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Let A be a contraction on a Hilbert space H. The defect index d4
of A is, by definition, the dimension of the closure of the range of
I — A*A. We prove that (1) da» <nd, for all n >0, (2) if, in addi-
tion, A" converges to 0 in the strong operator topology and d4 = 1,
thendyn = nforallfiniten, 0 <n<dimH,and (3)ds = da+ implies
dan = dan= for all n > 0. The norm-one index ky of A is defined as
sup{n>0: ||A"|| = 1}.WhendimH = m < 00, a lower bound for
ks was obtained before: k4 >(m/ds) — 1. We show that the equal-
ity holds if and only if either A is unitary or the eigenvalues of A
are all in the open unit disc, d4 divides m and d4» = ndy for all
n, 1<n<m/ds. We also consider the defect index of f(A) for a
finite Blaschke product f and show that df(4) = dan, where n is the
number of zeros of f.

© 2009 Elsevier Inc. All rights reserved.

0. Introduction

Let H be a complex Hilbert space with inner product (-, -) and the associated norm || - ||, and let A
be a contraction (||A|| = sup{||Ax]|| : x € H, ||x]| = 1} < 1) on H. The defect index of A is, by definition,
rank (I — A*A), that is, the dimension of the closure of the range ran (I — A*A) of I — A*A. It is a
measure of how far A is from the isometries, and plays a prominent role in the Sz.-Nagy-Foias theory

of canonical model for contractions [8].
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In this paper, we are concerned with the defect indices of powers of a contraction. We show that,
for a contraction A, da» is at most ndu for any n > 0. They are in general not equal. The equality does
hold in certain cases. For example, if A" converges to 0 in the strong operator topology and ds = 1,
then d4n = n for all finite n, 0 < n < dim H. The equality (for some n’s) also arises in another situation,
namely, in relation to the norm-one index. Recall that the norm-one index k4 of a contraction Ais defined
assup{n >0 : ||A"|| = 1}. It was proven in [3, Theorem 2.4] that if A acts on an m-dimensional space,
then k4 >(m/ds) — 1. Here we complement this result by characterizing all the m-dimensional A with
ka = (m/da) — 1: this is the case if and only if either A is unitary or the eigenvalues of A are all in the
open unit disc D(= {z € C : |z| < 1}), da divides m and dan = ndg for all n, 1 <n <m/ds. These will
be given in Sections 1 and 2 below, respectively. In Section 3, we consider contractive analytic functions
of a contraction, instead of just its powers. Among other things, we show that if f is a Blaschke product
with n zeros, then dfa) = dan.

1. Powers of a contraction

We start with some basic properties for the defect indices of powers of a contraction. These include
a “triangle inequality” and their increasingness.

Theorem 1.1. Let A be a contraction on H.
(a) The inequality dpm+n < dam + dan holds for any m, n > 0. In particular, dan < ndy forn > 0.
(b) The sequence {dan}2, is increasing in n. Moreover, if dan = dan+1 < 00 for somen, 0 <n<dimH,
then dyx = dan forall k > n.

The proof depends on the following more general lemma.

Lemma 1.2. Let A = BC, where B and C are contractions. Then d¢ < ds < dp + d¢. If B and C commute,
then we also have dg < dj.

Note that dg < d4 may not hold without the commutativity of B and C. For example, ifA = I, B = S*
and C = S, where S denotes the (simple) unilateral shift, then A = BC,d4 = 0 and dg = 1.

Proof of Lemma 1.2. Since

[—A*A=1—-C*B'BC>1—C*C>0,

where we used C*B*BC < C*C because B*B < I, we obtain ran (I — A*A) D ran (I — C*C) and thus
ds >dc. If Band C commute, then A = CB and, therefore, dg < d4 follows from above.
On the other hand, since

[—A*A=1—C*B*BC = (I — C*C) + C*(I — B*B)C,
we have

ran (I — A*A) Cran(I — C*C) +ranC*(I — B*B)C.
Thus

ds < dc 4 rank C*(I — B*B)C
<dc + rank (I — B*B)C
<dc + dp,

completing the proof. [
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We now prove Theorem 1.1. For any contraction A, let H, = ran (I — A™A") for n>0 and Ho, =
Vo2 oHn. In the following, we will frequently use the fact that, for a contraction A, x is in ker(I — A*A)
if and only if ||Ax|| = ||x]|.

Proof of Theorem 1.1. (a) and the increasingness of the d4n’s in (b) follow immediately from Lemma
1.2. To prove the remaining part of (b), we check that H, = VZ;(l)Ak*H1 for n > 1. Indeed, ifx = (I —
A™A")y for some y in H, then x = ZZ;& AR (I — A*A)AXy, which shows that x is in \/Z;(])A"*H1. For
the converse containment, note that A maps ker(I — A¥1*A¥*1) to ker(I — A¥*A¥) isometrically for
each k > 0. Indeed, if x is in the former, then

k+1
llxll = A el < llAXI] < [1x])-

Hence we have the equalities throughout and, in particular, ||A*(Ax)|| = ||Ax|| and ||Ax|| = ||x||. The
former implies that Ax € ker(I — A**A¥). Together with the latter, this proves our assertion. Therefore,
A* maps Hy to Hy1 for k > 0. By iteration, we have that Ak maps H; to Hy4 for all k > 1. Arguing as
above, we also obtain ker(] — AKF1*AK+1) C ker(] — A¥A¥) and thus H C H1 for k > 0. Therefore,
A¥* maps Hj to H, for all k,0 <k <n — 1. This proves vZ;éAk*m C H, and hence our assertion on
their equality.

If dan = dgn+1 < o0 for some n, then H, = Hy41. Hence

Hyiz = VLAY Hy = (Vi_oA¥Hy) v (A" Hy)
C Hpy1 V (A*Hpy1) = Hpgq V (A"Hp)
- Hn+1 \% Hn+1 = Hn+l - Hn+2~

Therefore, we have equalities throughout. This implies that d,4+1 = d,4. Repeating this argument
gives us dyc = dan forall k > n. O

Note that, in Theorem 1.1 (a), dgm+n < dam + da» may happen even for m = n = 1. For example, if

0 0 1
A=|0 0 o0,
0 0 O

thendy = 2and dy2 = 3. Thusdy: < da + da.
The following corollary is an easy consequence of Theorem 1.1 (b).

Corollary 1.3. If A is a contraction with A" isometric (resp., unitary), then A itself is isometric (resp.,
unitary).

The next theorem says that the equalities dan = nds, n >0, do hold for certain contractions A. It
generalizes [3, Theorem 3.1] and [4, Theorem 3.4].

Theorem 1.4. IfAis a contraction on H with A™ converging to 0 in the strong operator topology and ds = 1,
then dan = n for all finiten,0 <n<dimH.

Proof. Under our assumption that d4 = 1, we have da» <n for all n > 0 by Theorem 1.1 (a). Assume
that dano < ng for some finite ng, 1 < ng < dim H. Since ds» increases in n, the pigeonhole principle
and Theorem 1.1 (b) yield that dyng—1 = dano = dan < ng < oo for all n > ng. Hence

ker(] — A"™*A™) = ran (I — A”O*A”O)L =ran(l — A”*A”)L = ker(I — A™A")

for n > ng. Let K denote this common subspace. For x in K, we have ||A"x|| = ||x|| for all n > ng. On the
other hand, the assumption that A" — 0inthe strong operator topology yields that |[A"x|| — Oasn —
00. From these, we conclude that x = 0and hence K = {0}. This is the same as ker(I — A™*A™) = {0}
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orran (I — A"*A") = H,Thusdim H = dan < ng, which is a contradiction. Therefore, we must have
dan = nforall finiten,0<n<dimH. O

Let A be a contraction on H. Since A* maps Hj, to Hy,+1 for n > 0 as shown in the proof of Theorem
1.1 (b), we have A*Hoo C Hoo. Hence

/
A:[ 0} onH = Hy @® HL,.

B V
Note that, for any x in Héo = N2, ker(I — A™A™), we have A*Ax = x, which implies that ||Vx|| =
||Ax|| = ||x||. Thus V is isometric on Héo. Recall that a contraction is completely nonunitary (c.n.u.) if it

has no nontrivial reducing subspace on which it is unitary. A can be uniquely decomposed as A; @ U
onK @ K+, where A; is c.n.u.on K and U is unitary on K~ = NS2 o (ker(I — A™A™) Nker(I — A"A™))
(cf. [8, Theorem 1.3.2]). Thus the above decomposition can be further refined as

A 0 0
A=|B1 Sm 0],
0 0 )

/
where S;; denotes the unilateral shift with multiplicity m(0 <m < 00),A; = [gl S(r)n:| is c.n.u., and

V = S, @ U corresponds to the Wold decomposition of V (cf. [8, Theorem 1.1.1]).

Corollary 1.5. If A is a contraction on a finite-dimensional space with dy = 1, then
d = |1 ifo<n<n,
A" = Ing ifn > ny,
where ng = dim Hyo.

Proof. On a finite-dimensional space, the above representation of A becomes A=A" @V on H =
Hoo @ Hé—o with V unitary. Itis easily seen that A’ has no eigenvalue of modulus one. Hence A™ converges
to 0 in norm (cf. [6, Problem 88]). Our assertion on ds» then follows from Theorems 1.4 and 1.1 (b). [

The next theorem characterizes those contractions A for which da» = n for finitely many n’s or for
all n > 0. It generalizes Corollary 1.5.

Recall that an operator A on an n-dimensional space is said to be of class S, if A is a contraction, its
eigenvalues are all in D and d4 = 1. The n-by-n Jordan block

0 1
0

~
=
Il

1
0

is one example. Such operators and their infinite-dimensional analogues S(¢) (¢ an inner function)
are first studied by Sarason [7]. They play the role of the building blocks of the Jordan model for Cy
contractions [1,8].

Theorem 1.6. Let A be a contraction on H.

(a) Let ng be a nonnegative integer. Then
{n if1<n<ny,
dAn =

ng ifn>ngp
if and only if Py A|Hwo, the compression of A to Huo, is of class Sy, . In this case, dim Hoo = ng.
(b) dan = nforalln,0<n < oo, ifand only ifdys = 1 and dim Hs, = 00.
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Proof. (a) Let

A 0 1
A= [B V] onH = Hoo @ H,
where V is isometric. First assume that the dan’s are as asserted. We need to show that A" = Py_ A|Heo
is of class Sy,. Our assumption on da» implies that Ho, = Hjy, is of dimension ng. Moreover, for any
n >0, we have

A/n* B* A/n 0
_ nk an __ _ n
[=A"A"=1 [0 v“*] [Bn v"]
_ [I—A/"*‘?;ZB— BB, —Bgv"}
- n
_ [I—A™A™ — BB, 0
= 0 ME

where the last equality holds because I — A™A" > 0. Hence
n=dm = rank (I — A™A™ — B}B,) <rank (I — A™A™) = dun

for1<n<np.lfny < dym forsome ny, 1< ny < ng, then the pigeonhole principle and Theorem 1.1 (b)
yield thatdyme—1 = dgmo.From[3,Lemma 2.3] and the fact that A’ has no eigenvalue of modulus one, we
conclude that | — A~ 1*A™~1 i5 one-to-one and hence dme—1 = np, contradicting our assumption.
Hence dyn = n for all n, 1 <n<ng. [3, Theorem 3.1] implies that A’ is of class Sy,. This proves one
direction.

For the converse, we derive as above to obtain I — A™A" = (I — A™A™ — B¥B,) ® 0 on H =

Hoo ® HZ, and

n if 1<n<ny,
dpr < dgn = {no ifn > ng ()
by [3, Theorem 3.1]. Assume thatdgm < nq for some nq, 1 < ny < ng.Then the pigeonhole principle and
Theorem 1.1 (b)yielddan = dano < ng foralln > ng. This implies that H, = Hp, foralln > ng. Therefore,
Hso = Hp, has dimension strictly less than ng, which contradicts the fact that dim Hoo = dgme = ng
(cf. [3, Theorem 3.1]). Hence we have dqn = n for all n, 1 <n <ng. If n > ng, then dan > dano = ng by
Theorem 1.1 (b) and what we have just proven. This, together with (), yields d4gn = ng for n > ny.

(b) Since dim Hy, > dgn for all n, the necessity is obvious. Conversely, assume that d4 = 1 and
dim Hoo = 00.Thendyn < ndy = nby Theorem 1.1 (a). If dam1 < ny for some n; > 2, then an argument
analogous to the one for the second half of (a) yields that Hy, = Hp, is of dimension less than ny. This

contradicts our assumption. Hence we must have d4n = n foralln. [J

We now proceed to consider contractions A with dq = da+ and start with the following lemma
giving conditions of the equality of d4 and da+ for an arbitrary operator A. Note that, in this case, the
definition of the defect index still makes sense.

Lemma 1.7. Let A be an operator on H.

(a) Ifdim ker A = dim ker A*, then dy = du+. In particular, if A acts on a finite-dimensional space, then
da = dp-.
(b) Ifdy is finite, then the following conditions are equivalent:

(1) da = dax;

(2) dimker A = dim ker A*;

(3) A*A and AA* are unitarily equivalent;

(4) Ais the sum of a unitary operator and a finite-rank operator.
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Proof. (a)Ifdim ker A = dim ker A*, thenA = U(A*A)l/2 for some unitary operator U (cf. [6, Problem
135]). Hence AA* = U(A*A)U* is unitarily equivalent to A*A. Then the same is true for I — A*A and
I — AA*. Thus dg = dp=.

(b) It was proven in [4, Lemma 1.4] that if A*A = A; @ 0 (resp., AA* = A, @ 0) on H = ranA* @
ker A (resp., H = ran A @ ker A*), then A; and A; are unitarily equivalent. If dy = da+ < 00, then

rank (I — A1) + dim ker A= rank (I — A*A) = rank (I — AA¥)
= rank (I — Ay) + dim ker A*

and hence dimker A = dim ker A*. This proves that (1) implies (2). If (2) holds, then the unitary
equivalence of A; and A, implies the same for A*A and AA*, that is, (2) implies (3). Now assume
that (3) holds. Since ker A*A = ker A and ker AA* = ker A*, the unitary equivalence of A*A and AA*
implies that dim ker A = dim ker A*. Hence dy = da+ by (a), that is, (1) holds. Finally, the equivalence
of (1) and (4) was proven in [10, Lemma 3.3]. [

Note that, in the preceding lemma, dy = da+ = 0o does not imply dimker A = dim ker A* in
general. For example, if A = diag (1,1/2,1/3,...) @ S, where S is the (simple) unilateral shift, then
da = dp= = oo, dimker A = 0 and dim ker A* = 1.

Theorem 1.8. Let A be a contractionwithdy = dax < 00.Thendim Hy < ooifand only ifthe completely
nonunitary part of A acts on a finite-dimensional space.

Proof. Assume that dim Hy, < 00 and let

0 0 U

where S, denotes the unilateral shift with multiplicity m, 0 < m < o0, and U is unitary. We need to
show that S, does not appear in this representation of A or, equivalently, m = 0. We first prove that
m is finite. Indeed, since

1— AA* —A'B* 0
I—AA* = | —BA* I—BB*—5S,5% 0],

"0 0
A=|:B Sm Oj| onH = Hoo @ K1 © K3,

0 0 0
we have
m = rank (I — Sp,Sy) < rank (I — BB* — S;,S;) + rank BB*
<rank (I — AA*) + rank BB*

<dgx +dimHyo < 00

as asserted. Now to show that m = 0, consider S;; as

~ / ~
Then B is of the form [B' 00 ---]T. Let A = [g/ g]. Since A acts on a finite-dimensional space, we

have d; = dj« by Lemma 1.7 (a). Then

dax = rank (I — AA™)
I _ A/A/* _A/B* ]

= rank [ —BA™* [ —BB* — SpSH
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I_A/*A/ _ B/*B/ O
0 I

= dj+ = dj = rank [

m + rank (I — A*A" — B*B')
m + rank (I — A*A’ — B*B)

I—A*A' —B*B 0 O
= m + rank 0 0 0
0 0 0

m + rank (I — A*A) = m + da.

We infer from the assumption ds = da+ < oo thatm = 0.ThusA = A’ @ U, where A’ is the c.n.u. part
of A acting on the finite-dimensional space Huo.
The converse is trivial. [

The next two results are valid for any operators.
Proposition 1.9. If A is an operator with dy = da+, then dan = dgn+ foralln>1.

Proof. If dy = ds+ < 00, thenA = U + F, where U is unitary and F has finite rank, by Lemma 1.7 (b).
For any n > 1, we have A" = U" + F,, where F, is some finite-rank operator. By Lemma 1.7 (b) again,
this implies that dgn = dgn+. On the other hand, if d4 = dax = 00, thendgn = dgan+ = oo foranyn > 1
by Theorem 1.1 (b). This completes the proof. []

Two operators A on H and B on K are said to be quasi-similar if there are operators X : H — K and
Y : K — H which are one-to-one and have dense range such that XA = BX and YB = AY.
We conclude this section with the following result on quasi-similar operators.

Proposition 1.10. Let A and B be quasi-similar operators. If da = da» < 00, then dg = dp=.
Proof. Our assumption of dy = dg= < oo implies, by Lemma 1.7 (b), that dim ker A = dim ker A*. The
quasi-similarity of A and B then yields

dim ker B = dim ker A = dim ker A* = dim ker B*.

Then dg = dp+ by Lemma 1.7 (a). [
Note that the preceding proposition is false if dg = dg+ = o0.

Example 1.11. Let {a,}2; be a sequence of distinct complex numbers in [ with }~,(1 — |a,|) < oo.
Let A = diag (ay, ay, ...) @ S, where S denotes the (simple) unilateral shift. Let ¢ be the Blaschke
product with zeros ay:

® G, z—a
92 = —

—, zeD,
pet lanl 1=z

and let B = S(¢) @ S, where S(¢) denotes the compression of the shift

S@)f =P (@), feH ©PH,

P being the (orthogonal) projection from H? onto H? © ¢H?. It is known that diag (ay,) is itself a
Co contraction which is quasi-similar to S(¢) (cf. [9, Theorem 3]). Thus A is quasi-similar to B. But
dA = dA* = OO,dB =1 anddg* =2.
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2. Relation to norm-one index

As defined in [3, p. 364], the norm-one index of a contraction Aon His kg = sup{n>0: ||A"|| = 1}.
This number is to measure how far the powers of A remain to have norm one. It is easily seen that (1)
0<ks<00,(2)ka = Oifand onlyif ||A]| < 1,and (3) ks = ocoifand onlyif o (A) N 9D #* @. The main
results in [3] say that if dimH = m < oo, then (4) 0< ks <m — 1 or kg = 00 [3, Proposition 2.1 or
Theorem 2.2], (5) ks = m — 1 if and only if A is of class Sy, [3, Theorem 3.1], and (6) ka >(m/ds) — 1
[3, Theorem 2.2]. The purpose of this section is to determine when the equality holds in (6).

Theorem 2.1. Let A be a contraction on an m-dimensional space. Then ks = (m/ds) — 1 if and only if
one of the following holds:

(a) Ais unitary,
(b) 0(A) € D, da divides m, and dgn = ndp foralln,1<n<m/ds.

Proof. Assumethatky = (m/da) — 1.Ifo (A) N dD # @, then (m/dy) — 1 = k4 = oo, whichimplies
thatdy = OorAis unitary. Hence we may assume that o (A) € D.Thenks < oco.Fromks = (m/ds) —
1, we have d4 |m. By the pigeonhole principle and Theorem 1.1 (b), there is a smallest integer, 1 <I<m,
such that dy = dyi+1. Since A has no unitary part, this is equivalent to | — AA! being one-to-one
(cf. [3, Lemma 2.3]) or ||A!|| < 1. As | is the smallest such integer, we obtain ks = | — 1. From ky =
(m/ds) — 1, we have m/ds = I. Note that dan < ndj for 1 <n <Iby Theorem 1.1 (a). If dgno < ngds for
some ng, 1 < ng <1, then

dg <dgmo + dAlfno < ngda + (I —ng)dy =ldy = m

again by Theorem 1.1 (a). This contradicts the fact that I — A™A! is one-to-one. Hence we must have
dan = ndy for 1 <n<m/dy. This proves (b).

Conversely, if (a) holds, that is, if A is unitary, then k4 = co and d4 = 0. Hence ky = (m/ds) — 1.
Now assume that (b) holds. If| = m/dy, then our assumptionsimply that 1< ds < dg2 < --- < dy =
m.Hence I — A*A! is one-to-one, but I — A"="*A!~1 is not. Thus ||A!|| < 1and |JA""|| = 1. This yields
ks =1—1= (m/dy) — 1asrequired. I

On an m-dimensional space, other than unitary operators, Sp-operators and strict contractions
(operators with norm strictly less than one), which correspond to d4 = 0, 1 and m, respectively, there
are other contractions A satisfying ks = (m/da) — 1. Forexample,ifA = J; @ - - - @ Jj, where I divides

—

m/l
m, then kg =1 — 1 = (m/ds) — 1. The same is true for the more general B = A; @ - - - @ Ay, where
—_—
m/l
A1 is an Sj-operator. Another generalization of the contraction A is
0 aq
C= 0 ,
am—1
0

where |gj| < 1forj = kI, 1<k<(m/I) —1(Ilm), and |g;| = 1 for all other j's. In this case, it is easily
seen that dc equals m minus the number of j’s for which |g;| = 1 and hence dc = m/I. On the other
hand, k¢ equals the maximum number of consecutive j’s with |g;| = 1, and thus kc = | — 1. Therefore,
kc = (m/d¢) — 1 holds.

3. Contractive functions of a contraction

In this section, we consider the defect indices of contractive functions of a contraction, instead of
just its powers. The first one is finite Blaschke products:
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n

f@=1]

j=1

zZ—aj
L zeD,

1—az’
where |agj| < 1 forallj.

Theorem 3.1. If A is a contraction on H and f is a Blaschke product with n zeros (counting multiplicity),
then df(A) = dgn.

Note thatif f isasabove, thenf(A) = ]’7:1 A—agh(U —aA) ~1isalsoacontraction (cf.[8, Theorem
11.2.1 (b)]).

Proof of Theorem 3.1. Let f be as above and let fj(z) = (z — q;)/(1 — Gjz),z € D, for each j. Let
X = [T}, (I — @A), K1 = ker(I — A™A") and K; = ker(I — f(A)*f(A)). We first show that XK1 € K.
Indeed, if x is in Ky, then ||A"x|| = ||x||. Applying [3, Lemma 1.2] once (with ¢; there as f; and the
remaining ¢;’s given by ¢;(z) = z) yields ||f; (AA™ V(I — a1A)x|| = ||(I — G1A)x]|. We then apply [3,
Lemma 1.2] repeatedly to obtain ||f; (A) - - - fu(A)Xx|| = ||Xx||. This means that Xx is in K>. Hence we
have XK; C K> as asserted. Since X is invertible, if

X1 o], 1 1
x:[o XJ.H:K]EBK1—>H:K2®K2,

then X, has dense range. Thus X : K5~ — Kj- is one-to-one. Therefore,
day = dim K5~ <dimKi" = dan
(cf. [6, Problem 56]). In a similar fashion, if Y = ]’7=1 (I + ajA), then successive applications of

[3, Lemma 1.2] also yield YK, C K;. We can then infer as above that dan <df(a). This proves their
equality. O

For more general functions, we use the Sz.-Nagy-Foias functional calculus for contractions [8, Sec-
tion I11.2]. For any absolutely continuous contraction A (this means that A has no nontrivial reducing
subspace on which A is a singular unitary operator) and any function f in H* with ||f]|o <1, the
operator f (A) can be defined and is again a contraction. Note that every function in H* can be factored
as the product of an inner and an outer function, and every inner function is the product of a Blaschke
product and a singular inner function (cf. [8, Section IIL.1]).

Theorem 3.2. LetA be an absolutely continuous contraction on H and f be afunctionin H* with ||f ] oo < 1.

(@) Iff has an infinite Blaschke product factor, then ds(a) > sup{dan : n> 0}.
(b) If f is a (nonconstant) inner function, then dfy < sup{dar : n > 0}. In particular, if f is an inner
function with an infinite Blaschke product factor, then dfa)y = sup{da : n>0}.

Proof. (a) For each n>1, let f = frg,, where f; is a finite Blaschke product with n zeros and g, is in
H®.Then f(A) = f(A)ga(A). Theorem 3.1 and Lemma 1.2 imply that dan = df, (a) < df(a) foralln>1.
Thus df(a) > sup{dan : n>0}.

(b) We may assume that ng = sup{da» : n> 0} < oo. This means that dim Ho, = ng is finite. Let

0 0
A=|B Su 0| onH=Hs ®K &K,
0 0 U

where S, is the unilateral shift with multiplicity m, 0 < m < 0o, and U is unitary. Then

f@ay o 0
f(A)=[ C  fGm) 0]
0 0 fU)
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Note that f(Sy,) is itself a unilateral shift, say, S;(0 << 00) (cf. [2,5]) and f(U) is unitary because f is
inner. Hence

1—fA)*f(A) —C*C —C*S; O

I — F(AY*f(A) = —s*C 0 0
0 0 0

I—fA)*fA)—C*C 0 0

= 0 0 0

0 0 0

since I — f(A)*f(A) > 0. Therefore,

dray = rank (I — f(A)*f(A") — C*C) <rank (I — f(A")*f(A"))
= df(A/) <nNg.

This completes the proof. [

Note that Theorem 3.2 (a) is in general false if f is a finite Blaschke product. For example, if A =
[8 g]] and f(z) = z, then df(a) = da = 1, but sup{dan : n>0} = 2. Theorem 3.2 (b) is also false for

general f in H* with ||f]loo < 1. As an example, let A be the (simple) unilateral shift. Then sup{dn :
n >0} = 0.0n the other hand, f (A) is an analytic Toeplitz operator with symbol f, which is an isometry
if and only if f is inner (cf. [2]). Thus df4y = 0 can happen only when f is inner.

The next corollary generalizes Proposition 1.9.

Corollary 3.3. If A is an absolutely continuous contraction and f is either a finite Blaschke product or an
inner function with an infinite Blaschke product factor, then dfa) = df(ay*.

Proof. Since f(A)* = f(A*), where f(z) = f(Z) forz € D, the assertion follows easily from Theorems
31and3.2. O
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