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摘要 

知識是獲得與維持組織競爭優勢的重要來源。在不斷變動的商業環境中，組織必須使

用有效的方法來保留知識、分享知識和知識再利用，以協助知識工作者尋找工作相關的資

訊。因此，要如何從工作者過去的工作記錄中，發掘與建構知識流（Knowledge Flow）是

一個重要的議題。建立知識流模型的目的是在於，了解知識工作者的工作需求與參考知識

的方式，進而提供適性化的知識支援。此外，組織中的知識是透過知識流的遞送與累積，

而且知識工作者具備不同領域的知識，他們會參與以工作為基礎的群體，並進行合作，以

滿足工作的需求。 

本研究首先提出以知識流模型為基礎之混合式推薦方法，其整合知識流探勘、序列規

則探勘，以及協同式過濾技術來推薦工作知識。這些以知識流為基礎的推薦方法包含二個

階段：知識流探勘階段與知識流推薦階段。知識流探勘階段能藉由分析工作者的知識參考

行為（資訊需求），以發掘工作者的知識流；而知識流推薦階段則利用所提出的混合式推

薦方法，主動地提供相關知識給工作者。因此，根據工作者對於知識文件的喜好與知識參

考行為，本研究方法能預測工作者感興趣的主題，進而推薦工作相關的知識文件給工作者。

在實驗中，我們利用某研究單位實驗室的真實資料，來評估本研究之混合式方法的推薦效

果，並與傳統的協同式過濾方法做比較。最後，實驗結果顯示，工作者對於知識文件的偏

好與知識參考行為，可以有效地改善推薦品質並促進組織內的知識分享。 

此外，為了協助群體學習與分享工作相關知識，針對以工作任務為基礎之群體，我們

提出整合資訊檢索與資料探勘技術之演算法，發掘與建構群體知識流（Group-based 

Knowledge Flow）。群體知識流可利用有向性之知識圖來表示，藉此呈現一群工作需求相

近工作者的知識參考行為（或知識流），而從知識圖中所發現的頻繁知識參考路徑，可以

代表群體使用者的頻繁知識流。為了驗證方法的效能，我們實作一個群體知識流探勘之雛

型系統。在一個重視協同合作與團隊合作的環境中，透過群體知識流探勘的方法與系統，

可以加強組織學習，以及知識的管理、分享與再利用。 

由於大部分傳統的推薦方法沒有考慮工作者的知識流，而且忽略其他大多數具有相似

知識流的群體工作者之資訊需求。由於從工作者過去的參考行為來取得個人的資訊需求會
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有所遺漏，而群體的資訊需求可以反映工作者過去的參考行為中，所遺漏的部分個人資訊

需求，並可補充工作者的個人需求。因此，我們提出混合式推薦方法，將以知識流為基礎

的群體式推薦方法與傳統推薦方法結合，方法中考量群體的觀點來補足個人觀點之不足。

藉由整合兩種方法，來平衡兩個方法之間的權重並取得更準確的推薦。最後在實驗結果中

顯示所提出的方法比傳統推薦方法有較高的準確度。 

關鍵字: 知識流、知識流探勘、知識分享、文件推薦、協同式過濾、序列規則探勘、推薦

系統、群體知識流、知識圖、資料探勘、資訊檢索、群體推薦、知識支援. 

Abstract 

Knowledge is a critical resource that organizations use to gain and maintain competitive 

advantages. In the constantly changing business environment, organizations must exploit 

effective and efficient methods of preserving, sharing and reusing knowledge in order to help 

knowledge workers find task-relevant information. Hence, an important issue is how to discover 

and model the knowledge flow (KF) of workers from their historical work records. The 

objectives of a knowledge flow model are to understand knowledge workers’ task-needs and the 

ways they reference documents, and then provide adaptive knowledge support. Additionally, 

knowledge is circulated and accumulated by knowledge flows (KFs) in the organization to 

support workers’ task needs. Because workers accumulate knowledge of different domains, they 

may cooperate and participate in several task-based groups to satisfy their needs.  

This work first proposes hybrid recommendation methods based on the knowledge flow 

model, which integrates KF mining, sequential rule mining and collaborative filtering techniques 

to recommend codified knowledge. These KF-based recommendation methods involve two 

phases: a KF mining phase and a KF-based recommendation phase. The KF mining phase 

identifies each worker’s knowledge flow by analyzing his/her knowledge referencing behavior 

(information needs), while the KF-based recommendation phase utilizes the proposed hybrid 

methods to proactively provide relevant codified knowledge for the worker. Therefore, the 

proposed methods use workers’ preferences for codified knowledge as well as their knowledge 

referencing behavior to predict their topics of interest and recommend task-related knowledge. 

Using data collected from a research institute laboratory, experiments are conducted to evaluate 

the performance of the proposed hybrid methods and compare them with the traditional CF 

method. Finally, the results of experiments demonstrate that utilizing the document preferences 

and knowledge referencing behavior of workers can effectively improve the quality of 

recommendations and facilitate efficient knowledge sharing. 

Moreover, to support group-based learning and share task-related knowledge, we propose 

an algorithm that integrates information retrieval and data mining techniques to mine and 

construct group-based KFs (GKFs) for task-based groups. A GKF is expressed as a directed 

knowledge graph which represents the knowledge referencing behavior, or knowledge flow, of a 
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group of workers with similar task needs. The frequent knowledge referencing path is identified 

from the knowledge graph to indicate the frequent knowledge flow of the workers. To 

demonstrate the efficacy of the proposed method, we implement a prototype of the GKF mining 

system. Our GKF mining method and system can enhance organizational learning and facilitate 

knowledge management, sharing, and reuse in an environment where collaboration and 

teamwork are essential.  

A group’s needs may partially reflect the needs of an individual worker that cannot be 

inferred from his/her past referencing behavior. In other words, the group’s knowledge 

complements that of the individual worker. Thus, we leverage the group perspective to 

complement the personal perspective by using hybrid approaches, which combine the KF-based 

group recommendation method (KFGR) with traditional personalized recommendation methods. 

The proposed hybrid methods achieve a tradeoff between the group-based and personalized 

methods by integrating the merits of both methods. Our experiment results show that the 

proposed methods can enhance the quality of recommendations made by traditional methods.  

Keywords: Knowledge Flow, Knowledge Flow Mining, Knowledge Sharing, Document 

Recommendation, Collaborative Filtering, Sequential Rule Mining, Recommender System, 

Group-based Knowledge Flow, Knowledge Graph, Data Mining, Information Retrieval, Group 

Recommendation, knowledge Support. 
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Chapter 1. Introduction 

1.1 Background and Research Objectives 

Organizational knowledge can be used to create core competitive advantages and achieve 

commercial success in a constantly changing business environment. Hence, organizations need 

to adopt appropriate strategies to preserve, share and reuse such a valuable asset, as well as to 

support knowledge workers effectively [50, 53]. Knowledge and expertise are generally codified 

in textual documents, e.g., papers, manuals and reports, and preserved in a knowledge database. 

This codified knowledge is then circulated in an organization to support workers engaged in 

management and operational activities [13]. Because most of these activities are 

knowledge-intensive tasks, the effectiveness of knowledge management depends on providing 

task-relevant documents to meet the information needs of knowledge workers. 

In task-based business environments, knowledge management systems (KMSs) can 

facilitate the preservation, reuse and sharing of knowledge. Moreover, workers may need to 

obtain task-relevant knowledge to complete a knowledge-intensive task by referencing codified 

knowledge (documents); For example, based on a task’s specifications and the process-context 

of the task, the KnowMore system [1] provides context-aware knowledge retrieval and delivery 

to support workers’ procedural activities. The task-based K-support system [44, 69] adaptively 

provides knowledge support to meet a worker’s dynamic information needs by analyzing his/her 

access behavior or relevance feedback on documents. To help knowledge workers complete 

multiple tasks, TaskTracer [20] was developed to monitor workers’ activities and help them 

rapidly locate and reuse processes employed previously. However, previous research on 

task-based knowledge support did not analyze and utilize the flow of knowledge among various 

types of codified knowledge (documents) to provide effective recommendations about 

task-relevant documents.  

Knowledge flow (KF) research focuses on how KF can transmit, share, and accumulate 

knowledge when it passes from one team member/process to another. In a workflow situation, 

work knowledge may flow among workers in an organization, while process knowledge may 

flow among various tasks [73, 75-76]. Thus, KF reflects the level of knowledge cooperation 

between workers or processes and influences the effectiveness of teamwork/workflow. Zhuge 

[73] proposed a management mechanism for realizing ordered knowledge sharing, and integrated 

the knowledge flow with the workflow to assist people working in a complex and knowledge 

intensive environment. Also, KF plays an important role in academic research, as researchers 

often devise novel concepts based on previous research reported in the literature [74]. However, 

to the best of our knowledge, there is no systematic method that can flexibly identify KF in order 

to understand the information needs of workers. Furthermore, conventional KF approaches do 
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not analyze knowledge flow from the perspective of information needs and recommend relevant 

documents based on the discovered KF. 

Knowledge workers normally have various task needs over time. Moreover, they may need 

to obtain task-relevant knowledge to complete a task by referencing several types of codified 

knowledge (documents); and the knowledge in one document may prompt a worker to reference 

another related document. Based on a worker’s referencing behavior, KF can be used to describe 

the evolution of information needs, preferences, and knowledge accumulated for a specific task. 

From the perspective of information needs, some knowledge in a KF may have a higher priority 

for accomplishing a task. For example, before taking a Data Mining course, a student must take 

courses in Statistics and Database Systems, which represent the fundamental knowledge of Data 

Mining. Thus, these two courses are significant and have a high priority for the student. 

Additionally, academic knowledge may flow between different courses and thereby help students 

accumulate more knowledge. Similarly, the codified knowledge for a task also has different 

referencing priorities and ordering based on its perceived importance. In other words, important 

basic knowledge about a task should be referenced first. Therefore, KF can be utilized to provide 

effective recommendations about task-relevant knowledge to suit workers’ information needs for 

tasks. This issue has not been addressed by previous research. 

In task-based business environments, large amounts of such codified knowledge are 

circulated and accumulated in an organization to support knowledge workers engaged in diverse 

tasks and activities. Knowledge workers may cooperate with each other to accomplish a specific 

task. During the collaboration phase, task knowledge can be transmitted, shared and accumulated 

from one team member/process to another. Knowledge flows (KFs) can be used to represent the 

long-term evolution of workers’ information needs [41]. Based on those needs, the knowledge 

flow-based document recommendation method proactively delivers task-relevant topics and 

documents to the workers. 

To work more efficiently, workers who have task-related knowledge, expertise and 

experience may join a task-based group and collaborate to perform a task. The workers can share 

task-related knowledge delivered by their knowledge flows (KF) during the collaboration. In 

addition, workers in the same group may have similar referencing behavior and techniques for 

learning knowledge. Each group may require knowledge of different topic domains to 

accomplish its tasks and goals. Because the information needs of workers or groups may change 

over time, modeling the knowledge referencing behavior of a group of workers is difficult. 

Obviously, recognizing those needs, delivering knowledge during the collaboration, and 

facilitating knowledge sharing/reuse are important issues that must be addressed in a knowledge 

intensive organization. However, to the best of our knowledge, there is no appropriate approach 

for analyzing and constructing KFs from the perspective of a group’s information needs; and 

very little research effort has been expended on KF mining for task-based groups.  
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Several group-based recommendation methods have been proposed [33, 37, 46, 49, 51], 

because traditional recommendation methods focus on personalized recommendations and have 

some limitations. For example, if a group of people want to choose a restaurant to have dinner or 

decide which movie to watch, traditional methods are not appropriate, since they only consider 

the preferences of one group member. Group recommendation solves the problem by merging 

members’ preferences to generate a group profile [37, 49] or by combining the recommendations 

of all members of the group to form a group recommendation [51]. Existing group 

recommendation schemes satisfy the information needs of most workers in a group, but they 

often neglect individual workers’ preferences. Traditional group-based recommendation methods 

can be used to generate a group profile by simply merging all of the members’ profiles derived 

from the documents they referenced in their knowledge flows. However, from the perspective of 

knowledge flows, documents and topics referenced in different time periods should have 

different degrees of importance. That is, more weight should be given to documents/topics 

referenced in the recent past because that referencing behavior is more likely to reflect the 

workers’ current information needs. Traditional group-based recommendation methods do not 

consider recommendations in the context of a knowledge flow environment. 

According to the research motivation, the major research objectives are listed below. 

 Mining the knowledge flow for each knowledge worker and a group of workers; 

 Identifying and analyzing topics of interest, major referencing behavior patterns, and 

the long-term evolution of workers’ information needs; 

 Providing knowledge support adaptively based on the referencing behavior of workers; 

 Effectively recommending task-relevant knowledge to suit workers’ information needs 

for tasks; 

 Enhancing organizational learning and task collaboration; 

 Facilitating knowledge dissemination, sharing and reusing among workers in the 

context of collaboration and teamwork; 

1.2 The Approaches Based on Knowledge Flow 

In an attempt to resolve the limitations of previous research, we first propose KF-based 

recommendation methods for recommending task-related codified knowledge. To adaptively 

provide relevant knowledge, collaborative filtering (CF), the most frequently used method, 

predicts a target worker’s preference(s) based on the opinions of similar workers. However, the 

target worker’s referencing behavior may change over the period of the task’s execution, because 

his/her information needs may vary. Traditional CF methods only consider workers’ preferences 

for codified knowledge. They neglect the effect of the time factor, i.e., workers’ referencing 

behavior for knowledge over time. To fill this research gap, we propose a KF-based sequential 

rule method (KSR) that recommends codified knowledge by utilizing the KF-based sequential 

rules. However, the method is based on the target worker’s referencing behavior without 
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considering the opinions of his/her neighbors who may have similar preference for documents. 

Therefore, to take advantage of the merits of typical CF and KSR methods, we propose hybrid 

recommendation methods that combine CF and KSR methods to enhance the quality of 

document recommendation. The hybrid methods consider workers’ preferences for codified 

knowledge, as well as their knowledge referencing behavior, in order to predict topics of interest 

and recommend task-related knowledge. 

The proposed hybrid methods consist of two phases: a KF mining phase and a KF-based 

recommendation phase. To determine a knowledge worker’s referencing behavior, the KF 

mining phase analyzes his/her historical work records to identify the knowledge flow, i.e., the 

target worker’s information needs. Then, the KF-based recommendation phase selects and 

recommends documents based on the document preferences and KF-based sequential rules 

derived from the target worker’s neighbors. In other words, the proposed methods trace a 

worker’s information needs by analyzing his/her knowledge referencing behavior for a task over 

time, and also proactively provide relevant codified knowledge for the worker based on the KFs 

of the worker’s neighbors. 

According to the KF mining approach [41], we extend it and propose algorithms that 

integrate information retrieval and data mining techniques for mining and constructing the 

group-based knowledge flows (GKFs). Specifically, we discover a group’s KF from the KFs of 

the participating workers. First, based on the workers’ logs, we analyze each worker’s 

referencing behavior when acquiring task-related knowledge, and then construct his/her KF. 

Workers who have similar KFs are clustered into the same group by a clustering method, and the 

resulting group is regarded as a working group. Because workers in the same group may adopt 

different behavior when referencing task-related knowledge, we design GKF mining algorithms 

to discover the frequent referencing behavior of a group of workers. Second, we apply the 

concepts of graph theory to visualize the GKF as a knowledge graph in which a vertex and an 

edge indicate, respectively, a topic domain and a direct flow relation between two topic domains. 

From the knowledge graph, frequent knowledge paths (patterns) can be identified based on the 

edge frequencies in the graph. The paths represent the worker’s frequent knowledge referencing 

behavior and important knowledge flows in the group. Finally, to demonstrate the efficacy of our 

proposed method, we implement a prototype system for mining the GKF of a group of workers. 

The system provides useful functions that allow users to simplify the complexity of KF mining 

and visualize KFs graphically. 

Finally, we propose hybrid recommendation methods that combine a KF-based group 

recommendation (KFGR) method with traditional recommendation methods. Most traditional 

recommendation methods focus on the personal perspective rather than the group perspective; 

however, the group’s information needs may be important because they partially reflect an 

individual’s needs. In other words, the group’s knowledge may complement that of the 



5 

individual worker. Therefore, we take the group perspective into consideration to offset the 

drawback of the personal perspective. The proposed KFGR method recommends documents for 

a group of workers with similar knowledge flows. The drawback of the group perspective is that 

it may not satisfy the information needs of some individuals, since it focuses on the needs of the 

majority of group members. To resolve the problem, we combine the KFGR method with 

traditional recommendation methods to enhance the quality of recommendations. The proposed 

hybrid method achieves a tradeoff between the group-based and personalized methods by 

combining the merits of both methods. The experiment results show that the proposed model can 

improve on the quality of recommendations provided by traditional recommendation methods. 

1.3 Organization of the proposal 

The remainder of this proposal is organized as follows. Chapter 2 provides a brief overview 

of related works. In Chapter 3, we describe the knowledge flow model, the overview of 

knowledge flow-based research and the knowledge flow mining phase. The knowledge 

flow-based recommendation framework is illustrated in Chapter 4. The group-based knowledge 

flow mining methods are illustrated in Chapter 5. According to these methods, we propose a 

prototype system for mining the group-based knowledge flow. The group-based recommendation 

methods are described in Chapter 6. Finally, in Chapter 7, we summarize our conclusions and 

consider future research directions.  
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Chapter 2. Related Work 

In this chapter, we discuss the background of our research, including knowledge flow, 

information retrieval and task-based knowledge support, document clustering methods, dynamic 

programming algorithm, rule-based recommendations, collaborative filtering and process 

mining.  

2.1 Knowledge Flow 

Knowledge can flow among people and processes to facilitate knowledge sharing and reuse. 

The concept of knowledge flow has been applied in various domains, e.g., scientific research, 

communities of practice, teamwork, industry, and organizations [38, 74]. Scholarly articles 

represent the major medium for disseminating knowledge among scientists to inspire new ideas 

[8, 74]. A citation implies that there is knowledge flow between the citing article and the cited 

article. Such citations form a knowledge flow network that enables knowledge to flow between 

different scientific projects to promote interdisciplinary research and scientific development.  

KM enhances the effectiveness of teamwork by accumulating and sharing knowledge 

among team members to facilitate peer-to-peer knowledge sharing [73]. To improve the 

efficiency of teamwork, Zhuge [75] proposed a pattern-based approach that combines 

codification and personalization strategies to design an effective knowledge flow network. Kim 

et al. [38] proposed a knowledge flow model combined with a process-oriented approach to 

capture, store, and transfer knowledge. KF in weblogs (blogs) is a communication pattern where 

the post of one blogger links to that of another blogger to exchange knowledge [8]. Similarly, 

knowledge flow in communities of practice helps members share their knowledge and 

experience about a specific domain to complete their tasks [55]. 

2.2 Information Retrieval and Task-based Knowledge Support 

Information retrieval (IR) facilitates access to specific items of information [11, 22]. The 

vector space model [57] is typically used to represent documents as vectors of index terms, 

where the weights of the terms are measured by the tf-idf approach. tf denotes the occurrence 

frequency of a particular term in the document, while idf denotes the inverse document 

frequency of the term. Terms with higher tf-idf weights are used as discriminating terms to filter 

out common terms. The weight of a term i in a document j, denoted by wi,j, is expressed as 

follows:  

)1(log2,,, 
n

N
tfidftfw jiijiji

, (1) 

where tfi,j is the frequency of term i in document j, idfi is measured by (log2 N/n) + 1, N is 

the total number of documents in the collection, and n is the number of documents in which term 
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i occurs at least once.  

Information retrieval techniques coupled with workflow management systems (WfMS) 

have been used to support proactive delivery of task-specific knowledge based on the context of 

tasks within a process [2]. For example, the KnowMore system [1] provides context-aware 

delivery of task-specific knowledge. The Kabiria system assists knowledge workers with 

knowledge-based document retrieval by considering the operational context of task-associated 

procedures [10].  

Information filtering with a similarity-based approach is often used to locate knowledge 

items relevant to the task-at-hand. The discriminating terms of a task are usually extracted from a 

knowledge item/task to form a task profile, which is used to model a worker’s information needs. 

Holz et al. [29] proposed a similarity-based approach to organize desktop documents and 

proactively deliver task-specific information. Liu et al. [44] proposed a K-Support system to 

provide effective task support for a task-based working environment.  

2.3 Document Clustering Methods 

Document clustering or unsupervised document classification methods are used in many 

applications. Most methods apply pre-processing steps to the document set and represent each 

document as a vector of index terms. To cluster similar documents, the similarity between 

documents is usually measured by the cosine measure [11, 68], which computes the cosine of the 

angle between their corresponding feature vectors. Two documents are considered similar if the 

cosine similarity value is high. The cosine similarity of two documents, X and Y, is simcos(X, 

Y)=
YX

YX



 , where X


and Y


 are the feature vectors of X and Y respectively. Documents within a 

cluster are very similar, while documents in different clusters are very dissimilar. 

Agglomerative hierarchical clustering [34, 36] is a popular document clustering method. In 

this work, we use the single-link clustering method [21, 32] to cluster codified knowledge 

(documents). Initially, each document is regarded as a cluster. Next, the single-link method 

computes the similarity between two clusters, which is equal to the greatest similarity between 

any document in one cluster and any document in the other cluster. Then, based on the similarity 

measurement, the two most similar clusters are merged to form a new cluster. The merging 

process continues until all documents have been merged into one cluster at the top of a hierarchy, 

or a pre-specified threshold is satisfied [32]. 

2.3.1 The CLIQUE Clustering Method 

We also apply the CLIQUE clustering method [6, 32] to derive worker groups. CLIQUE 

starts with the definition of a unit-elementary rectangular cell in a subspace and uses a bottom-up 

approach to find units whose densities exceed a threshold. The algorithm has four key steps. First, 
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1-dimensional units are determined by dividing intervals into equal-width bins (a grid). Next, 

candidate k-dimensional units are generated from (k-1)-dimensional dense units, which involves 

self-joining of k-1 units that have common k-2 dimensions (Apriori-reasoning). Finally, all the 

subspaces are sorted by their coverage and those with less coverage are pruned. Therefore, a 

cluster is defined as a maximal set of connected dense units.  

2.3.2 Clustering Quality 

A good clustering method generates clusters that are cohesive and isolated from other 

clusters. For this reason, the measurement of clustering quality takes both inter-cluster similarity 

and intra-cluster similarity into account [17]. Let C be a set of clusters. The inter-cluster 

similarity between two clusters Ci and Cj, similarityA(Ci, Cj), is defined as the average of all 

pairwise similarities between the documents in Ci and Cj; and the intra-cluster similarity within a 

cluster Ci, similarityA(Ci, Ci), is defined as the average of all pairwise similarities between 

documents in Ci. On the basis of the cohesion and isolation of C, the quality measure of C , 

CQ(C), is defined as: 





CC iiA

iiA

i
CCsimilarity

CCsimilarity

C

1
CQ(C)

),(

),(
, where jjii CC  . (2) 

Note that the smaller the value of CQ(C), the better the quality of the derived set of clusters, 

C, will be. 

2.4 Dynamic Programming Algorithm for Sequence Alignment 

In this work, each worker’s knowledge flow is represented as a sequence. We use sequence 

alignment techniques to analyze the similarity of workers’ knowledge flows, which corresponds 

to a sequence alignment problem. Such techniques are used to compare or align strings in many 

application domains, such as biology, speech recognition, and web session clustering. A number 

of methods can be used for sequence alignment, e.g., the sequence alignment method (SAM) [15, 

26] and dynamic programming. SAM, also called the string edit distance method [40], considers 

the sequential order of elements in a sequence and then measures the similarity/dissimilarity of 

sequences. The measurements reflect the operations necessary to equalize the sequences by 

computing the costs of deleting and inserting unique elements as well as the costs of reordering 

common elements [26, 47]. In addition, Charter et al. [15] proposed a dynamic programming 

algorithm that solves the sequence alignment problem efficiently. 

The algorithm consists of three steps: initialization, FindScore and FindPath [15, 52]. The 

first step creates a dynamic programming matrix with N+1 columns and M+1 rows, where N and 

M correspond to the sizes of the sequences to be aligned. One sequence is placed at the top of the 

matrix and the other is placed on the left-hand side of the matrix. There is a gap at the end of 

each sequence to allow calculation of the alignment score. The FindScore step calculates the 
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two-dimensional alignment score of sequences. If two aligned sequences have an identical 

matching in the same column, the column is given a positive score s (e.g., +1 or +2); but if the 

values in a column are mismatches, the score s is zero or negative (e.g., 0, -1 or -2). In addition, 

if a column contains a gap, it is given a penalty score w (e.g., 0, -1 or -2). Therefore, starting 

from the bottom right-hand corner, each position in the dynamic programming matrix is given 

the maximal score Mij. For each position in the matrix, Mij is defined as follows: 

      wMwMsMMaximumM jijiijjiij   ,11,1,1 ,, , (3) 

where i is the row number, j is the column number, sij is the match/mismatch score, and w is 

the penalty score. The third step, FindPath, determines the actual KF alignment that derives the 

maximal score. It traverses the matrix from the destination point (top left-hand corner) to the 

starting point (bottom right-hand corner) to find an optimal alignment path in order to determine 

the maximal alignment score . We calculate the flow similarity based on the maximal alignment 

score. The details are given in Section 4.2. 

2.5 Rule-based Recommendations 

Association rule mining [3-4, 71] is a widely used data mining technique that generates 

recommendations in recommender systems. An association rule describes the relationships 

between items, such as products, documents, or movies, based on patterns of co-occurrence 

across transactions. The Apriori algorithm [3-4] is usually employed to identify such rules. Two 

measures, support and confidence, are used to indicate the quality of an association rule [3]. The 

discovered rules should satisfy two user-defined requirements, namely minimum support and 

minimum confidence.  

To improve the quality of traditional CF, Cho et al. [16] proposed a sequential rule-based 

recommendation method that considers the evolution of customers’ purchase sequences. 

Transactions are clustered into a set of q transaction clusters, C={C1,C2,…,Cq}, where each Cj is 

a subset of transactions. Each customer’s transactions over l periods are then transformed into 

transaction clusters as a behavior locus, Li =<Ci,T-l-1,…Ci,T-1, Ci,T>, where Ci,T-k   C, 

k=1,2,…,l-1, l≧2. Finally, sequential purchase patterns are extracted from the behavior locus of 

customers by time-based association rule mining to keep track of customers’ preferences during l 

periods, with T as the current (latest) period. A sequential rule is expressed in the form CT-l+1, …, 

CT-1  CT, where CT represents the customers’ purchase behavior in period T. If a target 

customer’s purchase behavior prior to period T was similar to the conditional part of the rule, 

then it is predicted that his/her purchase behavior in period T will be CT. Accordingly, CT is used 

to recommend products to the target customer in T. 

2.6 Collaborative Filtering Recommendation 

Collaborative filtering (CF) is a well-known approach for recommender systems: 
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GroupLens [39], Ringo [61], Siteseer [56], and Knowledge Pump [24]. CF recommends items, 

e.g., products, movies, and documents, based on the preferences of people who have the same or 

similar interests to those of the target user [12, 43, 45]. The CF approach involves two steps: 

neighborhood formation and prediction. The neighborhood of a target user is selected according 

to his/her similarity to other users, and is computed by Pearson correlation coefficient or the 

cosine measure. Either the k-NN (nearest neighbor) approach or a threshold-based approach is 

used to choose n users that are most similar to the target user. Here, we use the k-NN approach. 

In the prediction step, the predicted rating is calculated from the aggregated weights of the 

selected n nearest neighbors’ ratings, as shown in Eq. (4): 

 











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1 ,

,
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,  (4) 

where Pu,j  denotes the prediction rating of item j for the target user u; 
ur and 

ir  are the 

average ratings of user u and user i, respectively; w(u,i) is the similarity between target user u 

and user i; ri,j is the rating of user i for item j; and n is the number of users in the neighborhood.  

Similar to the PCF method, the item-based collaborative filtering (ICF) algorithm [42, 45, 

59] analyzes the relationships between items (e.g., documents) first, rather than the relationships 

between users. Then, the item relationships are used to compute recommendations for workers 

indirectly by finding items that are similar to other items the worker has accessed previously. 

Thus, the prediction for an item j for a user u is calculated by the weighted sum of the ratings 

given by the user for items similar to j and weighted by the item similarity, as shown in Eq. (5). 
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where pu,j represents the predicted rating of item j for user u; w(j,m) is the similarity 

between two items j and m; and rj,m denotes the rating of user u for item m. A number of methods 

can be used to determine the similarity between items e.g., the cosine-based similarity, 

correlation-based similarity, and adjusted cosine similarity methods. Since the adjusted cosine 

similarity method performs better than the others [59], we use it as the similarity measure for the 

ICF method. The adjusted cosine similarity between two items i and j is given by Eq. (6).  

 
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where ru,i / ru,j is the rating of item i/j given by user u; and ur  is the average item rating of 

user u.  
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2.7  Group-based recommendation 

Typical group recommendation methods merge the preferences of all group members to 

form a group preference. Group recommender systems are used in various application domains, 

such as those that recommend music, movies, TV programs and tourist attractions.  

MusicFX [49] selects music stations for the members of a fitness center and attempts to 

maximize the satisfaction of the group. PolyLens [51] is a movie recommender system that 

suggests movies for a small group of people who watch movies together. It recommends movies 

for the least satisfied group member and attempts to satisfy all users to some degree. TV4M is a 

TV recommendation system [70] that merges individual users’ profiles to form a common profile 

and generates a common program recommendation list for the group. The socially-aware TV 

program recommendation scheme proposed in [62] generates a group profile by linearly 

combining the profiles of users with common interests, after which it recommends the most 

appropriate programs based on the group profile. 

Group recommender systems used in the tourism domain include Intrigue [9] and Travel 

Decision Forum [33]. Intrigue helps a group of users organize a trip and recommends sightseeing 

locations by considering the preferences and differences of a heterogeneous group of users. 

Travel Decision Forum helps group members specify their preferences collaboratively and agree 

on arrangements for their trip. Garcia et al. [23] proposed a group recommender system with a 

taxonomy-driven domain-independent recommendation kernel for tourist activities. The group 

recommendation is derived from individual recommendations by using aggregation, intersection, 

and incremental intersection methods. Lorenzi et al. [46] considered information components, 

such as flights, hotels, and attractions in a travel package recommendation and proposed a 

DCOP-based multi-agent recommender system 

In summary, group recommender systems can be classified as (1) those that aggregate 

individual users’ profiles/preferences to form a group’s profile/preferences [23, 37, 48-49, 62, 

70]; and (2) those that merge individual recommendation lists into a group recommendation list 

[51]. Under the first approach, there is a high probability of discovering valuable 

recommendations that will satisfy the majority of the group’s members. The second approach 

gives users more information when they need to make decisions and the recommendation results 

are relatively easy to explain. However, it is not easy to identify unexpected items, and it is very 

time-consuming if the group is large. Therefore, we follow the first approach and aggregate 

workers’ topic domains based on their knowledge flows to generate profiles for a group. 

2.8 Process Mining 

In a workflow system, a process mining technique is used to extract the description of a 

structural process from a set of real process executions [65]. It then infers the relations between 
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the tasks/activities and generates a process model from event-based data (log data) automatically 

[7, 64, 66-67]. The relations between processes (tasks/activities) are defined as casual relations 

and parallel relations, and are modeled by a directed graph [7, 25] or an instance graph [67]. 

Because a workflow log contains information about workflow processes, a loop may occur in a 

process. Most process mining algorithms assume that loops do not exist [25, 67]. However, some 

algorithms have been proposed to handle the problem of process loops [19, 65]. For example, 

Agrawal, et al.’s algorithm [7] builds a general directed graph with cycles for mining process 

models from the logs of executed processes. The algorithm labels multiple instances of the same 

activity with different identifies to differentiate them in the workflow graph. Vertices with 

different instances of the same activity form an equivalent set and can be merged to form one 

vertex. A directed edge is added if there is an edge between two vertices of different equivalent 

sets. 

Process mining is used in various applications. Discovering frequently occurring temporal 

patterns in process instances facilitates intelligent and automatic extraction of useful knowledge 

to support business decision-making [7, 30]. Similarly, data mining techniques are exploited in 

workflow management contexts to mine frequent workflow execution patterns [25]. The frequent 

patterns represent blocks of activities that have been scheduled together more frequently during 

the execution of a process. The sequence of activities within a process, the time required to 

complete it, the execution cost and the reliability of the process can be predicted by using the 

process path mining technique [14]. Based on the process patterns and process paths, unexpected 

and useful knowledge about the process is extracted to help the user make appropriate decisions. 

In addition, combining the concepts of process mining and social network analysis is useful for 

mining social networks from event logs [63].  

Another benefit of process mining is that it is useful for discovering how people and/or 

procedures work [65]. In this work, we use process mining to analyze the relations between 

knowledge topics in a knowledge flow and model the referencing behavior of a group of workers. 

We design algorithms for mining the group-based knowledge flow (GKF) and construct a GKF 

as a directed knowledge graph. In such graphs, frequent knowledge paths can be derived to 

represent the most common referencing behavior of the group.  
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Chapter 3. The Overview of Knowledge Flow-Based Research 

3.1 Knowledge Flow Model 

In a knowledge-intensive and task-based environment, workers may need to access a large 

number of documents (codified knowledge) to accomplish a task. From the perspective of 

information needs, a worker’s knowledge flow (KF) represents the evolution of his/her 

information needs and preferences during a task’s execution. Workers’ KFs are identified by 

analyzing their knowledge referencing behavior based on their historical work logs, which 

contain information about previously executed tasks, task-related documents and when the 

documents were accessed. 

A KF consists of two levels: a codified level and a topic level, as shown in Fig. 1. The 

knowledge in the codified-level indicates the knowledge flow between documents based on the 

access time. In most situations, the knowledge obtained from one document prompts a 

knowledge worker to access the next relevant document (codified knowledge). Hence, the 

task-related documents are sorted by their access time to obtain a document sequence as the 

codified-level KF.  

Documents with similar concepts can be grouped together automatically to form a 

topic-level abstraction of knowledge. Note that each topic may contain several task-related 

documents. The codified-level KF can be abstracted to form a topic-level KF, which represents 

the transitions between various topics. Since the task knowledge in the topic level may flow 

among topics, it could prompt the worker(s) to retrieve knowledge from the next related topic. 

Formally, we define knowledge flow as follows. 

 

Fig. 1: The two levels of a knowledge flow 

Definition 1: Knowledge Flow (KF) 

Let a worker’s knowledge flow be },{ v

w

v

w

v

w CKFTKFlowKF  , where v

wTKF  is the 

topic-level KF of the worker w for a task v, and v

wCKF is his/her codified-level KF for the task v.  

Definition 2: Codified-Level KF 
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Doc1
Doc2 Doc3 Doci

…

Time

Knowledge Flow
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A codified-level KF is a time-ordered sequence arranged according to the access times of 

the documents it contains. Thus, it is defined as  ft

w

t

w

t

w

v

w ddd CKF ,,, 21

,
 and f

ttt  
21 , 

where 
jt

w
d denotes the document that the worker w accessed at time tj for a specific task v. Each 

document can be represented by a document profile, which is an n-dimensional vector containing 

weighted terms that indicate the key content of the document. 

Definition 3: Topic-Level KF 

A topic-level KF is a time-ordered topic sequence derived by mapping documents in the 

codified-level KF to corresponding topics. Thus, it is defined as  ft

w

t

w

t

w

v

w TPTPTP TKF ,,, 21  , 

f
ttt  

21 , where 
jt

w
TP denotes the corresponding topic of the document that worker w 

accessed at time tj for a specific task v. Each topic is represented by a topic profile, which is an 

n-dimensional vector containing weighted terms that indicate the key content of the topic. 

3.2 Knowledge Flow Mining Phase 

The objective of the knowledge flow (KF) mining phase is to identify the KF of each 

knowledge worker. In this Section, we describe how the KF mining method identifies KFs from 

workers’ log. This phase consists of three steps: document profiling, document clustering and KF 

extraction. In the first step, each document is represented as a document profile, which is an 

n-dimensional vector comprised of significant terms and their weights. Then, based on the 

document profiles, documents with higher similarity measures are grouped in clusters by the 

hierarchical clustering method. In the third step, topic-level and codified-level KFs are generated 

from the document clustering results. A topic-level KF is expressed as a sequence of topics 

referenced by a worker, while a codified-level KF is represented as a sequence of codified 

knowledge accessed by a worker. Further details are given in the following subsections. 

3.2.1 Document Profiling and Document Clustering 

Two profiles, a document profile and a topic profile, are used to represent a worker’s KF. A 

document profile can be represented as an n-dimensional vector composed of terms and their 

respective weights derived by the normalized tf-idf approach based on Eq. (1). Based on the term 

weights, terms with higher values are selected as discriminative terms to describe the 

characteristics of a document. The document profile of dj is comprised of these discriminative 

terms. Let the document profile be  njnjjjjjj dtwdtdtwdtdtwdtDP :,,:,: 2211  , where dtij is the 

term i in dj and dtwij is the degree of importance of a term i to the document dj, which is derived 

by the normalized tf-idf approach. The document profiles are used to measure the similarity of 

the documents. 

We adopt the single-link hierarchical clustering method [32] to group documents with 

similar profiles into clusters by using the cosine measure to calculate the similarity between the 

profiles of two documents. The single-link method computes the cluster similarity between two 
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 [72], and then merges the two most similar clusters 

into a single cluster. The similarity computation and cluster combination steps are repeated until 

the similarity of the most similar pair of clusters is no greater than a pre-specified threshold value. 

Different clustering results can be obtained by setting different threshold values. We adjust the 

threshold value systematically and use the quality measure described in Section 2.3.2 to evaluate 

each clustering result. Then, we take the one with the best quality measure as our clustering 

result. Note that a cluster represents a topic set and has a topic profile (derived from the 

document cluster) that describes the features of the topic. 

Topic Profile 

Documents in the same cluster contain similar content and form a topic set. The key 

features of the cluster are described by a topic profile, which is derived from the profiles of 

documents that belong to the cluster. Let  nxnxxxxxx dtwttttwttttwttTP :,,:,: 2211   be the profile 

of a topic (cluster) x, where 
ix

tt is a topic term and 
ix

ttw is the weight of the topic term. In addition, 

let Dx be the set of documents in cluster x. The weight of a topic term is determined by Eq. (7) as 

follows:  
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where dtwij is the weight of term i in document j, and |Dx| is the number of documents in 

cluster x. The weight of a topic term is obtained from the average weight of the terms in the 

document set.  

3.2.2 Knowledge Flow Extraction 

In this section, we describe the method used to extract a worker’s KF from his/her data log 

when performing a task. We define a task as a unit of work, which denotes either a previously 

executed (i.e., historical) task or the current task. When performing a task in a 

knowledge-intensive and task-based environment, a worker usually requires a large amount of 

task-related knowledge to accomplish the task. By analyzing a worker’s referencing behavior for 

a specific task, the corresponding knowledge flow of the task is derived by the knowledge flow 

extraction method. Note that if a worker performs more than one task, more than one knowledge 

flow will be extracted. For a specific task, the method derives two kinds of KF, codified-level KF 

and topic-level KF, to represent the worker’s information needs for the task. 

Codified-Level Knowledge Flow 

The codified-level KF is extracted from the documents recorded in the worker’s work log. 

In most situations, workers are motivated to access a document about a specific task because of 

knowledge derived from other documents. The documents are arranged according to the times 



16 

they were accessed, and a document sequence, i.e., a codified-level KF, is obtained. The order of 

documents in the sequence is subjective, since it is determined by the worker. In other words, 

each worker has his/her own codified-level KF, which represents his/her knowledge 

accumulation process for a specific task at the codified level.  

Topic-Level Knowledge Flow 

The topic-level KF is derived by mapping documents in the codified-level KF of a specific 

task into corresponding clusters and is represented by a topic sequence. In the previous step, 

documents with similar content were grouped into clusters. We use the document clustering 

results to map the documents in the codified-level KF into topics (clusters) in order to compile 

the topic-level KF. Since the codified-level KF is the basis of the topic-level KF, the knowledge 

in the latter is an abstraction of the former, and indicates how knowledge flows among various 

topics. A topic in the topic-level KF may be duplicated because the worker may read about the 

same topic frequently to obtain essential knowledge while executing a task. 
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Chapter 4. Knowledge Flow-based Recommendation Framework 

The proposed recommendation methods are illustrated in Fig. 2. Our methods consist of two 

phases, a knowledge flow mining phase and a KF-based recommendation phase. The first phase 

identifies the worker’s knowledge flow from the large amount of knowledge in the worker’s log. 

Then, the second phase recommends codified knowledge to the target worker by using the 

proposed recommendation methods.  

 

Fig. 2: Document recommendation based on knowledge flows 

In the knowledge flow mining phase, KFs are identified from the task requirements and the 

referencing behavior of workers recorded in their logs. As tasks are performed at various times, 

each knowledge worker requires different kinds of knowledge to achieve a goal or complete a 

task. Further details about this phase are given in Section 3.2. 

The proposed hybrid recommendation methods combine a KF-based sequential rule (KSR) 

method with a user-based/item-based collaborative filtering (CF). The KSR method is regarded 

as the core process of the proposed hybrid methods. In the KSR method, workers with similar 

KFs to that of the target worker are deemed neighbors of the target worker and their knowledge 

referencing behavior patterns are identified by a sequential rule mining method. Based on the 

discovered sequential rules and the neighbors’ KFs, relevant topics and codified knowledge are 

recommended to the target worker to support the task-at-hand. Moreover, by considering 

workers’ preferences for codified knowledge, the CF method makes recommendations to the 

target worker based on the opinions of similar workers. Three approaches are used to find similar 

workers to the target worker. The preference-similarity-based CF method (PCF) chooses workers 

with similar preferences, while the KF-similarity-based CF method (KCF) chooses workers with 

similar KFs. Different from these two user-based methods, the item-based CF method predicts a 
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document rating based on its similar documents that have been rated by a target user. To 

adaptively and proactively recommend codified knowledge, we consider workers’ referencing 

behavior as well as their preferences for codified knowledge. Therefore, three hybrid 

recommendation methods are used in the KF-based recommendation phase: 1) a hybrid of PCF 

and KSR (PCF-KSR), 2) a hybrid of KCF and KSR (KCF-KSR) and 3) a hybrid of ICF and KSR 

(ICF-KSR). Further details are given in the following subsections.  

4.1 Knowledge Flow-based Recommendation Phase 

In this work, we propose three hybrid recommendation methods based on knowledge flow 

(KF), which is a sequence of codified knowledge (documents) or topics referenced by a worker 

during a task’s execution. KF represents a worker’s information needs and the evolution of 

knowledge requirements, and is identified by analyzing a worker’s work log. To support workers 

effectively, our methods consider workers’ preferences as well as their referencing behavior in 

order to recommend task-related knowledge. During the recommendation phase, the user-based 

collaborative filtering (CF) is used to predict a target worker’s preferences based on the opinions 

of similar workers, while the item-based collaborative filtering [59] is used to predict a document 

based on the targets worker’s interests on its similar items (documents). However, the limitation 

of these traditional CF methods is that they only consider workers’ preferences for codified 

knowledge and neglect workers’ referencing behavior. A worker’s referencing behavior may 

change during the task’s execution to suit his/her current information needs. To address this issue, 

we propose a KF-based sequential rule method that improves the recommendation quality by 

tracking workers’ referencing behavior based on sequential rules. However, this method does not 

consider the opinions of the target worker’s neighbors who have similar preferences for 

documents. To overcome the limitations of CF and KF-based sequential rule methods, we 

combine the advantages of the two approaches and propose three hybrid recommendation 

methods that integrate KF mining, KF-based sequential rule mining and CF techniques to 

enhance the quality of recommendations. 

The KF-based recommendation phase consists of three hybrid recommendation methods: 1) 

PCF and KSR (PCF-KSR), 2) KCF and KSR (KCF-KSR) and 3) ICF and KSR (ICF-KSR), as 

shown in Fig. 2. We note that PCF denotes the preference-similarity based CF method; KCF 

denotes the KF-similarity based CF method; ICF denotes the item-based CF method; and KSR 

denotes the KF-based sequential rule method. To adaptively recommend documents, both the 

PCF method and the KCF method select neighbors based on the similarity of preferences, while 

the ICF method chooses similar documents for a document based on their preferences given by a 

target user. The three methods differ in the way they compute the similarity between workers’ 

preferences to select the target worker’s neighbors. The PCF method (traditional CF) uses 

preference ratings to compute the similarity, while the KCF method uses workers’ KFs to derive 

the similarity. The ICF method applies similarity measure to evaluate the similarity between two 
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items (i.e., documents), rather than the similarity between two workers. The proposed KSR 

method traces workers’ knowledge referencing behavior by using the KF-based sequential rules. 

The proposed hybrid recommendation methods take advantage of the merits of the KSR, PCF, 

KCF and ICF methods.  

4.2 Identifying Similar Workers Based on their Knowledge Flows 

To find a target worker’s neighbors, his/her topic-level KF is compared with those of other 

workers to compute the similarity of their KFs. The resulting similarity measure indicates 

whether the KF referencing behavior of two workers is similar. In this work, we regard each 

knowledge flow as a sequence. Since comparing knowledge flows is very similar to aligning 

sequences, the sequence alignment method (SAM) [26] and the dynamic programming approach 

[15, 52] can be used to measure the similarity of two KF sequences.  

To determine which of the two methods would be more appropriate for comparing workers’ 

knowledge flows, we applied both methods in our experiments and found that dynamic 

programming is better than SAM. Therefore, we employ the dynamic programming algorithm 

[15, 52] to measure the similarity of workers’ knowledge flows. 

Unlike the sequence alignment problem, a worker’s KF contains task-related documents. 

Thus, we have to consider the sequential order of topics in a knowledge flow, as well as the 

worker’s aggregated profile, which accumulates the task-related documents based on the times 

they were accessed during the task’s execution. We propose a hybrid similarity measure, 

comprised of the KF alignment similarity and the aggregated profile similarity, to evaluate the 

similarity of two workers’ KFs, as shown in Eq. (8). 
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where ),( l

j

v

ia TKFTKFsim  represents the KF alignment similarity between worker i and 

worker j who execute task v and task l respectively; v

iTKF / l

jTKF  is the topic-level KF of worker 

i/j for task v/l; ),( l

j

v

ip APAPsim  represents the aggregated profile similarity of two workers’ KFs; 
v

iAP / l

jAP  is the aggregated profile of worker i/j for task v/l; and  is a parameter used to adjust 

the relative importance of the two types of similarity. 

The KF alignment similarity is based on the topic sequence and topic coverage, while the 

aggregated profile similarity is based on the aggregated profiles derived from the profiles of 

referenced documents in the KFs. Note that the KF alignment similarity considers the topic 

sequence in the KF without considering the content of workers’ profiles; while the aggregated 

profile similarity considers the content of profiles without considering the topic sequence in the 

KF. By linearly combining these two similarities, we can balance the tradeoff between KF 

alignment and the aggregated profile. We discuss the rationale behind these two similarity 

measures next. 
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4.2.1 KF Alignment Similarity 

The KF alignment similarity is comprised of two parts: the KF alignment score, which 

measures the topics in sequence; and the join coefficient, which estimates the topic’s coverage in 

two compared topic-level KFs. We modify the sequence alignment method [15] to derive the KF 

alignment score. In addition to computing the sequence alignment score, we estimate the overlap 

of the topics in two compared topic-level KFs by using the join coefficient. The rationale is that 

if the topic overlap is high, the KF alignment similarity of the two compared KFs will also be 

high. In other words, the two compared KFs will be very similar. The KF alignment similarity, 

),( l

j

v

ia TKFTKFsim , is defined as follows:  

where v

iTKF / l

jTKF denotes the topic-level KF of worker i/ worker j for task v/ task l;  is 

the KF alignment score; Norm is a normalization function used to transform the value of  into a 

number between 0 and 1; v

iTPS  and 
l

jTPS are the sets of topics in v

iTKF and 
l

jTKF

respectively; 
l

j
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i TPSTPS   is the intersection of topics common to v

iTKF and l

jTKF ; and 
v

iTPS  and l

jTPS represent the number of topics in v

iTKF and l

jTKF  respectively. The KF 

alignment score, which is based on the sequence alignment method [52], is defined in Eq. (10):   

where  is the maximal alignment score derived by the dynamic programming approach, ms 

is the identical matching score (+2), and  is the length of the aligned KF. To obtain the maximal 

alignment score , we set the matching score ms, the mismatching score md and the gap penalty 

score mg to +2, -1 and -2 respectively in the dynamic programming approach [15] discussed in 

Section 2.4. The maximum value of  is 1 if the two compared KFs are exactly the same. On the 

other hand, the value of  is negative if most of topics in the two compared KFs do not match. 

Thus, the value of  may range from a negative value to 1. To alter the range of the KF 

alignment score, the value of  is transformed into a value in the range [0, 1] by the 

normalization function. The normalized KF alignment score Norm() is then used to calculate 

the KF alignment similarity.  

4.2.2 Aggregated Profile Similarity 

The aggregated profile similarity, defined as ),( l

j

v

ip APAPsim , computes the similarity of 

two workers’ KFs based on their aggregated profiles, which are derived from the profiles of 

documents they have referenced; v

iAP and l

jAP  are the respective vectors of the aggregated 

profiles of workers i/ j for task v/ l. We use the cosine formula to calculate the similarity between 
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two aggregated profiles. The value of the similarity score ranges from 0 to 1. The aggregated 

profile of a worker i for task v is defined as  


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i DPtwAP
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,
, (11) 

where twt,T is the time weight of the document referenced at time t in the KF; T is the index 

of the times the worker accessed the most recent documents in his KF; and v

tDP  is the profile of 

the document referenced by worker i at time t for task v. The aggregation process considers the 

time decay effect of the documents. Each document profile is assigned a time weight according 

to the time it was referenced. Thus, higher time weights are given to documents referenced in the 

recent past. The time weight of each document profile is defined as 
StT

Stt
tw Tt




,

, where St is the 

start time of the worker’s KF. 

4.3 KF-based Sequential Rule Method 

 

Fig. 3: An overview of the KSR method 

The KF-based sequential rule method (KSR) considers the referencing behavior of 

neighbors whose KFs were very similar before time T, and then recommends documents at time 

T for the target worker. Fig. 3 provides an overview of the KSR method. To determine the 

similarity of various topic-level KFs, the target worker’s KF is compared with those of other 

workers by measuring their KF similarity, as discussed in Section 4.2. Workers with similar KFs 

to that of the target worker are regarded as the latter’s neighbors and their topic-level KFs are 

used to discover frequent knowledge referencing behavior by applying sequential rule mining to 

the target worker’s referencing behavior. The discovered sequential rules with high degrees of 
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rule matching are selected to recommend topics at time T. Documents belonging to the 

recommended topics have a high priority of being recommended. The KSR recommendation 

method involves four steps: identifying similar workers, mining their knowledge referencing 

behavior, identifying the target worker’s knowledge referencing behavior, and document 

recommendation. 

4.3.1 Mining Knowledge Referencing Behavior 

Knowledge workers with similar referencing behavior (high similarities) of the target 

worker are regarded as neighbors of the target worker. We modify the association rule mining 

method [3-4] and sequential pattern mining method [5] to discover topic-level sequential rules 

from the neighbors’ topic-level KFs. The extracted rules can be used to keep track of the 

referenced topics among workers with similar referencing behavior. Let Ry be a sequential rule, 

as defined in Eq. (12). 

Ry: gy,T-s,…, gy,T-1  gy,T  (Supporty, Confidencey) 

where gy,T-f TPS; f = 0 to s; and TPS is a set of all topics 
(12) 

The conditional part of the sequential rule is <gy,T-s,…,gy,T-1>, and the consequent part is gy,T. 

The items that appear in the rules are topics extracted from the neighbors’ topic-level KFs (TKF). 

The support and confidence values, Supporty and Confidencey, are used to evaluate the 

importance of rule Ry. We use the support and confidence scores to measure the degree of match 

between the referencing behavior and the conditional part of a rule for a target worker, as 

illustrated in the third step. Note that if the knowledge referencing behavior of the target worker 

is similar to the conditional part of Ry, then the topic predicted for him/her at T will be gy,T.  

4.3.2 Identifying the Knowledge Referencing Behavior of the Target Worker 

This step identifies the target worker’s knowledge referencing behavior by matching his/her 

KF with the sequential rules discovered in the previous step. Specifically, the rules are matched 

with the topic-level KF of the target worker to predict the topics required at time T. We set a 

knowledge window on the KF before time T. The size of the window is determined by the user. 

Let   11 ,, T

u

sT

u

sT

uu TPTPTPKW   be the knowledge window for the topic-level KF of a target 

worker u before time T. Note that fT

uTP  is the topic referenced by u at time T-f, f=1…s. The 

knowledge window KWu covers several topics previously referenced by the target worker and 

arranged in time order. The steps of sequential rule matching are as follows. 

Step 1. Set a knowledge window KWu.  

The reference time of topics in the window may range from T-s to T-1, where s is the 

window size determined by the worker. The referencing behavior within the knowledge window 

is then compared with the sequential rules extracted from the KFs of the target worker’s 
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neighbors (Step 3). 

Step 2. Generate topic subsequences and compare them with the knowledge window 

All generated rules are compared with the given knowledge window to obtain the matching 

scores of rules. A sequential rule may partially or fully match a knowledge window. To identify 

sequential rules that match the target worker’s referencing behavior, we consider all partial 

matches of the rules. Therefore, all possible topic subsequences are generated from the 

conditional part of the rule first.  

The topic subsequences are enumerated according to the topic order in the conditional part 

of a rule. Let  mi k

y

k

y

k

y

k

y TPTPTPTS ,...,...,1  be a topic subsequence in the conditional part of a 

sequential rule y, and let ik

yTP  be a topic with the index position ki in the sequence
k

yTS . In 

addition, let KWu be a knowledge window in a worker’s KF, and let hj

uTP  be a topic with the 

index position hj in the sequence KWu. Then, each topic subsequence of a rule is examined by 

checking whether it exists in the knowledge window.  

Instead of using identical matches, all the topics in a topic subsequence are compared with 

those in the knowledge window by using topic similarities to determine their matches. The 

characteristics of a KF are different from those of a general sequence, because a topic in a KF is 

composed of abstract knowledge concepts. Rather than using the identical match method, we use 

the topic similarity, i.e., simcos( ik

yTP , jh

uTP ), to determine if two topics match. That is, they match 

if their similarity is greater than the user-specified threshold. 

We define a similarity matching score to compare a topic subsequence with a knowledge 

window. A topic subsequence k

yTS matches the knowledge window KWu, if their corresponding 

topic similarities are larger than the user defined threshold, i.e. simcos( 1k

yTP , 1h

uTP )> , 

simcos( 2k

yTP , 2h

uTP )>, …, simcos( mk

yTP , mh

uTP )>, where integers k1 < k2 < … < km , h1 < h2 < … < 

hm , and  is the user-defined threshold. The similarity matching score is the summation of the 

topic similarities, as defined in Eq. (13). 
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Step 3. Find the matching degree of a sequential rule. 

Given the similarity matching scores of all topic subsequences extracted from a sequential 

rule, we choose the subsequence with the highest score to compute the matching degree of the 

rule. The matching degree is defined as follows: 
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where 
uy KWRMDR ,

is the matching degree of rule Ry and u
KW of the target worker u; 

 
u

k
y KWTS1..qk

M Smax
,

 is the highest similarity matching score of all topic subsequences of sequential 

rule y; and k from 1 to q is all topic subsequences of sequential rule y; The matching degree is 

used to identify the sequential rules qualified to recommend topics at time T.  

Step 4. Choose sequential rules for recommendation 

A sequential rule with a high matching degree means that the referencing behavior of the 

target worker matches the conditional part of the rule, so the consequent part of the rule can be 

selected as a predicted topic for the target worker at time T. Hence, the Top-N approach can be 

used to derive a set of predicted topics by selecting N rules with the highest matching degree 

scores. 

4.3.3 Document Recommendation 

The KSR method predicts a document rating based on sequential rules derived from the KFs 

of a target worker’s neighbors. Let v

uKNB  be a set of neighbors of target worker u for a task v, 

selected according to the KF similarity (using Eq. (8)). The sequential rules derived from v

uKNB  

with high degrees of rule matching are selected to recommend topics for the target worker at 

time T. However, the referencing behavior of some workers in v

uKNB
 
may not match the 

selected sequential rules. Therefore, we apply the sequential rule matching method discussed in 

Section 4.3.2 to compare the KFs of workers in v

uKNB  with the selected sequential rules. If a 

worker’s KF matches a selected sequential rule, that worker’s referencing behavior conforms to 

the sequential rule, and can therefore be used to make recommendations based on the selected 

sequential rules. The reason for checking the KFs of workers in v

uKNB  is to identify neighbors 

whose referencing behavior conforms to the selected sequential rule.  

For a task v, let v

uKNBR  denote the neighbors in v

uKNB  whose KFs are very similar to the 

target worker’s KF and whose referencing behavior matches the selected sequential rules. In 

addition, let RTS be a set of recommended topics derived from the consequent parts of the 

recommended sequential rules;  be a recommended topic, where   RTS; and the topic of a 

document d be . Based on the KFs of the neighbors in v

uKNBR , the predicted rating of a 

document d belonging to the recommended topic  for the target worker u is calculated by Eq. 

(15): 

where v

ur ,
/
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xr 
is the topic rating of the target worker u/worker x for task v/ l, derived from 

the worker’s average rating of documents in the recommended topic ; v

uTKF / l

xTKF  is the 
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worker x for a document d belonging to the recommended topic  in task ; and 

),( l

x

v

u TKFTKFsim is the KF similarity of worker u and worker x, derived by Eq. (8). If the target 

worker u does not rate any documents in , then v

ur ,
 is replaced by the average rating of all 

his/her documents. Meanwhile, if the target worker’s neighbors do not rate any documents in , 

the predicted rating of document d is derived by the average rating of the target worker’s 

documents. 

To recommend task-related documents to a target worker, it is necessary to collect data with 

explicit ratings. Many recommender systems and recommendation methods use such ratings to 

represent users’ preferences. Similarly, our recommendation methods use knowledge workers’ 

document ratings to predict other documents that may be useful to a target worker’s task, as 

shown in Eq. (15). Each knowledge worker gives explicit ratings to the documents referenced 

during the task’s execution, while documents related to different tasks are re-rated by different 

workers. The ratings are used to gauge a worker’s perceptions about the usefulness and relevance 

of documents for a specific task. The stronger the worker’s perceptions of the usefulness or 

relevance of a document for the task at hand, the higher the rating he/she will give the document. 

Such ratings are subjective because they are based on the worker’s perspective. Moreover, since 

a document may be referenced by different workers as they execute their specific tasks, it will be 

given different ratings based on how the workers perceive its usefulness and relevance to their 

tasks. 

The sequential rules with high matching scores are selected to recommend topics. In other 

words, topics with high scores in the consequent part of a rule are recommended to the target 

worker at time T. The KSR method predicts ratings for documents that belong to the 

recommended topics and gives them a high priority for recommendation. Unlike traditional 

methods, KSR recommends documents to the target worker based on the selected sequential 

rules and the document ratings. Note that the KSR method does not consider the similarity of 

workers’ preferences when calculating the predicted rating of a document. 

4.4 The Hybrid PCF-KSR Method  

The hybrid PCF-KSR recommendation method linearly combines the 

preference-similarity-based CF method (PCF) with the KSR method to recommend documents to 

a target worker, as shown in Fig. 4. The PCF method is the traditional CF method that makes 

recommendations according to workers’ preferences for codified knowledge. To recommend a 

document, the neighbors of a target worker are selected based on the similarities of the workers’ 

preference ratings. Pearson’s correlation coefficient is used to find similar workers based on the 

document rating vectors. Then, PCF-KSR predicts the rating of a document by linearly 

combining the predicted ratings calculated by the two methods. One part of the rating is derived 

by the PCF method based on the document ratings and the preferences of the target worker’s 

neighbors. The other part is derived by the KSR method described in Section 4.3. Because a 
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worker’s knowledge flow may change over time, the hybrid method considers the worker’s 

preference for documents as well as topic changes in his/her KF to make recommendations 

adaptively.  

 

Fig. 4: The framework of the hybrid PCF-KSR method 

The predicted rating of a document d for a worker u executing a task v is derived by 

combining the PCF and KSR methods, as defined in Eq. (16): 
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where v

ur / l

xr  is the average rating of documents for task v / task l given by the target 

worker u / worker x; PSim(u
v
, x

l
) is the similarity between the target worker u for task v and the 

neighbor worker x for task l, derived by Pearson’s correlation coefficient;
v

uPNB is the set of 

neighbors of the target worker u for task v, selected by PSim(u
v
, x

l
); l

dxr ,
is the rating of a 

document d for task l given by worker x;
KSR

dvup ,,
ˆ  is the predicted rating of a document d for the 

target worker u engaged in task v based on the KSR method; and PCF-KSR is the weighting used 

to adjust the relative importance of the PCF method and KSR method. 

According to Eq. (16), a document in a recommended topic has a higher priority for 

recommendation than documents that are not in the recommended topics, based on their 

predicted ratings derived by the KSR method. Documents with high predicted ratings are used to 

compile a recommendation list, from which the top-N documents are chosen and recommended 

to the target worker. 
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4.5 The Hybrid KCF-KSR Method  

 

Fig. 5: The framework of the hybrid KCF-KSR method 

The hybrid KCF-KSR method linearly combines the KF-similarity-based CF method (KCF) 

with the KSR method to recommend documents to a target worker, as shown in Fig. 5. The KCF 

method is based on the referencing behavior of neighbors with similar KFs, while the PCF 

method is based on the similarity of preference ratings derived by Pearson correlation coefficient. 

Like the PCF-KSR method, the predicted rating of a document is also derived by integrating two 

parts of the ratings. One part is obtained by the KCF method, while the other is obtained by the 

KSR method described in Section 4.3.  

The hybrid KCF-KSR method predicts the rating of a document d for worker u engaged in 

task v by Eq. (17), and then determines which documents should be recommended. 
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where 
v

ur /
l

xr is the average rating of documents given by the target worker u / worker x 

engaged in task v/ l; l

dxr ,
is the rating of a document d for task l given by worker x; v

uTKF / l

xTKF

denotes the topic-level KF of the target worker u/ worker x for task k/ task l; ),( l

x

v

u TKFTKFsim is 

the KF similarity of worker u and worker x, derived by Eq. (8); v

uKNB  is the set of neighbors of 

the target worker u for task v, selected according to their KF similarity scores; 
KSR

dvup ,,
ˆ  is the 

predicted rating of a document d based on the KSR method; and KCF-KSR is the weighting used to 

adjust the relative importance of the KCF method and the KSR method. 

According to Eq. (17), a document in a recommended topic has a higher priority for 

recommendation than those documents that are not in the recommended topic. The KCF-KSR 

method considers the KF similarity of two workers, their preferences for documents, and topic 
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sequences in the KF when making recommendations. 

4.6 The Hybrid ICF-KSR Method 

The hybrid ICF-KSR recommendation method linearly combines the item-based CF method 

(ICF) with the KSR method to recommend documents to a target worker, as shown in Fig. 6. The 

ICF method is the traditional item-based CF method [59] described in Section 2.6. The similar 

documents (neighbors) of a target document are selected based on the adjusted cosine similarities 

of the documents (Eq. (6)). Then, the predicted rating of the target document is computed by 

taking the weighted average of the target worker’s ratings for similar documents (Eq. (5)).  

 

Fig. 6: The framework of the hybrid ICF-KSR method 

The ICF method does not consider workers’ referencing behavior when they perform tasks. 

To address this issue, we propose the hybrid ICF-KSR method, which integrates traditional 

item-based collaborative filtering and the KSR method to recommend documents that may meet 

workers’ information needs. The ICF-KSR approach predicts the rating of a document by 

linearly combining the predicted ratings calculated by the two methods. One part of the rating is 

derived by the ICF method based on the target worker’s ratings for documents similar to the 

target document. The other part is derived by the KSR method described in Section 4.3. A 

worker’s knowledge flow may change over time. Thus, to make recommendations adaptively, 

the hybrid method considers documents similar to the target document, the worker’s perceptions 

about the usefulness of the documents, and the topic sequences in his/her KF. 

The hybrid ICF-KSR method predicts a rating for a document d for worker u performing a 

task v by using Eq. (18), and then determines the documents that should be recommended.  
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where 
v

iur ,  is the rating of the usefulness of a document i given by worker u for task v; 

),( idACSim  is the adjusted cosine similarity between document d and document i; Id is the set 

of documents similar to document d, selected according to their adjusted cosine similarities; 
KSR

dvup ,,
ˆ  is the predicted rating of document d for the target worker u engaged in task v based on 

the KSR method; and ICF-KSR is the weighting used to adjust the relative importance of the ICF 

method and the KSR method. According to Eq. (18), a document in a recommended topic has a 

higher priority for recommendation than documents that are not in the recommended topic.  

In Section 4.7 and 4.8, we conduct experiments to compare and evaluate the 

recommendation quality for the hybrid PCF-KSR, KCF-KSR and ICF-KSR methods, and then 

have some discussions about these experimental results. Next, we will describe the experiment 

setup in Section 4.7, discuss the experiment results and evaluations in Section 4.8, and have 

some discussions in Section 4.9.  

4.7 Experiment Setup 

To demonstrate that knowledge flows can support the recommendation of task-relevant 

knowledge (documents) to knowledge workers, experiments were conducted on a dataset from a 

real application domain, namely, research tasks in the laboratory of a research institute. The 

dataset contained information about the access behavior of each knowledge worker engaged in 

performing a specific task, e.g., writing a research paper or conducting a research project. To 

accomplish their tasks, the workers needed various documents (research papers). Besides the 

documents, other information, such as when the documents were referenced and the document 

ratings, is necessary for implementing our methods. Since it is difficult to obtain such a dataset, 

using the real application domain restricts the sample size of the data in our experiments. 

The dataset is based on the referencing behavior of 14 knowledge workers in a research 

laboratory and 424 research papers used to evaluate the proposed methods. Specifically, it 

contains information about the content of the documents, the times they were referenced, and the 

document ratings given by workers. For each worker, the documents and the times at which they 

were referenced are used to identify the worker’s referencing behavior when performing a task. 

The document rating, which is given by a worker and on a scale of 1 to 5, indicates whether 

a document is perceived as useful and relevant to a task. A high rating, i.e., 4 or 5, indicates that 

the document is perceived as useful and relevant to the task at hand; while a low rating, i.e., 1 or 

2, suggests that the document is deemed not useful. If a document has been referenced by a 

worker without being assigned a rating value, it is given a default rating of 3. 

In our experiment, the dataset is divided according to the time order of the documents 

accessed by knowledge workers as follows: 70% for training and 30% for testing. The testing set 

contains documents with access time more close to the current time period. The training set is 

used to generate recommendation lists, while the test set is used to verify the quality of the 
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recommendations. In the experiments, we evaluate and compare the performance of traditional 

CF methods and our KF-based recommendation methods, namely the hybrid PCF-KSR method, 

the hybrid KCF-KSR method, and the hybrid ICF-KSR method. 

We use the Mean Absolute Error (MAE), which is widely used in recommender systems 

[12, 27-28, 61], to evaluate the quality of recommendations derived by our methods. MAE 

measures the average absolute deviation between a predicted rating and the user’s true rating 

[59], as shown in Eq. (19).  

n

qp

MAE

n

ii

ii





1, , 

(19) 

where MAE is the mean absolute error;  is the test set of a target worker, which consists of 

n predicted documents; ip is the predicted rating of document i; and iq is the real rating of 

document i. The lower the MAE, the more accurate the method will be. The advantages of this 

measurement are that its computation is simple and easy to understand and it has well studied 

statistical properties for testing the significance of a difference. 

4.8 Experiment Results 

We conduct several experiments to measure the quality of recommendations derived by our 

methods. To generate topic-level KFs, the documents in the data set are grouped into clusters by 

the single-link hierarchical clustering method described in Section 3.2.1. To determine the 

threshold value that yields the best clustering result, we adjust the threshold value systematically 

in decrements of 0.05 ranging from 0.5 to 0.2 to generate different clustering results, each of 

which is evaluated by using the quality measure defined in Section 2.3.2. The cluster with the 

best quality measure generated by setting the threshold value at 0.3 is selected as our clustering 

result; it contains 8 clusters. Based on the clustering results, topic-level KFs are generated by 

mapping documents from the codified-level KFs into their corresponding clusters for each 

knowledge worker. Finally, by considering the topic-level and codified-level KFs, the hybrid 

PCF-KSR and KCF-KSR methods recommend task-related documents to users. In the following 

sub-sections, we discuss the experiment results.  

4.8.1 Evaluation of the hybrid PCF-KSR Method 

In this experiment, we evaluate the performance of the hybrid PCF-KSR method. The 

parameters,  and PCF-KSR, may affect the quality of the recommendations;  is used to calculate 

the KF similarity (Eq. (8)), while PCF-KSR is used to predict a document’s rating. We set various 

values for these parameters and determine the settings that yield the best recommendation 

performance. The experiment was conducted by systematically adjusting the values of  in 

increments of 0.1, and the optimal value (i.e., the lowest MAE value) was chosen as the best 

setting. Based on the experiment results, we set  = 0.3 in all the following experiments.  
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We evaluate how the PCF-KSR values and the number of neighbors, k, affect the 

recommendation quality, as shown in Fig. 7. The parameter PCF-KSR, whose value ranges from 

0.1 to 1, represents the relative importance of the PCF method and KSR method in Eq. (16). The 

experiment was conducted using various numbers of neighbors (parameter k) to derive the 

predicted ratings. Fig. 7 shows that the lowest MAE value generally occurs when PCF-KSR is 0.5.  

 

Fig. 7: The performance of the hybrid PCF-KSR method with various k and PCF-KSR values 

Fig. 8 compares the hybrid PCF-KSR method with the traditional CF method (PCF method). 

The predicted rating of a document is derived in two parts by the PCF method and the KSR 

method respectively. The part derived by the PCF method is based on the document ratings of 

the target worker’s neighbors, while the other part is derived by the KSR method based on 

documents in the recommended topics and sequential rules generated from the KFs of the target 

worker’s neighbors. If a document is in the recommended topic, the KSR part of PCF-KSR can 

be used to adjust the predicted rating of the document. Therefore, the PCF-KSR method ensures 

that documents in the recommended topics have a high priority for recommendation to the target 

worker. In the experiment, we set  = 0.3 and PCF-KSR = 0.5, and select the top-5 sequential rules 

with high rule matching scores. The experiment results show that the PCF-KSR method 

outperforms the traditional CF method (PCF method) under various numbers of neighbors 

(parameter k). That is, the KSR method improves the recommendation quality of the PCF 

method. In other words, the PCF-KSR method is effective in recommending documents to the 

target worker, and it improves on the quality of the recommendations derived by the PCF method 

alone. 
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Fig. 8: Comparison of the hybrid PCF-KSR and PCF methods under different k  

4.8.2 Evaluation of the hybrid KCF-KSR Method 

Similar to the evaluation of the hybrid PCF-KSR method, we first determine the value of 

KCF-KSR for the KCF-KSR method. The KCF-KSR parameter, whose value ranges from 0.1 to 1, 

represents the relative importance of the KCF method and the KSR method. We set =0.3 when 

calculating the KF similarity. The results show that the smallest value of MAE usually occurs 

when KCF-KSR = 0.5 for different the numbers of neighbors (k). Thus, in this experiment, KCF-KSR 

is set at 0.5 for the KCF-KSR method. 

 

Fig. 9: Comparison of the hybrid KCF-KSR and KF methods under different k 

To evaluate the performance of the KCF-KSR method, we compare it with the 

KF-similarity-based CF method (KCF) by setting KCF-KSR at 1, as shown in Fig. 9. Note that 

when KCF-KSR = 1, the predicted rating of a document is derived totally by the KCF method, 

which only uses the document ratings of the target worker’s neighbors with similar KFs to make 

recommendations. The experiment results demonstrate that the hybrid KCF-KSR outperforms 

the KCF method. In other words, considering workers’ knowledge referencing behavior can 

enhance the quality of recommendations. 
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4.8.3 Evaluation of the hybrid ICF-KSR Method 

This experiment evaluates the performances of ICF and ICF-KSR methods. Once again we 

have to determine the value of the ICF-KSR parameter in the range 0.1 to 1 to represent the 

relative weights of the ICF method and the KSR method. The results show that the smallest 

value of MAE usually occurs when ICF-KSR = 0.4 under various number of neighbors (k). 

Relatively, KSR is more important than ICF in the hybrid ICF-KSR method because the weight 

of KSR is higher than that of ICF. Thus, ICF-KSR is set at 0.4 for the ICF-KSR method in this 

experiment. 

 

Fig. 10: Comparison of the hybrid ICF-KSR and KF methods under different k 

To assess the impact of considering workers’ referencing behavior on the ICF-KSR method, 

we compare it with the ICF method by setting ICF-KSR at 1, as shown in Fig. 10. Setting KCF-KSR 

= 1 means that the predicted rating of a document is derived totally by the ICF method, which 

only utilizes the adjusted cosine similarity measures between documents to make 

recommendations. The hybrid ICF-KSR method takes this issue into account. Fig. 10 

demonstrates that the hybrid ICF-KSR method performs better than the ICF method under 

various numbers of neighbors (parameter k). The experiment results show that considering 

workers’ knowledge referencing behavior under the KSR method improves the recommendation 

quality of the ICF method.  

4.8.4 Comparison of All Methods 

To evaluate the recommendation performances of the different methods, we compare the 

three individual methods (the PCF, KCF and ICF methods) and the three hybrid methods (the 

PCF-KSR, KCF-KSR and ICF-KSR methods), as shown in Fig. 11.  
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Fig. 11: The performances of the compared methods under different k 

When the number of neighbors, k, is less than 8, the PCF method yields the lowest MAE 

values, while the ICF method yields the highest values. However, when the value of k is more 

than 8, the ICF method outperforms the KCF and PCF methods. The recommendation 

performances of the PCF method and the KCF methods are very close. 

In this experiment, we also compare the hybrid PCF-KSR, the hybrid KCF-KSR and the 

hybrid ICF-KSR methods, under various k (the number of neighbors). To obtain the MAE values 

of these methods, we set =0.3, PCF-KSR =0.5, KCF-KSR =0.5 and ICF-KSR =0.4. The results show 

that the hybrid ICF-KSR method generally outperforms the PCF-KSR and KCF-KSR methods, 

while the PCF-KSR method performs better than the KCF-KSR method.  

To examine the differences between the KF-based methods and the traditional CF method, 

we performed a statistical hypothesis test, the paired t-test, under various k. The results show that 

the differences are statistically significant at the 0.01 level. Here, we only report the results of the 

t-test under k = 8. The mean, standard deviation (SD), and p-value of MAE for each pair of 

recommendation methods are listed in Table 1. The proposed hybrid methods, i.e., PCF-KSR, 

KCF-KSR and ICF-KSR, have smaller mean and generally smaller standard deviation scores 

than their individual methods. In terms of the p-value, the differences between the proposed 

hybrid methods and the individual CF-based methods are statistically significant. 

Table 1: The t-test results for various recommendation methods with k = 8  

Recommendation Method Mean SD t-test 

PCF-KSR 0.7898  0.7189  p = 0.0006 (<0.01) 

PCF 0.8814  0.7244   

KCF-KSR 0.8086  0.7581  p = 0.0006 (<0.01) 

KCF 0.8865  0.7836   

ICF-KSR 0.7718  0.6880  p = 0.0045 (<0.01) 

ICF 0.8814  0.6829   
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From the above results, it is clear that the hybrid methods perform better than their 

individual methods. That is, the hybrid PCF-KSR, KCF-KSR and ICF-KSR methods perform 

better than PCF, KCF and ICF methods alone. The results show that the KF-based approaches 

can enhance the recommendation quality of traditional CF methods.  

4.9 Discussion 

The comparison of KSR, PCF, KCF and ICF methods are listed in Table 2. There are five 

major differences among these four methods, including tracking workers’ referencing behavior, 

the effect of time factor, considering topic preferences, similarity computation methods and the 

document preferences of neighbors. Each method has its own advantages and limitations of 

making recommendations in different domains. To complement the merits of two methods, we 

propose three hybrid recommendation methods based on the KSR method. 

The KF-based sequential rule (KSR) method improves the recommendation quality by 

considering the topic preferences and tracking workers’ referencing behavior based on sequential 

rules, i.e., the information needs over time. It chooses neighbors whose KFs are very similar to 

the target worker’s KF and whose referencing behavior matches the selected sequential rules. 

However, it does not consider the opinions of the target worker’s neighbors who have similar 

preferences for documents, but PCF does. To solve this limitation, PCF method (traditional CF) 

and the KSR method are linearly combined as PCF-KSR method to improve the 

recommendation quality. Similar to the PCF method, the KCF method uses KF similarity to 

choose neighbors of the target worker, while the PCF uses Pearson’s correlation coefficient to 

select neighbors with similar opinions. Thus, based on the KSR method, a hybrid of KCF and 

KSR as KCF-KSR method are proposed. In addition, both the PCF method and the KCF method 

select neighbors based on the similarity of preferences, while the ICF method chooses similar 

documents for a document based on their preferences given by a target user. Thus, the KSR 

method is combined with ICF method as ICF-KSR method which recommends documents from 

both user and item perspectives. Note that, each hybrid method linearly combines the 

recommendation lists from two individual methods. Because hybrid methods have 

complementary features derived from the merits of their combined methods, they generally 

outperform those individual methods in our experiments.  

Because each method has different features, it should be applied on an appropriate dataset 

or a suitable context to obtain the best performance. Our proposed methods are appropriate for a 

dataset where documents are clustered as various topic domains and the access behavior of 

workers over time are recorded. In addition, the CF methods have cold-start problem causing by 

new items and the sparsity problem. If there are new items that have fewer ratings given by users 

in a dataset, the CF methods cannot correctly make recommendations based on insufficient 

preference data, i.e., ratings on items. Similarly, a dataset with fewer preference ratings also 

causes the inaccurate recommendations. Moreover, the CF methods do not predict items based 



36 

on their content similarity. To solve these problems and improve the recommendation quality, 

we will consider the content similarity of items in recommendation methods in our future work. 

Table 2: The differences of all methods 

 
KSR PCF KCF ICF 

PCF- 
KSR 

KCF 
-KSR 

ICF 
-KSR 

Tracking workers’ 

referencing 

behavior 

Yes No No No Yes Yes Yes 

Time factor Yes No Yes No Yes Yes Yes 

Considering topic 

preferences 
Yes No No No Yes Yes Yes 

The document 

preferences of 
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No Yes Yes Yes Yes Yes Yes 

Similarity 
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method 

KF 

Similarity 

Pearson’s 

Correlation 
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Similarity 
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Cosine 

Similarity 

Pearson’s 

Correlation 

Coefficient 

/ KF 
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KF 
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The contribution of this work is that our recommendation methods can proactively provide 

task-related knowledge based on knowledge flow. The experiment results demonstrate that the 

proposed KF-based hybrid methods, i.e., the PCF-KSR, KCF-KSR and ICF-KSR methods, 

improve the quality of document recommendation and outperform traditional CF methods. The 

three hybrid methods also perform better than the individual methods, i.e., the PCF, KCF, and 

ICF methods. Therefore, we discover that our proposed methods indeed improve the 

recommendation quality and obtain better performance than the traditional CF methods. In 

addition, providing topic knowledge to workers is helpful to support their tasks. 

This study has some limitations. First, our experiments were conducted using a real 

application domain, i.e., research tasks in a research institute’s laboratory. The domain restricted 

the sample size of the data and the number of participants in the experiments, since it is difficult 

to obtain a dataset that contains information that can be used for knowledge flow mining. 

Because of this limitation, in our future work, we will evaluate the proposed approach on other 

application domains involving larger numbers of workers, tasks and documents. Second, our 

evaluation focused on verifying the effectiveness of the proposed approach for recommending 

codified knowledge (documents) based on knowledge flows, rather than on user satisfaction or 

the system’s usability. A study of user satisfaction or usability would add further insights into 

our system’s ability to recommend task-relevant knowledge. In addition, the ratings given by 

people with different roles (e.g., professors and students) may have different influences on the 

recommendations. For example, it could be assumed that the rating given by a professor is more 

Methods 
Influences 
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trustworthy than that given by a student. We will consider this issue in our future work.  
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Chapter 5. Group-based Knowledge Flow Mining Methods 

A knowledge flow (KF) represents a knowledge worker’s long-term information needs and 

accumulated task-related knowledge when he/she performs a task. In a previous work, we 

proposed a KF mining method to obtain each worker’s KF from his/her work log [41]. We also 

presented document recommendation methods to support workers’ in the execution of tasks and 

facilitate knowledge sharing in an organization. In the context of collaboration, workers usually 

have similar referencing behavior patterns, in which they share common topics or documents 

they find useful, or they reference task-related knowledge in a similar order. To model the 

common referencing behavior of a group, we propose a method for mining a group-based 

knowledge flow (GKF) from the KFs of a group of workers.  

 

Fig. 12: An overview of mining group-based knowledge flows 

Fig. 12 provides an overview of the proposed method for mining GKFs. Based on the 

workers’ KFs, workers with similar topic-level KFs are clustered together to form a task-based 

group. Members of the group have task-related knowledge or similar referencing behavior in 

terms of the topics of interest and the order the topics were referenced in their KFs. To identify 

similar referencing behavior from the KFs, we propose KF mining algorithms based on process 

mining and graph theory to discover a group’s knowledge flow. The algorithms identify common 

information needs and referencing patterns from the KFs of a group of workers, and then build a 

group-based knowledge flow (GKF) model. Then, a frequent knowledge path is identified from 

the model to represent the referencing (learning) patterns of the group and to support novices in 

learning a group’s knowledge. In this work, we focus on two issues: 1) how to construct a 

group-based knowledge flow (GKF) model for a group of knowledge workers with similar KFs; 
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and 2) how to identify frequent referencing patterns (paths) from the GKF model.  

In the remainder of this Chapter, we detail the steps of the proposed group-based KF mining 

algorithm. 

5.1 The group-based knowledge flow mining process 

 

Fig. 13: The procedure of the proposed GKF mining method 

The proposed method comprises three phases: worker clustering, group-based knowledge 

flow (GKF) mining, and identifying knowledge-referencing paths, as shown in Fig. 13. Based on 

the extracted KFs, the worker clustering step clusters workers with similar KFs as an interest 

group because they have similar information needs and task-related knowledge to fulfill a task. 

Given the KFs of the workers, we formalize the GKF model to represent the group’s information 

needs by applying the proposed GKF mining algorithms. The GKF is represented by a directed 

acyclic graph comprised of vertices and edges. Each vertex denotes a topic in a KF, while each 

directed edge represents the referencing order of two topics. A GKF contains several knowledge 

referencing paths, which indicate the referencing behavior patterns of the group of workers. To 

identify frequent referencing behavior from the GKF model, we determine the frequency of each 

path. Then, we choose the paths with scores higher than a user-specified threshold as frequent 

knowledge referencing paths for the group. 

5.2 Clustering Similar Workers Based on their Knowledge Flows 

To find a target worker’s neighbors, his/her topic-level KF is compared with those of other 

workers to compute the similarity of their KFs. The resulting similarity measure indicates 

whether the KF referencing behavior of two workers is similar. Since the KFs are sequences, the 

sequence alignment method [15, 52], which computes the cost of aligning two sequences, can be 

used to measure the similarity of two KF sequences. Based on this concept, we propose a hybrid 

similarity measure, comprised of the KF alignment similarity and the aggregated profile 
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similarity, to evaluate the similarity of two workers’ KFs, as shown in Eq. (8). 

As mentioned earlier, workers with similar KFs are clustered together because they have 

similar task knowledge and referencing behavior. In this work, we use the CLIQUE clustering 

method [6, 32] to cluster knowledge workers based on a similarity matrix of their KFs. Each 

entry in a similarity matrix represents the degree of KF similarity between two workers, derived 

by Eq. (8). Based on the matrix, the CLIQUE clustering method is exploited to group workers 

with similar KFs. Workers in the same cluster are highly connected with each other because they 

have similar referencing behavior and information needs in topic domains. To identify each 

group’s GKF, we apply our group-based knowledge mining method to process the clustering 

results. 

5.3 Definition of Group-based Knowledge Flows 

The group-based knowledge flow (GKF) represents the information needs and common 

referencing behavior of a group of workers. Based on GKF, workers can share their task 

knowledge to complete the target task. Moreover, managers can comprehend the information 

needs of workers and groups to provide knowledge support adaptively.  

We use graph theory to model a GKF. A GKF graph models the relations between topics, 

the direction of the knowledge flow and the frequent knowledge paths to describe a group’s 

information needs and referencing behavior. Next, we define the components of the GKF model 

and the features of the GKF graph, and then propose our GKF mining algorithms.  

Definition 4: Knowledge Graph 

A knowledge graph is defined as G = (V, E), where V is a finite set of vertices, and E is a 

finite set of directed edges connecting two topics. Each vertex in V denotes a topic in the 

knowledge domain, and each edge in E denotes the knowledge flow from one topic to the other 

topic.  

Example: Given a directed knowledge graph comprised of two vertices (topics) vx and vy and an 

edge ex,y, the edge is used to connect vertices vx to vy directly, as shown in Fig. 14. In addition, vx 

is said to be an adjacent predecessor of vy, while vy is said to be an adjacent successor of vx.  

 

 

Fig. 14: An example of a directed graph 

Definition 5: Knowledge Sub-graph 

Given a knowledge graph G = (V, E), a knowledge sub-graph of G is a graph G’ = (V’, E’), 

where V’ and E’ are subsets of V and E respectively, i.e., VV' and EE' .  

x y 

Topic Topic 
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A GKF graph represents the referencing behavior of a group of workers as a directed 

knowledge graph, which consists of a finite set of vertices and edges, defined as follows. 

Definition 6: Group-based Knowledge Flow (GKF) 

As mentioned earlier, a GKF is derived from the KFs of workers who are in the same 

cluster and therefore have similar information needs. A GKF is defined as GKF = {G, W, TKF}, 

where G is a directed knowledge graph; n}1ii,|{wW i  is a set of n workers who have 

similar KFs; and { | , 1 }jTKFS TKF j j n   is a set of topic-level KFs of the workers in W.  

The properties of TKF and the directed knowledge graph G are defined as follows. 

Definition 7: Flow Relation and Direct Flow Relation 

In a flow relation of a topic-level KF (TKF), topic x is followed by topic y, denoted by x > y, 

if topic x was accessed before topic y in the TKF. A topic x is followed directly by another topic 

y if there does not exist a distinct topic such that x is followed by z and z is followed by y. Thus, 

the relation between topics x and y is a direct flow relation, defined as xy. 

Definition 8: Path 

Given a directed graph G, if there is a path from a vertex vx to another vertex vy, the path is 

denoted as vx ~> vy. 

Definition 9: Topic Cycle 

Let a flow relation x > y appear in a TKF and a flow relation y > x also appear in another 

TKF. The relations are represented by their corresponding paths, vx ~> vy and vy ~> vx, on the 

graph of the GKF. Such relations form a topic cycle between the vertices of vx (topic x) and vy 

(topic y) in the GKF. 

Definition 10: Topic Loop 

Let x be a duplicate topic in a TKF and let two flow relations x > y and y > x appear in the 

TKF. These relations are represented by their corresponding paths, vx ~> vy and vy ~> vx, on the 

graph of GKF. Such relations form a topic loop between the vertices of vx (topic x) and vy (topic 

y) in the GKF.  

Definition 11: Strongly Connected Component (SCC) 

A strongly connected component is a maximal strongly connected sub-graph in which every 

vertex is reachable from every other vertex in the sub-graph. 

Definition 12: Knowledge Referencing Path 

Given a directed graph G = (V, E) of a GKF, if there is a path from a start vertex to an end 
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vertex, it is a knowledge referencing path. Such a path is defined as p = {s, d, Vp, Ep}, where s is 

a start vertex, d is an end vertex, and Vp is a set of topics on the path p. Ep is a set of edges, where 

each edge is an ordered pair (vi, vj); vi and vj  Vp, vi  vj and vi is an adjacent predecessor of vj.  

Definition 13: Frequent Referencing Path 

Given a set of referencing paths derived from the graph of the GKF, a path p is said to be 

frequent if its path score, which is calculated based on the frequency count of edges on the path, 

is greater than a certain threshold. A frequent referencing path indicates that workers accessed 

task-related knowledge in a particular topic order frequently. 

Problem Statement: Given the TKFs of a group of workers, the GKF mining algorithms finds 

the GKF from the KFs. The GKF is represented by a directed graph, which is used to model the 

referencing behavior of a group of workers. 

5.4 GKF Mining Algorithm (without considering duplicate topics) 

To derive a GKF model from a set of KFs, we propose two algorithms: one for cases where 

there are no duplicate topics in a KF; and the other for cases where there are duplicate topics. 

Both algorithms, which are based on graph theory, model a group’s information needs as a 

group-based knowledge flow. The referencing path of a GKF details the order in which topics 

are accessed when workers search for task-related knowledge. In the following, we present a 

GKF mining algorithm for cases without duplicate topics.  

We assume that a topic in a TKF appears just once in this algorithm. That is, there is no 

duplicate topic in each TKF; hence, there will not be a topic loop in the GKF. However, the 

order of topics in different TKFs may vary, so topic cycles, which form strongly connected 

components, may appear in the graph G. 

In a strongly connected component (SCC), where each vertex is reachable from every other 

vertex, it is difficult to determine the ordering relation among the vertices. To resolve the 

problem, the algorithm applies the Topic_Relation_Identification procedure to identify the vertex 

relation in the SCC. The relation, which can be classified as either a parallel relation or a 

sequential relation to characterize the topic relations in the GKF, represents part of the topic 

ordering in workers’ referencing behavior.  

The GKF mining algorithm discovers frequent referencing of topics from the TKFs of a 

group of workers. To discover frequent referencing behavior patterns, which are modeled as 

frequent edges or frequent referencing paths on the GKF graph, the algorithm use the edge 

deletion procedure to remove infrequent edges whose weights are no greater than a user specified 

threshold. A start vertex and an end vertex are added to the discovered graph to indicate the start 

and end of the referencing behavior paths of the workers. Note that a topic is represented as a 

vertex on the graph. It would be odd to generate a GKF in which topic references were 
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incomplete; that is, where a topic reference does not originate at the start vertex or reach the end 

vertex. The algorithm ensures that every topic can be referenced successfully from the start 

vertex to the end vertex. Thus, an infrequent edge can only be deleted if its removal does not 

make any vertex unreachable from the start vertex or to the end vertex. 
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GKF mining algorithm 

Input: A set of n workers in W and their KFs, TKFS = {TKFw| w=1…n}; 

Output: GKF ={G, W, TKFS}; 

 

A directed graph G = {V, E}, where V= and E= ;  

Add a start vertex s and an end vertex d to V; 

For each TKFw in TKFS { 

Add each topic vy to V according to the sequence order in TKFw; 

Add an edge between the start vertex and the first topic in TKFw in E; 

  Add an edge between the last topic in TKFw and the end vertex in E; 

  For each vertex vx  V and vx vy in TKFw { 

        Add an edge between vertex vx and vy in E; } 

Update the frequency of each edge in E; 

} 

Identify the strongly connected components (SCC) from G;  

For each SCC Gs, where Gs = (Vs, Es), Vs V and Es  E 

Topic_Relation_Identification(TKFS, G, Gs); 

Calculate the weights of all the edges in E; 

Transform the graph G into a new graph GN by mapping each SCC in G as a vertex vGs in 

GN and mapping edges connected to Gs in G as edges connected to vGs in GN, where GN 

= (VN, EN); 

L = Topological Sorting (VN, EN); 

P = Edge Deletion (L, G, GN); 

Fig. 15: The algorithm for mining a GKF when TKFs do not contain duplicate topics 

Several knowledge paths may exist on a GKF graph. The paths represent the group’s 

frequent referencing behavior when learning/referencing knowledge. Thus, the discovered graph 

can be used to inform a group of workers about topics of interest and the referencing behavior 

related to those topics.  

The steps of the proposed algorithm are shown in Fig. 15. To generate a GKF model for a 

specific group (task), a set of TKFs is taken as the algorithm’s input, and the graph of the GKF is 

the output result. In the GKF graph, a topic domain in a TKF is represented as a knowledge 

vertex, and each flow that directly orders the knowledge between two topics is represented as an 

edge. For example, given a TKF <A, B, E, C>, the four topics A, B, E and C are represented as 

four knowledge vertices, i.e., vA, vB, vE and vC, respectively; and the direct flows between two 

knowledge vertices are represented as three directed edges, i.e., eA,B, eB,E, and eE,C, in the graph of 

G. Note that an edge is used to order the flow between two topics directly, e.g., the edge eA,B 

orders the flow from topic A to topic B. In contrast, if two topics have no direct flow relation, no 

edge exists between them. In the same example,  there is no flow relation between topic A and 
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topic E , so an edge eA,E does not exist.  

The algorithm for building the GKF model involves several steps. First, a start vertex s and 

an end vertex d are added to the directed graph. Second, each topic in a TKF is regarded as a 

vertex and is added to a vertex set V if it does not exist in V already. Then, to connect the vertices 

in V, the edges related to the inserted vertex are added to the edge set E as follows. Let xy be a 

direct flow relation from topic x to topic y, which denotes that topic x is followed immediately by 

topic y in a TKFw. When adding the edge ex,y to E, the algorithm has to check two additional 

conditions for the edge to connect the starting/ending vertex with other vertexes. First, if the 

vertex y is the first vertex in a TKF, the edge es,y from the starting vertex s to the vertex y is 

added to E; then, if the vertex y is the last topic in the TKF, the edge ey,d from the vertex y to the 

ending vertex d is added to E. When adding an edge to E, the algorithm counts the frequency of 

the edge. Adding all the vertices and their related edges to V and E respectively yields the initial 

graph of the GKF model. 

Example of Creating the GKF Graph  

This example illustrates how to build a GKF graph by using the GKF algorithm without 

considering duplicate topics in a TKF. Five workers who have similar TKFs form a group. Their 

topic-level KFs are listed in Table 3.  

The topic domains in each topic-level KF (TKF) are arranged as a topic sequence according 

to the times they were referenced. Based on the TKF of each worker, the proposed algorithm 

derives the group’s GKF, which is represented by a directed graph, as shown in Fig. 16. The 

topic domains, including the start and end vertices are represented by circles; an edge is 

represented by an arrow, which indicates the direction of knowledge flow from one knowledge 

vertex to another; and the number on each edge is the edge’s frequency count.  

Table 3: Five workers and their TKFs 

Worker Topic-level KF (TKF) 

John <A, B, C, D, E> 

Mary <A, C, G, F, D, E> 

Lisa <B, A, C, E> 

Tom <A, B, C, D> 

Bob <C, B, G, F, D> 

In the initial graph, a strongly connected component (SCC) may be evident when some 

vertices appear in reverse order in any two TKFs. A strongly connected component Gs is a 

maximal strongly connected sub-graph that contains a path from each vertex to every other 

vertex in Gs. Because the vertices in a connected component are strongly connected, it is difficult 

to determine the ordering relationships between them. Even so, such relationships can be used to 
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represent the characteristics of a TKF and they are important for modeling workers’ referencing 

behavior. Thus, we use a procedure called Topic_Relation_Identification to determine the 

relationships among vertices in any strongly connected component.  

 

Fig. 16: The initial graph of the GKF model 

In an SCC, two kinds of relations can be identified, namely, parallel and sequential relations. 

Any two vertices in an SCC indicate that two topics, x and y, may be referenced by different 

TKFs with the ordering x > y and y > x. This ordering is an example of a parallel relation, where 

either vx ~> vy or vy~>vx would be appropriate; thus, there is no strict ordering between vx and vy. 

The referencing order of the vertices is not obvious, and the knowledge items represented by the 

vertices may be referenced simultaneously. As the vertices in an SCC are not in a specific order, 

conventional workflow mining methods consider the association between the vertices as a 

parallel relation. However, in contrast to such methods, a sequential relation pattern (SRP) rather 

than a parallel relation pattern (PRP) may be extracted if most of the referencing behavior in the 

SCC fits the SRP. That is, the SRP represents the most frequent knowledge referencing pattern in 

the SCC.  

We explain how to recognize the above relations in Section 5.4.1, and how to evaluate, the 

weight of each edge when measuring the importance of a flow in the GKF in Section 5.4.2. Then, 

we transform the initial graph of the GKF into a new directed acyclic graph GN in which a 

strongly connected component Gs is regarded as a vertex in Section 5.4.3.  

After graph transformation, the topological sorting and edge deletion procedures are applied 

on GN to remove any infrequent edges. An infrequent edge indicates that only a few workers in 

the group adopt a particular reference behavior pattern. Since such patterns are not representative 

of the group’s general referencing behavior, they can be removed. The topological sorting 

procedure is used to sort all vertices in VN in topological order, as discussed in Section 5.4.4. 

Based on the sorting result, the edge deletion procedure (described in Section 5.4.5) checks all 

the edges and removes infrequent and unqualified edges from EN and E. After edge deletion, the 

graph G represents the group-based knowledge flow.  

5.4.1 Topic Relation Identification 

The topic relation identification procedure determines the relations between vertices in a 
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strongly connected component, as shown in Fig. 17. Let the strongly connected component Gs = 

(Vs, Es), where Vs is a vertex set and Es is an edge set. Parallel and sequential relations can be 

discovered from a strongly connected component Gs = (Vs, Es) based on the frequency count of 

knowledge flow sequences (KFSs). To determine and rebuild the relationships between vertices 

in Vs, all possible non-duplicate KFSs of length |Vs|, which contain all vertices in Vs, are 

identified from Gs. The derived KFSs are then compared with a non-duplicate sequence, i.e., SQw, 

in a TKFw, which contains a set of vertices that are common to both Vs and the vertex set of 

V(TKFw), i.e., V(SQw) = {Vs  V(TKFw)}. V(SQw) / V(TKFw) denotes the set of vertices in the 

sequence SQw / TKFw. When the sequence SQw is a subsequence of a KFS, the frequency count of 

the KFS is increased. Next, all the KFSs are sorted in descending order of their frequencies and 

the top-2 frequent KFSs are selected to elicit the relations of vertices in Vs. The preceding pseudo 

node v and the succeeding pseudo node v of Gs are also added to V. 
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Topic_Relation_Identification (TKF, G, Gs) { 

Identify all possible non-duplicate flow sequences of length | Vs | from Gs, where KFS = 

{KFSx | x= 1..n}; 

//Identify a sequence of vertices in Vs from a TKF and compare it with sequences in KFS 

For each TKFw { 

Identify a non-duplicate sequence SQw in TKFw that contains the common vertices in 

Vs and TKFw, i.e., V(SQw) = {Vs  V(TKFw)}; 

Compare SQw with each KFSx in KFS. If SQw is a subsequence of KFSx, increase the 

frequency count of KFSx , i.e., fKFSx; 

} 

Sort all KFSx and select top-2 frequent flow sequences KFSa and KFSb; 

Add a preceding pseudo node v and a succeeding pseudo node v of Gs to V; 

If (|fKFSa - fKFSb|  ) {  //parallel relation (and/or split) 

   For each edge ei,j in Es { 

    If (vi → vj exists in a TKFw and vj > vi exists in another TKFy) 

      Remove the edge ei,j from E and Es; 

   } 

For each vertex vi in Vs { 

    For each adjacent predecessor vk of vi, where vk V and vk Vs { 

Replace the edges ek,i with the edges ek, and e,i, and update their frequency 

counts; } 

For each adjacent successor vl of vi, where vl V and Vs { 

Replace the edges ei,l with the edges ei, and e,l, and update their frequency 

counts; } 

    } 

} 

else {  //sequential relation 

If (fKFSa > fKFSb) or (fKFSb > fKFSa) 

Let KFSy be the most frequent flow sequence; 

Let vi/ vj be the first/ last vertex in KFSy; 

Remove all edges in Es from Es and E; 

For each vg → vh in KFSy {add edges eg,h to Es and E}; 

For each vertex vf in Vs { 

For each adjacent predecessor vk of vf, where vk  V and vk  Vs { 
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Replace edge ek,f with edges ek, and e,,i, and update their frequency counts; } 

For each adjacent successor vl of vf, where vl  V and vl  Vs { 

Replace edge ef,l with edges ej, and e,l, and update their frequency counts; } 

    } 

  } 

Return G; 

} 

Fig. 17: The topic relation identification procedure 

If the difference in the frequency counts of the selected KFSs is no greater than a 

user-specified threshold , the order of the vertices in Vs is not significant. In this case, the vertex 

relation is defined as parallel. For example, let us consider a strongly connected component 

where vertex vx, vertex vy and vertex vz are in Vs; and let the user-specified threshold  = 2. When 

the frequency counts of two KFSs <vx, vy, vz > and < vz, vy, vx> are 7 and 6 respectively, the 

relation between vertex vx, vertex vy and vertex vz is parallel because the difference in their 

frequency counts is no greater than the threshold. However, if the difference is greater than a 

user-specified threshold, the KFS with the largest frequency count can be used to represent the 

relationship of vertices in Vs based on the majority principle. The ordering of these vertices is 

defined as a sequential relation. Next, we explain how to identify the order of vertices in a 

strongly connected component, i.e., parallel relations and sequential relations.  

Identifying Parallel Relations in an SCC 

For parallel relations, the order of the vertices in Vs is not important. The 

Topic_Relation_Identification procedure checks each edge in Es for each TKF. Let ei,j be an edge 

in Es that connects vertex vi to vertex vj directly. If this direct flow relation vi → vj appears in a 

TKF and a flow relation vj > vi exists in another TKF, the edge ei,j is removed from E and Es, and 

the relation between vertex vi and vertex vj is regarded as parallel. That is, there is no specific 

ordering between vertex vi and vertex vj, and their corresponding topics can be referenced in any 

order.  

After adding a preceding pseudo node v and a succeeding pseudo node v to G, the edges 

connected to the vertices in Vs are redirected through the pseudo nodes. To connect a vertex in V 

to the pseudo nodes, each adjacent predecessor vk of vi, where vk  Vs and vi  Vs, and each 

adjacent successor vl of vi, where vl  Vs and vi  Vs, are examined. For vertex vk, if edge ek,i , 

which connects vertex vk to vertex vi , exists in E, it is removed. Then, the edges ek,  and e,i are 

added to E and their frequency counts are calculated. If the two edges already exist in E, their 

frequency counts are simply updated. Briefly, the edge ek,i is replaced by edges ek, and e,i to 

make a connection with vertex vk and vertex vi through the pseudo node v. Similarly, for a vertex 

vl, if edge ei,l exists in E, it is removed. Then, the edges ei, and e,l, are added to E and their 

frequency counts are calculated. If the edges already exist in E, their frequency counts are simply 

updated. 
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Example of Identifying Parallel Relations 

Fig. 16, there is a strongly connected component Gs comprised of Vs = {A, B, C} and Es = 

{eA,B, eB,A, eB,C, eC,B, eA,C}. Let the threshold  be 1. The graph of the GKF after topic relation 

identification is shown in Fig. 18. 

Based on the Topic_Relation_Identification procedure, two pseudo nodes,  and , are 

added to G. Then, the edges in Es are examined to determine which ones should be removed. 

Three non-duplicate sequences are discovered in Gs, i.e., <A, B, C>, <A, C, B> and <B, A, C>; 

their frequency counts are 2, 1 and 1 respectively. Because the difference in the frequency counts 

of the top-2 sequences is equal to 1, the relation between vertex vA, vertex vC, and vertex vB is 

regarded as parallel, and the edges eA,B, eB,A, eB,C and eC,B are removed from the graph. 

 

Fig. 18: A parallel relation in a GKF graph 

Meanwhile, the relation between vertex vA and vC is regarded as sequence because A → C 

exists in one TKF, but there is no flow relation, i.e., C > A, in any other TKF. Thus, eA,C is not 

removed from the graph. The incoming edges of vertex vA, vertex vB and vertex vC are changed to 

make connections through pseudo node v. Similarly, the outgoing edges of vertex vA, vertex vB 

and vertex vC are changed to make connections through pseudo node v. Then, the frequency 

counts of these edges are updated, as shown in Fig. 18. 

Identifying Sequential Relations in an SCC 

If the difference between the frequency-counts of the selected top-2 KFSs is greater than a 

user-specified threshold, the ordering of the vertices in the KFSs is regarded as a sequential 

relation. That is, based on the majority principle w.r.t. knowledge referencing behavior discussed 

earlier, the vertices in Vs follow the ordering of the KFS with the highest frequency. Let KFSy be 

the knowledge flow sequence with the highest frequency count; and let vi and vj be, respectively, 

the first and last vertices in the sequential order of KFSy. All the edges in Es are removed from Es 

and E. Then, for each direct flow relation vg → vh in KFSy, an edge eg,h is added to Es and E. 

Similarly, the edges connected to the vertices in Vs are redirected through the pseudo nodes.  

For each adjacent predecessor vk of vf , where vk  V , vk  Vs, and vf  Vs, the edges ek, and 

e,i are added to E, and their frequency counts are calculated. If the edges already exist in E, their 

frequency counts are simply updated. The edge ek,f , which connects vertex vk to vertex vf , is 
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removed from E and replaced by the connections from vk to v and from v to vi, the first vertex of 

KFSx. That is, the edge ek,f is replaced by edges ek, and e,i, which connect with vertex vk and 

vertex vi respectively through the pseudo node v. Similarly, for each adjacent successor vl of vf , 

where vl  V and vl  Vs, and vf  Vs, we use the same method to establish connections from the 

last vertex in KFSx to the vertex vl through the pseudo node v. The connection from vf to vl is 

replaced by the connections from the last vertex of KFSx, i.e., vj, to the pseudo node v and from 

v to vl.  

Example of Identifying Sequential Relations 

Table 4: The TKFs of seven knowledge workers 

Worker Topic-level KF (TKF) 

W1 <A, F, B, C, D, H> 

W2 <A, G, B, C, D, I> 

W3 <F, B, C, D, H> 

W4 <A, F, C, D, B, K, H> 

W5 <F, C, D, B, K, H> 

W6 <A, G, B, C, K, H> 

W7 < F, B, C, D> 

Table 4 lists the knowledge flows of a group of seven workers. The GKF mining algorithm, 

described in Section 5.4, is used to generate the graph of the group-based KF and a strongly 

connected component with vertices vB, vC, and vD is identified from the GKF graph. Then, the 

Topic_Relation_Identification procedure is applied to determine the relation between those 

vertices. As shown in Fig. 19, the relation is sequential with the ordering vB, vC, and vD. In 

addition, the edges connected to any vertex in Vs are changed. For example, the edge eB,K is 

changed to edge eD, and edge e,K such that there is a path from vertex vB to vertex vK via the 

pseudo node v.  

 

Fig. 19: A sequential relation in a GKF graph  

5.4.2 Measuring the Importance of an Edge 

Our objective is to derive the referencing behavior of a group of workers by constructing a 

frequent knowledge path in a GKF graph. However, some infrequent edges in the graph may not 
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be suitable for building the path. To measure the importance of each edge in a graph, the 

frequency count of each edge is normalized by the maximum edge frequency in E. The 

weighting function measures the importance of an edge in a GKF model, as defined in Eq. (20).  
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where wex,y, which ranges from 0 to 1, is the weight of the edge ex,y that represents a direct 

flow from vertex vx to vertex vy; fx,y is the frequency of the edge ex,y; E is the edge set of the graph; 

and the denominator is a maximum function that derives the frequency count of the most 

frequent edge in the graph. The more frequently an edge occurs, the more important it is deemed 

to be. The most frequent edge represents the frequent referencing behavior of most members of 

the group. Thus, it is suitable for describing the group’s referencing behavior. 

 

Fig. 20: The edge weights in a GKF graph  

Example 

The weight of each edge in Fig. 18 is calculated by using the edge weighting method. The 

edge is then labeled with the weight to indicate its importance in the graph, as shown in Fig. 20.  

5.4.3 Graph Transformation 

To simplify a strongly connected component in a graph, the proposed algorithm transforms 

the original GKF graph into a new graph GN. After the transformation, the graph Gs is regarded 

as a vertex vGs in GN. We create two pseudo nodes, v and v , to represent, respectively, the split 

operator and the join operator of Gs. In addition, the incoming/ outgoing edges of Gs, which 

connect to the pseudo nodes v (the split operator) /v (the join operator), are merged to form a 

new edge whose weight is also updated. The weight of the incoming edge of vGs, which combines 

the incoming edges of Gs, is derived by combining the edge weights of the incoming edges of the 

node v. Similarly, the weight of the outgoing edge of vGs is derived by combining the edge 

weights of the outgoing edges of the node v. 

Example of Graph Transformation 

We transform the graph Gs in Fig. 20 into a new graph for further analysis, as shown in Fig. 

21. To simplify the strongly connected component, all the vertices in Gs are wrapped as a vertex 

A

s D

B

E

FG

d

0.2

0.41 0.6

0.4

0.4

0.4
0.4

Start Vertex

End Vertex

γ ρ 0.4

Gs

C



51 

vGs in the new graph. The incoming edges and outgoing edges of any vertex in Gs and the 

weights of those edges are adjusted. In Fig. 20, edge e,A and edge e,B are merged to form a new 

edge e,Gs in Fig. 21 and their edge frequencies are combined as 1. In the same way, edge eC, and 

edge eB, are combined to form an edge eGs, . 

Fig. 21: The result of graph transformation 

5.4.4 Topological Sorting 

The frequent referencing behavior of a group of workers is derived by mining the group’s 

knowledge flow from a GKF graph. The workers may reference topics in a different order when 

performing tasks, but some referencing behavior is more frequent because the majority of 

workers in the group reference topics in the same order. In the GKF graph, a frequent knowledge 

path from the start vertex to the end vertex represents the workers’ frequent referencing behavior. 

For any vertex vi on the path, vertex vi is reachable from the start vertex and the end vertex is 

reachable from vertex vi. Note that a path with infrequent edges denotes an infrequent 

referencing behavior pattern.  

To derive a group’s frequent referencing behavior, a topological sorting procedure is used to 

sort all vertices in the graph, after which infrequent edges whose weights are no greater than a 

specified threshold are deleted. In graph theory, topological sorting [18, 35] is a very efficient 

way to arrange the vertices of a directed acyclic graph in topological order in linear time. The 

key property of the topological order is that, for any two vertices x and y, if x is a predecessor of 

y in the graph then x precedes y in the topological order.  

In this work, we use topological sorting to arrange all vertices in GN, which is a directed 

acyclic graph before the edge deletion procedure is applied. Then, the edge-deletion procedure 

examines the vertices in topological order to identify the infrequent incoming edges of each 

vertex that should be removed. However, before removing an infrequent edge, the procedure 

needs to ensure that each vertex in the GKF satisfies two criteria. First, any vertex vi on a 

knowledge path must be reachable from the start vertex and the end vertex must be reachable 

from vertex vi. Second, removing the edges of a vertex vi does not affect the path from the start 

vertex to the preceding vertices of vi in the topological order. In other words, topological 

ordering guarantees that 1) a predecessor will be processed before a successor; and 2) the 

predecessor’s reachability (i.e., from the start vertex to vi) will not be affected by its successors. 
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Thus, when an infrequent edge of any vertex vi in G is removed, there is no need to verify the 

reachability of the predecessors of vertex vi from the start vertex. On the other hand, the path 

from the predecessors of vertex vi to the end vertex will be affected by removing an infrequent 

edge of vi; therefore, the predecessors should be examined again to ensure that they can still 

reach the end vertex.  

Example 

In Fig. 21, all the vertices are sorted in topological order, and the resulting list is <s, , Gs, , 

G, F, D, E, d>. According to the list, vs is the first vertex to be checked, vGs is the second vertex 

and so on. The algorithm examines all the vertices in topological order and removes infrequent 

edges from the graph GN via the edge deletion procedure. 

5.4.5 Using the Edge Deletion Procedure to Remove Infrequent Edges  

Based on the results of topological sorting of VN, the edge deletion procedure examines the 

vertices and determines which incoming edges should be removed from them. It then removes 

infrequent edges whose weight is no greater than a user-specified threshold, as shown in Fig. 22. 

The inputs of this procedure are the sorted list L derived by topological sorting and the edge set 

EN of the GKF graph. The algorithm checks the incoming edges of each vertex in ascending 

order of their weights, and those whose weights are no greater than a user-specified threshold  

are candidates for removal. If an edge is removed, it means that the knowledge referencing 

behavior between two vertices (topics) is infrequent among the group of workers.  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Edge Deletion (L, G, GN) { 

Q = ; // the checked set of vertices 

For each vertex vy in GN , according to the vertex’s order in the sorted list L { 

For each incoming edge ex,y of vy , according to its weight in ascending order { 

If (the weight of edge ex,y < threshold θ) { 

Remove the edge ex,y from E and EN;  

If (no path ps,y exists from the start vertex s to vertex vy in GN) or (there 

exists a vertex vj, vj  Q and no path pj,d exists from vertex vj to the end 

vertex d) 

Add the edge ex,y to E and EN; 

} 

} 

Add vertex vy to Q; 

} 

} 

Fig. 22: The edge deletion procedure 

However, an infrequent edge should only be deleted from the graph if removing it would 

not make any vertex unreachable. Let Q be the set of vertices that have been checked in 

topological order to remove their infrequent incoming edges. For a vertex vy, if one of its 
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incoming edges is removed and there is no other path from the start vertex to vy, the removed 

edge should be returned to the edge sets E and EN. In addition, the vertices checked before vy 

should be reexamined to ensure that there is a path from a checked vertex vi in Q to the end 

vertex. If removing an edge violates the above condition, the edge should be returned to the edge 

sets E and EN.  

Because of the characteristics of topological sorting, the edge deletion procedure ensures 

that 1) any vertex in the graph GN can be reached from the start vertex; and 2) removing an edge 

of a vertex does not affect any path from the start vertex to the predecessors of the vertex. In 

other words, there exists at least one path from each vertex to the end vertex. Moreover, we can 

obtain several frequent knowledge paths from the GKF graph to help workers learn the group’s 

knowledge. The following example explains how to remove an edge from the GKF graph. 

Example of Removing Infrequent Edges 

In Fig. 21, let vertex vE be the examined vertex and let the user-specified threshold be 0.3. 

The vertex vE has two incoming edges: e,E with weight 0.2 and eD,E with weight 0.4. The edge 

e,E qualifies for removal, because its weight is no greater than 0.3 and removing it would not 

make any vertex unreachable. Fig. 23 shows the resulting graph, which represents the GKF of 

the group. The graph is used to visualize the knowledge flows among the frequent topics and 

model the referencing behavior of the group. 

Fig. 23: The final graph GN of the GKF model 

The edge deletion procedure has several properties. We define and prove the associated 

lemmas below. 

Lemma 1: Let vs be the start vertex in a graph, GN, of a group-based knowledge flow. For any 

vertex vh in GN, there exists a path Ps,h from vertex vs to vh.  

Proof:  In the edge deletion procedure, removal of an incoming edge from a vertex vh depends 

on the weight of the edge. All vertices in GN are visited in topological order and their incoming 

edges are examined. For any vertex vh, an incoming edge should be removed if its weight is no 

greater than a user-specified threshold. However, if removing an edge from vh also removes the 

path Ps,h from GN, that edge should be returned to the vertex.  

When deleting an incoming edge of a vertex, the edge deletion procedure ensures that 1) 

there is a path Ps,h from the start vertex vs to vertex vh; and 2) removing an incoming edge from a 
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successor of vh does not affect the path Ps,h . The proof is as follows. Let a vertex vk be a 

succeeding vertex of vh in the topological order. Based on the topological order, the edge 

deletion procedure processes the vertex vh before vertex vk and there exists a path Ps,h. Assume 

that a path Ps,h does not exist from vs to vh, because an incoming edge of vk has been deleted. 

Thus, a path must have existed from vertex vs through vk to vh before the edge was deleted. 

Consequently, vk must be a predecessor of vh. However, this statement contradicts the 

algorithm’s processing of vertices in topological order. That is, vk is a succeeding vertex of vh 

and the path Ps,h exists in GN. Thus, removing an incoming edge from a succeeding vertex of vh 

does not affect the path Ps,h. According to the algorithm and the above explanation, for any 

vertex vh in GN, there exists a path Ps,h from vertex vs to vh.  

Lemma 2: Let vd be an end vertex in the graph of the group-based knowledge flow GN. For any 

vertex vh in GN, there exists a path Ph,d from vertex vh to vd. 

Proof:  Let vertex vk be the succeeding vertex of the vertex vh. Removing an incoming edge of 

vertex vk will affect the reachability of the end vertex vd from vertex vh. When the edge deletion 

procedure removes an incoming edge of vertex vk, it has to check whether the path Ph,d from 

vertex vh to the end vertex vd exists. If it does not exist, the incoming edge should not be 

removed. Therefore, the procedure ensures that a path Ph,d exists from vertex vh to the end vertex 

vd. 

Lemma 3: Let GN = {VN, EN} be the directed graph of a group-based knowledge flow. All 

vertices in VN can be visited by traversing vertices from the start vertex vs to the end vertex vd. 

Then, for any vertex vh in V, there exists a path from vs to vd through vh. 

Proof:  According to Lemma 2 and Lemma 3, for any vertex vh in VN, there exists a path Ps,h 

from the start vertex vs to vh and a path Pv,d from vh to end vertex vd. Therefore, there exists a 

path from vs to vd through vh.  

Lemma 4: For any infrequent edge eh,k on an infrequent path of GN, either the path from the start 

vertex vs to vertex vk or the path from the vertex vh to the end vertex vd must pass through the 

edge eh,k.  

Proof:  Let vertex vh be a predecessor of vertex vk in the topological order, and let eh,k be an 

infrequent edge from vertex vh to vertex vk in GN. Assume that there exist two paths, one from 

start vertex vs to vertex vk and the other from vertex vh to the end vertex vd, neither of which 

passes through the edge eh,k. Our algorithm removes any infrequent edge if doing so will not 

make any vertex unreachable. Thus, the algorithm will remove the edge eh,k. However, this 

contradicts the statement that eh,k exists in GN. Consequently, for any infrequent edge eh,k of an 

infrequent path of GN, either the path from the start vertex vs to vertex vk or the path from the 

vertex vh to the end vertex vd must pass through the edge eh,k.  
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The vertex VGS in graph GN represents a corresponding strongly connected component GS in 

G. All vertices in GS with parallel relations or sequential relations are reachable. Lemmas 2, 3, 4 

and 5 also hold for G.  

5.5 The GKF Mining Algorithm for Dealing with Topic Loops 

The GKF mining algorithm for dealing with topic loops (GKF-TL) is based on the GKF 

algorithm introduced in Section 5.4, which assumes there are no topic loops in workers’ KFs 

when it generates the graph of the group-based KF. A topic loop means that a specific topic 

appears repeatedly in a TKF because it is referenced by a worker several times. This may happen 

because the worker needs the knowledge at different times during a task’s execution. For 

example, given a worker’s topic-level KF <A, B, A, C, D>, if topic A is referenced twice, it is 

appears as a topic loop in the corresponding graph of the TKF. Because the loop problem in a 

workflow mining domain is difficult to resolve, no matter what the application domain, many 

researchers ignore the problem [25, 67]. Agrawal et al. [7] proposed an algorithm for workflow 

systems that builds a general directed graph with cycles for mining process models from 

workflow logs. The algorithm gives activities different labels to differentiate them in a workflow 

instance. The problem of dealing with topic loops in TKFs is analogous to that of workflow 

systems. Thus, we adopt the above approach to solve the loop problem. Specifically, we propose 

an algorithm that considers duplicate topics (topic loops) in each TKF to build a directed graph 

for modeling the referencing behavior of a group of workers.  

The GKF-TL algorithm differs from the GKF algorithm. First, it identifies duplicated topics 

in a TKF and gives them different labels in order to solve the loop problem. For example, given a 

KF <B, A, B, C, B>, because topic B appears three times, it is transformed into three instances, 

i.e., B1, B2 and B3, such that the original KF becomes <B1, A, B2, C, B3>.  

After infrequent edges have been removed from the graph G, it is transformed into a new 

graph GT as follows. The vertices with different instances of the same topic form an equivalent 

set and can be merged to make one vertex. For a topic TP in a TKF, each vertex in the equivalent 

set of TP is an instance of the topic. Then, a directed edge is added to the new graph GT if there 

is an edge between two vertices of different equivalent sets in graph G. Initially, the merging 

process is applied to vertices of each equivalent set in G when a strongly connected component is 

not involved. To merge vertices involving a strongly connected component Gs, the steps are as 

follows. 

Let vertices vi/ vj be instances in the equivalent sets Qa / Qb, and let vk be an another instance 

in Qa as well as a vertex in a strongly connected component, i.e., vk  Gs, where v and v are two 

pseudo nodes of Gs. Note that because vk and vi are instances of the same topic, they are in the 

same equivalent set and are thus merged to form one vertex. In addition, vi is in Gs, since vk is in 

Gs. Generally, the vertices of an equivalent set Qa in G are combined as a vertex va in the new 



56 

graph GT, while the vertices of an equivalent set Qb are merged to form one vertex vb. For a 

strongly connected component Gs with pseudo nodes v and v, if a directed edge ei,j between vi 

and vj exists in G, a directed edge e,b is added to the new graph GT. Similarly, if a directed edge 

ej,i exists in G, a directed edge eb, is added to graph GT. 

Next, we consider how to combine vertices involving two strongly connected components. 

Let vk / vl be vertices in strongly connected components Ga / Gb; va and va be pseudo vertices 

that connect with graph Ga; vb and vb be pseudo vertices that connect with Gb; and Qa / Qb be 

the corresponding equivalent sets of vertices in Ga / Gb. In addition, let vertex vi and vk (resp. vj 

and vl) be instances of the equivalent sets Qa (resp. Qb). Vertices in Qa / Qb are merged as vertex 

va / vb. Because vk / vl is in Ga / Gb, vi / vj also belongs to Ga / Gb; however, some edges need to be 

adjusted. If there is a directed edge ei,j from vi to vj in graph G, an edge ea,b with the same 

direction as edge ei,j is added to the new graph GT. Similarly, if a directed edge ej,i exists in graph 

G, a directed edge eb,a is added to GT. These new added edges are used to merge two equivalent 

sets in different strongly connected components and make a connection between them. Note that 

the weights of the edges are updated during the merging process. 

Note that we assume the instances of a topic exist in at most one strongly connected 

component after the vertices of each equivalent set have been merged to form one vertex. We 

defer consideration of the case where the same topic belongs to more than one strongly 

connected component to a future work. Next, we provide an example of implementing the 

GKF-TL algorithm. 

5.5.1 Applying the GKF Mining Algorithm for Dealing with Topic loops 

The following example considers a group of four workers with similar KFs. Their 

topic-level KFs (TKFs) are listed in Table 5. Each element in a TKF is used to represent a topic 

domain. Thus, the elements in a TKF are arranged as a topic sequence based on the times they 

were referenced. As a topic may appear more than once in a specific KF, because the worker 

needs the knowledge at different times, we apply the GKF-TL mining algorithm to deal with 

topic loops.  

Table 5: The TKFs of four workers 

Worker Topic-level KF (TKF) TKF’ 

John <A, B, A, C, D, F> <A1, B1, A2, C, D, F> 

Mary <B, A, B, C, D> <B1, A1, B2, C, D> 

Lisa <B, A, D, F> <B1, A1, D, F> 

Tom <A, B, A, E, G, D> <A1, B1, A2, E, G, D> 

In Table 5, a topic that appears more than once in a TKF is labeled as a different instance of 

the topic, and a TKF with duplicate topics is transformed into a TKF’. Then, the algorithm uses 
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TKF’ to build the initial graph of the GKF model. In this example, we set the user-specified 

thresholds for topic relation identification and edge deletion as  = 1 and  = 0.3 respectively. 

The initial graph derived before graph transformation is shown in Fig. 24. A strongly connected 

component is discovered in the initial graph. To resolve the vertex relation problem in the 

strongly connected component, the algorithm applies the topic relation identification procedure 

detailed in Fig. 17. The vertex relation in the strongly connected component is shown in Gs in 

Fig. 24. The number on each edge represents the edge’s weight. Recall that the weight is derived 

by Eq. (20) to indicate the importance of the edge.  

 

Fig. 24: The initial graph of the GKF model with topic loops 

Fig. 25 shows the result of removing the infrequent edges from the graph in Fig. 24. The 

sub-graph Gs in the initial graph is transformed into a vertex vGs.; and the edge that connects a 

vertex in Gs with another vertex, i.e., e,D, is removed because its weight is no greater than 0.3.  

 

Fig. 25: The graph of the GKF model with topic loops 

Finally, the algorithm merges vertices that are different instances of the same topic into one 

vertex. For example, in Fig. 24, vertices vB1 and vB2 are different instances of the same topic, so 

they are merged to form the vertex vB. Moreover, the edge e,B2 is replaced by an edge connecting 

v to v; and the edge eB2,C is changed to edge e,c. The vertices vA1 and vA2 are two instances of 

topic A; hence they are merged to form vertex vA, and their edges are changed accordingly. Fig. 

26 shows the final GKF graph, which considers the duplicate topics in each worker’s TKF. To 

illustrate all knowledge paths in the graph, the vertex vGs is converted into the original graph Gs.  
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Fig. 26: The final GKF graph, which considers the duplicate topics in each worker’s TKF 

5.6 Identifying Knowledge Referencing Paths in a GKF Graph 

We have developed a method for identifying frequent knowledge paths from the GKF graph 

to describe the information needs of a group of workers, i.e. their knowledge referencing 

behavior. A knowledge path, which represents the knowledge referencing behavior of a group of 

workers, consists of several vertices and edges that can be traversed from the start vertex to the 

end vertex. To identify a frequent knowledge path, a path score derived from the weights of the 

edges on a path is used to evaluate each path and indicate its importance, as defined in Eq. (21).  

}|{ ,, iyxyxi patheweMinps  ,  (21) 

where psi is the path score of the path i; and wex,y is the weight of edge ex,y, which belongs to 

the path i and represents a direct flow relation between vertex x and vertex y. Based the weights 

of all the edges on a specific path, a path score is derived from the minimal weight among the 

edges to indicate the path’s level of importance. Note that the edge weight derived by Eq. (20) 

denotes the importance of the direct flow in a GKF. A large edge weight means that the 

referencing flow between topics is highly significant for the group of workers. 

Paths with scores higher than a user-specified threshold are regarded as frequent knowledge 

paths in the GKF and are selected for the group. Specifically, such knowledge paths (patterns) 

are used to represent the frequent knowledge referencing behavior of workers and important 

knowledge flows. The discovered paths will be important references for workers, while the 

frequent knowledge paths also will help novices learn group-related knowledge. The following 

example illustrates the computation of the path score.  

5.7 The Prototype System for Mining Group-based Knowledge Flows 

In this Chapter, we develop a prototype system to demonstrate the proposed methods for 

mining group-based knowledge flows (GKFs), which are generally difficult to formalize. To 

address the problem, our system provides a mining function and modules to identify GKFs easily 

and effectively. In addition, a GKF is modeled as a graph to represent the referenced topics, the 

directions of knowledge flows, and the knowledge referencing paths (patterns) for a group of 

workers with similar KFs. The referencing paths with scores higher than a user-specified 

threshold are identified to represent the frequent knowledge referencing patterns of the group. 
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We describe the real-world dataset used in our system in Section 5.7.1, present the 

implementation of our prototype system in Section 5.7.2 and discuss the contributions of this 

work in Section 5.7.3. 

5.7.1 Dataset 

We use a dataset from a research laboratory in a research institute. It contains information 

about 14 knowledge workers, 424 research documents, and a usage log that records the times 

documents were accessed and the workers’ document preferences. Each worker may perform a 

number of tasks, e.g., conducting a research project and writing research papers, and the research 

documents are the codified knowledge needed to perform the tasks. Because a worker’ 

information needs may change over time, the access time of documents can be used to track 

changes in his/her information needs for a specific task, and his/her knowledge referencing 

behavior can be identified.  

5.7.2 System Implementation 

To implement our prototype system for group-based KF mining, we use Microsoft Visual 

Studio 2005 (with C#) to develop the system and Microsoft SQL Server 2005 as the database 

system to storing the dataset. Because the dataset contains workers’ logs, it should be 

preprocessed to generate each worker’s codified-level KF and topic-level KF. To obtain the KF, 

documents in the dataset are grouped into eight clusters by using a single-link clustering method. 

Based on the clustering results, a topic-level KF is generated by mapping the codified knowledge 

into its corresponding clusters for each knowledge worker. Then, the two types of KF, the 

topic-level KF and the codified-level KF, are derived to describe the information needs of a 

worker. We use such KFs to build a prototype system to demonstrate the method for mining the 

knowledge flows of a group of workers.  

 

Fig. 27: The main frame of the KF mining system 
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Our system has two major functions: worker clustering and group-based knowledge flow 

mining. The former identifies a group’s knowledge flow, and the latter uses a directed acyclic 

graph to present the mining results. An interface that can visualize the KF is necessary. Note that 

our system can be applied in any knowledge intensive organization to help workers obtain and 

learn knowledge. Next, we describe the system in detail.  

The knowledge flow mining system is comprised of three modules: the main module, the 

CLIQUE clustering module and the GKF model. Each module has functions to help the user (a 

manager/worker) build a knowledge flow easily. Fig. 27 shows the main frame of the system, 

which provides essential functions for building the GKF model, e.g., the system settings, the KF 

alignment similarity and clustering functions. The system setting is used to initialize the system 

environment, e.g., database selection. The KF similarity function calculates the similarity 

between two workers’ knowledge preferences based on their knowledge flows and creates a 

similarity matrix of the workers. The parameter alpha adjusts the relative importance of the KF 

alignment similarity and the aggregated profile similarity on a scale of 0 to 1, as shown in Eq. (8). 

The user can specify the value of alpha and use the KF similarity function to create a KF 

similarity matrix based on the specified value. Then, the CLIQUE clustering method uses the 

similarity matrix to cluster workers who have similar KFs. The system also provides an interface 

to show the topic-level KFs of all workers and the results of worker clustering. To simplify the 

presentation of the KFs, we use a number to represent a topic domain that consists of 

topic-related terms. 

 

Fig. 28: The CLIQUE clustering module  

Fig. 28 shows the CLIQUE clustering module. Before using the module, we have to set two 

parameters: the number of rows in the KF similarity matrix and the clustering threshold. The 

number of rows is used to determine the number of times clustering is performed using the 

CLIQUE clustering method, while the threshold is used to cluster workers whose similarity 

scores are higher than a certain value. Then, the clustering result is displayed on the system 
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interface. For example, to perform clustering, the value of alpha is set at 0.3, the number of rows 

of the KF similarity matrix is 14 and the similarity threshold is set at 0.4. Each group is 

comprised of several workers, and each worker belongs to several task-based groups based on 

the KF similarities. After clustering similar workers, the system stores the clustering results in 

the database for further utilization and analysis.  

Next, using the proposed algorithm, the system builds a group-based knowledge flow (GKF) 

for a group of workers, as shown in Fig. 29. All the workers in a cluster have similar KFs, which 

are used to generate a GKF graph to characterize the referencing behavior of the group. In the 

graph, each circle is a topic domain represented by a number, while each directed edge indicates 

the flow of knowledge between two topics. The topic domain contains a topic profile, which 

consists of several representative terms and their term weights. Fig. 29 shows the profile of topic 

domain 53 in a small window. The listed terms represent the knowledge of the topic.  

 

Fig. 29: The GKF graph and knowledge referencing paths for a specific group 

In addition, the number on an arrow indicates the importance of a flow relation in this 

group’s topics. From the GKF graph, we observe that 6 topics, i.e., 4, 17, 19, 21, 27, and 29, can 

be referenced in parallel. That is, there is no specific order among the topics accessed by this 

group of workers. Moreover, the task-related knowledge may flow through 2 paths from the start 

vertex to the end vertex. In Fig. 29, the listed paths, which consist of several relevant topics and 

directed edges, are the knowledge referencing paths of this group. The paths with scores larger 

than a user-specified threshold are frequent referencing behavior patterns. The paths can be 

regarded as knowledge references for workers to share needed task knowledge. 

5.7.3 Discussion 

GKF mining by task-based groups has several advantages in a knowledge intensive 
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organization. A GKF represents the flow and delivery of knowledge when workers in the same 

group perform a task. It can be used to identify topics of interest, major referencing behavior 

patterns, and the long-term evolution of the group’s information needs; and it allows task 

knowledge to be circulated and delivered efficiently among workers. If a novice joins the group, 

the GKF can provide a reference for learning group-based knowledge. The frequent knowledge 

paths in a GKF help a worker learn task-related knowledge, overcome obstacles encountered in a 

new domain, and enhance his/her learning efficiency. Moreover, based on the GKF, a manager 

can determine who has task-related knowledge and who satisfies a task’s requirements, and then 

assign appropriate workers accordingly. In addition, through the GKF, an organization can 

realize the frequent referencing behavior and the information needs of a group of workers, and 

actively provide knowledge support for them. The GKF can also enhance organizational learning, 

as well as facilitate knowledge sharing and reuse in the context of collaboration and teamwork. 

In this work, we propose a recommendation framework based on the discovered knowledge 

flow for each knowledge worker, as described in Chapter 4. Such method analyzes workers’ 

referencing behavior and provides task-related documents to fulfill workers’ tasks. Because 

teamwork in an organization is common, we also develop a group-based knowledge flow mining 

algorithm that analyzes workers’ information needs from a group perspective and model the 

referencing behavior of a group as a knowledge graph. In our future work, we will apply the 

recommendation techniques on the group-based knowledge flow to provide knowledge support 

for workers in a teamwork environment.   
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Chapter 6. Hybrid Personalized and Group-based Methods 

In a knowledge intensive environment, a high degree of knowledge sharing can have a 

significant effect on the workers’ efficiency. Each worker accumulates knowledge when he/she 

executes a task, and that knowledge can be shared with and reused by other team members with 

similar information needs. In this paper, we propose personalized group-based recommendation 

methods to facilitate knowledge sharing among a group of workers. The method combines the 

KF-based group recommendation method and personalized methods to enhance the quality of 

document recommendation. The rationale behind the proposed model is that a group’s 

information needs may partially reflect an individual member’s information needs that cannot be 

inferred from his/her past document referencing behavior. In other words, the group’s knowledge 

can be used to satisfy the individual member’s needs. Thus, the group-based method can 

complement the personalized method. However, the group perspective may neglect the specific 

information needs of an individual, because it focuses on the information needs of the majority 

of the group’s members. To resolve this problem, our proposed hybrid recommendation methods 

combine the merits of the two approaches to improve the recommendation quality. The 

group-based method recommends documents from the perspective of the majority’s information 

needs, while the personalized methods recommend documents according to the specific needs of 

an individual. 

The proposed recommendation methods are comprised of three phases: 1) compiling 

individual knowledge flows (codified-level KFs and topic-level KFs); 2) grouping knowledge 

workers and generating group profiles; and 3) recommending documents to workers. 

The first phase involves three steps: document profiling, document clustering, and KF 

generation. To accomplish tasks, knowledge workers may need to access various documents, and 

those documents can reflect the workers’ preferences or requirements in different periods. We 

align the documents in a sequence, called a codified-level KF. Each document in the sequence is 

represented as an n-dimensional vector comprised of key terms in the document and their 

weights. Next, we cluster the documents into several topics based on their cosine similarity 

scores. To observe the evolution of information needs, we generate a topic-level KF as a topic 

sequence by mapping the documents in the codified-level KF into corresponding clusters (topics). 

We describe the process in detail in Section 3.1.  

In the second phase, we group similar knowledge workers into groups by using a KF 

similarity measure derived from the alignment similarity and aggregate profile similarity. The 

KF similarity score indicates whether the referencing behavior of two workers is similar. After 

grouping the workers, each group’s important codified knowledge can be elicited from the topics 

accessed by the group members. We compile group profiles to represent each group’s important 

knowledge. The process is described in detail in Section 4.2 and 6.1. 
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Fig. 30: Overview of the proposed recommendation methods 

In the last phase, we use the proposed personalized group-based recommendation methods, 

which consider both the group and personal perspectives, to recommend suitable documents to 

knowledge workers. The group-based approach derives a group-based score (preference) of a 

group, k, for a target document based on the topic-level KFs of the group’s members. Note that 

similar documents are grouped into clusters (topics), so topic-level KFs should provide a larger 

number of related documents to satisfy workers’ task needs than codified-level KFs. Thus, the 

group-based approach employs the topic-level KF to predict a group’s ratings on documents. In 

this work, we propose three recommendation methods, a hybrid of KF-based group 

recommendation and user-based CF (KFGR-UCF), a hybrid of KF-based group recommendation 

and item-based CF (KFGR-ICF), and a hybrid of KF-based group recommendation and 

content-based filtering (KFGR-CB). Further details are given in Section 6.2. 

6.1 Knowledge flow mining and extraction 

When performing a task in a knowledge-intensive and task-based environment, a worker 

usually requires a large amount of task-related knowledge to accomplish the task. By analyzing a 

worker’s referencing behavior for a specific task, the corresponding knowledge flow of the task 
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is derived by a knowledge flow extraction method. For a specific task, the method derives two 

kinds of KFs, a codified-level KF and a topic-level KF, to represent the worker’s information 

needs. Each worker has his/her own codified-level KF, which represents his/her accumulated 

knowledge for a specific task at the codified level.  

The topic-level KF, which is derived by clustering documents with similar content and 

access times in the codified-level KF, is represented by a topic sequence. Based on the order of 

documents in each worker’s codified-level KF, documents with similar content are grouped into 

clusters by using a hierarchical agglomerative clustering method with a time variant (HACT) 

algorithm. When clustering a series of time-ordered documents, i.e., the codified-level KF, the 

algorithm considers the documents’ contents as well as the times the documents were accessed.  

Initially, each document in the codified-level KF is regarded as a single topic. The HACT 

algorithm then iteratively merges topics until the number of topics is less than a pre-specified 

minimum number of topics. A time window, which defines the merging scope of the candidate 

topics, is moved from the first to the last topic in the topic-level KF to determine the number of 

merged candidates. In the merging process, the pair of candidates with maximum similarity is 

merged if neither of them has been merged with another candidate.  

We adopt the average linkage hierarchical clustering method [31-32] to group documents 

that have similar profiles and are within the same time window into clusters by using the cosine 

measure to calculate the similarity between the profiles of two documents. The average linkage 

method computes the similarity between two clusters Cr and Ct by  ,
i r j t

i j

d C d Cr t

1
simcos d d

N N  
   

[72]. The number of topics in the clustering result is not less than the pre-specified minimum 

number of topics and not greater than the pre-specified maximum number of topics. To obtain 

the best clustering result, the clustering quality is measured by Eq. (22) derived from Eq. (2). The 

difference between the two equations is that, in Eq. (22), the inter-cluster similarity of a topic Ci 

is obtained by averaging the pairwise similarity of all the documents in the preceding topic Ci-1 

and the succeeding topic Ci. After two topics have been merged, the clustering quality is 

estimated as follows: 

C ,

similarity ( , )1
CQ(C)

C similarity ( , )
ii i i

A i i

C d d C A i i

C C

d d 

  , where 
1 1i i iC C C    and i i j jd d . (22) 

Then, the clustering result with the best quality is selected to derive the topic-level KF. Note 

that a cluster represents a topic set and has a topic profile (derived from the document cluster), 

which describes the features of the topic. Since the codified-level KF is the basis of the 

topic-level KF, the knowledge in the latter is an abstraction of that in the former, and indicates 

how knowledge flows between various topics.  

Moreover, the topics in the topic-level KFs of all knowledge workers are reorganized. 

Topics may be reassigned and merged with other topics based on the cosine similarity scores of 
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the topic profiles. Then, the final document set of each topic is derived and each topic profile is 

updated. Finally, the original topic-level KF of each worker is adjusted with the topic 

reassignment results.  

6.1.1 Building group profiles 

The members of a group have similar KFs because their information needs are similar; and 

they usually need to refer to related documents for a specific topic. Thus, the group-based 

approach derives the group-based score (preference) of a group k for a target document based on 

the topic-level KFs of the group’s members. Since similar documents are grouped into clusters 

(topics), a larger number of related documents that may satisfy workers’ task needs can be 

recommended by considering topic-level KFs rather than codified-level KFs. We identify the 

important topics that the members accessed and compute their weights based on each member’s 

KF (Eq. (23)). Let 
,k xGTR  be group k’s accumulated rating for topic x, which indicates the 

weight of topic x in group k. In addition, let uT  be the set of topics in the topic-level KF of user 

u, and let kU  be the set of users in group k. 
kk u U uGTS T  is the set of topics accessed by 

members of group k. 

,

,
k

u xu U

k x

k

PTR
GTR

U





, 
(23) 

where kU  is the number of workers in the group. 
,u xPTR  is the personal rating of worker 

u for topic x , indicating the importance of topic  to worker . The rating is derived by Eq. 

(24) based on u’s topic-level knowledge flow, assuming that topic ty  is the topic accessed by u 

at time index t. 
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where , tu yTR is the average rating of worker  for topic
 
yt; , tu yTR  is derived by averaging 

the ratings of worker u for documents belonging to topic yt. /
tx yTPf TPf  is the topic profile of 

topic x / topic yt described in Sub-section 3.2.1; and cos ( , )
tx ysim TPf TPf  is the profile similarity 

between topic and topic yt measured by the cosine formula. In addition, ,

,
t

now

u y

t ttw  is the time 

weight of topic yt accessed by worker u at time t. It is defined as ,

,
t

now

u y

t t

now

t St
tw

t St





, where  St is 

the start time of the worker’s KF and tnow 
is the time the worker accessed the most recent topic in 

his/her KF. 

Based on Eq. (23), we can derive the group’s ratings for topics based on the members’ 

personal ratings for those topics. A higher GTRk,x score means that the topic x is more important 

to group k.  

x u

u

x
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6.2  Recommendation phase 

This phase combines the KF-based group recommendation method (KFGR) with the 

personalized methods to generate recommendation lists for workers. In the following 

sub-sections, we discuss KFGR and three hybrid methods: the KFGR-UCF method, the 

KFGR-ICF method, and the KFGR-CB method. 

6.2.1 The KFGR method 

Some topics may be of interest or important to the majority of the group’s members. Since 

documents related to those topics will probably satisfy the workers’ information needs, the 

proposed group-based approach considers the importance of the topics accessed by group 

members. Moreover, group members may access and rate the target documents, so we also take 

the members’ ratings into account. Let GDRk,i be the predicted group rating of group k for a 

target document i, as shown in Eq. (25). To derive the rating, we combine the group members’ 

ratings for document i and the weighted sum of group k’s ratings on topics by using the 

similarity measures of the topics to the target document as the weights. 

,
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
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, (25) 

where GTRk,x is the predicted group rating of group k for topic x measured by Eq. (23); TPfx 

is the profile (term vector) of topic x; DPfi is the profile (term vector) of document i; GTSk is the 

topic set of group k; ,k iGr  is the weighted average group rating of group k for document i 

derived by considering the time factor. Awk,i is the activity weighting of group k for document i ; 

and  is a parameter used to adjust the relative importance of two kinds of predicted ratings. 

,k iGr  is derived from the personal ratings of group k’s members for document i, as shown in 

Eq. (26). 
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where ru,i is worker u’s rating for document i, and ,

,

u i

t Ttw  is the time weight of the rating at 

time t. Awk,i is defined as 1

1k

1-
M 

  , where 
kM  is the number of group members that rated 

the target document i. The value of Awk,i will be higher if more members rate i, implying that 

,k iGr  is reliable for representing group k’s rating on document i; thus, a higher activity weighting 

(Awk,i) is assigned to ,k iGr .  

Here, we consider the ratings of group members who have rated the target document and the 

predicted group rating for the document. The latter is derived as the weighted sum of group k’s 
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ratings for topics in GTSk by using the cosine similarity between the profiles of the target 

document and topics as the weights. To obtain the best predicted rating we conduct an 

experiment in which we systematically adjust the value of β in increments of 0.1, and choose the 

optimal value (i.e., the lowest MAE value) as the best setting.  

6.2.2 The hybrid KFGR-UCF method 

 

Fig. 31: Flowchart of the hybrid KFGR-UCF method 

In this section, we linearly combine the KFGR method with user-based CF (UCF) to 

recommend documents to a target worker. The flowchart of the process is shown in Fig. 31. The 

recommendation list is generated by combining the predicted ratings of KFGR and UCF. As 

mentioned earlier, KFGR uses the group’s information needs based on the members’ KFs to 

make recommendations. It recommends a group’s preferred documents to a target worker, and 

considers the group members’ preferences (i.e. ratings on target documents) as well as the 

group’s accumulated ratings on topics. Meanwhile, the UCF method recommends documents to 

a target worker based the ratings of workers with similar information needs. The similarity 

between workers is determined by calculating Pearson’s correlation coefficient based on the 

workers’ ratings for documents. Thus, the predicted rating of a document is obtained from 

neighbors who have similar preferences to the target worker and whose similarity scores are 

higher than a threshold θ, as shown in Eq. (4). To improve the performance of the KFGR and 

UCF recommendation methods, we combine them linearly. Based on the hybrid method, the 

predicted rating of worker a for document i, PDRa,i, is derived by Eq. (27). 
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where GDRk,i is the predicted rating of group k for document i based on Eq. (25); Psim(Ra, 

Ru) is Pearson’s correlation coefficient between user a and user u measured by their rating 

vectors Ra and Ru; ar  and 
ur  are the average ratings of worker a and worker u respectively; ru,i 

is the rating given by worker u for document i; and α is a parameter used to adjust the weight 

between group-based prediction and user-based CF prediction. Based on the predicted ratings 

derived by Eq. (27), documents with high ratings are used to compile a recommendation list. 

Then, the top-N documents are recommended to the target worker. 

6.2.3 The hybrid KFGR-ICF method 

The hybrid KFGR-ICF method linearly combines the KFGR method with the item-based 

CF (ICF) method to recommend documents to a target worker. The recommendation list is 

generated by combining the predicted ratings of the two methods, i.e., KFGR and ICF. The 

item-based CF method [60] described in Section 2.6 recommends documents by identifying 

documents that are similar to a target document. The similar documents are selected based on 

their adjusted cosine similarity scores, derived by Eq. (6). Then, the predicted rating is obtained 

by taking the weighted average of the target worker’s ratings for the similar documents, as 

shown in Eq. (5). The ICF method does not consider a group’s information needs, so it may 

neglect some important documents needed by the group that may also be needed by the target 

worker. To resolve the problem, we propose the hybrid KFGR-ICF method, which combines the 

KFGR method and the item-based CF method to recommend suitable documents to the target 

worker. The predicted rating of worker a for document i, PDRa,i, is derived by Eq. (28). 
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where ADsim(Di, Dj) is the adjusted cosine similarity (Eq. (6)) between document i and 

document j measured by their respective rating vectors Di and Di; ra,j is the rating of document j 

given by worker a; ASDSi is the similar document set of document i based on the adjusted cosine 

similarities of the documents; and α is a parameter used to adjust the weights of the KFGR 

method and the ICF method. Based on the predicted rating derived by Eq. (28), documents with 

high predicted ratings are used to compile a recommendation list. Then, the top-N documents are 

recommended to the target worker.  

6.2.4 The hybrid KFGR-CB method 

The KFGR-CB recommends documents to a target worker by linearly combining two 

predicted ratings. One is obtained by content-based filtering (CB), and the other by the KFGR 
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method. The CB method recommends documents by considering the content (term vectors) of 

each document and identifies similar documents by comparing them with documents previously 

referenced by the target worker. Then, the CB method predicts the rating of a document based on 

the ratings that the worker gave the similar documents. Because the CB method does not 

consider a group’s information needs, it may ignore important knowledge required by the group. 

The proposed hybrid KFGR-CB method recommends documents to a target worker by 

integrating the traditional content-based method with the KFGR method as shown in Eq. (29). 
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where PDRa,i is the predicted rating of worker a for document i; cos ( , )i jsim DPf DPf  is the 

cosine similarity between document profile DPfi and document profile DPfi; ra,j is the rating of 

document j given by worker a; SDS(i) is the similar document set of document i based on the 

cosine similarity scores of the documents; and α is a parameter used to adjust the combined 

weight of the group-based method and the content-based method. Based on the predicted ratings 

derived by Eq. (29), documents with high predicted ratings are used to compile a 

recommendation list. Then, the top-N documents are recommended to the target worker. 

6.3 Experiments and Evaluations 

A number of experiments were conducted to evaluate the proposed hybrid methods. We 

discuss the experiment setup and the results in Sections 6.3.1 and 6.3.2 respectively. 

6.3.1 Experiment setup 

We collected the data for the experiments from a laboratory in a research institute. The 

dataset is comprised of over 600 documents that had been accessed by about 60 workers. It also 

includes usage logs, which provide information about the workers’ access behavior, i.e., 

browsing, rating, downloading, and uploading documents. The log data is used to analyze the 

preferences of each user. In the laboratory environment, each worker has to complete a research 

task during a set time period; thus, he/she needs to access task-related documents (research 

papers). We can discover the workers’ knowledge flows from their usage logs. The ratings given 

to documents on a scale of 1 to 5 indicate their relevance and usefulness to the worker’s task. A 

high rating, i.e., 4 or 5, indicates the document is perceived as relevant or useful, while a low 

rating, i.e., 1 or 2, indicates the document is deemed not relevant. In addition, browsing behavior 

and uploading/downloading behavior are given default ratings (3 and 4 respectively) to indicate a 

user’s preference for a document. Since it is difficult to obtain such a data set, using the real 

application domain restricts the size of the dataset used in our experiments. 

We divide the data set into two parts: 70% for training and 30% for testing. The training 
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data is used to analyze the preferences (information needs) of each user and recommend 

documents accordingly. The test data is used to evaluate the performance of the proposed 

methods. 

To measure the recommendation quality of the methods, we use the Mean Absolute Error 

(MAE), which compares the average absolute deviation of the predicted rating and the true rating. 

The lower the MAE score, the better the accuracy of the recommendation method. The MAE is 

derived by Eq. (19).  

6.3.2 Experiment results 

In the following sub-sections, we explain how we determine the parameters used in the 

experiments, and compare the performance of the proposed methods and the traditional methods.  

6.3.2.1  The analysis of β 

Based on Eq. (25), we compute the predicted rating of a document by using the KFGR 

method, which combines two predicted ratings derived from the group members’ ratings for the 

target document and the group’s ratings for topics that have been accessed by group members. 

The parameter β is used to adjust the weight of the prediction based on members’ ratings and the 

prediction based on the group’s ratings for topics. To obtain the best MAE score, we 

systematically adjust the values of β in increments of 0.1. Fig. 32 shows the MAE under different 

β values. 

 

Fig. 32: The MAE values under different β for KFGR 

We observe that the lowest MAE occurs when β is 0.7. The score indicates that the relative 

importance of members’ ratings is 0.7 for the target document and 0.3 for the group’s ratings for 

topics. When β is 0, the predicted rating is derived from the group’s ratings for topics. However, 
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when β is 1, the predicted rating is derived by using the activity weighting of group k for the 

target document as the weight to combine the group members’ ratings for the target document 

and the weighted group’s ratings for the topics. The optimal value (i.e., the lowest MAE value) is 

taken as the best setting. That is, we set β at 0.7 in the KFGR method to predict the relevance of 

a document. 

6.3.2.2  The KFGR with time factor vs. without time factor 

 

Fig. 33: The MAE values under different β for KFGR-NT 

The proposed KFGR method considers that the time factor reflects the relative importance 

of users’ information needs over time, as shown in Eq. (24) and Eq. (26). In this experiment, we 

compare the performances of KFGR and KFGR without the time factor (KFGR-NT). Similar to 

the KFGR method, we adjust the value of β in increments of 0.1. The MAE scores under 

different β values are shown in Fig. 33. The best MAE score is derived when β is 0.9. Therefore, 

we set β at 0.9 for the KFGR-NT method.  

In Fig. 34, we compare the MAE scores of KFGR and KFGR-NT. Clearly, KFGR, which 

considers the time factor, outperforms KFGR-NT. In our methods, the document accessed most 

recently is the most important document. That is, the higher the time weight of a document, the 

greater the importance assigned to it. Therefore, the KFGR method is more capable of satisfying 

users’ information needs. In the following experiments, we consider the time factor in KFGR, 

and assess the performance of the proposed hybrid methods. 
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Fig. 34: Comparison of KFGR and KFGR-NT 

6.3.2.3  Evaluation of the recommendation quality under different numbers of groups  

Users are clustered into groups based on their similarity. Since the number of groups may 

affect the recommendation quality, in this experiment, we evaluate the effect of different 

numbers of groups. The recommendation results for six groups and two groups are shown in Fig. 

35. The MAE of KFGR for six groups is 0.8163; and for two groups, it is 0.9710. KFGR 

performs better under six groups than under two groups. The average similarity between 

members in a group is 0.0758 for six groups and 0.0614 for two groups. In other words, the 

members of a group are more similar under six groups than the members under two groups. This 

finding implies that the preferences of the members of the six groups are more consistent than 

those of the members of the two groups. Thus, the group preferences derived under six user 

groups is more capable of reflecting the preferences of individual members. Accordingly, KFGR 

performs better under six groups than under two groups.  

Interestingly, KFGR under six groups performs better than the three traditional methods 

(i.e., UCF, ICF, CB); however, under two groups, the three traditional methods outperform 

KFGR. In the six groups, the members are quite similar and share some preferences that can be 

predicted successfully based on the group’s preferences. Thus, the KFGR performs better than 

three traditional methods under six groups. In the two user groups, the members may be 

dissimilar and their preferences may be inconsistent, so the group preferences may not reflect the 

preferences of the individual members. As a result, the three traditional methods perform better 

than KFGR under two groups.  

The experiment results demonstrate that clustering users into different numbers of groups 

does affect the recommendation performance. The group preferences derived from user groups 

with appropriate clustering can reflect some common preferences of group members; therefore, 
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they can be used to predict individual members’ preferences effectively. However, the group 

preferences may not be effective in reflecting the preferences of individual members if the group 

members’ preferences vary due to the inclusion of dissimilar users in the group. Based on this 

result, we cluster knowledge workers into six groups in the rest of the experiments. 

 

Fig. 35: Comparison of KFGR and the traditional methods under different numbers of groups 
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Fig. 36. The optimal MAE value is generated by setting 
KFGR UCF 

 at 0.7. The importance 

weight of KFGR is 0.7, while that of UCF is 0.3. That is, the KFGR method is more important 

than the UCF method. In addition, to determine how much the KFGR-UCF method improves the 

recommendation result, we set 
KFGR UCF 

 at 0. At that setting, the predicted rating is derived 

entirely by the UCF method; however, when 
KFGR UCF 

 is 1, the predicted rating is derived 

entirely by the KFGR method. The bar chart in Fig. 37 compares the performance of UCF and 

KFGR-UCF. Since KFGR-UCF clearly outperforms UCF, we conclude that the KFGR method 

improves the recommendation quality. More specifically, KFGR is capable of predicting the 

information needs of individual users from a group’s perspective. 

 

Fig. 37: Comparison of UCF and KFGR-UCF 

6.3.2.5  Evaluation of the hybrid KFGR-ICF method 

 

Fig. 38: MAE under different 
KFGR ICF 

 settings 
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indicate that the smallest value of MAE occurs when 
KFGR ICF 

 is 0.5, which means the 

importance weight of both KFGR and ICF is 0.5. Since the importance weight of the two 

methods is the same when predicting a document, we set 
KFGR ICF 

 at 0.5 to predict a document 

in the KFGR-ICF method. To compare the performance of KFGR-ICF and ICF, we set 
KFGR ICF 

 

at 0; that is, the predicted rating is derived entirely by the ICF method. The results are shown in 

the bar chart in Fig. 39. Clearly, the KFGR-ICF method outperforms the ICF method. This may 

be because KFGR considers the preferences of the majority of group members, and they reflect 

the long-term information needs of the group. 

 

Fig. 39: Comparison of ICF and KFGR-ICF 

6.3.2.6  Evaluation of the hybrid KFGR-CB method 

 

Fig. 40: MAE under different KFGR CB   settings 

This experiment evaluates the performance of CB and KFGR-CB. We determine the value 

of 
KFGR CB 

 in the range 0 to 1, which represents the relative importance of the KFGR and CB 

0.8222 

0.7886 

0.76 

0.78 

0.80 

0.82 

0.84 

ICF KFGR-ICF

M
A

E

Methods

0.9326 

0.7843 

0.8163 

0.7000 

0.7500 

0.8000 

0.8500 

0.9000 

0.9500 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
A

E

KFGR-CB

KFGR-CB



77 

methods. The larger the value of 
KFGR CB 

, the greater will be the importance of the KFGR 

method. Once again, we adjust the value of 
KFGR CB 

 by increasing it in increments of 0.1, as 

shown in Fig. 40. The line graph shows that the lowest value of MAE is 0.7843 when 
KFGR CB 

 

is 0.7. The result indicates the KFGR method is more important than the CB method when 

predicting the rating of a document in the KFGR-CB method. Note that when 
KFGR CB 

 is 0, the 

predicted rating of a document is derived entirely by the CB method; however, when 
KFGR CB 

 

is 1, the rating is derived entirely by the KFGR method. To evaluate the performance of the two 

methods, we set 
KFGR CB 

 at 0 and 0.7 to derive the predicted rating of a document by the CB 

method and the KFGR-CB method respectively. The bar chart in Fig. 41 shows that the 

KFGR-CB outperforms the CB method. In other words, the KFGR method improves the 

recommendation quality. The reason is the same as under the KFGR-UCF and KFGR-ICF 

methods, i.e., the KFGR method considers the group’s preferences and the time factor. Hence, 

the resulting recommendations are more likely to match the information needs of users than 

those derived by traditional methods. 

 

Fig. 41: Comparison of the CB and KFGR-CB methods 

6.3.2.7  Comparison of all methods 
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recommendation quality. The KFGR-UCF method yields the best quality recommendations, even 

though UCF is not the best traditional recommendation method according to the experiment 

results. KFGR improves the recommendation performance of the other hybrid methods, and they 

perform better than the traditional methods. The KFGR method focuses on users’ long-term 

information needs, i.e., users’ topic-level KFs. It also considers the relative importance of users’ 

information needs for documents and topics over time. Thus, compared to the traditional 

methods, it is more capable of predicting users’ information needs. 

 

Fig. 42: Comparison of all methods 
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Chapter 7. Conclusions and Future works 

7.1 Summary 

Knowledge is both abstract and dynamic. A worker’s knowledge flow (KF) comprises a 

great deal of working knowledge that is difficult to acquire from an organizational knowledge 

base. In this dissertation, we have considered how to identify the knowledge flow of knowledge 

workers, and how to provide knowledge support based on KFs effectively. To the best of our 

knowledge, no existing approach focuses on providing relevant knowledge proactively based on 

KFs. 

We propose KF-based recommendation methods, namely hybrid PCF-KSR, KCF-KSR and 

ICF-KSR methods, to proactively recommend codified knowledge for knowledge workers and 

enhance the quality of recommendations. These methods use KF-based sequential rule (KSR) 

method to recommend topics by considering workers’ knowledge referencing behavior; and then 

adjust the predicted rating of documents belonging to the recommended topic. Moreover, they 

consider workers’ preferences for codified knowledge, as well as their knowledge referencing 

behavior to predict topics of interest and recommend task-related knowledge. The collaborative 

filtering (CF) method, which is widely used to predict a target worker’s preferences based on the 

opinions of similar workers, only considers workers’ preferences for codified knowledge, but it 

neglects workers’ referencing behavior for knowledge. 

In the experiments, we evaluate the quality of recommendations derived by the proposed 

methods under various parameters and compare it with that of the traditional 

user-based/item-based CF method. The experiment results show that the proposed methods 

improve the quality of document recommendation and outperform the traditional CF methods. 

Additionally, using KF mining and sequential rule mining techniques enhances the performance 

of recommendation methods and increases the accuracy of recommendations. The KF-based 

recommendation methods provide knowledge support adaptively based on the referencing 

behavior of workers with similar KFs, and also facilitate knowledge sharing among such 

workers.  

Furthermore, we have proposed the group-based KF mining method to identify the KFs of 

groups of workers. Such groups may be interest groups or communities, where the workers have 

very similar KFs. A group may comprise many workers with similar KFs, and a worker may join 

many groups simultaneously according to his/her information needs. Even though workers are in 

the same group, their KFs will differ in some respects. To discover the KF of a group of workers, 

we design algorithms that can analyze the workers information needs in their KFs to generate a 

GKF model. The model is then used to represent the information needs, the direction of 

knowledge flows, and possible paths for referencing task knowledge for a group of workers. 
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Based on the model, we can identify representative paths as common behavior patterns for the 

group. Thus, the patterns can be regarded as learning references to help new members of a group. 

Finally, we implement a prototype system to demonstrate the efficacy of the proposed algorithms. 

Our system not only derives the KF for a group of workers, but also visualizes the mining results 

for further analysis.  

Finally, we have proposed three hybrid methods, namely, the hybrid KFGR-UCF, the 

hybrid KFGR-ICF, and the hybrid KFGR-CB methods, to enhance the quality of 

recommendations. The methods recommend documents from two perspectives, i.e., a group 

perspective and a personal perspective. From the personal perspective, some documents are only 

relevant to a worker’s specific information needs, i.e., they are not related to the group’s 

information needs. A member’s personal information needs are derived from his/her previous 

referencing behavior. From the group perspective, there are some documents that most group 

members consider relevant. The group’s information needs may partially reflect an individual 

member’s information needs that cannot be inferred from his/her past referencing behavior; 

hence, the group’s knowledge can complement the individual member’s knowledge. In this work, 

we take the group perspective into consideration to offset the drawback of the personal 

perspective. However, the group perspective may neglect the information needs of an individual 

because it focuses on the needs of the majority of the group’s members. Since the group-based 

method and the personalized method have distinct advantages, we combined them to exploit their 

respective merits. In addition, the proposed group-based approach is based on knowledge flows. 

Our experiment results show that the hybrid methods certainly improve the recommendation 

quality. Specifically, combining the KF-based group recommendation approach with a traditional 

method yields a lower MAE value and enhances the quality of recommendations.  

7.2 Future Works 

In our current work, a KF is simply regarded as a set of topics/codified knowledge objects 

arranged in a time sequence. However, a KF may have a complicated order structure with 

AND/OR, JOIN and SPLIT operations. In our future work, we will investigate a complex KF 

mining technique to model workers’ KFs with an order structure that includes such operations. 

Moreover, the discovered topic is regarded as an abstraction of topic-related documents. 

Auto-summarization techniques [54, 58] can be applied to extract the theme of a topic by 

summarizing the documents’ contents. In a future work, we will investigate the use of such 

techniques to derive knowledge flows based on theme information. In addition, the domain 

restricted the sample size of the data and the number of participants in the experiments, since it is 

difficult to obtain a dataset that contains information that can be used for knowledge flow mining. 

We will evaluate the proposed approach on other application domains involving larger numbers 

of workers, tasks and documents. Moreover, the method of generating topic subsequences for 

identifying the target worker’s knowledge referencing behavior is computationally expensive, 
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especially for the large datasets. A more efficient method will be investigated in the future.  

Additionally, we will develop a recommendation method based on the GKF, so that workers 

can cooperate and share their knowledge with other group members to accomplish a task. 

Moreover, different working groups in an organization may provide knowledge support for one 

another. To facilitate knowledge sharing in a group or among groups, we will investigate 

recommendation methods that provide task knowledge to workers and groups proactively. The 

effectiveness of a recommendation method depends to a large extent on how much workers trust 

one another. This factor is important because the level of trust may determine whether or not a 

worker is willing to share knowledge with others. Through group recommendation methods, 

task-related knowledge can be shared effectively to enhance the work efficiency of all 

knowledge workers. 

Moreover, we will consider the degree of trust and the consistency of opinions among 

workers in a group. The members of a group may have different levels of importance in 

representing the group’s task-needs; for example, the opinions of experienced workers should be 

more important and trustworthy than those of new workers. In addition, we will build a group KF 

to represent the evolution of a group’s information needs and recommend documents based on 

the group KF. 
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