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Abstract

We present two low complexity reliability-based code-search algorithms for decoding linear
block codes. The presented methodology utilizes a novel sequential bit-flipping (SBF) algorithm
which can transform the hard-limited reliability vector into a valid codeword. Based on a set of
cyclic shifted reliability vectors or random virtual reliability vectors respectively, both algorithms
produce a set of candidates where the one with smallest Euclidean distance (ED) to the received
is chosen as the decoder output. The proposed algorithms offer both complexity and performance
advantages over some existing soft-decision decoding algorithms for linear block codes with
short to medium code length.
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. INTRODUCTION

Classical algebraic codes of short block length have larggnmim distance and efficient
hard-decision decoding (HDD) algorithms. Consequentlgséhcodes represent a good choice
for low-delay applications where high transmission religbis required. An algebraic decoder
only deals with hard decisions of the received sequence @ngerformance is not as good
as soft decision decoding (SDD) since information is lostcbysidering hard decisions only.
To improve the performance while keeping low decoding caxip, some hybrid algorithms
have been devised. Forney’s generalized minimum dista@®0() decoding algorithm [1],
the Chase Il algorithm [2], and the combined Chase 1I-GMD algor [3] are three of them.
These algorithms give a moderate performance improvementtDD solutions with reasonable
complexity.

Guruswami and Sudan (GS) [4] invented an algebraic list diegoalgorithm which corrects
beyond half the minimum distance. Koetter and Vardy (KV) fBpposed an algebraic SDD
algorithm based on a multiplicity assignment scheme to awprthe GS algorithm. The KV
algorithm and other improved interpolation-based apgread6] - [9] can significantly outper-
form HDD for low rate RS codes. However, to achieve large cgdjain, the complexity can
be prohibitively large.

In this work, we try to investigate low complexity relialtyiibased code-search algorithms for
decoding linear block codes. A novel sequential bit-fligpi{8BF) algorithm which can transform
the hard-limited reliability vector into a valid codewordtlwlow complexity is presented. When
cyclic codes are in consideration, we can cyclic shift thelbdity vector and decode by SBF
algorithm to form a set of candidates where the one with setEuclidean distnce (ED) to
the received word is chosen as the decoder output. On the ludinel, we induce the concept of
the randomized sphere decoding with moving center [12] wthencodes are not cyclic. A set
of random virtual reliability vectors are generated andhtdecode by SBF algorithm. Again,
the elite set of candidates is used to modify the random nmestmasuch that the center of
the associated sphere will gradually move more and moree dioghe transmitted codeword
iteratively.

The rest of this report is organized as follows. Some prelaries are given in Section Il.

In Section 1ll, the SBF algorithm and its limitation for dedogd are introduced. Two of the



proposed reliability-based decoding algorithms basedBf &gorithm are presented in Section
IV and Section V, respectively. Some simulation results disdussions are presented in Section
VI.

Il. PRELIMINARY

Let C be a binary(V, K) linear block code with minimum distaneg,;, and M x N parity-
check matrixH. As the rows oft may be dependent, we havé > N—K. Let/ ={1,--- N}
andJ = {1,--- , M} be the sets of column indices and row indice¥bfrespectively. We denote
the set of bitsn that participate in check: by N'(m) = {n : H,,, = 1}. Similarly, we define
the set of checks in which bit participates as\(n) = {j : H,,, = 1}. We denote a set/(m)
with bit n excluded byN (m)\n, and a setM (n) with parity checkm excluded by M (n)\m.
The cardinality ofA/(m) and M(n) are denoted byN (m)| and |[M(n)|, respectively. Lek,
be al x N elementary vector with 1 at positianand O at other entries.

An 1 x N vectorc is a codeword ofC if and only if cH” = 0 where the superscrigf is

the transpose operation afds al x M zero vector. For each row,, of H, m € J, let

C,, = {c € {0,1}" : ch? =0 mod 2}, (1)
then
M
C= () Cn. (2)
m=1

Using the binary phase-shift-keying (BPSK) signal, the graitter maps a codeword into
the bipolar vector
\I[(C> =X= (131,"' 7xN)7 xn:\lj(cn> - (_1)cn (3)

and sends it over an additive white Gaussian noise (AWGN) redlamith zero mean and power
spectral densityV,/2 W/Hz. The received sequence at the output of the matched ilgiven
by y = (y1,---,yn), Wherey, = z, + w, and w,’s are statistically independent Gaussian
random variables with zero mean and variaf¢g 2.

Letz = (21, -+, zy) be the hard decision version of the received sequende.,

0, y,>0
{ Y (4)

1, otherwise



Form € J, we defines,, as the result of check sum-based on the hard-decision vector

Om = { > anmn] (mod 2) (5)
neN(m)
and defineX = (oy,--- , o)) as the syndrome vector.

Denoted byl' = (v,--- ,vv_1) the reliability vector ofy in which ~, is the magnitude of
the log-likelihood ratio (LLR) associated with the corresgimg hard-limited bitz,,

P (Cn = O‘ Y)
L, =log ————=. (6)
P (Cn = 1| Y)
We also denotef = (L,,---, Ly) as the LLR vector of the received word.
Let \,, be the reliability of check summ which is defined as
Ay = mi n 7
in (7)
Then we first sorf{ \,,, : m € J} and letm;, ms, - - -, my, denote the position of the check sums

in terms of descending order é#,, : m € J}, i.e., the check sunm, is the most reliable and
myr 1S the least reliable.

Defineq, = P(z, # ¢,|y) as thea posteriori probability that bitn is in error based ory.
For the AWGN channel model considered, the probabijjtfycan be expressed as

1
1 4em

(8)

Then the probability that for check sum € M(n), the sum of all bits)’ € N (m)\n mismatches

4n

the transmitted bit, sayr,,,, is given by [10]
Toun = % (1 — H (1-— 2an)) . (9)
n eN (m)\n
Note thatr,,,, represents the probability of having an odd number of et\d(s:)\n.
Define ¢, as thea posteriori probability that bitn is in error based on the results of the
check sums intersecting in positien-Given the received worg and the syndrome sét,, =
{om : m € M(n)}, the logarithm of the bit correctness probability ratio fot n, say¢,, can

be approximated as [11]

o = 10g [ In ] N log [P(Zn 7é Cn|Y7En>]

e 3 [umam () o
)

meM(n n'eN (m




[1l. SEQUENTIAL BIT-FLIPPING ALGORITHM

In this section, we introduce a single-run sequential ppfhg (SBF) algorithm for trans-
forming z into a valid codeword. This procedure works only on the gasfteck matrixH with
systematic form. As we know, the span {f;,--- ,h,,} forms the dull space o€, say C*.
For anyH, one can findd = In_xP], wherel,, is an M x M identity matrix andP is an
K x (N — K) binary matrix such thafh;,--- ,hy_x} also spangCt. Therefore, without lost
of generality, we assume thaf = N — K andH is always a systematic form in this paper for
simplicity.

Remind thatC = N,,.; C,,, i.e., a codeword also belongs to subcod&€s,, for all m € J.
The idea of the SBF algorithm is to modify sequentially such that the final result is a valid
codeword. Specifically, the SBF algorithm separates thanaliggroblem into) sub-problems
and solves these sub-problems sequentially in terms oftainaay order of{1,--- , M}, denoted
aso = (o(1),--- ,o(M)). The procedure must ensure that the solution ofrthth sub-problem
also satisfy the constraints of previous — 1) sub-problems. Along the process of the procedure,

a sequence of vector¥;, d,, - -- ,d,, are produced where
d; €N, _1Coimy, 1 <t < M. (11)

and d,, is obviously a valid codeword. In general, the SBF algoritheeds to input a pre-
determined ordeo and the LLR vectorl at the beginning. At the end of the procedure, a
valid codewordd = (d;, - - - ,dy) and an associated new LLR vectbr= (L, --- , Ly) are the

outputs. The difference betweghand £ is given by

{inLn ifd, =z

. (12)
Ln=—Ly if d,# 2

where £ is useful for the stochastic decoding algorithm descrilre&éction V.
Next, we formulate the detailed procedure of the SBF algorids below:
1. Letd, be the hard limiting vector of, £ = £, andI, = {¢}. Sett = 0.
2. Letl, = I,_1 UN(o(t)). If di=y € C,p), letd, = d,_;. Otherwise, find the solution, say

n*, of

arg min & (13)

nE{]t\Itfl} "



where¢,, is evaluated by (10). Let

d; « d;_; +e, (Mod 2) 14)
Ly —Lye, (15)
Om — Om+1(mod 2)Vm e M(n*), (16)

t «— t+1

3. If t = M, stop the procedure and output bath= d,; and £. Otherwise, go to Step 2.

We denote the relationship between the inputs and outputiseofbove procedure ddl, £) =
Q(o, L) for simplicity.

Remark 1: We have to mention that once the number of error bit§linZ;, ;} is greater than
or equal to two, the output codewort,, won't be the transmitted codeword.

Example 1. Consider a (8,4) linear block code with parity check matrix:

0

(17)

—_ =

0
0
1
0

_ o O O
—_ = O

R R

1 0
0 1 1
0 0 1
0 0 0 1

Suppose all zero codeword is transmitted and the received was given by
y = (1.83,2.07,2.36,—0.21,1.05, 1.91, —0.09, 1.63).
Then the hard limiting vectoz is
z=(0,0,0,1,0,0,1,0),

and an example of the SBF algorithm is shown in Fig. 1 where tlderoof check sums is
3—2—-1—4.

A. Predicament of Decoding via SBF algorithm

The SBF algorithm is a simple unified framework for transfargithe hard limiting vectoy
into a codeword inC. Note that different order may induce different codeword&oproduced.
For instance, the output codewords in Example 1 and 2 arerelifft because of different orders

although they face the same received wetd



Check Reliability 0.23 0.23 2.63 0.23

Check sum 1 1

LIR

= o o0 o 1 0o o L 0
d, = (00010010) L a L
Ircﬂec_k?#j
 sum=0 |
d, =(00010010) .' o —i- I N S
Ircﬁec?k%z".
 sum=1 | 1. £,=-2.11 < £5=5.72, so flip bit ¢,

2. (51(—0, (52(—0, (54(—-1

d,= (000100000 T
Check#1, [0 o o
 sum=0 |

d; = (00010000) Y v v

:_Check #4,
csum=1 |

1. flip bit c4
2. 04(—0

d4 = (00000000)

Fig. 1. An example of the SBF algorithm.



Example 2. Consider the same case described in Example 1. If we changerdiee from
3—2—1—41t04—3—2— 1, the output codeword will become(1,0,1,1,0,0,1,0).

We observe that output codewoddin Example 1 is equal to the transmitted codeword but
in Example 2 is not. It is because the order used in Example é&sribe situation described in
Remark 1. Obviously, it is a big problem if we want to decode IBFSalgorithm. Therefore,
we try to solve this problem by the following two ideas:

1. Find appropriate order to avoid the situation descrilmeBeémark 1.

2. Correct some error bits in advance such that the numberdafr®mwhich can decode the

correct codeword increases.

Note that the first idea is impractical because the complexitfinding appropriate order
grows quickly asM increases. Besides, the hardware implementation is ireffiéi the order
changes frequently. Consequently, we propose two modifigtiade for decoding based on the
SBF algorithm with a fixed order. The first one is designed farlicycodes that we apply the
SBF algorithm to transform all of the cyclic shifted receiwedrd into valid codewords under
a fixed order. Note that cyclic shifting the received wordimikar to decode in different order
even though we don’t change the order actually. The anotle¢had is to implement the second
idea based on the concept of the randomized sphere decodimgmaving center described in

Section V which can correct errors iteratively.

IV. SBF ALGORITHM WITH CYCLIC SHIFTS

Assume a codeword; belongs to a cyclic cod€ is transmitted and le€ = (Ly,--- , Ly)
be the LLR vector of the received word. Defi®® = (L,y1, Lyy2, -+, Ly, Ly, -+, L,) as
the cyclic shifted version oL by v positions. Then we can obtain a set of candidates by the
following algorithms:

1. Determine an ordes for the SBF algorithm.

2. For allv € I, apply the SBF algorithm fo£” and o to obtain a set of candidatds =

{d!,---  d"} where
(d”, L") = Q(o, L7).

The transmitted codeword is then estimated by

¢r = argmind(¥(c),y), (18)

ceD



whered(a, b) is the Euclidean distance betwearandb.

V. STOCHASTIC SEQUENTIAL BIT FLIPPING ALGORITHM

Ideally, we can transforma into the transmitted codeword through the SBF algorithm & th
appropriate order is found. In fact, such order is hard to, fegpecially when the LLRs are
unreliable. Therefore, we don’t want to decode based on tiggnal LLR vector £ at all times
but hope to gradually change such that its hard limiting vector is more and more close & th
transmitted codeword. In order to implement this idea, we the similar method illustrated in
[12] which is an iterative procedure with the following twbases:

1. GenerateV, virtual LLR vectors around the original one according to aafic random
mechanism. Then decode them by the SBF algorithm ta\jetandidates.
2. Update the parameters of the random mechanism baséd batter candidates in order to
generate better virtual LLR vectors in next iteration.
Note that this is the basic idea of our randomized spherediegovith moving center. Next,

we will illustrate the random mechanism further in next twidbsections.

A. Importance Density and Sample Format
Lets = (s1,---,sn) be a random vector wherg, - - - , sy are independent Gaussian random
variables with meang, - - - , uy and variances?, - - - , pa. We write s ~ N (7, p), wherej =

(1, ,py) @and g = (p1,--- , py) are initialized by

M;O) = L, (19)
4
0 —_ = 20
At the tth iteration, N, random samples;”, st - - ,s{{) are drawn fronN (i®, 5*) to form

the sample se8®). Each sample vector represents the LLRs of an associatedlvigceived
word. We decode them by the SBF algorithm based on an prersbigrder and obtain sets of

candidatesi!” and associated LLR vecto&” = (3,,,--- ,5,y) for 1 < ¢ < N,.

B. Update Parameters

Let dgt), e ,d%)s be the output codewords of the SBF algorithm. We compute thé&iideen

each candidate codeword and the received wom@hd sort the corresponding random vectors



according to the descending order of their associated EBEn®an elite seE® which includes

E, vectors with the smallest EDs §a i.e., the corresponding codewords are more likely to have

been transmitted. We always store the best onE(ih up to the current iteration for the final

decision when the maximum number of iteration is reached.
Then the two sets of parametgi$*!) and p**!) are updated by?]

Zég”eE(t) §ét7)1

(1) — (1 — 5\ u® 4 5.
Jos ( )iy + i

(21)

and
R 2
Z§2t>EE(t> (Sgi)l - /Lg'i'l))
Ej

whered ande are real values betwedn, 1) used to smooth the variation of these parameters.

Pt = (1—¢e)plP) + ¢ (22)

C. Sochastic Sequential Bit Flipping Algorithm
The detailed stochastic sequential bit flipping algoritl®$BFA) is summarized as follows.

1. Initialize 7 and 5 by (19) and decide an ordex. Sett = 0.

2. Generate a set of random samp#é$ = {s{”,--- ,s{)} from N (ji®, 5®).

3. For each sample, we haya!”,s!") = Q(o,s!").

4. Evaluate Euclidean distances between (ﬂﬁté and the received worg. Select theF,
samples with best metrics as the new elite Bt ¢ S® and store the best decoded
codewordd*® in D®,

5. Evaluate the new parametgrét?) and pt*t!) by (21) and (22), respectively.

6. If t =T of for somet > ¢, sayc = 3,
d*(t) _ d*(t—l) - .= d>~<(t—c)7 (23)

then stop; otherwise set= ¢ + 1 and reiterate from Step 2.

VI. SIMULATION RESULTS AND DISCUSSIONS

In the first part of this section, some simulated performapicthe proposed algorithm, say
SSBFA, are presented and compared with that of traditionah&®ed-distance decoding (BDD)
and the sum-product algorithm (SPA). A standard binary iGN channel is assumed

over which the BPSK modulated codewords are transmitted. \@Wdemthe receive matched
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filter output as the sum of &1—valued sequence and Gaussian sequence with zero-mean i.i.d
components.

The maximum iteration number of both SPA and SSBFA are set t60baBut we will stop
the proposed algorithm earlier if the best of the output aatds are the same for consecutive
5 iterations. In our simulations, SSBFA terminates quickhyl ahe average iteration number of
is slightly more than five. Besides, the sample sizeis set to be 10 and the elite siZ& is 1.
Therefore, the computational complexity of both algorithm our simulation is approximately
at the same level.

Fig. 2 - 6 are simulation results of five high rate block codéhwDPC matrix which is in
order (15,11) Hamming code, (7,5) RS code, (22,16) singlar eorrection (SEC) code, (39,32)
SEC code, and (72,64) SEC code. The SSBFA has about 0.5 dB Bc8ding gain over SPA
at a bit error rate (BER) of0~* under approximately same complexity.

Next, we consider two examples of cyclic codes, (31,26) BCHesaahd (15,11) RS codes.
For the (31,26) BCH code, we compare our SBF algorithm, SBF withiacghifts (CSSBF) and
SSBFA with BDD and SPA. As shown in Fig. 7, the performance of $i8% algorithm with
a fixed order is worse than BDD and SPA because of the phenondesmmnibed in Remark 1
may happen frequently. However, two kinds of modified alfpons, SSBFA and CSSBF, have
almost the same improved decoding performance and outpetfte other decoding methods.
In other words, these modified algorithms can greatly redihee phenomenon described in
Remark 1. For the (15,11) RS code, similar decoding performaan be observed in Fig. 8.
Our proposed algorithms still outperform the other decgdirethods including the BDD, SPA,
Chase-ll algorithm with 16 test patterns, and the KV algonitith infinite multiplicity. Note
that the number of test patterns of the Chase-Il algorithnetst® 16 due to our CSSBF for
(15,11) RS code has 15 cyclic shifted LLR vectors.
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