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Abstract
The relaxation-modulus G(t) functional forms covering the whole time range
are given by incorporating a stretched exponential for the structural- (glassy-)
relaxation process into the extended reptation theory (ERT; for entangled
systems) or the Rouse theory (for entanglement-free systems). The creep
compliance J (t) curves of two entangled (A and B) and one entanglement-
free (C) polystyrene samples (Plazek) as well as the viscoelastic spectra
G∗(ω) of four entanglement-free polystyrene samples (Inoue et al) have
been quantitatively analyzed in terms of the given G(t) functional forms.
In such quantitatively successful analyses, the ERT or the Rouse theory
works as the frame of reference in both the line shape and timescale. The
thermorheological complexity in the J (t) curves is explained naturally and
precisely by the temperature dependence of the energetic-interaction-derived
structural relaxation being stronger than that of the entropic ERT or Rouse
dynamics in a simple way. Structural-relaxation times τS(=18s ′K ′) of all
the studied samples are equally well separated into two decoupled quantities:
the structural-growth parameter s ′ and the frictional factor K ′ (for the Rouse–
Mooney or Rouse modes of motion). The separation is fundamentally a clean-
cut process: s ′ is determined entirely by the line shape of J (t) or G∗(ω)

while K ′ is calculated from the timescale shifting factor obtained from the
superposition of the calculated curves onto the measured. The glassy-relaxation
strength Af

G and the stretching parameter β extracted from the J (t) and G∗(ω)

results over the glassy-relaxation region are in good agreement. The glass-
transition temperature Tg is defined as corresponding to τS = 1000 s for all the
studied samples. The τS, s′ and K ′ data points of samples A, B and C extracted
from their J (t) curves individually fall closely on the same curves when
expressed as a function of �T = T − Tg, revealing a Tg-related universality
within the polystyrene system, entangled or not. The revealed universality
confirms the previously derived conclusion that the ERT and the Rouse theory
have the same footing at the Rouse-segmental level. Representing important
physical features of the universality, the length-scale of the structural relaxation
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increases as �T diminishes and reaches the value of ∼3 nm at �T = 0 (or at
Tg) for all three samples, A, B and C. Extracted from the G∗(ω) results, the τS,
s′ and K ′ data of samples with molecular weights just below and well below
entanglement molecular weight Me (13 500) are found to deviate more from
the respective universal curves with decreasing molecular weight. Deviation is
estimated to start occurring at Mw = 12 000.

1. Introduction

In the study of polymer viscoelasticity, often one of the three viscoelastic responses,
relaxation modulus G(t), viscoelastic spectrum G∗(ω) or creep compliance J (t), is chosen
for measurement [1–3]. On the basis of Boltzmann’s superposition principle [1–3], the
three different viscoelastic responses are equivalent, containing the same static and dynamic
information; one form can be converted into another by a mathematical transformation. In the
comparison of an experimentally measured J (t) or G∗(ω) with a theoretical G(t) functional
form, the numerical calculation of the transformation from G(t) can be accurately carried out
[4, 5].

About 40 years ago thermorheological complexity in polystyrene melts was first observed
by Plazek as the temperature approaches the glass-transition temperature Tg [6, 7]. The effect
can be easily noticed, as the change in the long-time region of the creep compliance J (t)
with temperature is weaker than that in the short-time region. As reported previously [4],
the J (t) curves of two entangled nearly monodisperse polystyrene samples A and B (table 1)
over the whole range have been quantitatively analyzed with the extended reptation theory
(ERT) [2, 4, 8–11] as the frame of reference. The vital basis for the ERT to serve as the
reference frame is its Rouse-segmental frictional factor K being independent of molecular
weight as expected from the theory (see table 1 of [4]). The molecular-weight independence
of K has been shown from analyzing the relaxation-modulus G(t) line shapes of a series of
nearly monodisperse polystyrene samples quantitatively in terms of the ERT and calculations
from the viscosity and diffusion data by means of the ERT [2, 4, 8–11] (see appendix B
of [4]). As the logical consequence of K being independent of molecular weight, ERT explains
the molecular-weight dependences of the zero-shear viscosity and steady-state compliance;
and their respective transition points, Mc and M ′

c. The quantitative validity of the ERT as
indicated by these results is only applicable in nearly monodisperse systems [2, 8–14]; all the
viscoelastic responses or properties studied or referred to in this paper are of systems satisfying
this condition. The line shape in the large-compliance region of J (t) is essentially determined
entirely by the contribution from the ERT dynamic processes and its timescale is characterized
by the frictional factor K . Thus, the temperature dependence of the glassy-relaxation timescale
as contained in and extractable from the short-time region of J (t) can be studied with respect
to that of K . In the ERT (as well as in the Rouse theory [2, 15, 16]), the frictional factor K is
defined by

K = ζ 〈b2〉
kTπ2m2

, (1)

where ζ, 〈b2〉 and m are the frictional constant, mean square bond length and mass of the Rouse
segment, respectively. The G(t) functional form for the whole time range of an entangled
system is given by incorporating a stretched exponential for the glassy-relaxation process into
the ERT (see section 2). From the given G(t), the J (t) line shape can be calculated with K
fixed at a certain value through the basic equation of linear viscoelasticity [1–4]:

t =
∫ t

0
J (t ′)G(t − t ′) dt ′. (2)
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Table 1. Characteristics, Mw , Mw/Mn and Tg (based on DSC, and defined at τS = 1000 s), and parameters, Af
G, β and Z , extracted

from the analyses of creep-compliance curves J (t) ([4] and present study) or viscoelastic spectra G∗(ω) (present study) of the samples
whose structural-relaxation times τS, structural-growth parameters s ′ and frictional factors K ′ are displayed in figures 6–8, as well as the
reference theories used in the analyses. Also shown are K values at 127.5 ◦C and Mw, Mw/Mn , Tg and K at 127.5 ◦C of F1.

Sample Mw

Reference
theory Z(Mw/Mn )

Tg (◦C)

DSCa
Tg (◦C)

τS = 1000 s
K (s Da−2)

(127.5 ◦C)
Af

G
(×1010 dyn cm−2) β

Displayed in
figures 6–8

Sample A 46 900 ERT 20(1.05) 97 97 4.8 × 10−9 1.295(100 ◦C) 0.41 τS, s ′, K ′ from J (t)
Sample B 122 000 ERT 20(1.05) 100 99.6b 0.973(100 ◦C) 0.41 τS, s ′, K ′ from J (t)
Sample C 16 400 Rouse 20(1.05) 93.4 93.8 4.15 × 10−9 0.993(100 ◦C) 0.42 τS, s ′, K ′ from J (t)
L10 10 500 Rouse 50(1.02) 90 (90.03)c 0.993(105 ◦C) 0.42 τS, s ′, K ′ from G∗(ω)

A5000 5 970 Rouse 50(1.02) 82 (81.64)c 1.09(100◦C) 0.42 τS, s ′, K ′ from G∗(ω)

A2500 2 630 Rouse 20(1.05) (59.6)d (59.43)c 1.09(80 ◦C) 0.42 τS, s ′, K ′ from G∗(ω)

A1000 1 050 (1.13) (5)d 6.22 1.14(25 ◦C) 0.36 τS from G∗(ω)

F1 16 700 ERT 120(1.01) 93.5 4.0 × 10−9

a Values based on the DSC results shown in figure 3 of [38].
b ‘Restored’ to the uncontaminated state.
c Calculated by extrapolation from the FTH equation best fitted to the obtained τS values.
d Outside the molecular-weight range covered in figure 3 of [38]; thus, estimated from the Tg values determined by DSC as reported in [32] and adjusted by
subtracting 3.8 ◦C which is the average difference between the two sets of DSC values.
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The calculation can be accurately done numerically using the Hopkins–Hamming [4, 17, 18]
method (see appendix A of [4]). Then the frictional factor K can be determined from the
timescale shifting factor obtained in the superposition of the calculated J (t) line shape on
the measured curve. The K value obtained from the J (t) of sample A this way is in close
agreement with the previously obtained values (table 1 of [4]).

While being independent of molecular weight, K carries the temperature dependence—
often described by the Fulcher–Tammann–Hesse (FTH) equation or the Williams–Landel–
Ferry (WLF) equation [19–21]—of all the relaxation times of the processes in the rubber-
to-fluid region. As opposed to the entropic nature of the dynamics in this region, the glassy-
relaxation process that occurs in the short-time region is derived from the energetic interactions
within and between segments. The temporally uneven thermorheological complexity in the
J (t) curves of sample A and sample B has been shown to arise from the temperature
dependence in the energetic-interaction-derived dynamics being stronger than that of the
entropy-derived dynamics in a simple way. The difference in temperature dependence can
be characterized in terms of the parameter s defined by

s = 〈τ 〉G

K
, (3)

where 〈τ 〉G is the average glassy-relaxation time. From the quantitative analyses of the J (t)
curves of sample A and sample B, it has been found that s increases by about an order of
magnitude with decreasing temperature over a range of ∼20◦ just above Tg.

According to the successful analysis in terms of equation (3), the thermorheological
complexity should occur in a polystyrene melt as long as its molecular weight is greater
than that of a Rouse segment, which has been estimated to be 850 [22–30]. A scheme of
analysis equivalent to that for the entangled systems (sample A and sample B) may be formed
for analyzing an entanglement-free system by replacing the ERT with the Rouse theory as
the frame of reference. In terms of such a G(t) functional form the J 0

e and J (t) results of
sample C [31] (A-61[3] of [31]) (table 1) and the G∗(ω) results of L10, A5000, A2500 and
A1000 [32] (table 1) are analyzed in this study.

Tg is defined by the temperature at which the structural-relaxation time τS reaches
1000 s for all the samples. The thus defined Tg serving as the common reference point, the
structural and dynamic quantities obtained from analyzing the J (t) results of samples A, B
and C as well as the G∗(ω) results of L10, A5000, A2500 and A1000 are compared. The
fundamental relationships between viscoelasticity—particularly, the glassy relaxation—and the
glass transition are revealed.

Because the comparison of the analysis-obtained results of both entangled and
entanglement-free samples will be discussed in terms of the G(t) functional forms used to
analyze their experimental results, the G(t) functional form for the entangled samples [4] will
first be briefly reviewed. Then the G(t) functional form for the entanglement-free system used
to analyze the results of entanglement-free samples in this study will be introduced. In the
process, the relations between the two, important for later discussions, will be pointed out.

2. G(t) functional forms in the entanglement and entanglement-free regions

Incorporating the glassy-relaxation process into the ERT, the relaxation modulus G(t) for a
nearly monodisperse entangled sample is expressed as [4]

G(t) = 4ρRT

5Me
F(t)

∫
f (M)GE(M, t) dM , (4)

4
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with

GE(M, t) = [1 + 1
4μX(t/τX(M))][√Me/MμB(t/τB(M))

+ (1 − √
Me/M)μC(t/τC(M))

]
(5)

and

F(t) = 1 + μA(t/τA) + AGμG(t/τG). (6)

In equation (4), f (M) is the molecular-weight distribution of the sample under study, μX(t)
the chain slippage through entanglement links to equilibrate the uneven tension along the
primitive chain, μB(t) the primitive-chain contour-length fluctuation and μC(t) the reptation
motion corrected for the chain-length-fluctuation effect. In equation (6), μG(t) represents the
glassy relaxation and AG is its relaxation strength, and μA(t) represents the Rouse–Mooney
normal modes of motion [2, 8, 33, 34] of an entanglement strand with both ends fixed. The
relaxation times of the different processes in the ERT, μA(t), μX(t), μB(t) and μC(t), are
each expressed as a product of the frictional factor K and a structural factor—a functional
form containing Me and/or M . We refer the functional forms of the four processes and their
respective relaxation times to the previous publications [2, 4, 8–11] While the friction factor
K in the three processes, μX(t), μB(t) and μC(t), is independent of molecular weight as
mentioned above, the frictional factor in the Rouse–Mooney process μA(t), denoted by K ′,
has been found to be greater than K by a factor RK that depends on the normalized molecular
weight M/Me (equation (12)) [2, 9, 11]. As it turns out, the predetermined RK (M/Me) factor
plays a very important role in the Tg-related universality as revealed in this study. The relevance
of RK (M/Me), which represents the dynamic anisotropy existing in entangled systems, is
discussed in detail in section 5.

It has been found that the glassy relaxation is well described by the stretched exponential
or the Kohlrausch, Williams and Watts (KWW) equation:

μG(t/τG) = exp(−(t/τG)β); 0 < β � 1. (7)

With 〈τ 〉G = ∫ ∞
0 μG(t) dt , equation (3) has been used to characterize the glassy-relaxation time

as a function of temperature relative to the relaxation times in the μA(t)–μX(t)–μB(t)–μC(t)
region, which are all proportional to the frictional factor K —including K ′ = RK (M/Me)K
in μA(t). The combination of equations (3)–(7) has been used to analyze the J (t) results of
sample A and sample B at different temperatures consistently and quantitatively [4, 5].

The Rouse theory quantitatively describes the viscoelastic responses of entanglement-
free systems over the entropy region [2, 10, 35]. From the extensive studies of the blend
solutions [2, 11], it has been shown that the frictional factor K in the ERT is the same as
that in the Rouse theory within a small possible experimental error (<20%). In other words,
the two theories have the same footing at the Rouse-segmental level. As pointed out above,
thermorheological complexity should occur in a polystyrene melt as long as its molecular
weight is greater than that of a Rouse segment. Thus, corresponding to equations (4)–(6) for a
nearly monodisperse entangled polymer melt, the relaxation modulus for an entanglement-free
melt is expressed by

G(t) = Af
GμG(t) + ρRT

∫
f (M)

M
μR(t, M) dM . (8)

In equation (8), Af
G is the full relaxation strength of the glassy relaxation and is related to AG

of equation (6) by Af
G = AGρRT /Me = (5/4)AGG N .1 Moreover, μR(t, M) representing the

1 Incorporating AGμG(t) into the ERT or Af
GμG(t) into the Rouse theory is intended to be a phenomenological

description. As the relaxation times of μX(t), μB(t) and μC(t) are all much longer than the slowest in μG(t), it makes
no practical difference to express the glassy relaxation either as the AGμG(t) term inside F(t) (equation (6)) or as a
separate term Af

GμG(t) in equation (8).

5



J. Phys.: Condens. Matter 19 (2007) 466101 Y-H Lin

Rouse relaxation for the component with molecular weight M is given by

μR(t, M) =
N−1∑
p=1

exp

(
− t

τp

)
, (9)

with

N = cint(M/m) + 1 (10)

and

τp = ζ 〈b2〉
24kT sin2(pπ/2N)

= Kπ2 M2

24N2 sin2(pπ/2N )
, (11)

where the function cint(x) converts a number x to an integer by rounding the fractional part
of x .

3. Analyses of the J 0
e and J(t) results

As shown previously [2, 4, 8–11, 35], f (M) for a nearly monodisperse polystyrene sample
as appearing in equation (4) or (8) is well represented by the Schulz distribution [36, 37]
characterized by the polydispersity parameter Z(Mw/Mn = (Z + 1)/Z). The Z value of
a studied system is determined as an adjustable parameter giving the best fitting to the line
shape of the measured viscoelastic response. The quantitative line-shape analyses have all
been warranted by the obtained Z values being well within the range expected for a nearly
monodisperse sample [2, 4, 8–11, 35]. The analyses of the J (t) results of samples A and
B have been reported in detail in [4]; the J 0

e and J (t) results of sample C are analyzed as
described in the following.

Based on sample C having a molecular weight just slightly above the entanglement
molecular weight Me = 13 500 and a molecular-weight distribution that is not extremely
narrow, it is not all clear whether it is an entangled or entanglement-free system. For achieving
quantitative agreements between the calculated and measured results of both J 0

e and J (t) of
sample C, the following factors need to be evaluated and determined. (1) The choice of the
functional form—i.e. equation (4) or (8) or even a linear combination of equations (4) and (8)
if the system behaves as an entangled blend solution [2, 11]. (2) The Z parameter for the
molecular weight distribution f (M). (3) The AG (or Af

G) and β values for the glassy-relaxation
process. They can be best found by a trial-and-error process until consistently quantitative
agreements are obtained. The functional form chosen must be well justified and consistent
with the obtained Z parameter. Section 3.4 of [4] has been entirely devoted to the discussion
of the technical sensitivities, uniqueness and physical meanings of the involved parameters or
fitting parameters as well as their predeterminations or determinations for an entangled system.
In particular, figure 3 of [4] illustrates how the calculated J (t) line shape is affected by change
in β . In the entanglement-free system, the number of parameters is reduced, as the ratio K ′/K
and the entanglement molecular weight Me are not involved. As far as the glassy-relaxation
process is concerned, the involved fitting parameters in the entangled and entanglement-free
systems are the same. Thus, the discussion given in [4] is equally applied to the entanglement-
free case.

For sample C, we have found that the combination of equation (8) and Z = 20 gives the
best result. The uses of equation (8) and Z = 20 are closely related. In view of sample C’s
Mw value being above Me, equation (4) instead of equation (8) should be used. However,
sample C’s molecular-weight distribution, though nearly monodisperse, is broad enough to
have a sufficient total number of components with molecular weights below Me, rendering
the system entanglement free by dilution. At Z = 20 (Mw/Mn = 1.05), sample C has

6



J. Phys.: Condens. Matter 19 (2007) 466101 Y-H Lin

21 wt% (W2 = 0.79) of the distribution with molecular weights below Me. The dilution
increases the entanglement molecular weight from Me to M ′

e = 17 090 as calculated from
M ′

e = Me/W2 [2, 11]. As M ′
e > Mw , sample C immerses in an entanglement-free state. As

opposed to such a situation, the viscoelastic responses, G(t) and G∗(ω), of an extremely narrow
polystyrene sample (F1) [2, 9, 10] with nearly the same Mw clearly could not be described
by the Rouse theory. Instead, they were successfully analyzed in terms of the ERT with
Z = 120 (Mw/Mn < 1.01) and K ′/K = 1. In table 1, the results of sample F1 from the
previous study are also listed for a later discussion.

With the explanation as given above, we shall use equation (8) as the chosen functional
form in discussing the analyses of the J 0

e and J (t) results of sample C below. With 〈τ 〉G

being related to K by equation (3), an increase in s reducing the width of the relaxation-time
distribution will lead to a decrease in J 0

e [2]. Thus, a computer program can be set up to scan
through a wide range of s to calculate a large set of J 0

e values, from which the matching with
the values determined experimentally at different temperatures can be identified.

The Af
G and β values listed in table 1 for sample C allow consistent and quantitative

matching of the calculated results with the J (t) line shapes from 93 to 119.4 ◦C and the J 0
e

values from 93 to 134.1 ◦C as obtained by Plazek [31]. The Af
G and β values are, respectively,

very much uniquely dictated by the compliance values and line shapes of J (t) at 93 and 96 ◦C—
namely, the short-time region of J (t) [4].

We use 100 ◦C as the reference temperature at which the calculated and measured J 0
e values

are matched. Thus, the experimental J 0
e values listed in table II of [31] are first adjusted by the

multiplication factor ρT/ρ0T0 where ρ0 is the density at T0 = 373 K; the adjusted J 0
e will be

denoted by J 0
ep. With the Af

G and β values as chosen, from matching the calculated J 0
ep values

with the adjusted experimental values, the s values at different temperatures are determined.
These s values are then used to calculate the J (t) line shapes for comparison with the measured
curves. In general, the agreement between the thus calculated and the measured J (t) is very
close. The matching of the calculated with the measured J (t) curves has been carried out with
the aid of graphic software as done in [4].

The s values obtained from matching the calculated J 0
ep values with the measured ones have

been modified slightly in some cases to obtain a better agreement between the calculated and
measured J (t) line shapes as shown in figure 1. The experimental J (t) results shown in figure 1
are those shown in figure 1 of [31], which have all been reduced to using 100 ◦C as the reference
temperature for the compliance—i.e. multiplied by ρT /ρ0T0. Accordingly, all the theoretical
J (t) curves are calculated at ρT/ρ0T0 = 1. Following Plazek’s notation [31], the thus
calculated J (t) is denoted by Jp(t); as used above and will be used below, the corresponding
viscoelastic quantities G(t), J 0

e and η will be denoted by Gp(t), J 0
ep and ηp, respectively. In this

study, each of the theoretical Jp(t) curves is first calculated with K = 10−4. In superposing
the calculated on the measured Jp(t) at a certain temperature, shifting only along the time axis
is allowed. From each superposition, a timescale shifting factor, SF, is obtained, which, when
multiplied by 10−4, gives the K value at the corresponding temperature. Except for the results
at 134.1 ◦C, s values obtained from fitting to the Jp(t) line shapes and the corresponding SF
and K values at different temperatures are listed in table 2. At 134.1 ◦C, due to the lack of
the experimental Jp(t) the s value obtained from matching the calculated and experimental J 0

ep
values is listed in table 2. The K value at 134.1 ◦C has been determined in indirect ways using
the viscosity enhancement factors at different temperatures that can be calculated from the s
values as explained in the following.

Because the glassy relaxation occurs in the short-time region, its contribution to the zero-
shear viscosity ηp, often referred to as the internal viscosity, is in general negligible if the
molecular weight of the sample is sufficiently large. The contribution of the internal viscosity

7
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Table 2. Structural and dynamic quantities extracted from the J (t) line-shape analyses of sample C.

Temp.
(◦C)

s ′ = s
(Da2) SF

K ′ = K
(s Da−2)

log ηp

(K = 10−4)

ηp/ηp(AG = 0)

(K = 10−4) ρT/ρ0T0

log η

exp.
log η

calc.
log Je

exp.
log Je

calc.
τS

(s)

AG = 0 10.159 1
134.1 (1640)a (1.06 × 10−9) (10.205) (1.111) 1.072 5.257 (5.261) −6.75 (−6.75) (3.13 × 10−5)

127.5 [4.15 × 10−9]b [1.28 × 10−4]b

119.4 1800 3.09 × 10−4 3.09 × 10−8 10.210 1.125 1.042 6.730 6.717 −6.79 −6.75 1.00 × 10−3

109.4 4400 6.89 × 10−3 6.89 × 10−7 10.275 1.306 1.021 8.116 8.122 −6.90 −6.87 5.46 × 10−2

105.1 7000 3.6 × 10−2 3.6 × 10−6 10.331 1.486 1.012 8.882 8.893 −6.96 −6.98 4.54 × 10−1

102.9 8990 8.33 × 10−2 8.33 × 10−6 10.370 1.626 1.008 9.270 9.294 −7.05 −7.05 1.35
100.6 13 200 0.245 2.45 × 10−5 10.442 1.919 1.003 9.820 9.832 −7.16 −7.19 5.82
96 28 500 2.89 2.89 × 10−4 10.633 2.979 0.993 11.088 11.090 −7.54 −7.57 1.48 × 102

93.756 [43 960]b [1.19 × 10−3]b [1000]b

93 52 300 20.8 2.08 × 10−3 10.825 4.635 0.987 12.156 12.138 −7.94 −7.94 1.96 × 103

a The s value at 134.1 ◦C is determined from matching the calculated and experimental J 0
ep values. All the values inside parentheses at 134.1 ◦C are derived from using the thus determined

s value; see the text.
b Calculated from the equations obtained from least-squares fittings to the values determined at different temperatures; see the text.
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Figure 1. Creep compliance Jp(t) data of sample C measured at 119.4 (◦), 109.4 (•), 105.1 (	),
102.9 (�), 100.6 (♦), 96 (�), and 93 (�) ◦C in comparison with the theoretical curves (——; from
left to right, respectively) calculated with the s and K values at different temperatures as listed in
table 2; and the Af

G and β values as explained in the text and given in table 1. Also shown is the
comparison between the experimental (— — —) and calculated (+ + +) long-time Jp(t) limits,
t/ηp, at each corresponding temperature.

Figure 2. Comparison of creep compliance Jp(t) curves of sample C calculated with K = 10−4

and the s values (listed in table 2) corresponding to the calculated curves shown in figure 1; lines
from left to right corresponding to 119.4, 109.4, 105.1, 102.9, 100.6, 96 and 93 ◦C, respectively.

to ηp in sample C is in general significant because of its relatively low molecular weight; thus,
we may say that its viscosity is enhanced by the glassy-relaxation process. Using the obtained
s values, including the one at 134.1 ◦C, the viscosity values containing the internal-viscosity
contributions can be calculated, as listed under the ηp(K = 10−4) column in table 2 with K
set at 10−4. Enhancements by the internal-viscosity contributions at different temperatures can
be numerically evaluated by comparing the ηp(K = 10−4) values with that calculated with the
same K value but without the glassy-relaxation process (i.e., setting Af

G = 0 in the calculation;
see the first row of table 2). The enhancement by the internal viscosity is expressed as the
ratio, ηp(K = 10−4)/ηp(K = 10−4; Af

G = 0), as also listed in table 2. The contribution of the
internal viscosity is only 11% at 134.1 ◦C and increases gradually more rapidly with decreasing

9
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Figure 3. s values as a function of temperature of sample A (◦), sample B (♦) and sample C
(� determined from the Jp(t) line-shape analyses; � from matching with the experimental J 0

ep
values; —— calculated from the modified FTH equation best fitting the data points).

temperature, enhancing the viscosity by a factor of 4.6 at 93 ◦C. As shown in figure 2, the large
enhancement by the internal viscosity at a low temperature is reflected by the large shift of the
corresponding Jp(t) curve in the flow region to the longer normalized time (normalized on the
basis of using K = 10−4 for all the calculated curves) from one at a high temperature.

Dividing a measured viscosity value by both ρT /ρ0T0 and the viscosity enhancement
factor ηp(K = 10−4)/ηp(K = 10−4; Af

G = 0), a viscosity value, denoted by ηR, is obtained.
The ηR value, as being free from the contribution of the internal viscosity and the small
change in modulus with temperature, is linearly proportional to K . Then, the K value at
134.1 ◦C can be calculated from multiplying the K values at other temperatures by the ratios
ηR(134.1 ◦C)/ηR(t ◦C). In this way, the average K value at 134.1 ◦C obtained from the K
values at seven other temperatures is 1.06 × 10−9 with a standard deviation of only 3.5%. As
any substantial error in s can cause a large error in the calculated ηR values, especially at low
temperatures, the small standard deviation indicates that the s values are correctly obtained
from the Jp(t) line-shape analyses.

The two sets of s values as a function of temperature, obtained from the analyses of the
J 0

ep data and from analyzing of the Jp(t) curves, are in good agreement (figure 3) indicating
the consistency of the data analyses. The consistency is equivalently indicated by the close
agreement between the experimental J 0

e values and those calculated based on the s values
obtained from the Jp(t) line-shape analyses, as listed in table 2 and shown in figure 4. This
agreement explains quantitatively the decline in J 0

e of a low-molecular-weight sample with
temperature decreasing towards Tg as due to the stronger temperature dependence of the glassy-
relaxation process than that of the rubbery (entropy-derived) dynamics.

The K values shown in table 2 for sample C can be well fitted to an equation of FTH
form. Using the FTH equation obtained from the fitting, the K values at 127.5 and 93.756

◦C
are calculated and listed in table 2 for later use.

4. Analyses of the viscoelastic spectra G∗(ω)

The G∗(ω) spectra of L10, A5000, and A2500 [32] are quantitatively analyzed in terms of
equations (7)–(11) just as the J (t) line shapes of sample C have been. The calculation of G∗(ω)

10
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Figure 4. Comparison of the measured J 0
e values (•) with those calculated (+) based on the

s values obtained from the Jp(t) line-shape analysis and the curve calculated from the empirical
functional form log(J 0

e ) = a + b/x + c/x2 + d/x3 (x being the temperature in ◦C) best fitting the
calculated values. Note: as the Jp(t) curve at 134.1 ◦C is not available for analysis to obtain the s
value, the J 0

e value at 134.1 ◦C used in the least-squares fitting is the experimental value itself.

Figure 5. Comparison of the viscoelastic spectra G∗(ω) of L10 measured at different temperatures
(
 at 92 ◦C; 	 at 95 ◦C; ♦ at 99 ◦C; • at 105 ◦C; � at 110 ◦C; at 120 ◦C; � at 130 ◦C) with
the calculated (—— in the glassy-relaxation region; in the entropic region —— at 105 ◦C (�T =
15 ◦C); — — — at 110 ◦C (�T = 20 ◦C); – – – at 120 ◦C (�T = 30 ◦C); - - - - at 130 ◦C (�T =
40 ◦C)); the reference temperature is 105 ◦C (�T = 15 ◦C).

from a G(t) functional form can be accurately done numerically according to the procedure
described in the appendix of [5]. In the case of A1000, as the contribution of the Rouse modes
of motion is negligible due to the molecular weight being very small—about that of a single
Rouse segment m = 850—G∗(ω) is analyzed in terms of only a stretched exponential form for
the glassy relaxation. The results of the G∗(ω) line-shape analyses are shown in figure 5 for
L10. Those for samples A5000, A2500 and A1000 are shown in the appendix A.

In these figures, the spectrum at a certain temperature is chosen for each sample as the
reference (for instance 105 ◦C for L10 as listed in table 1), onto which the line shapes of the
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spectra measured at different temperatures are superposed over the glassy region to form a
composite spectrum. From such a process, the timescale shift factors aG with respect to the
reference spectrum are obtained at different temperatures2. For each sample the average glassy-
relaxation time at the reference temperature, 〈τ 〉0

G, is determined from matching the calculated
spectrum with the composite spectrum over the glassy-relaxation region. With the thus obtained
〈τ 〉0

G value, the 〈τ 〉G values at different temperatures are then calculated from the shift factors
aG for each sample. Simultaneously, the parameters Af

G and β are extracted from fitting the
calculated line shapes to the composite spectra over the glassy-relaxation region. As listed in
table 1, the values of Af

G and β obtained for L10, A5000 and A2500 are in good agreement
with those of sample A, sample B and sample C. The Mw/Mn value of A1000 indicates that
its molecular-weight distribution is broader than those of the other samples. With its small Mw

value, A1000 should contain components with chain lengths as short as and shorter than the
length-scale associated with the glassy-relaxation process in a polystyrene sample whose Mw

value is not small. As a result, its glassy-relaxation time distribution is directly broadened by
its molecular-weight distribution, leading to a β value smaller than for the other samples.

The G∗(ω) line shapes of samples L10, A5000 and A2500 in the entropic (or Rouse)
region are affected by their molecular-weight distributions, though not in a sensitive way. It
is sufficient to just use the Z values corresponding to the respective Mw/Mn values listed by
Inoue et al [32] in the Schulz molecular-weight distributions without any further adjustment
to calculate the G∗(ω) spectra. The close agreements between the calculated and measured
spectra can be seen in figure 5 for L10. Similar close agreements are observed for A5000 and
A2500 as shown in appendix A.

Just as in the cases of samples A, B and C, 〈τ 〉G (or structural-relaxation times τS; see
equation (14)) of L10, A5000 and A2500 can be separated into two decoupled quantities: the
structural-growth parameter s and the frictional factor K . As in the J (t) line-shape analyses,
s is entirely determined by the G∗(ω) line shape spanning over both the glassy-relaxation and
entropic regions, while K is calculated from the timescale shifting factor. However, the way
in which the G∗(ω) spectra at different temperatures are presented in figures 5 and A.1 is
‘opposite to’ that in which the J (t) curves are presented in figures 1 and 2 of [4]. The G∗(ω)

spectra are superposed onto one another over the glassy-relaxation region, while the J (t) curves
are composed together on the basis of using the same frictional factor K in calculating the
theoretical curves. Thus, here the shifting factor aG is first used to calculate 〈τ 〉G (or τS); then
the frictional factor K is calculated from equation (3) using the s value determined from the
line-shape analysis. By contrast, K as well as K ′ = RK (M/Me)K is first calculated directly
from the shifting factor in the analyses of the J (t) curves.

5. Dynamic anisotropy in entangled systems

The K values obtained from analyzing the viscoelastic results at 127.5 ◦C of polystyrene
samples of different molecular weights from 3.4×104 to 6×105 (table 1 and appendix B of [4])

2 In the glassy-relaxation region, it may not be entirely proper to use the factor ρ0T0/ρT , which is based on the theory
of rubber elasticity to make small shifts along the modulus coordinate in forming the composite spectra. However, the
largest temperature differences from the reference temperatures are no more than 25 ◦C and no superposition indicates a
shift along the modulus coordinate is needed. Thus, the superposition of the spectra at different temperatures onto each
reference spectrum is made by allowing shift only along the frequency axis. Technically, this is slightly different from
the analyses of the creep compliance J (t) and the steady-state compliance J 0

e , which have all been made on the results
reduced along the compliance axis by the multiplication factor ρT/ρ0T0 using 100 ◦C as the reference temperature.
However, any discrepancies that may arise from this difference are expected to be negligibly small for the reasons as
explained above.
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in terms of the ERT have an average value of 4.9 × 10−9 ± 10%. As listed in table 1, the K
value of F1 with Mw = 1.24Me is only about 20% below the average value [2, 9]. While these
results of entangled systems indicate that the molecular-weight independence of K extends to
a molecular weight virtually as low as just above Me, Tg starts to decrease with decreasing
molecular weight at around 10Me [38, 39]. From the viewpoint of the conventional concept
of the relation between viscoelastic dynamics and Tg as related to free volume [1, 40–45], this
contrast represents a paradox. The paradox has been explained by the physical picture [2, 9, 11]
that the free volume at both chain ends is always available to the modes of motion along the
primitive path [46, 47] (namely the μX(t), μB(t) and μC(t) processes), whose relaxation times
are all proportional to K . Such a mechanism may allow K to be disengaged from a dependence
on the free volume in the bulk and become independent of molecular weight. Thus, it was
proposed [2, 9, 11, 38] that the decrease in Tg with decreasing molecular weight in the entangled
region should be related to the molecular-weight dependence of the K ′/K ratio as described
by the empirical equation

K ′

K
= RK (M/Me) = 2.525

exp[−0.643((M/Me) − 4.567)] + 1
+ 0.769. (12)

As mentioned in section 2, K ′ is the frictional factor for the Rouse–Mooney process μA(t/τA)

(equation 9.B.20 of [2] or equation 20 of [8] with K replaced by K ′) in the ERT. RK (M/Me)

as given by equation (12) has been obtained from fitting the empirical functional form to the
K ′/K values obtained from the G(t) line-shape analyses of a series of nearly monodisperse
polystyrene samples [2, 9, 11] as mentioned. RK (M/Me) has a plateau value of 3.3 in the
high-molecular-weight region and starts to decline with decreasing molecular weight at around
M/Me = 10 to the limiting value of unity as M/Me → 1. K ′/K > 1 indicates that
the dynamics in an entangled system is anisotropic. μA(t/τA) describes the motion of an
entanglement strand with both ends fixed. Thus, unlike K being for the modes of motion
along the primitive path that are always facilitated by the free volume at both chain ends, K ′
should be, like Tg, sensitive to the free volume in the bulk. Consistent with such a picture
is the observation that Tg starts to decrease from its plateau value with decreasing molecular
weight at around the same molecular weight (M/Me = 10) as RK (M/Me) does in the case of
polystyrene [38, 39]. These results indicate that because of the tube (of the Doi–Edwards
or reptation model [2, 46, 47]) the K value in the entanglement region is not affected by
the decline in Tg with decreasing molecular weight. As far as polystyrene is concerned,
equation (12) is part of the ERT used as the frame of reference for analyzing the J (t) line shapes
of sample A and sample B [4]. Furthermore, we shall see that normalizing (dividing) s by
RK unifies the analysis-obtained results of both entangled and entanglement-free polystyrene
samples.

The need to normalize s by RK is hinted at by the variations in s with temperature for
samples A, B and C as shown together in figure 3. Very significantly, while different molecular
theories are independently involved in the analyses for the entangled and entanglement-free
systems, the s values of samples A, B and C change in a similar way in a similar range of
temperature above their individual Tg values. Neglecting the small difference in Tg between
sample A and sample B, it was pointed out [4] that their s values at the same temperature follow
the molecular-weight dependence of K ′/K , namely, RK (M/Me) given by equation (12). This
molecular-weight dependence of s is also borne out by the presentation of data in section 8 that
has included sample C’s results and taken the Tg dependence into account—Tg of sample C has
decreased considerably due to its molecular weight being relatively small [38, 39]. s and K ′/K
having the same molecular-weight dependence as turned out should be closely related to the
fact that the μG(t) and μA(t) processes are next to each other in timescale. To eliminate this
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molecular-weight dependence in s, we define

s′ = s

(K ′/K )
= 〈τ 〉G

K ′ (13)

in which equation (3) has been used for the second equality.
As reported previously [2, 9] and mentioned above, the quantitative analyses of the

relaxation modulus and viscoelastic spectrum of F1 in terms of the ERT yielded K ′/K = 1
within a small experimental error (<10%), indicating, as equation (12) does, K ′/K = 1 as
Mw → Me. When the tube is disappearing and the Rouse theory is becoming applicable at
Me, K ′ = K is physically meaningful as it indicates that the dynamics in the system becomes
isotropic as it should [2, 9, 11]. As the molecular weights of sample C and F1 are nearly the
same and both very close to Me, their K values are virtually the same (table 1). Thus, we
may regard the s values of sample C as basically equivalent to that of F1 (with K ′ = K ).
Thus, we may have a pair of fictitious s ′ and K ′ defined as s ′ = s and K ′ = K for sample C
(even though there is only one frictional factor in an entanglement-free system). As parts of the
Tg-related universal behavior revealed in this study, the frictional factor K and the structural-
growth parameter s in sample C play the same roles as K ′ and s ′, respectively, in the entangled
systems sample A and sample B. In the presentations of the results, K and s of sample C are
denoted by K ′ and s ′, respectively. Thus, whenever K ′ or s ′ of sample C is indicated below,
automatically its K or s is meant or used. With this understanding, the notation K ′ = K and
s′ = s is also used in the entanglement-free cases with even smaller molecular weights: L10,
A5000 and A2500, whose analysis-obtained results will be compared with those of sample A,
sample B and sample C.

6. Comparison of the Af
G and β values as extracted from J(t) and G∗(ω) line shapes

The values of the glassy-relaxation strength Af
G and stretching parameter β extracted from the

J (t) curves of sample A, sample B and sample C and those extracted from the G∗(ω) spectra
of L10, A5000, A2500 and A1000 are listed together in table 1 for comparison. Because
of the contamination by residual plasticizers, the somewhat smaller Af

G value of sample B
may be excluded from the comparison. Considering some differences in molecular weight and
temperature, the agreement between the Af

G and β values of sample A and sample C and those
of L10, A5000 and A2500 is very good. As sample C and L10 have comparable molecular
weights and the analyses of their results are made at temperatures very close to each other (100
versus 105 ◦C), the close agreement between them is particularly impressive. On the basis of
Boltzmann’s superposition principle [1–3], the agreement indicates the consistency between
the J (t) and G∗(ω) results in the glassy-relaxation region. In review of the special technical
requirement for making accurate measurements of J (t) of very low compliance or G∗(ω) of
very high modulus in the glassy-relaxation region, such an agreement should be unusual to
come by—the first of this kind to my knowledge. The agreement also signifies that the two sets
of results from two independent laboratories [6, 7, 31, 32] support each other.

As Af
G = J (0)−1, the line shape of the glassy-relaxation process is mainly characterized

by the stretching parameter β . The significance of the consistency between the β values
obtained from the J (t) and G∗(ω) line-shape analyses is much more than meets the eye—
namely, much more than the consistency merely in the glassy-relaxation region—as explained
in the following: the convolution integral (equation (2)) that converts G(t) into J (t) has
the effect of smearing the separate processes in G(t) and giving a much more featureless
J (t) line shape. The smearing effect has been clearly illustrated by the comparison of the
G(t) and J (t)−1 curves calculated with and without the glassy-relaxation process included
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as shown in figure 5 of [4]. By contrast, such a smearing effect basically does not exist in
converting G(t) into G∗(ω), as it is well known that the storage modulus spectrum G ′(ω)

is basically a mirror image of G(t) if ω is regarded as 0.7t−1 [1, 5]. Thus, the analysis of
the J (t) line shape to extract the glassy-relaxation process is a much more challenging task
than that of the G∗(ω) line shape. Without a correct functional form (either the ERT or the
Rouse theory) for the entropic dynamic processes as the base (as the frame of reference), the
glassy-relaxation process cannot be properly extracted from the J (t) curve. As the ERT is
being used for an entangled polystyrene system, the correctness includes the predetermined
ratio K ′/K = RK (M/Me) as given by equation (12). Including this, we may summarize
that the success of the ERT serving as the reference frame in the J (t) line-shape analyses
for the entangled polystyrene systems are testified to by the agreements between theory and
experiment in three aspects: (1) the quantitative description of the J (t) line shapes over the
whole time range at different temperatures (figures 1 and 2 of [4]); (2) the frictional factor K
obtained for sample A being in quantitative agreement with the values obtained previously and
shown independent of molecular weight as expected from the theory (table 1 of [4]) and (3) the
correctness of the predetermined RK (M/Me) values for sample A and sample B as calculated
from equation (12), which is strongly indicated by the obtained β values being consistent with
those obtained for sample C, L10, A5000 and A2500 (table 1).

7. Tg defined by structural-relaxation time τS = 1000 s

In [4], the structural- (or α-) relaxation time τS was defined by the time when the ratio between
the contribution of the glassy-relaxation process (G) to the relaxation modulus G(t) and that
from all the entropic processes (R), G/R, reaches 3 [4, 5]. Physically, this means that G/R
has decayed by a factor of e−1 from G/R ∼ 10, which is the value at the relaxation time
(t = τ 15

A ) of the highest Rouse mode when the temperature is at the glass-transition point. At
the same time, the contribution from the glassy component in such a state is still significant.
The structural-relaxation time defined this way is basically equivalent physically to that defined
by [4, 5]

τS = 18〈τ 〉G. (14)

The structural-relaxation time as given by equation (14) has also been shown to be in close
agreement with the α-relaxation time defined in a traditional way: the time at which the
relaxation modulus reaches 108 dyn cm−2 (see figures 10 and 11) [1]3. The structural-relaxation
time defined by equation (14), besides reflecting the effect of the glassy relaxation on the bulk
mechanical properties, has the virtue of following exactly the temperature dependence of the
glassy-relaxation process. The other definitions are somewhat affected by the change in the line
shape of the viscoelastic response with temperature—the thermorheological complexity.

Using equation (13), the structural-relaxation time given by equation (14) may be rewritten
as

τS = 18sK = 18s ′K ′. (15)

From analyzing the J (t) line shape of sample A at the calorimetric Tg (97 ◦C), it has been
shown [4, 5] that the structural-relaxation time τS as defined by equation (15) reaches 1000 s
with a corresponding length-scale of ∼3 nm, the order of magnitude as estimated by other
methods [48–52]. In the literature [48, 53–55], τS reaching 100–1000 s has been used as the
criterion for defining Tg. In view of the τS value for sample A at its calorimetric Tg, we shall
use τS = 1000 s for defining the Tg values of all other samples for the analyses and discussions

3 See page 323 of [1] and reference 45 of [5]. The small difference between G ′(ω) = 108 dyn cm−2 and
G(t) = 0.8 × 108 dyn cm−2 is ignored here.
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given below. It will be shown that the thus defined Tg values are consistent with the values
expected from calorimetric measurements for all the studied samples (table 1). Including at the
thus defined Tg, the dynamic and structural quantities at different temperatures, K , K ′, s ′ and
τS, obtained from analyzing the J (t) results of sample A [4, 5] are listed in table 3.

As sample B is contaminated by residual plasticizers [7], its frictional factor K is smaller
than that of a normal sample as expected [4]. Because of the contamination, the Tg value
of sample B has been estimated by Plazek to be smaller than that of a normal sample at the
same molecular weight by about one degree [7]. The Tg of sample C is smaller than that of
sample A because of its smaller molecular weight [38, 39]. Here we shall treat in a similar
way the contamination by residual plasticizers in sample B causing its Tg to become smaller;
in other words, we shall also use τS = 1000 s to define the Tg of sample B as it is. From
the s and K values extracted from the Jp(t) of sample B available at the lowest temperature
(98.3 ◦C), τS = 779 s is obtained, which is a little smaller than the criterion τS = 1000 s.
Because the difference is not large, we may calculate the temperature at which τS = 1000 s
by extrapolation using the FTH equation that has been obtained from fitting to the τS values
at different temperatures. The Tg determined this way for sample B is 98.025

◦C. Then from
the FTH equation that best describes the K values of sample B at different temperatures, the
K value at this temperature is obtained as listed in table 3. The s and s ′ values at Tg are then
calculated from thus obtained τS and K values, using equation (15). The K , K ′ (=3.16K ),
s′ and τS values of sample B at different temperatures [4] including those at Tg are listed in
table 3.

By interpolation—using the FTH equation obtained from the least-squares fitting to the τS

values listed in table 2—we obtained τS = 1000 s at 93.756
◦C, which is then regarded as the Tg

of sample C. Then, as also listed in table 2, the K ′ (=K ) and s ′ (=s) values of sample C at this
temperature can be obtained from their values at different temperatures by interpolation—using
the FTH equation for K and a modified FTH equation (the form as given by equation (17)) for
s.

The Tg values of L10, A5000, A2500 and A1000 as determined at τS = 1000 s are
described in appendix B. The Tg defined by τS = 1000 s as explained above and in appendix B
allows us to have a common reference point equivalent for the different samples, with respect
to which we may compare the obtained τS, s′ and K ′ results in perspective.

8. Dependences of τS, s′ and K ′ on �T = T − Tg

The analysis-obtained results of samples A, B and C strongly suggest that the τS and s ′ values
of the three samples depend on how far the temperature is away from each individual Tg. Using
the Tg defined by τS = 1000 s for each sample (table 1), we display the τS values of samples A,
B and C as a function of the temperature difference from Tg, �T = T − Tg, in figure 6. In spite
of the facts that sample C has a significantly smaller Tg due to its smaller molecular weight and
that sample B is contaminated by residual plasticizers, the τS values of the three samples fall
closely on the same curve. Note that both τS and Tg of sample B are determined for the sample
as it is contaminated. Apparently, the contamination in sample B by plasticizers is so low that
sample B has kept the Tg-related nature of polystyrene. The close agreement among the three
samples strongly supports the method of using �T to account for the Tg difference. The τS

values of the three samples can be collectively well fitted by the FTH equation of the form

log(τS) = aτ + bτ

(�T + tτ )
(16)

as shown by the curve in figure 6 calculated with aτ = −11.5045, bτ = 539.3497 and
tτ = 37.1827.
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Table 3. Structural and dynamic quantities: s ′, K , K ′ and τS extracted from the J (t) line-shape analyses of samples A and B.

Sample A Sample B

Temp
(◦C)

K
(s Da−2)

K ′ = 1.61K
(s Da−2)

s ′ = s/1.61
(Da2)

τS

(s)
Temp
(◦C)

K
(s Da−2)

K ′ = 3.16K
(s Da−2)

s ′ = s/3.16
(Da2)

τS

(s)

97 9.84 × 10−4 1.58 × 10−3 35 090 1000 [98.025]a [4.403 × 10−4] [1.39 × 10−3] [39 930] [1000]
100.6 9.7 × 10−5 1.56 × 10−4 17 560 49.4 98.3 3.6 × 10−4 1.14 × 10−3 38 060 779
104.5 1.2 × 10−5 1.93 × 10−5 10 150 3.53 101 6.02 × 10−5 1.9 × 10−4 24 500 83.9
109.6 1.2 × 10−6 1.93 × 10−6 6 244 0.217 103.3 1.52 × 10−5 4.79 × 10−5 18 640 16.1
114.5 1.96 × 10−7 3.16 × 10−7 3 903 0.0222 105.5 5.43 × 10−6 1.72 × 10−5 13 033 4.03

113.8 1.49 × 10−7 4.71 × 10−7 5 474 4.64 × 10−2

119.8 2.61 × 10−8 8.25 × 10−8 2 867 4.26 × 10−3

a Listed values at this temperature are calculated from the equations obtained from least-squares fittings to the values determined at different temperatures; see
the text.
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Figure 6. Structural-relaxation time, τS, values of sample A (◦), sample B (♦) and sample C (�)
as a function of the temperature difference from each individual Tg,�T . The solid line is calculated
from the FTH equation (equation (16)) which best fits the data points of sample A, sample B and
sample C collectively. Also shown are the τS data points of L10 (•), A5000 ( ), A2500 (�; with
the best fitting FTH curve · · · · · ·) and A1000 (�; with the best fitting FTH curve – – –) as a function
of �T .

Figure 7. s ′ values of sample A (◦), sample B (♦) and sample C (� obtained from the Jp(t) line-
shape analysis; � from matching the experimental J 0

ep values) as a function of the temperature
difference from each individual Tg, �T . The solid line is calculated from the modified FTH
equation (equation (17)) which best fits the data points of sample A, sample B and sample C
collectively. Also shown are the s ′ data points of L10 (•), A5000 ( ) and A2500 (�) as a function
of �T . The dotted lines each represent the universal curve multiplied by a factor to superpose on
the data points of L10 (×1.23), A5000 (×1.9) and A2500 (×2.2) individually.

Shown in figure 7, the s ′ data points of samples A, B and C as a function of �T fall closely
on the same curve. The �T dependence of s ′ of the three samples can be collectively well fitted
by a modified FTH form:

log(s ′) = c1 + c2(�T + ts) + c3

�T + ts
. (17)
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Figure 8. K ′ values of sample A (◦), sample B (♦) and sample C (�) as a function of the
temperature difference from each individual Tg, �T . The solid line is calculated from the FTH
equation which best fits the data points of sample A, sample B and sample C collectively. Also
shown are the K ′ data points of L10 (•), A5000 ( ) and A2500 (�) as a function of �T .

The curve shown in figure 7 has been calculated with c1 = −4.2189, c2 = 0.0364, c3 =
375.6136 and ts = 55.0922.

The consistency of the �T dependences of s ′ and τS individually falling on the same curves
implies that the same consistency should occur for K ′ according to equation (15); indeed so as
illustrated in figure 8. The �T dependences of K ′ of samples A, B and C can be collectively
fitted by the FTH equation of the form given by equation (16) with the notations τS, aτ , bτ

and tτ replaced by K ′, aK , bK and tK , respectively. The curve shown in figure 8 is calculated
with aK = −15.3931, bK = 536.9037 and tK = 42.8976. The K ′ values of samples A,
B and C as a function of �T falling on the same curve indicates that the molecular-weight
dependence of Tg is directly related to the molecular-weight dependence of K ′ as proposed
previously [2, 9, 11, 38] and brought up in section 5. In the meantime, K is independent of
molecular weight at and above 127.5 ◦C.4 Therefore, as opposed to the consistency in the �T
dependence of K ′ among samples A, B and C, their K values do not, as expected, have a
common �T dependence.

8.1. Tg-related universality in polystyrene

It is remarkable that the τS, s′ and K ′ data points of samples A, B and C as a function of �T
individually fall naturally on the same curves as shown in figures 6–8, respectively. These
results suggest a Tg-related universality. Although there are only three samples involved, such
universality can indeed be claimed within the polystyrene system, because of the universal
nature of the elements involved in the quantitative analyses of the J (t) results of the three
samples. These elements have been discussed in diverse parts of this report; it is advisable to
summarize them briefly here.

4 As shown in table 1 of [4], K is independent of molecular weight at 127.5 and 174 ◦C. It is also true that the
temperature dependences of viscosity—reflecting the temperature dependence of K —at different molecular weights
can be superposed on one another over the temperature range covered by viscosity measurements as reported in [31].

19



J. Phys.: Condens. Matter 19 (2007) 466101 Y-H Lin

(1) The validity of the ERT and the universality it represents have been well tested
previously [2, 4, 8–11]. The success of the ERT is further summarized in section 6 with
the additional support obtained from this study. Indeed, as stated in section 3.4 of [4],
‘Because of the success of ERT as represented by the molecular-weight independence
of K , theoretically, there is no limit to the time range of J (t) that can be analyzed,
depending on the molecular weight of the sample under study’. On such a basis, the single
quantitatively successful analysis case of sample A has all the ingredients for generalizing
the success to polymers of other molecular weights. The results of sample B and sample C
further support such a generalization.

(2) Sample B is contaminated by residual plasticizers; as a result, its obtained K value is
appreciably smaller than the average value of normal samples as expected [4]. However,
its K ′/K ratio as can be calculated from equation (12), which represents the predetermined
universal normalized molecular-weight dependence of K ′/K in polystyrene, is not
expected to be affected—both K ′ and K being affected by the same degree. The expected
K ′/K ratio of sample B is 3.16 and that of sample A is 1.61. As explained in section 5, one
can regard sample C as having K ′/K = 1—basically equivalent to substituting M/Me = 1
into equation (12). These ratios are used to calculate s ′ and K ′ from s and K , respectively,
of the three samples as explained in section 5. Thus, it is on the basis of being consistent
with the universality of K ′/K predetermined for polystyrene that the common curves of s ′
and K ′ shared by the three samples are obtained.

(3) The close agreements of the τS, s′ and K ′ results of sample C as a function of �T = T −Tg

with those of samples A and B should not be surprising even though two different
molecular theories are independently involved. These close agreements actually should
be expected on the basis of the previously derived conclusion that the ERT and the Rouse
theory have the same basis at the Rouse segmental level [2, 11].

Finally, a comment should be made about the contamination by residual plasticizers in
sample B. Its Tg value is determined by τS = 1000 s of the sample as it is; concurrently,
the obtained quantities τS, s ′ and K ′ are also associated with sample B as it is. Because the
contamination is at a residual level, the Tg-related dynamic process of sample B is dominated
by the characteristics of polystyrene. Thus, the results of τS, s′ and K ′ as a function of
�T = T − Tg of sample B as shown in figures 6–8 can be regarded as equivalent to those
of a ‘normal sample B’.

The three bases explained above enable the common curves of τS, s′ and K ′ shared by
samples A, B and C to be regarded as representing a Tg-related universality applicable within
the polystyrene system, entangled or not. As shown below, the universality ends at around
Mw = 12 000, nearly 30% below the molecular weight of sample C.

From the above discussions, one may observe that the predetermined factor RK (M/Me)

plays a very important role interfacing this �T - or Tg-related universality occurring in
the short-time region (the μG(t)–μA(t) region) and the other universality of topological
nature—topological constraint of entanglement—occurring in the long-time region (the
μX(t)–μB(t)–μC(t) region). Putting it more specifically, on the one hand, the universal �T
dependences of s ′ and K ′ cannot be obtained without RK (M/Me); on the other hand, K ′ is
converted by the factor RK (M/Me) from K , which is independent of molecular weight at and
above 127.5 ◦C (see footnote 4).

8.2. Deviation from the Tg-related universality

The obtained τS values for the four samples, L10, A5000, A2500 and A1000, are shown
in figure 6 along with the results obtained for samples A, B and C. The τS results of L10,
A5000 and A2500 shown in figure 6 indicate that deviation from the universal curve increases
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gradually with decreasing molecular weight, moving towards the curve for A1000; the largest
change occurs between A2500 and A1000. The data points of L10 cling closely to the universal
curve, suggesting that the universality of the �T dependence of τS should extend to or end at
a molecular weight between sample C and L10. The s ′ and K ′ values of L10 extracted from
the G∗(ω) line-shape analyses are similarly close to or virtually on their respective universal
curves as shown below.

The structural-growth parameter s ′ and the frictional factor K ′ for L10, A5000 and A2500
can only be extracted from a G∗(ω) spectrum that simultaneously spans both the glassy-
relaxation and entropic regions. As the G∗(ω) spectra measured by Inoue et al [32] at low
temperatures (�T < 14 ◦C) cover only the glassy-relaxation region, the numbers of data points
of s ′ and K ′ extractable from the spectra are considerably less than that of τS. As s ′ decreases
with increasing temperature, the entropic region of the spectrum shifts further away from the
glassy-relaxation region—K ′ increases with decreasing s ′ under the condition of τS being fixed,
as τS = 18K ′s′—as shown in figures 5 and A.1.

Shown in figures 7 and 8, respectively, are the obtained s ′ and K ′ values of L10, A5000
and A2500 in comparison with the results of samples A, B and C and the calculated universal
curves. K ′ values of the low-molecular-weight samples are virtually on the universal curve,
with slightly noticeable deviation towards the lower side only in the case of A2500. The success
of using �T to account for the change in Tg with molecular weight is indeed extraordinary in
the case of K ′, considering the large Tg drops of these samples from the plateau value, 100 ◦C
(decreasing by 10, 18 and 40 ◦C in L10, A5000 and A2500, respectively [38, 39]; table 1).
As τS = 18K ′s′ and the K ′ values of these samples are closely on the universal curve, the
deviation of s ′ from the universal curve to the higher side is mainly correlated with τS deviating
towards the same side.

As shown in figure 7, being a little beyond the range of error fluctuations from the universal
curve, the s ′ data points of L10 appear to be on the verge of deviating from the universality.
When multiplied by a constant, the calculated universal curve can be shifted upwards to
superpose well on the s ′ data points of L10, A5000 and A2500 individually as shown by the
dotted lines in figure 7. By extrapolating the thus obtained multiplication factors, it is estimated
that deviation from the universal curve begins around Mw = 12 000, which is between the
Mw value of L10 and Me. Thus, although the universal curve is applicable in both entangled
(samples A and B) and entanglement-free (sample C) systems, as shown in the last section, the
applicable entanglement-free region as revealed here is quite narrow.

It is interesting to compare τS results shown in figure 6 with the dielectric-relaxation times
τdielec of polystyrene samples as shown in figure 4 of the paper of Roland and Casalini [56]
(R&C). Both sets of results are plotted against �T = T − Tg; however, R&C define Tg as
corresponding to τdielec = 100 s as opposed to τS = 1000 s being used in this study. The
difference in the definition of Tg should matter little if these two sets of results are not to be
compared quantitatively. Among the seven samples studied in R&C’s paper, five are of very
low molecular weight; only two have molecular weights greater than Me. The τdielec results
of the five low-molecular-weight samples qualitatively show the trend of deviating upward
from the results of the two high-molecular-weight samples, which are very close to each other.
R&C’s results do not show a consistent increase in deviation with decreasing molecular weight;
instead, their deviations behave in an erratic way. Despite the erratic behavior, R&C state in
their paper ‘Although there is significant scatter, the deviations are systematic with molecular
weight’. Thus, ignoring the erratic behavior of their data, R&C expect the kind of consistent
trend of deviation from the universal curve as presented in figure 6, since the results of their
two high-molecular-weight samples appear nearly on top of each other.
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Figure 9. Comparison of the viscoelastic spectra G∗(ω) of sample C at different temperatures
or �T calculated from the parameters extracted from the analyses of its J (t) results (—— in
the glassy-relaxation region; in the entropic region — · — at Tg = 93.8 ◦C (�T = 0), —— at
108.8 ◦C (�T = 15 ◦C), — — — at 113.8 ◦C (�T = 20 ◦C), – – – at 123.8 ◦C (�T = 30 ◦C)

and - - - - at 133.8 ◦C (�T = 40 ◦C)); the reference temperature is 108.8 ◦C.

8.3. Comparison of the G∗(ω) spectra of sample C and L10

For further illustrating the consistency between the J (t) and G∗(ω) results, the G∗(ω) spectra
of sample C calculated from the parameters extracted from analyzing its J (t) results are shown
in figure 9 for comparison with those of L10 shown in figure 5. In both the figures, spectra at
equivalent �T values are shown for a one-to-one comparison. As the reference temperature
chosen in figure 5 for L10 is equivalent to �T = 15 ◦C, the spectra shown in figure 9 for
sample C are superposed on each other over the glassy-relaxation region with the reference
chosen at 108.8 ◦C (�T = 15 ◦C). Both L10 and sample C being free of entanglement with
some difference in molecular weight, the great similarity between the two sets of spectra at
equivalent �T values is expected based on what have been shown in figures 6–8. Figure 9 also
shows the spectrum of sample C at �T = 0 (or at Tg = 93.8 ◦C); the equivalent information for
L10 is unavailable from the data of Inoue et al [32]. Both being at the same �T , the frequency-
scale of the glassy-relaxation region as shown in figure 5 for L10 is about 25% off that shown
in figure 9 for sample C. At �T = 15 ◦C, τS = 0.089 s (or 〈τ 〉G = 4.9 × 10−3 s) for L10 as
opposed to τS = 0.069 s (or 〈τ 〉G = 3.8 ×10−3 s) for sample C, in accord with τS of L10 being
slightly above the universal curve, as shown in figure 6.

9. Information in the obtained G(t) curves

9.1. Length-scale at Tg

With the s ′ and K ′ values determined for samples A, B and C at their individual Tg points in
section 8, the Gp(t) curves of the three samples may be calculated using equations (4)–(7) for
sample A and sample B and equations (7)–(11) for sample C. The three calculated Gp(t) curves
are shown together in figure 10 for a revealing comparison. In the figure, the curves calculated
by setting AG (or Af

G) = 0 are also shown; in each set of curves, the area between the full curve
and the curve with AG (or Af

G) = 0 represents the contribution of the glassy-relaxation process
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Figure 10. Comparison of the Gp(t) figures of sample A (middle), sample B (bottom) and sample C
(top) at individual Tg or �T = 0. In each figure, the relaxation times of the Rouse–Money normal
modes (for sample A and sample B) or the Rouse normal modes (for sample C) are indicated by +,
the line - - - - is calculated with Af

G or AG = 0 and the line – – – is calculated with AG = 0 as
well as setting the contribution of the Rouse–Mooney normal modes to zero. The common vertical
dotted line represents the structural-relaxation time τS = 1000 s. The points where the Gp(t) curves
cross the horizontal dotted lines at 108 dyn cm−2 represent traditionally defined structural- (or α-)
relaxation times.

to the relaxation modulus Gp(t). For sample A and sample B, the curves calculated without
both the glassy relaxation and Rouse–Mooney normal modes are also shown; the area between
a thus calculated curve and that with AG = 0 represents the contribution of the Rouse–Mooney
normal modes to Gp(t). Also indicated in the figure are the positions in time corresponding
to the relaxation times of the Rouse normal modes in sample C and the relaxation times of the
Rouse–Mooney normal modes in sample A and sample B.

It has been proposed in [4] that the positions of the relaxation times of the normal modes
may be used as ‘graduations’ of an internal yardstick for estimating the extent of influence of
the glassy-relaxation process. The relaxation time of the pth normal mode, τ

p
A (in the Rouse–

Mooney process of sample A and sample B) or τp (in the Rouse process of sample C), is
associated with a length-scale given by [2, 57]

λp ≈ (a2/p)0.5, (18)

with a standing for the entanglement distance in the entangled case (sample A and
sample B) or for the end-to-end distance in the entanglement-free case (sample C). The
value a may be calculated from the characteristic ratio C∞ or equivalently K∞ (=0.43 ×
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Figure 11. Comparison of the Gp(t) figures of sample A (middle), sample B (bottom) and sample C
(top) at �T = 9.7 ◦C. In each figure, the relaxation times of the Rouse–Money normal modes (for
sample A and sample B) or the Rouse normal modes (for sample C) are indicated by +, the line
- - - - is calculated with Af

G or AG = 0 and the line – – – is calculated with AG = 0 as well as
setting the contribution of the Rouse–Mooney normal modes to zero. The common vertical dotted
line represents the structural-relaxation time τS = 1 s. The points where the Gp(t) curves cross the
horizontal dotted lines at 108 dyn cm−2 represent traditionally defined structural- (or α-) relaxation
times.

10−2 nm2 Da−1 for polystyrene) [2, 58, 59]; one obtains a2 = K∞Me = 58.1 nm2 for
sample A and sample B, and a2 = K∞Mw = 70.5 nm2 for sample C. One sees in figure 10 that
the vertical dotted line at 103 s on the time coordinate, representing the structural-relaxation
time τS at Tg, passes through between the relaxation times of the seventh and eighth normal
modes in all three cases. Using the position of τS = 103 relative to τ 7

A and τ 8
A or to τ7 and

τ8, we may calculate from the values of λ7 and λ8 (equation (18)) the length-scale λ at Tg by
interpolation. The λ values so obtained are 2.76, 2.87 and 3.0 nm for samples A, B and C,
respectively. These values are consistent with one another; furthermore, they are virtually the
same as that estimated by the calorimetric method for polystyrene at Tg [48, 49].

9.2. Change in length-scale with �T

According to the calculated curve shown in figure 6, τS = 1 s occurs at �T = 9.7 ◦C. For
illustrating the change in length-scale with �T occurring in samples A, B and C in perspective,
shown in figure 11 is the comparison of the Gp(t) curves of the three samples calculated at
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�T = 9.7 ◦C. The parameters s ′ and K ′ used to calculate the Gp(t) curve for each of the
samples are obtained from the values determined at different temperatures by interpolation
through least-squares fittings. As shown in the figure, the vertical dotted line at 1 s representing
the structural-relaxation time occurs before the relaxation time of the highest Rouse or Rouse–
Mooney mode by about an equal ‘distance’ in all three cases—equivalent to log 1.9, log 2.0 and
log 1.6 for samples C, A and B, respectively. Clearly, the consistency among the three samples
as observed at �T = 0 (figure 10) is preserved at �T = 9.7 ◦C. τS = 1 s being shorter than
the motional time of a single Rouse segment means that the length-scale associated with the
structural-relaxation process is shorter than the Rouse-segmental length of ∼2 nm, indicating a
rubbery state. By contrast, the length-scale reaches ∼3 nm at �T = 0 (figure 10), indicating
vitrification at the Rouse-segmental level.

10. Discussion

10.1. Frictional slowdown and structural growth

As proposed previously [2, 9, 11, 38] and supported by the universal �T dependence of K ′
shown in figure 8, the molecular-weight dependence of K ′ and that of Tg are directly related to
each other. The consistency of the �T dependence of s ′ among the three samples indicates that
the molecular-weight dependence of K ′ extends into the time domain of the glassy-relaxation
process as indicated by equation (15). In other words, after the Tg correction is made to both
the μA(t) (or μR(t)) and μG(t) processes by expressing K ′ and s ′ in terms of �T , all of
them become independent of molecular weight. This also means that the molecular-weight
dependence of Tg in the entanglement region is directly related to the fast dynamic processes,
μA(t) and μG(t), both following the same molecular-weight dependence.

While K ′ is a frictional factor, s ′ having the unit of Da2 is a structural factor [4]. Thus
the �T dependence of s ′ (figure 7) and that of K ′ (figure 8) are of different physical natures.
With decreasing �T , the former represents the growth of some Tg-related structure while the
latter represents purely the frictional slowdown of the Rouse segment. The structural relaxation
(i.e. μG(t)) with relaxation time defined by equation (15) contains the effects of both the
frictional slowdown and structural growth while the μA(t) or μR(t) process is only affected
by the frictional slowdown. As a result, the positions of τS relative to {τ p

A } or {τp} in timescale
change with �T as observed in the comparison of figures 10 and 11.

10.2. K values in the close neighborhood of Tg

As shown in figures 10 and 11, all three samples have length-scales of the same magnitude at
τS = 1000 or 1 s (at �T = 0 or 9.7 ◦C). These revealed uniformities result directly from the
universal behavior of s ′ and K ′ as a function of �T . As figures 10 and 11 are all displayed in
real time, the shown positions of the relaxation times are ultimately determined by the K values.
As the temperature is approaching Tg (�T � 20; in this temperature region τS � 1−2 s),
because K ′ = K RK (M/Me) (K ′ = 1.61K for sample A; K ′ = 3.16K for sample B; and
K ′ = K for sample C) K has to change with �T in such a way that the corresponding K ′
values will behave in the universal way as shown in figure 8. As the temperature approaches
near Tg, with this effect becoming important, K has to become influenced by the position of
Tg, which declines with decreasing molecular weight below ∼10Me for polystyrene [38, 39].
This has to be reconciled with the fact that K is independent of molecular weight at and above
127.5 ◦C (see footnote 4). As shown in figure 12 and explained in the following, the comparison
of the K values as a function of temperature between samples A, B and C illustrates such a
transition.
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Figure 12. The comparison of K values as a function of temperature between sample A (◦),
sample C (•) and the hypothetically uncontaminated sample B (+) (see the text). The lines are
calculated from the FTH equations best fitting the experimental data: —— for sample A, – – – for
sample C and - - - - for the hypothetically uncontaminated sample B.

Sample C and F1 have nearly the same Mw values and virtually the same K value (table 1).
As described by the Rouse theory, the viscoelastic response of sample C has only one frictional
factor K —isotropic dynamically. In the case of F1, because its molecular weight is so close
to Me, K = K ′ within a small experimental error—virtually isotropic dynamically. Thus,
the difference in the physical meaning of K between sample C and F1 should be very small.
Based on these obtained results, the K values of sample C and F1 as a function of temperature
should be very close to each other. The pattern that the K values of sample A and sample C
diverge as the temperature approaches Tg and merge at high temperatures, �130 ◦C, as shown in
figure 12, should similarly occur between sample A and F1. At 127.5 ◦C the K values (table 1)
for sample C and F1 are about 17–20% smaller than the average value K = 4.9 × 10−9 ± 10%
as obtained over the molecular weight range from 3.4 × 104 to 6.0 × 105 (table 1 and appendix
B of [4]) [2, 4, 9]. The 17–20% smaller K for sample C and F1 is mostly likely due to the effect
of a substantially smaller Tg (by ∼6 ◦C). In any case, as these differences in K are so small,
these results actually confirm that the ERT and the Rouse theory have the same footing at the
Rouse-segmental level.

Because sample B is contaminated by residual plasticizers [7], the K values of sample B
cannot be directly compared with those of sample A [4]. To illustrate the point made above, the
curve calculated from the FTH equation that has been obtained from the least-squares fitting
to the K values of sample B is shifted to the higher-temperature side by 1.5◦ in figure 12.
The temperature shift is to account for the decrease in Tg caused by the contamination of
residual plasticizers. The magnitude of the shift is chosen such that after the shift the curve
superposes closely on the FTH curve of sample A over the region above 118 ◦C. The shift is
of the magnitude estimated by Plazek [7]. The close superposition automatically includes the
expectation that the K value of the ‘uncontaminated sample B’ be in close agreement with that
of sample A at 127.5 ◦C. After such a shift, the FTH curve of sample B begins to rise above
that of sample A below ∼115 ◦C, illustrating divergence similar to that between sample A and
sample C, but in a smaller degree. If we use the universal value K ′ = 1.35 × 10−3 expected
at �T = 0 (see figure 8), the K value at Tg for the ‘uncontaminated sample B’ should be
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4.27×10−4 (=K ′/3.16), which occurs at 99.55 ◦C on the shifted FTH curve of sample B. This
Tg value is consistent with the sum of the shift (1.5◦) and the Tg value of sample B (98.03 ◦C)

determined by τS = 1000 s. Thus, we have the Tg values for sample A, uncontaminated
sample B and sample C as 97, 99.55 and 93.8 ◦C, respectively; these values are consistent with
what may be expected from calorimetric measurements (see table 1).

10.3. Effect of chain connectivity

Values of τS, s ′ and K ′ obtained for L10 cling closely to the respective universal curves
established on the results of sample A, sample B and sample C. The low end of the molecular
weight range covered by these samples is higher than that of L10 by about 6000. The small
deviations of L10’s results from the universal curves are in the directions expected from
the larger deviations observed in the other samples of even smaller molecular weights. In
other words, the small deviations of L10 must be caused by the effects that will set in when
the molecular weight is sufficiently low. One important factor may be the reduction in the
hindrance to segmental movement as chain connectivity is sufficiently reduced, as supported
by the following analysis. Figure 8 shows that K ′ being the same at a fixed �T is true down to
molecular weights as low as A5000, and nearly so for A2500. With K ′ remaining the same, in
the same way as equation 10 of [4] has been obtained, the following relationship—a physical
constraint—can be obtained:

d2

s′ = const, (19)

where d represents the average distance the Rouse segment jumps in one step. As the hindrance
to segmental movement is reduced with decreasing molecular weight, a larger jumping-step
length d may be allowed; then based on equation (19) s′ becomes larger. This explains the
further shift of s ′ from the universal curve to the higher side—at a fixed �T —as molecular
weight decreases as shown in figure 7.

11. Summary

The ultimate goal of this report is to bring together the results of entangled systems studied
previously [4, 5] and of the presently studied entanglement-free systems, and present the
analysis-obtained results pertinent to the Tg-related thermorheological complexity. The
analyses done in and the results obtained from both the studies are jointly summarized for
giving a comprehensive view.

The quantitative success of the extended reptation theory (ERT; for entangled
systems) [2, 8–11] and the Rouse theory (for entanglement-free systems) [2, 10, 15, 16, 35]
in describing the polymer relaxation modulus G(t) or viscoelastic spectrum G∗(ω) over the
entropic region allows them to be used as the frame of reference. The G(t) functional forms
covering the whole time range are given by incorporating a stretched exponential for the glassy-
relaxation process μG(t) into the ERT or the Rouse theory. The creep compliance J (t) curves
of entangled (sample A and sample B) [6, 7] and entanglement-free (sample C) [31] polystyrene
samples as well as the viscoelastic spectra G∗(ω) of entanglement-free polystyrene samples
(L10, A5000, A2500 and A1000) [32] have been quantitatively analyzed in terms of the given
G(t) functional forms.

From the J (t) line-shape analyses, the structural-relaxation time τS = 18〈τ 〉G (〈τ 〉G

being the average glassy-relaxation time), the structural-growth parameter s ′ and the frictional
factor K ′ for the Rouse–Mooney process μA(t) or the Rouse process μR(t) are extracted.
Representing a very significant aspect of the analyses, the separation of τS(= 18s ′K ′) into
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the two decoupled quantities s ′ and K ′ is a fundamentally clean-cut process: while s ′ is
determined entirely by the line shape of J (t) or G∗(ω), K ′ is determined by the timescale
shifting factor obtained from superposing the calculated J (t) or G∗(ω) on the measured one.
Very significantly, the uneven temperature dependences in different time regions of J (t) for
sample A, sample B and sample C are described in a natural and precise way by a simple
increase in the structural-growth parameter s ′ with decreasing temperature. In the case of
sample C, the decline in the steady-state compliance J 0

e with temperature decreasing towards
the glass transition point Tg is simultaneously so described quantitatively.

For all the studied samples, Tg is defined by the temperature at which the structural-
relaxation time τS = 1000 s. When the dynamic and structural quantities τS, s ′ and K ′ of
samples A, B and C are displayed as a function of �T = T − Tg, they fall individually on
the same curves. Bases are pointed out for claiming that the common curves shared by the
three samples represent a Tg-related universality within the polystyrene system, entangled or
not. As the ERT and the Rouse theory are independently involved, the established universality
also confirms the conclusion from the study of the blend-solution systems [2, 11] that the
ERT and the Rouse theory have the same footing at the Rouse-segmental level. Because of
the universal dependence of s ′ and K ′ on �T , the μG(t) process and the μA(t) or μR(t)
process in both their absolute and relative positions in time depend on �T in the same
way.

In addition, the importance of the role of the Rouse segment as a reference in both
timescale and length-scale is revealed. The relaxation times of the Rouse–Mooney normal
modes (for sample A and sample B) or the Rouse normal modes (for sample C) have been
used as the ‘graduations’ of an internal yardstick for estimating the extent of influence of the
glassy relaxation near and at Tg. As a logical consequence of s ′ and K ′ depending on �T
in a universal way, the length-scales increase gradually in the same way and reach ∼3 nm at
�T = 0 (or at Tg) for the three samples covered by the universality.

The τS, s ′ and K ′ results obtained from analyzing the G∗(ω) spectra of samples with
molecular weights just below and well below the entanglement molecular weight Me = 13 500
(L10, A5000, A2500 and A1000) are compared with those of samples A, B and C. The
comparison reveals that deviation from the universality established on the analysis-obtained
results of sample A, B and C increases with decreasing molecular weight. Deviation is
estimated to begin around Mw = 12 000, which is only 10% below Me and about 30% below
the Mw of sample C—sample C with Mw = 16 400 > Me becomes an entanglement-free
system because its molecular-weight distribution is not extremely narrow. Thus, although the
universality is applicable in both the entangled and entanglement-free polystyrene systems, the
applicable entanglement-free region is quite narrow.
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Appendix A. G∗(ω) spectra of A5000, A2500 and A1000

Shown in figure A.1 are the composite G∗(ω) spectra of A5000, A2500 and A1000 formed and
analyzed as described in section 4.
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Figure A.1. Top: comparison of the viscoelastic spectra G∗(ω) of A5000 measured at different
temperatures (
 at 85 ◦C; 	 at 88 ◦C; ♦ at 92 ◦C; • at 100 ◦C; at 110 ◦C; � at 120 ◦C) with
the calculated (—— in the glassy-relaxation region; in the entropic region —— at 100 ◦C, — — —
at 110 ◦C and – – – at 120 ◦C); the reference temperature is 100 ◦C. Middle: comparison of the
viscoelastic spectra G∗(ω) of A2500 measured at different temperatures (
 at 62 ◦C; 	 at 65 ◦C;
♦ at 70 ◦C; • at 80 ◦C; at 90 ◦C) with the calculated (—— in the glassy-relaxation region; in the
entropic region —— at 80 ◦C and — — — at 90 ◦C); the reference temperature is 80 ◦C. Bottom:
comparison of the viscoelastic spectra G∗(ω) of A1000 measured at different temperatures (
 at
5 ◦C; 	 at 10 ◦C; ♦ at 15 ◦C; � at 20 ◦C; • at 25 ◦C; at 30 ◦C) with the calculated one (——);
the reference temperature is 25 ◦C.
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Appendix B. Tg values of L10, A5000, A2500 and A1000 determined at τS = 1000 s

For showing the τS results of L10, A5000, A2500 and A1000 as a function of �T in figure 6,
their glass-transition temperatures Tg, defined as the point where τS = 1000 s, need to be
determined individually first. As the longest τS values extracted from the data of Inoue
et al [32], except for A1000, are around 100–200 s, the Tg values cannot be determined by
interpolation. Under the circumstance, one may do two things: one is by doing extrapolation
based on the FTH equation that best fits the available data; the other is by superposing the
longest τS data point onto the curve calculated from equation (16) by shifting along the �T
coordinate. The Tg values determined in these two ways differ by less than 0.3◦; either way
does not lead to a difference in interpretation. The Tg(τS = 1000 s) values listed in table 1 and
used in calculating �T for plotting the τS points in figure 6 are the results of using extrapolation
based on the FTH equation. As shown in table 1, these Tg values are consistent with the values
determined by DSC as closely as those of sample A, sample B and sample C are. In the case
of A1000, the temperature dependence of the τS results are fitted to the FTH equation, from
which the Tg point where τS = 1000 s is determined by interpolation.
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