31F1 F1 + EY31, 
     Y12 = 1 F2 + EY12,  Y22 = LY22F2 F2 + EY22,  Y32 = LY32F2 F2 + EY32, 
     Y13 = 1 F3 + EY13,  Y23 = LY23F3 F3 + EY23,  Y33 = LY33F3 F3 + EY33, 
     Y14 = 1 F4 + EY14,  Y24 = LY24F4 F4 + EY24,  Y34 = LY34F4 F4 + EY34, 
     X1 = 1 F7 + EX1,    X2 = LX2F7 F7 + EX2,     X3 = LX3F7 F7 + EX3, 
     F1 = 1 F_Alpha + 0 F_Beta + EZF1,  

F2 = 1 F_Alpha + 1 F_Beta + EZF2,  
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     F3 = 1 F_Alpha + 2 F_Beta + EZF3,  
     F4 = 1 F_Alpha + 3 F_Beta + EZF4,  
     F_Alpha = GA00 INTERCEPT + GA10 F7 + EZF5, 
     F_Beta = GA01 INTERCEPT + GA11 F7 + EZF6, 
     F7 = F7_int INTERCEPT + EZF7; 

STD 
     EY11−EY14=4*VARE1, EY21−EY24=4*VARE2, EY31−EY34=4*VARE3, 
     EX1=VAREX1, EX2=VAREX2, EX3=VAREX3, 
     EZF1=VARZF1, EZF2=VARZF2, EZF3=VARZF3, EZF4=VARZF4, 

EZF5=VARE_Intercept, EZF6=VARE_Slope, EZF7=VARZF7; 
COV 

/* for the level-1 errors associated with indicator 1 */ 
     EY11 EY12=COV1_lag1, EY12 EY13=COV1_lag1, EY13 EY14=COV1_lag1,  
     EY11 EY13=COV1_lag2, EY12 EY14=COV1_lag2, EY11 EY14=COV1_lag3, 

/* for the level-1 errors associated with indicator 2 */ 
     EY21 EY22=COV2_lag1, EY22 EY23=COV2_lag1, EY23 EY24=COV2_lag1,  
     EY21 EY23=COV2_lag2, EY22 EY24=COV2_lag2, EY21 EY24=COV2_lag3, 

/* for the level-1 errors associated with indicator 3 */ 
EY31 EY32=COV3_lag1, EY32 EY33=COV3_lag1, EY33 EY34=COV3_lag1,  

     EY31 EY33=COV3_lag2, EY32 EY34=COV3_lag2, EY31 EY34=COV3_lag3, 
/* for the level-2 errors associated with growth factors */ 
EZF5 EZF6=CZF5ZF6; 

PARAMETERS  PHI1  PHI2  PHI3; 
/* for the level-1 errors associated with indicator 1 */ 
COV1_lag1=PHI1*VARE1; COV1_lag2= (PHI1**2)*VARE1;  
COV1_lag3=(PHI1**3)*VARE1; 
/* for the level-1 errors associated with indicator 2 */ 
COV2_lag1=PHI2*VARE2; COV2_lag2=(PHI2**2)*VARE2;  
COV2_lag3=(PHI2**3)*VARE2; 
/* for the level-1 errors associated with indicator 3 */ 

     COV3_lag1=PHI3*VARE3; COV3_lag2=(PHI3**2)*VARE3; 
     COV3_lag3=(PHI3**3)*VARE3; 

BOUNDS 
     –1.< PHI1<1.,  –1.< PHI2<1.,  –1.< PHI3<1. ;  

LINCON  /* Weak factorial invariance across time is assumed */ 
      LY21F1=LY22F2, LY21F1=LY23F3, LY21F3=LY24F4,  

LY31F1=LY32F2, LY31F1=LY33F3, LY31F3=LY34F4; 
TITLE ‘Second-Order Linear Growth Modeling for a Construct Measured by’; 
TITLE2 ‘Three Indicators at Four Occasions by Fitting AR(1) for the’; 
TITLE3 ‘Level-1 Error Covariance Structure Associated with Each Indicator’; 
VAR Y11 Y21 Y31 Y12 Y22 Y32 Y13 Y23 Y33 Y14 Y24 Y34 X1 X2 X3; 

RUN; 
___________________________________________________________________________
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Appendix 1-B 
More Types of Level-1 Error Covariance Structures with Four Equally Spaced 

Occasions 
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Appendix 1-B (Continued) 
Structure (Θε ) ECM 
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Appendix 1-B (Continued) 
 

Structure (Θε ) ECM 

  
UN(q) (UN with q bands,  

q = 1, …,4): 
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Note. 1(A) equal 1 when A is true. For example, 1(| | )t t q′− < = 1 when | |t t q′− <  and 0 otherwise, 
1q ≥ . kρ  denotes the autocorrelation coefficient at lag k. 0ρ = 1. TOEP(4) = TOEP; TOEPH(4) = 

TOEPH; UN(4) = UN; TOEPH(1) = UN(1). 
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Appendix 1-C 
Derivation of the Population Model-Implied Mean Vector μ  and Variance-Covariance 

Matrix Σ  of y and x for the Second-Order LGM (Figure 1-2) 

Based on Equation 11, we have 
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Appendix 3-A 

Investors Structure in Terms of Trading Value in the Taiwan Stock Market 

Data source: Securities and Futures Bureau, Financial supervisory Commission, Taiwan. The 
amounts in the table consist of both buying and selling and do not include auctions and 
bidding. The unit of trading value is NT billion. 

 

 
Juridical investors Individual investors  

Time 
 Amount % Amount % 

2007/01  1,497.07  28.3  3,792.05  71.7 
2007/02  801.27  36.4  1,401.82  63.6 
2007/03  1,661.95  32.0  3,531.06  68.0 
2007/04  1,273.98  29.9  2,989.35  70.1 
2007/05  1,382.98  32.7  2,844.13  67.3 
2007/06  1,806.32  30.2  4,174.72  69.8 
2007/07  2,479.14  24.8  7,506.08  75.2 
2007/08  2,146.47  30.0  4,996.94  69.9 
2007/09  1,486.34  29.9  3,481.86  70.1 
2007/10  2,187.23  31.2  4,826.65  68.9 
2007/11  2,115.48  36.2  3,726.78  63.7 
2007/12  1,531.88  34.8  2,867.83  65.2 
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Appendix 3-B 
J. P. Morgan Investor Confidence Indices and Volume of Initial Public Offerings 

from January, 2005 through December, 2008 in the Taiwan Stock Market 
 

Year 2005 2006 2007 2008 
Month J. P. ICI Vol. IPOs J. P. ICI Vol. IPOs J. P. ICI Vol. IPOs J. P. ICI Vol. IPOs 

1 99.600 0.201 108.700 0.000 114.500 0.084 104.200 1.360 

2 − 0.062 − 0.034 − 0.000 − 0.062 

3 115.100 0.038 100.400 2.711 108.900 0.000 119.400 0.174 

4 − 0.000 − 0.691 − 0.000 − 0.433 

5 105.600 0.078 115.900 0.000 106.100 0.367 132.100 0.000 

6 − 0.000 − 0.000 − 0.077 − 0.235 

7 106.000 0.000 102.800 0.000 117.800 0.124 106.600 0.164 

8 − 3.933 − 0.062 − 0.775 − 0.000 

9  94.300 0.000 88.600 0.202 109.900 0.092 81.800 0.000 

10 − 0.333 − 2.530 − 1.134 − 0.225 

11  93.900 2.058 99.500 0.107 104.500 1.264 − 0.131 

12 − 0.186 − 0.208 − 1.701 − 1.203 

Note. J. P. Morgan investor confidence indices (J. P. ICI) are available at https://www.jpmrich.com.tw 
/docs/jf/faith/index.html. J. P. Morgan has stopped publishing the J. P. ICI information since November 
2008. The volume of IPOs (in billion shares) for the Taiwan stock market is obtained from the Taiwan 
Stock Exchange Corporation. 
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 90

誌   謝 

本研究蒙國科會經費補助 (計畫編號：NSC 98-2410-H-009-010-MY2)，研究過程亦蒙國

立交通大學多方行政支援，謹此一倂申謝！  


