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(二)中、英文摘要及關鍵詞

為邁向原子尺度磁系統元件應用的道路，我們與 IBM 矽谷研究中心的掃描穿隧顯微鏡

實驗室合作，在特別的表面建造磁原子結構。該表面是在銅(100)上覆蓋單層氮化銅。此獨

一設計使吸附原子的自旋免受傳導電子的遮蔽，又容許足夠的穿隧電流從掃描探針通到表

面來探測自旋激發，並更進一步讓探針對個別原子進行建構、探測與改造。為了製成具有

較強磁性的表面原子尺度結構，以下有三個重要課題：計算並調控自旋間的耦合、探索單

一原子自旋的異向性、自旋的耦合與異向性之相互影響。第一個課題關係到大磁化量原子

尺度結構的製成，該製成乃藉由將上述表面建造的原子自旋進行鐵磁耦合。第二者能藉由

鎖定原子自旋的方向來幫助建構磁儲存位元。最後是進一步於原子尺度發展出巨大磁異向

性。研究此一新穎磁系統的方法是相當性先進的密度汎函理論搭配擴增平面波法。我們首

先將尋找具有鐵磁耦合的原子自旋系統並從中學習如何藉由不同吸附磁原子與排列幾何

來改變耦合強度，我們預期會找到數個合適的原子與排列幾何，並用計算這些不同系統的

自旋耦合及其他磁性特質。我們也將計算不同吸附磁原子的自旋異向性，並以具有 f 軌域

者為優先。我們也將研究不同軌道角動量對自旋異向性的影響。把數個具有自旋異向性的

原子耦合成為較大的量子自旋結構，將有助於在原子尺度建構出巨大磁異向性。我們將會

在表面放置同時具有自旋耦合與自旋異向性的原子，並研究這兩個效應在共存時如何相互

影響。
關鍵詞：掃描穿隧顯微鏡、自旋耦合、自旋異向性、第一原理、密度汎函理論。

We collaborated with the STM Lab at IBM Almaden Research Center in engineering magnetic
atoms on a specially designed surface, an insulating CuN monolayer on top of the Cu(100)
surface. This unique design provides the opportunity to preserve the spins of magnetic adatoms
from being screened by the underlying conduction electrons while at the same time allowing
enough tunneling current from an STM tip to probe the spin excitations. Moreover, the magnetic
atoms on this surface can be constructed, probed, and manipulated atom-by-atom. In order to
fabricate surface-embedded atomic-scale structures with strong magnetism, there are three
important topics: How strong is the coupling between two spins on this surface and how can the
coupling strength be tuned? What is the detailed structure of the anisotropy of a single atomic
spin and how can one possibly control such anisotropy? What is the interplay between the spin
coupling and anisotropy? The first topic is related to fabricating of atomic-scale structures with a
large spin on a surface by coupling those atomic spins ferromagnetically. The second helps
construct magnetic storage bits by aligning individual atomic spins. The last can enable further
development of giant magnetic anisotropy at the atomic scale. DFT in the FLAPW basis will be
used to study the magnetic properties of such novel systems. We will first search for magnetic
adatoms that exhibit ferromagnetic coupling between their spins by changing geometries. The
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magnetic anisotropy is responsible for the orientation of spins. We will also calculate spin
anisotropy of various different magnetic adatoms on the same surface, presumably magnetic
atoms with f orbitals. We will place on the CuN surface the magnetic atoms that exhibit both spin
coupling and anisotropy. The interplay of these two effects upon their coexistence in engineered
spin systems will be studied.

Keywords: STM, atomic spin coupling, spin anisotropy, first-principles, density functional
theory.
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(三)報告內容：

1. 前言 2. 研究目的 3. 文獻探討

Magnetism is becoming very important area in new technology in industry primarily because of data
storage. Hard drives and video-audio tapes are the two most familiar types of magnetic-storage media in our
daily lives. Magnetism also surprisingly is being used now in computation. There is a recent paper at Science
309, 2180 (2005) that demonstrates how spins in quantum dots are coupled to form qbits (Fig. 1 left).
Moreover, one can also perform classical computation with magnetism: as shown in another paper Science
311, 205 (2006), several small lithographically fabricated ferromagnetic islands are coupled to perform logical
operation (Fig. 1 right). Magnetism is also very interesting from both physics and

Figure 1: The left figure shows a double quantum dot acting as two coherent spin states. The system allows state preparation,

coherent manipulation, and projective readout, and forms a long-lasting qubit. The right figure shows three magnets

(red arrows), with the central one to be antiferromagnetic and the other two ferromagnetic, form logical gates

according to their resulting magnetization directions due to a horizontal magnetic field.

chemistry points of view. Physicists have been able to make a set of lithographically fabricated ferromagnetic
islands in a regular array, where the array is arranged such that its Hamiltonian is the same as the spin ice.
Spin ice has a very degenerate ground state, and allows all sorts of interesting magnetic quantum properties.
The advantage of this vs. the standard bulk- material people use to study spin ice is that this is fabricated by
hand. Chemists can also couple a small number of atomic spins together in various structures, the well-known
molecular magnets. The stereotypical molecular magnet is the Mn 4- acetate that has 12 Mn atoms in a large
structure (see Fig. 2), first reported at Acta Crystallogr. Soc. B 36, 2042 (1980). The structure of a molecular
magnet can be controlled such that it has rather large net spin. In summary, there are two methodologies of
making nanoscale magnets: the top-down approach (spin ice) where one sprinkles a lot of atoms down to the
surface. This method is very good for manipulating structures, but unfortunately it has not reached
atomic-scale control. On the other hand if one uses the bottom-up approach like in chemistry, there is
atomic-scale control, but the structure cannot be easily manipulated after being built. There is a recent
development by the low-temperature STM group at IBM Almaden Research Center that applies a technique
somewhere in between the spin-ice and molecular-magnet approaches in making nanoscale magnets. This
group has been pioneering in manipulating individual atoms on material surfaces. The earliest work was being
able to spell out the letters I-B-M with individual Xe atoms in 1989, perhaps the most important landmark of
nanoscience. The continuous works, Quantum Corral and Quantum Mirage, have drawn so much attention of
the scientific society and were published at Science 262, 218 (1993) and Nature 403, 512 (2000) respectively.
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Figure 2: The left is a lithographically fabricated spin ice. The right is the ball-and-stick model of Mn12-ac, with methyl

groups replaced for clarity by hydrogen atoms (large balls are Mn atoms).

Figure 3: Spelling out the letters "I-B-M" using 35 Xe atoms on a Ni (110) surface.

Figure 4: The left shows an STM image of direct observation of standing-wave patterns in the local density of states of the

Cu(111) surface, called Quantum Corral. The circular corral of radius 71.3Å was constructed out of 48 Fe adatoms. The

right shows that an elliptic corral projects the electronic states of the surface electrons surrounding the focal cobalt atom to

the other focus of the ellipse that has no magnetic atom, called Quantum Mirage.

Their advance in atom manipulation on surfaces has recently made it possible to probe magnetism of
individual atoms, as well as demonstrated that STM can build chains of Mn atoms and measure magnetic
excitation of such chains using Inelastic Tunneling Spectroscopy (IETS), reported at Science 312, 1021
(2006). This new technique can be used to explore the limits of magnetic data storage, by engineering the
energy required to flip the collective orientation of a small number of magnetically coupled atoms. Physics
Today calls this achievement as “a proof-of principle demonstration that sets the stage for creating
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Figure 5: The left shows the perspective rendering of a chain of 10 Mn atoms. The right shows the schematic of the

antiferromagnetically coupled atomic spins described by the Heisenberg model.

designer magnets, from Heisenberg spin chains to exotic spin ices”. An applied-physics perspective in the
Science Magazine comments,“Understanding magnetic ordering at the atomicscale is essential for spintronic
technology. A linear chain of manganese atoms has been created for studying one-dimensional systems.”
Nature Materials claims that the study“has shown that it is possible to assemble quantum spin structures on a
surface, but they also provided a method of reading and modifying their spin states to investigate the most
fundamental magnetic interactions in matter.”In this purely experimental study, there are several questions
that are not answered: Is the spin coupling mediated by the underlying conduction electrons or the N atoms?
How does the absorption of the Mn atoms affect the chemical properties of the substrate, e.g. the inter-atomic
polarity? Can one find ferromagnetic coupling in a similar system (Mn chains are antiferromagnetic)?
Answering these questions will help us engineer further on similar spin-chain systems, which has a strong
potential to eventually lead to atomic-scale magnetic devices. I have also collaborated with the same STM
group in probing the magnetic anisotropy of a single atom on a surface. This fundamental measurement has
importanttechnological consequences because it determines an atom’s ability to store information. Previously,
nobody had been able to measure the magnetic anisotropy of a single atom. This pioneering work on
atomic-scale magnetic anisotropy was published at Science 317, 1199 (2007). With further work it may be
possible to build structures consisting of small clusters of atoms, or even individual atoms that could reliably
store magnetic information. Such a storage capability would enable nearly 30,000 feature length movies or the
entire contents of YouTube–millions of videos estimated to be more than 1,000 trillion bits of data–to fit in
a device the size of an iPod. Perhaps more importantly, the breakthrough could lead to new kinds of structures
and devices that are so small they could be applied to entire new fields and disciplines beyond traditional
computing. This work has drawn attention of the general public, and received news coverage widely. NBC TV
news, August 30, 2007, “IBM is using this microscope to putatoms to work storing our data. These are
building blocks to increase storage capacity by a factor of 1,000 ... then you would need 1,000 less times
fewer energy saving energy and room all in a very small package as real as you might imagine. IBM and other
companies are working to head off what may be an impending limit to hard-drive capacities. The company's
technique might help break through that limit, by suggesting a way to store information in single atoms.”
Science Daily, "major progress in identifying a property called magnetic anisotropy, which determines an
atom's ability to store information. That research, said IBM, could lead to storage of as many as 30,000
movies in a device the size of an iPod." Physics World, “Physicists at IBM have developeda technique that
could allow data to be stored in bitscontaining as little as one magnetic atom.”
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4. 研究方法

This project is a pioneering study of computational study in STM engineered atomic spins. Previous study of
their inter-spin coupling using Mn has found the coupling being antiferromagnetic. However, only
ferromagnetic coupling between atomic spins is suitable to build a cluster with a large total spin on surfaces,
and such a large spin may eventually lead to spin device application. A straightforward trial for getting
ferromagnetic coupling is to place Gd atoms on the CuN surface because Gd carries the largest atomic spin
among all lathanoid atoms. Previous study of the anisotropy of a single Fe spin has found an anisotropy
energy of about 1meV, which gives rise to tolerance of thermal energy of order 0.1meV=10K. For device
applications of reasonable cooling cost, tolerance of thermal energy is expected to be 1~3meV=100~300K
(liquid nitrogen to room temperature), which requires anisotropy energy of 10~30meV. Further enhancement
of the anisotropy energy will bring such a single anisotropic spin closer to the real application. The lathanoid
atoms Tb and Dy are good candidates of obtaining larger anisotropy energy on the CuN surface because of
their relatively large L and S compared to Fe. Another way to enhance the anisotropy is to couple several
anisotropic spins together. This approach requires preliminary study on the interplay between the spin
coupling and will enable further development of giant magnetic anisotropy at the atomic scale.
During the three years, we will perform first-principles calculation of the electronic structures of magnetic
atoms on CuN surfaces using Density Functional theory (DFT) in the Generalized Gradient Approximation
(GGA) in the Full-potential Linearized Augmented Plane Wave (FLAPW) basis. Electronic-structure
calculation of atoms and molecules, in particular Hartree-Fock theory and its descendants, was based on the
complicated many-electron wavefunction. DFT’s main objective is to replace the many-body electronic
wavefunction (3N degrees of freedom for N electrons) with the electronic density (3 degrees of freedom in the
space) as the basic quantity. Within the framework of the Kohn-Sham equation, the many-body interaction is
reduced to an effective potential that includes the effects of the electron-electron Coulomb repulsion and the
Pauli exclusion principles, e.g. the exchange and correlation interactions. It is difficult to find an exact form of
the exchange-correlation potential. The simplest approximation is the local-density approximation (LDA),
which is based upon exact exchange energy for a uniform electron gas. Most modern DFT codes now use
more advanced approximations to improve LDA’s accuracy. LDA uses the exchange-correlation energy for the
uniform electron gas at every point in the system regardless of the inhomogeneity of the real charge density.
This inhomogeneity can be expressed, to its lowest order, in terms of the gradient of the total charge density,
well-known as GGA. For systems where the charge density is slowly varying, GGA has proved to improve
LDA. Once the form of the exchange-correlation functional is determined, one needs a basis set to solve the
Kohn-Sham equation. The most oscillating part of the electron wave function in a crystal is located close to
the nucleus, but this region is quite shielded from the more outer regions of the atoms where chemistry
happens, and the electrons are well described by atomic orbitals. In the region far away from the nuclei, the
electrons are more or less free, and are described more efficiently by plane waves. Space is therefore divided
into two regions: around each atom a sphere with radius is drawn as the muffin tin sphere, and the remaining
space outside the spheres is called the interstitial region, as shown in Fig. 6. Within muffin tin spheres, the
atomic orbitals are adapted, and in the interstitial region, the plane wave is used. This basis set is called
Augmented Plane Wave (APW). The successors of the original APW, which linearize the orbital energy of the
atomic orbitals to avoid solving the orbital energy transcendental equations and greatly improves the
efficiency without loss of accuracy, are the Linearized Augmented Plane Wave (LAPW) family, e.g. LAPW,
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LAPW+LO, etc.

Figure 6: A unit cell is divided into the muffin tin spheres and the interstitial region when the APW basis is used.

Figure 7: Periodic CuN slabs that simulate the CuN surface in my DFT calculation.

To simulate the Gd/CuN surface, we will first construct a CuN supercell of 5-layer slabs separated by 8
vacuum layers with the CuN monolayers on both sides of each slab and three Cu layers in between. During
the first year, I will perform DFT-FLAPW calculation for one and two Gd atoms on CuN surfaces. In
simulating a single Gd atom on CuN, we will place Gd atoms on top of the CuN surface at 10.80Å separation
(Fig. 5 left). For Gd dimer, a 10.8 Å ×7.2 Å unit cell is used (Fig. 5 right). The atomic positions of this
Gd/CuN surface will be optimized by using the Mn/CuN surface as the scratch structure, targeting the
interatomic forces down to 10mRy-a0. The structure optimization of the Gd dimer on the CuN surface will be
performed with parallel Gd spins. The best-optimized structure will then be used to perform another DFT
calculation with antiparallel spins because the exchange coupling of the Gd dimer will be calculated from the
energy difference between the parallel- and antiparallel-spin configurations. In the case that the on-site
Coulomb repulsion U of the Gd 4f orbital is large (>2eV), the GGA exchange functional can not work well for
this particular orbital. This U can be calculated by the constraint GGA method. The way to recover this
missing U in the conventional GGA functional is to apply the GGA+U method. The convergence of the
self-consistent cycle can be poor in the presence of the well-localized 4f orbital.
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Figure 8: The top view of unit cells of a single Gd atom (left) and a Gd dimer (right) on the CuN surface to be used in this

study.

During the second year, I will perform DFT-FLAPW calculation for a single Dy atom on the CuN surface.
The bulk Dy is known to have a giant magnetic anisotropy. Its spin-orbit interaction is expected to be
particularly large and also greatly enhanced compared with the previous anisotropy study using Fe atoms. A
standard DFT-FLAPW calculation normally does not include the spin-orbit interaction. In such calculation the
spin is not coupled to the lattice, and therefore it has no preferred direction. A system will exhibit magnetic
anisotropy only when the spin-orbit interaction is considered. The classical explanation of spin-orbit coupling

is that an electron moving with velocity v =p/m in an external electric field E= V(r) experiences a magnetic
field given by the relativistic correction p/m×(V)/c. Given a spherically symmetric potential V(r) and
accounting for the fact that the electron is spin-1/2, the interaction energy is then given by

The above equation is exact for spherical systems. In the FLAPW method the spin-orbit interaction is
considered only within the muffin tin spheres, and the nonspherical potential is neglected when calculating
dV/dr. The spin orientation is prescribed for a given DFT-FLAPW calculation, which gives rise to the total
energy of the system of this particular spin orientation. By running calculations with the spin in the
high-symmetry directions (in this project are x, y, z due to cubic symmetry), one obtains the energy
differences among the symmetry axes. These energy differences represent the ability of flipping the spin to
different directions, and are known as the spin anisotropy energy. To compare our calculated anisotropy
energy to the STM-measured IETS spin excitation, the Hamiltonian of a single-spin in an anisotropic
environment can be described, to lowest order, by

Physically, the best correspondence between the DFT-FLAPW calculation and the above spin Hamiltonian
one can think of is to equal the DFT-FLAPW total energies of a i-direction spin (i=x , y, z) to the expectation
values of the Hamiltonian in the Si =S spin states, up to a constant of the energy offset. The x , y, z three
directions give three equations for the three unknowns D, E, and the energy offset, and hence D and E are
solved from the DFT-FLAPW calculated total energies. On the other hand, STM measures the excitation
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between different Sz eigenstates out of the IETS dI/dV steps, which also determines D and E. The calculated
and measured values are compared to test the predictability of DFT-FLAPW calculation in spin anisotropy.
During the third year, I will perform DFT-FLAPW calculation for an Fe dimer on the CuN surface. The Fe
dimer will be studied at both the Cu and the N sites. Previous studies were only concentrated on either

Figure 9: The top view of unit cells of the Fe dimer at the Cu site (left) and the N site (right) on the CuN surface to be used

in this study.

the spin coupling (e.g. Mn chains) or the spin anisotropy (e.g. an Fe atom) at a time. Combining the spin
anisotropy with the ability to couple atomic spins into extended quantum spin structures has the potential in
completely engineering giant magnetic anisotropy at the atomic scale. The Fe dimer on the CuN surface
serves as a simple system for studying the interplay of spin coupling and anisotropy. A model spin
Hamiltonian that includes both the spin coupling and the anisotropy is given as follows

where the first term is the familiar Heisenberg Hamiltonian, and the second is the spin anisotropy term scaled
with its corresponding constant Di and depending on the orientation of each spin Si relative to the anisotropy
easy axis of that spin. The advantage of first-principles calculation to the extraction of coupling and
anisotropy parameters is that spin-orbit interaction can be switched on and off in a fully controllable way. This
allows us to first run a calculation without the spin-orbit interaction of Fe, which corresponds to the model
spin Hamiltonian with D=0. The atomic spins of a system can generally be assigned in arbitrary relative
orientations to perform DFT calculation. A special subset of these orientation configurations is called to be
collinear when spins are either parallel or antiparallel to each other. We will first perform DFT-FLAPW
calculations to optimize the relaxed structure of the Fe dimer on the CuN surface. The best-optimized
structure will then be used to perform another DFT calculation with antiparallel spins because the exchange
coupling of the Fe dimer will be calculated from the energy difference between the parallel- and
antiparallel-spin configurations. Once the coupling J is determined, the Fe anisotropy parameter D can be
calculated by switching on the spin-orbit interaction. We will calculate the DFT-FLAPW total energy of the
parallel-spin orientation with the spin-orbit interaction included. The difference between this total energy and
that with the same spin orientation but no spin-orbit is the anisotropy parameter D multiplied by the square of
the Fe spin, from which D can be determined. The Fe dimer can be placed either at the Cu or N binding site,
and the structure relaxation and the parameter extraction will be repeated for both sites. The spin coupling and
anisotropy of placing Fe at these two sites will be compared. We will also look for a qualitative interpretation
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of the difference between these two cases by inspecting the Fe’s binding nature to the CuN surface. The spin
couplings of Fe and Mn dimers will also be compared.

All computing jobs were performed on the eight computing servers funded by this grant.
5. 結果與討論

The first-year project is the study of Gd dimers on the CuN surface. We perform first-principles calculation
of the Gd adatoms on the CuN surface. On one hand, the Gd atoms are similar to the previously-studied Mn
atoms when being deposited on the Cu sites of the CuN surface, i.e., the Gd’s nearby N atoms break bounds
with their neighboring Cu and form a ”quasi” molecular structure from the surface. On the other hand, the
local structures of the Gd atoms on the CuN surface have a wellstudied reference system, the GdN bulk. We
build two different geometries of the Gd dimers on the surfa- ce: one has Gd atoms along the same N row, and
the other along two perpendicular N rows. The two geometr- ies mimic the coupling paths of the
nearest-neighbor (NN) and next-NN Gd atoms of the GdN bulk, where two paths in bulk have ferromagnetic
and antiferromagnetic couplings, respectively. We calculate the exchange couplings J of two arrangements of
Gd2/CuN using first-principles PBE+U, and expect that one of the two types of surface Gd dimers will exhibit
ferromagnetism and the other antiferromagnetism.

Figure 10: The unit cell of a GdN bulk. The Gd-to-Gd arrows indicate the NN (diagonal, purple) and next-NN (linear, red)

couplings.

In the scanning tunneling microscope (STM) experiments, a copper-nitride monolayer is built between a
magnetic atom and the Cu(100) surface to keep the atomic spin away from the screening of its underlying
conduction electrons while to per-mit a sufficient amount of STM tunneling current for probing the spin
excitations. To understand the magnetic properties of Gd atoms on the CuN surface, we simulate a single Gd
on this surface by first constructing a supercell of 5-layer Cu slabs plus 8 vacuum layers with the nitrogen
atoms snugging in-between the half of vacant sites and then placing each Gd atom on top of the CuN surface
within 3 unitcells of the CuN surface. We perform density-functional calculations in the all-electron
full-potential linearized augmented plane wave (FLAPW) basis. A naive local density approximation (LDA)
or generalized gradient approximation (GGA), when being applied to materials composed of rare-earth atoms,
generally yields f levels inconsistent to photoemission experiments, and needs to be fixed by adding extra
on-site Coulomb repulsion to the exchange-correlation functional, the so-called DFT+U method. To
determine the on-site Coulomb Uf and exc- hange Jf values of the Gd 4f orbitals on the CuN surface, we
revisit the GdN bulk system, which mimics very well the local structure of Gd on the CuN surface. Following
the same way as the previous LSDA+U studies, we find that Uf = 11 eV and Jf = 2 eV yield the majority spin
4f level in the best agreement with photoemission measurements. This set Uf and Jf are used in our succeeding
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calculations of both the GdN bulk and the Gd dimer on the CuN surface. The spin couplings along the
diagonal and the linear Gd-N-Gd paths of the GdN bulk are well-studied in the literatures, where the two Gd
atoms along the paths are NN and next NN to each other, respectively. The two coupling paths between Gd
atoms in a GdN bulk strongly suggest that two possible geometries of Gd dimers on the CuN surface: one has
Gd-N-Gd along the N row, and the other in a right angle (two Gd atoms along the diagonal).

Figure 11: The left figure is the top view of the relaxed structure of a linear Gd dimer on the CuN surface. The center and

right figure shows the top view of the initial and relaxed structure of a diagonal Gd dimer on the CuN surface. Unit

cells are marked by red rectangles.

Gd to Gd Gd-N ∠ Gd-N-Gd J (mev)

NN Gd
In GdN bulk

3.52 Å 2.49 Å 90° -0.14 (-0.29)

Next NN Gd
inGdN bulk

4.98 Å 2.49 Å 180° 0.29 (0.15)

Diagonal Gd dimer
On CuN surface

3.64 Å 2.19 Å 112° -1.27

Linear Gd dimer
On CuN surface

4.15 Å 2.24 Å 135° 0.177

Table I: Calculated Gd-to-Gd distances, Gd-N bond length, Gd-N-Gd bond angle, and the spin coupling J between Gd of

four systems. The J values within parentheses are deduced from the measured N_eel and Curie temperatures.

Previous studies have concluded that the spin couplings between Gd atoms of a GdN bulk along the
diagonal and the linear paths are ferromagnetic and antiferromagnetic, respectively. Therefore we expect the
Surface Gd dimers in two geometries to have spin couplings same as their counterparts of similar geometries
in the GdN bulk, i.e. diagonal (linear) being ferromagnetic (antiferromagnetic). We therefore arrange Gd
atoms in such two geometries on the CuN surface, and optimize the crystal structures until the maximum
force among all the atoms reduces to ~10 mRy 0/a and 5 mRy 0/a . The relaxed structures are shown in Fig.

11, and the dimer local geometries are quantitatively presented in Table I. It is interesting to notice that the
diagonal Gd dimer relaxes its its bond angle from 90° to 112°. This can be understood in the way that the

diagonal Gd-to-Gd distance in GdN bulk is 3.52Å, and the initial Gd-Gd distance on the surface is 2.56Å,
much shorter than 3.52Å, so the relaxed Gd-Gd distance on the surface 3.64Å is rather reasonable. To
determine the Gd spin on the CuN surface, we plot the calculated density of states of a single Gd on this
surface in Fig. 12. One clearly sees that the 4f majority spin states are all occupied and the minority states are
all unoccupied, which implies a 4f 7 configuration for Gd, a spin -7/2 configuration for its 4f shell. Besides,
the 5d states are completely absent, in contrast to a free Gd atom that carries a valence configuration 5d 14f
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76s2.
To calculate the spin coupling J between Gd spins on the CuN surface, we take advantage of the

correspondence between the collinear spins of a Heisenberg model and the magnetic moments of the real
crystal surface of interest. The Hamiltonian of a Heisenberg spin dimer is

1 2H J S S  (1)

The difference of energy expectation valuesE between the parallel and antiparallel spins is related to the
coupling J, for spin-S atoms, as

 2 2 22E J S J S J S    (2)

To calculate the total energy of a Gd dimmer on the CuN surface, we simulate the system by the same slab
setup as the single Gd except that the Gd atoms on the surface are arranged within 3 unitcells of the CuN
surface. By calculating the total energies of the paralleland antiparallel-spin configurations of a Gd dimer at
the Cu site of a CuN surface, we obtain from (2) the exchange coupling J to be 0.177 meV for the linear dimer
and 1.27 meV for the diagonal dimer. Our calculations obtain a weakly anitferromagnetic Gd dimer of the
linear dimer and ferromagnetic of the diagonal dimer, with each dimer sitting on the CuN surface.

Figure 12: PDOS of the a single Gd on the CuN surface.

We now turn our attention to the underlying mechanism of the ferromagnetism of the diagonal Gd dimer.
There are three possible magnetic interactions that may couple the two Gd spins, the direct exchange, the
superexchange, and the Ruderman-Kittel-Kasuya-Yosida (RKKY). To extract the three components out of the
resultant ferromagnetic coupling, we perform calculations of two modeled systems. One is the original Gd
dimer on the surface with the the in-between N atom removed, which essentially has the superexchange
turned off. The other is a Gd dimer on top a single CuN layer, i.e., removing the underlying metallic Cu(100)
slab with the dimer and CuN sheet remained, which has basically no RKKY. We then decompose the spin
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couplings of the three systems, the original Gd dimer on the CuN / Cu(100) surface J , the one without the N

in between two Gd atoms Jα, and the Gd dimer on a single CuN sheet Jβ, into the contributions of direct
exchange Jd, superexchange Js, and RKKY Jr. We write down their relations as

d s r

d r

d s

J J J J

J J J

J J J




  

 

 
(3)

J Jα Jβ Jd Js Jr

-1.27 -1.62 -1.31 -1.66 0.35 0.038
Table II: Calculated spin couplings in meV of the original diagonal Gd dimer on the CuN/Cu(100) surface J, the one

without the N in between two Gd atoms Jα, and the Gd dimer on a single CuN sheet Jβ. Also listed are direct exchange

Jd, superexchange Js, and RKKY Jr extracted out of J , Jα, and Jβ.

The calculated spin couplings are listed in Table II. The insignificant differences among J , Jα, and Jβimply
that the N atom in between and the underlying conduction electrons play minor roles in the spin coupling of
the diagonal Gd dimer, while the direct wavefunction overlapping between the two Gd atoms actually

dominates. In fact, the obtained Jd, Js, and Jr values reflect the statement above, where the super exchange and
RKKY are 21% and 2.3% of the direct exchange, respectively.

In summary, we have calculated the electronic structures of the coupled rare-earth (Gd) spins on a surface
using the PBE+U exchange correlation. The precise positions and atomic charges of those systems, unlikely
accessible by experimental techniques, are determined by structure relaxation and Bader analysis respectively
in our calculations. The charge analysis shows that the GdN bond formed by the Gd-deposited CuN surface
has stronger bond polarity than the Cu-N bond. The presence of Gd gives rise to rearrangement of the atomic
structure that is quite different from what a Mn atom does. The calculated J sof the Gd dimers along the N
row and the diagonal are antiferromagnetic and ferromagnetic, showing that the sign of J can be tuned by
different geometric arrangements. The underlying physics of the ferromagnetism of the diagonal dimer is
studied by decomposing its contributions into the direct exchange, superexchange, and RKKY.

The second-year project is the study of a single Dy atom on the CuN surface. As already pointed out in the
previous Fe study, when an adatom is deposited onto the Cu site of the surface, it establishes polar covalent
bonds with the nearest-neighbored N atoms that replaces the original CuN binding network. The calculated
electron density of a Dy atom in the CuN surface is shown in Figure 13a, together with the previously
calculated Fe re-presented. As one can see, the Dy atom, sitting even higher on top of the surface, attracts its
neighboring N atoms further out of the surface than the Fe case. We have also calculated that Dy and its
neighboring N are +1.3 and−1.2 charged respectively. Compared with the +0.9 and−1.4 charged Fe and its
neighboring N respectively, the Dy-N bond of the Dy system has a polarity approximately the same as the
Fe-N.
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Figure 13: (a) Electron density contour of a single Dy on the CuN surface along the N-Dy-N raw and the out-of-plane

direction, in comparison with the Fe case. The green and yellow circles are N and Cu atoms, respectively. The

numbers inside the circles indicate the net charge on selected atoms. (b) Level diagrams in scale showing the

calculated MAE of Fe (upper) and Dy (lower) on the CuN surface, respectively. The Fe case is done by Shick et al.

Phys. Rev. B, 79, 172409 (2009). (c) Calculated spin-density isosurfaces (second column, blue) for Dy on CuN at the

magnitude of 0.05 3
0/e a within a 3×3×3 Å3 cube centered at the Dy nucleus, by looking (top to bottom) from the top,

along the N row, and along the hollow direction. The stick-ball structures are the corresponding structure views in

these three directions. The purple surfaces are the corresponding Fe spin density for comparison.

By pointing the Dy spin in the hollow, N-row, and out-of-plane three symmetry directions (to be called x, y,
and z respectively) in our density-functional-theory (DFT) total-energy calculations with spin-orbit couplings
(SOC) included, we obtain the Dy magnetic anisotropy energy (MAE) E( n̂ ) of n̂ = ê x, ê y, and ê z, and
compare it with the Fe case, as shown in the level diagram in Figure 13b. One notices that in contrast to the Fe
case, the most-preferred magnetization axis of Dy is oriented in the out-of-plane direction, while two atoms
both have their least-preferred axis pointing in the hollow direction. The calculated least-preferred axis of
both atoms will be understood, in a later discussion, in a simple picture using analysis of localized orbitals, the
Dy 4f and Fe 3d. The MAE of Dy is basically one order of magnitude larger than that of Fe, and is five times
larger than the 6meV MAE of Co on the Pt surface, the largest single-atom MAE reported previously.

The previously studied Fe on the surface has 13.5% of spin density extends into the surrounding atoms with
the spreading primarily along the N-row direction. In contrast to Fe, when calculating Dy on the same surface,
we find that a net spin of S=2.94 is localized at the Dy atom, and S=2.91 by including the spin of all atoms,
indicating that there is no spin spreading, and the spins of the atoms surrounding Dy are slightly negatively
polarized. The Dy atom with S = 2.94 essentially behaves like a Dy+2 ion, and analysis of its partial density of
states (PDOS) shows a valance electronic configuration (4 f )9(6s5d)1, where PDOS of 4f is analyzed in a
latter paragraph, and 6s5d denotes a hybridized molecular orbital. The significant reduction of spin spreading
when replacing Fe by Dy is obviously because the Dy 4f orbitals are more localized than the Fe 3d. Another
interesting feature is the shape of the spin density. When looking closely at the spin isosurfaces of the Dy and
Fe atoms along all three crystal-symmetry directions in Figure 13c, the shapes of Dy and Fe are found to be
approximately a hexagon and a square, respectively, along either the N-row or out-of-plane direction, while
both atoms become more round-shape-like along the hollow. This seemly mysterious observation of spin
shapes will become clear when we later look into the Fe 3d and Dy 4f orbitals in the CuN surface.

The d orbitals in a crystal environment have the following well-known subshell symmetries, z2, x2−y2, xy,
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yz, zx. The exotic, complicated f orbitals, which are rarely shown in literatures, have two commonly used sets
of subshell symmetries, the cubic and the general sets. Here we propose an unconventional set of f orbitals
such that six of the orbitals have fully polarized angular momenta, as one will see its advantages in the orbital
analysis of SOC and spin shapes. Five out of the seven orbitals, xz2, yz2, y(3x2−y2), x(x2−3y2), and xyz belong
to the general set. The rest two are z(z2−3x2) and zy2, which are related to the general-set orbitals z3 and
z(x2−y2) simply by the following orthogonal transformation

2 2 2 2 3

2 2 2 2

( 3 ( 3 ) 10 61
4 6 10 ( )

x x y z z x z

x z zy z x y

                              

(4)

where the primed coordinates are arranged as (x′, y′, z′) = (y, z, x). It can be seen that z(3y2−z2) and zx2, which
are orthogonally transformed from the general-set z3 and z(x2−y2), no longer belong to the general set in the
unprimed coordinates, but are actually the general-set orbitals x′(x′2−3y′2) and x′z′2 in the primed coordinates.
One can easily verify that each orbital of this set except for xyz, with its quantization axis n̂ properly chosen
along one coordinate axis, has its angular momentum fully polarized, that is, they are eigenstates of |L· n̂ |
with eigenvalues |m| = 3 = l. The full polarization of |L · n̂ | of these six 4f orbitals can be further visualized
clearly by looking at their orbital shapes. As one can see in Figure 14a, the above mentioned six
fullypolarized 4f orbitals have an unique six-petal shape, and can be grouped into three pairs. Each pair of
orbitals have the same coordinate axis as their central symmetry axis, and are related to each other by
exchanging their in-plane axes. The most obvious full polarization can be realized for the y(3x2−y2) and
x(x2−3y2) orbitals, which are eigenstates of |L z | with eigenvalues |m| = 3, and have z as their central axis.
Similarly, each of the rest four fully-polarized orbitals have their central axes as their polarization directions.
The only exception, the xyz orbital, has eight lobes pointing to the corners of a cube.
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Figure 14: (a) Schematic plots of L-fully-polarized 4f orbitals, where blue (red) zones denote positive (negative) values.

From left to right: (upper) yz2, z(z2−3x2), x(x2−3y2), (lower) zy2, xz2, y(3x2−y2). All six orbitals have a unique six-petal

shape. The only exceptional shape of the xyz orbital is plotted in the inset at the right-lower corner. (b) The 4f

minority-spin PDOS of Dy on the CuN surface. The subshells follow the choice of Figure 14a. The nontrivial

occupation are specified in parentheses. (c) The 3d minority-spin PDOS of Fe on the CuN surface. The left figure has

the conventional quantization axes with the hollow, N-row, and out-of-plane directions being x, y, and z axes,

respectively. In contrast to the conventional set of axes, the right one has unconventional axes (x1,y1,z1)=(y,z,x), and is

used to perform orbital analysis in this work for its simple occupation numbers (either nearly occupied or almost

empty). The PDOS of three of the subshells are plotted separately in each inset solely for the purpose that all PDOS are

better visualized.

Our calculations show that the Dy 4f majority-spin states are all fully occupied and are very low-lying,
extremely atomic-like levels. Instead of plotting PDOS, their majority-spin energy levels are shown in Table1,
together with their weights in the L-fully-localized 4f orbital basis. The orbital analysis of this work does not
depend on the details of the Dy 4f majorityspin states as long as all of them are fully occupied, and their
details are not presented here. For minority-spin states, we plot their PDOS in Figure 14b, and find that xz2

and y(3x2−y2) are mainly occupied, and yz2 and x(x2−3y2) slightly occupied. The occupation numbers of the
rest of the 4f minority-spin states as well as the 5d and 6s (see Supplemental I) are negligible. The Dy 4f
orbitals are rather localized as indicated from a previous paragraph that they have an approximate 0.4 Å radius.
It is a good approximation to think of these orbitals in the way of electronic configurations of an atom, and
therefore the nontrivial occupation (neither fully occupied nor completely empty) is determined for each
orbital from the area under the curve below the Fermi level. The PDOS thus implies an approximately 4f 9

configuration for the Dy atom itself.

The conventional quantization axes of the Fe 3d PDOS are oriented in the way that the x axis points along
the hollow direction, y along the N row, and z out of plane. Such PDOS have been presented in Shick et al.
Phys. Rev. B, 79, 172409 (2009) and show that all the majority-spin states are fully occupied. We re-calculate
the PDOS and plot the minority spins in Figure 14c. The minority-spin PDOS show that x2−y2 is fully
occupied, z2 partially occupied, and the rest three minority-spin states basically empty. The partially occupied
spin-minority z2 prohibits us from establishing a simple picture of either the spin-density shape or the SOC.
However, one may notice that the z2 and x2−y2 PDOS profiles depend nontrivially on the choice (or
interchange) of the coordinate axes, while the xy, yz and zx (see the insets of Figure 14c) have trivially the
same set of PDOS profiles with interchange of PDOS labels corresponding to the interchange of the



18

coordinate axes. Therefore we search for z2 and x2−y2 minority-spin PDOS of all three possible assignments
of coordinate axes, i.e., the hollow, N-row, and out-of-plane directions are x, y, and z axes, respectively, and
the cyclic permutations. In all three axis assignments, all the majority-spin states are always fully occupied,
and the xy, yz and zx minority-spin always empty, while the z2 and x2−y2 minority-spin states have specially
simple occupations as shown in Figure 14c under a particular assignment of new axes: the hollow, N-row, and
out-of-plane directions are z1, x1, and y1 axes, respectively. In this new coordinate system, only the z1

2 (or
equivalently x2 in the old coordinates) orbital has paired spins, while the rest four all unpaired.

With the orbital quantum numbers and occupation numbers determined, we first try to explain the
spin-density shape of a Dy atom on the CuN surface. By starting with the top view, one notices that the
x(x2 −3y2) and y(3x2 −y2) orbitals both have the six-petal shapes centered about the zaxis. As we have
identified from the PDOS analysis that y(3x2−y2) has roughly paired spins, while x(x2−3y2) has roughly an
unpaired spin. The spin density shape along the xy plane are therefore dominated by the x(x2−3y2) majority
spin along. Observing the shape of the x(x2−3y2) orbital, one then realizes that the hexagonal shape of the Dy
spin density from a top view in Figure 13c is essentially the consequence of the unpaired x(x2 −3y2) orbital.
Similarly, the z(z2 −3x2) and xz2 orbitals, both with a six-petal shape centered about the y-axis, contribute to
the hexagonal spin density by looking along the y direction. However, the yz2 and zy2 orbitals, centered about
the x-axis, both have unpaired spins. Their two six-petal shapes with 30°relative to each other result in a
slightly-round-shape spin-density by looking along the x direction.

The orbital analysis not only can explain the shape of the spin density, but can also determine, as we are
going to show, the spin orientation with the largest SOC. In DFT total-energy calculations, the magnetic
anisotropy along symmetry axes are determined by pointing the Dy spin in these axes (or more accurately
speaking, pointing the magnetization of the unit cell) with SOC included. Since the Dy spin is dominated by
its 4f orbitals, we decompose the SOC contribution coming from each of the seven 4f orbitals, and estimate
|L · s| from each orbital. First of all, the xyz orbital has a cubic symmetry, and contributes the same amount of
SOC no matter which symmetry direction the spin points to. This means that one does not need to take the xyz
orbital into account in comparing the MAE along different symmetry axes. We start by pointing the Dy
atomic spin along the x axis. There are two x-polarized orbitals, yz2 and zy2, both mainly spin unpaired. Each
of these two unpaired electrons contributes an amount of (n↑ −n↓)|L· s|=|L| h /2, where h =2 is simply the
unpaired spin of each orbital. The angular momenta L of the four other six-petal orbitals point in the y and z
axes, which are all perpendicular to their x-oriented spins, and contribute no SOC. Therefore, the six six-petal
orbitals contribute a total amount of |L· s|=|L| h . Similar analyses of pointing the Dy spin in the y and z axes
both yield |L· s|=|L| h /2, respectively. The above |L · s| estimation concludes that the SOC reaches its largest
value when the Dy spin points to the hollow direction (x axis). Observing the MAE obtained by the DFT
total-energy spin-orbit calculation in Figure 13b, the least-preferred spin orientation (the highest MAE) also
points along the hollow direction. Therefore, the simple |L· s| estimation explains how the leastpreferred axis
of magnetic anisotropy forms, provided that the SOC contribution is positive. The positive sign of the Dy
SOC is consistent with a recent quantum-chemistry, complete active space self-consistent field calculation
(CASSCF) of a DyCl3 molecule.

The simple occupation picture of the adatom’s localized orbitals that explains both the spindensityshape
and the least-preferred axis of magnetic anisotropy works not only for the rare-earth atom Dy. As we are
going to show below, the same picture also works for the previously studied Fe adatom. When showing the Fe
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PDOS in both the conventional quantization axes (hollow x, N-row y, and out-of-plane z) and the
unconventional ones (hollow z1, N-row x1, and out-of-plane y1) in Figure 14c, we have demonstrated that in
the new coordinate system (x1, y1, z1), only the z1

2 (or equivalently x2 in the old coordinates) orbital has paired
spins, while the rest four are all unpaired. The square spin-density shapes of Fe in the CuN surface from the
top view and N-row side view are essentially consequences of the spin-unpaired z1x1 and y1z1 orbitals,
respectively, while the round shape from the hollow-site side view is the combination of the spin-unpaired
x1

2−y1
2and x1y1 orbitals. One also notices that x1

2−y1
2 and x1y1 both have their L pointing in the z1 (hollow)

direction, and y1z1 and z1x1 in the x1 (N-row) and y1 (out-ofplane) directions, respectively. By a |L · s|
estimation similar to the Dy case, we conclude that the SOC contribution reaches its largest value when the Fe
spin points to the hollow direction (x axis). Observing the Fe MAE obtained by the DFT total-energy spinorbit
calculation as shown in Figure 13b, the highest MAE also points along the hollow direction. Therefore, the
simple |L · s| estimation again explains how the least-preferred axis of magnetic anisotropy forms for Fe,
provided that the SOC contribution is positive. The positive sign of the Fe SOC is consistent with a recent
quantum-chemistry calculation of molecules with 5d and 6d transition metal ligand bonds.

The scanning tunneling microscopes (STM) moving-atom technique has demonstrated its capability of
building, manipulating, and measuring a single atomic spin in a well-characterized environment.
First-principles calculations conclude that such an atomic spin forms a surface-embedded molecular magnetic
structure, as well as, reproduce the measured magnetic anisotropy axes. As an ongoing study of the
STM-engineered adatoms, this work is the first attempt to understand the magnetic anisotropy of a sur-face
magnetic atom in a simple, atomic-scale microscopic picture. This is achieved by analyzing the occupations,
shapes, and angular momenta of its individual localized orbitals. These localized orbitals include both the
well-known d orbitals of the transition-metal atoms and the nontrivial f of the rare-earth. We determine an
unconventional set of 4f subshell quantum numbers that can be used to analyze the spin density and the
magnetic-anisotropy axes. The spin-density shape of a magnetic adatom is explained by simply counting the
occupation of each individual subshell and spin state of the atom’s localized orbital. The formation of the 
least-preferred magnetization axis is understood by simple estimation of adding up the |L· s| contributions
from individual localized orbitals. These studies provide an important microscopic picture of the atomic-scale
origins of magnetocrystalline anisotropy and magnetization distribution. We have also done the first study of
a single rare-earth atom in a surface, computationally. The calculation predicts a record-high MAE of 31
meV.

The third-year project is the study of Fe dimers on the CuN surface. We perform first-principles calculation
of the Fe adatoms on the CuN surface. The Fe atoms are similar to the previously-studied Mn atoms when
being deposited on the Cu sites of the CuN surface, i.e., the Fe’s nearby N atoms break bounds with their
neighboring Cu and form a ”quasi” molecular structure from the surface. We build both Fe atoms of this
dimer at the Cu site of the surface. Following the previous studies of molecular magnets and surface
engineered spins, we employ a model spin Hamiltonian to describe a spin dimer with its individual atoms
carrying magnetic anisotropy.

H = Jx S1xS2x + Jy S1yS2y +Jz S1zS2z + D(S1z
2+ S2z

2) + E(S1x
2-S1y

2 +S2x
2-S2y

2) (5)

where the x, y, and z are the hollow, out-of-plane, and N-row three directions, respectively, and Jx, Jy, and Jz

are spin exchange couplings of an anisotropic Heisenberg Hamiltonian, and D and E are the anisotropic



20

constants up to the nonvanishing, lowest order in the spin operators. The most important results we have
achieved is to extract these constants out of the DFT calculations. By simultaneously considering the parallel
and antiparallel spins and the three spin orientations (crystal symmetry directions) of the spin-orbit couplings,
we obtain six DFT total energy values, i. e., five energy differences. These five energy differences correspond

to the expectation values of energy differences of our model spin Hamiltonian in corresponding |S1, S2states.
Such correspondence between DFT spin configurations and model spin states provide us a set of simple
algebraic equations so that we can extract the constants Jx, Jy, Jz , D, and E as listed in Table III

Jx Jy= Jz=Jyz D E

Fe dimer 19.6 19.9 -0.44 -0.05

Fe dimer
(no spin-orbit)

19.7

Single Fe -0.36 (-1.55) 0.10 (0.31)
Table III: Calculated anisotropic Heisenberg exchange couplings Jx, Jy, and Jz and anisotropic constants D and E in meV of

an Fe dimer on the CuN/Cu(100) surface. The Fe dimer without spin-orbit coupling exhibits an isotropic Heisenberg

model. The anisotropy constants of a single Fe on the same surface is listed for comparison, with STM-measured

values in parentheses.

One see that the Heisenberg exchange couplings are uniaxial about the x (out-of-plane) direction. Compared
with the isotropic exchange coupling when spin-orbit coupling is turned off, Jx decreases by 0.5% while Jyz

increases by 1%. If we compare the dimer’s anisotropy constants with those of a single Fe atom, we find that
D maintains its sign and increases 22% in magnitude, and E changes its sign from positive to negative. More
analysis is undergoing for this Fe-dimer study at the time we are writing this report.


