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中文摘要： 

    設$A$為定義在希伯特空間 H 上的收縮算子。A 的虧缺指數

$d_A$定義為算子$I-A*A$值域閉包的維數。在本論文中，我們證明

(一)$d_{A^n}\leq nd_A$對任何整數$n\geq 0$皆成立，(二)如果$A^n$

在強算子拓樸中收斂到零算子且$d_A=1$，則$d_{A^n}=n$，其中 n

是任何介於 0 和 H 的維數間的有限整數，且(三)如果$d_A=d_A*$，

則$d_{A^n}=d_{A^{n*}}$對任何整數$n\geq 0$皆成立。A 的範數一

之指數$k_A$定義為集合$\{n\geq 0 :||A^n||=1|\}$之上確界。當 H 的維

數係一有限數 m 時，我們過去曾證明過一個$k_A$的下界：$k_A\geq 

(m/d_A)-1$。在此我們證明此處等式成立的充分且必要的條件。我們

也考慮了 f(A)的虧缺指數，其中 f 為一有限 Blaschke 乘積，並證明

$d_{f(A)}=d_{A^n}$，此處 n 是 f 的零點的個數。 

 

關鍵字：收縮算子，虧缺指數，範數一之指數，Blaschke 乘積。 
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Let A be a contraction on a Hilbert space H. The defect index dA
of A is, by definition, the dimension of the closure of the range of

I − A∗A. We prove that (1) dAn � ndA for all n� 0, (2) if, in addi-

tion, An converges to 0 in the strong operator topology and dA = 1,

then dAn = n for all finite n, 0� n� dimH, and (3) dA = dA∗ implies

dAn = dAn∗ for all n� 0. The norm-one index kA of A is defined as

sup{n� 0 : ‖An‖ = 1}. When dimH = m < ∞, a lower bound for

kA was obtained before: kA �(m/dA) − 1. We show that the equal-

ity holds if and only if either A is unitary or the eigenvalues of A

are all in the open unit disc, dA divides m and dAn = ndA for all

n, 1� n�m/dA. We also consider the defect index of f (A) for a

finite Blaschke product f and show that df (A) = dAn , where n is the

number of zeros of f .

© 2009 Elsevier Inc. All rights reserved.

0. Introduction

Let H be a complex Hilbert space with inner product 〈·, ·〉 and the associated norm ‖ · ‖, and let A

be a contraction (‖A‖ ≡ sup{‖Ax‖ : x ∈ H, ‖x‖ = 1} � 1) on H. The defect index of A is, by definition,

rank (I − A∗A), that is, the dimension of the closure of the range ran (I − A∗A) of I − A∗A. It is a

measure of how far A is from the isometries, and plays a prominent role in the Sz.-Nagy–Foiaş theory

of canonical model for contractions [8].
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In this paper, we are concerned with the defect indices of powers of a contraction. We show that,

for a contraction A, dAn is at most ndA for any n� 0. They are in general not equal. The equality does

hold in certain cases. For example, if An converges to 0 in the strong operator topology and dA = 1,

then dAn = n for all finite n, 0� n� dimH. The equality (for some n’s) also arises in another situation,

namely, in relation to thenorm-one index. Recall that thenorm-one index kA of a contractionA is defined

as sup{n� 0 : ‖An‖ = 1}. It was proven in [3, Theorem 2.4] that if A acts on an m-dimensional space,

then kA �(m/dA) − 1. Herewe complement this result by characterizing all them-dimensional Awith

kA = (m/dA) − 1: this is the case if and only if either A is unitary or the eigenvalues of A are all in the

open unit disc D(≡ {z ∈ C : |z| < 1}), dA dividesm and dAn = ndA for all n, 1� n�m/dA. These will

be given in Sections 1 and 2 below, respectively. In Section 3,we consider contractive analytic functions

of a contraction, instead of just its powers. Among other things, we show that if f is a Blaschke product

with n zeros, then df (A) = dAn .

1. Powers of a contraction

We start with some basic properties for the defect indices of powers of a contraction. These include

a “triangle inequality” and their increasingness.

Theorem 1.1. Let A be a contraction on H.

(a) The inequality dAm+n � dAm + dAn holds for any m, n� 0. In particular, dAn � ndA for n� 0.
(b) The sequence {dAn}∞n=0 is increasing in n.Moreover, if dAn = dAn+1 < ∞ for some n, 0� n� dimH,

then dAk = dAn for all k � n.

The proof depends on the following more general lemma.

Lemma 1.2. Let A = BC, where B and C are contractions. Then dC � dA � dB + dC . If B and C commute,

then we also have dB � dA.

Note that dB � dA may not holdwithout the commutativity of B and C. For example, if A = I, B = S∗
and C = S, where S denotes the (simple) unilateral shift, then A = BC, dA = 0 and dB = 1.

Proof of Lemma 1.2. Since

I − A∗A = I − C∗B∗BC � I − C∗C � 0,

where we used C∗B∗BC � C∗C because B∗B � I, we obtain ran (I − A∗A) ⊇ ran (I − C∗C) and thus

dA � dC . If B and C commute, then A = CB and, therefore, dB � dA follows from above.

On the other hand, since

I − A∗A = I − C∗B∗BC = (I − C∗C) + C∗(I − B∗B)C,

we have

ran (I − A∗A) ⊆ ran (I − C∗C) + ran C∗(I − B∗B)C.

Thus

dA � dC + rank C∗(I − B∗B)C
� dC + rank (I − B∗B)C
� dC + dB,

completing the proof. �



Author's personal copy

2826 H.-L. Gau, P.Y. Wu / Linear Algebra and its Applications 432 (2010) 2824–2833

We now prove Theorem 1.1. For any contraction A, let Hn = ran (I − An∗An) for n� 0 and H∞ =
∨∞

n=0Hn. In the following, we will frequently use the fact that, for a contraction A, x is in ker(I − A∗A)
if and only if ‖Ax‖ = ‖x‖.
Proof of Theorem 1.1. (a) and the increasingness of the dAn ’s in (b) follow immediately from Lemma

1.2. To prove the remaining part of (b), we check that Hn = ∨n−1
k=0A

k∗H1 for n� 1. Indeed, if x = (I −
An∗An)y for some y in H, then x = ∑n−1

k=0 Ak∗(I − A∗A)Aky, which shows that x is in ∨n−1
k=0A

k∗H1. For

the converse containment, note that A maps ker(I − Ak+1∗Ak+1) to ker(I − Ak∗Ak) isometrically for

each k � 0. Indeed, if x is in the former, then

‖x‖ = ‖Ak+1x‖ � ‖Ax‖ � ‖x‖.
Hence we have the equalities throughout and, in particular, ‖Ak(Ax)‖ = ‖Ax‖ and ‖Ax‖ = ‖x‖. The
former implies that Ax ∈ ker(I − Ak∗Ak). Togetherwith the latter, this proves our assertion. Therefore,

A∗ maps Hk to Hk+1 for k � 0. By iteration, we have that Ak∗ maps H1 to Hk+1 for all k � 1. Arguing as

above, we also obtain ker(I − Ak+1∗Ak+1) ⊆ ker(I − Ak∗Ak) and thus Hk ⊆ Hk+1 for k � 0. Therefore,

Ak∗ maps H1 to Hn for all k, 0� k � n − 1. This proves ∨n−1
k=0A

k∗H1 ⊆ Hn and hence our assertion on

their equality.

If dAn = dAn+1 < ∞ for some n, then Hn = Hn+1. Hence

Hn+2 = ∨n+1
k=0A

k∗H1 = (∨n
k=0A

k∗H1) ∨ (An+1∗H1)

⊆Hn+1 ∨ (A∗Hn+1) = Hn+1 ∨ (A∗Hn)

⊆Hn+1 ∨ Hn+1 = Hn+1 ⊆ Hn+2.

Therefore, we have equalities throughout. This implies that dn+1 = dn+2. Repeating this argument

gives us dAk = dAn for all k � n. �

Note that, in Theorem 1.1 (a), dAm+n < dAm + dAn may happen even form = n = 1. For example, if

A =
⎡
⎣0 0 1

0 0 0

0 0 0

⎤
⎦ ,

then dA = 2 and dA2 = 3. Thus dA2 < dA + dA.

The following corollary is an easy consequence of Theorem 1.1 (b).

Corollary 1.3. If A is a contraction with An isometric (resp., unitary), then A itself is isometric (resp.,
unitary).

The next theorem says that the equalities dAn = ndA, n� 0, do hold for certain contractions A. It

generalizes [3, Theorem 3.1] and [4, Theorem 3.4].

Theorem 1.4. If A is a contraction onH with An converging to 0 in the strong operator topology and dA = 1,

then dAn = n for all finite n, 0� n� dimH.

Proof. Under our assumption that dA = 1, we have dAn � n for all n� 0 by Theorem 1.1 (a). Assume

that dAn0 < n0 for some finite n0, 1 < n0 � dimH. Since dAn increases in n, the pigeonhole principle

and Theorem 1.1 (b) yield that dAn0−1 = dAn0 = dAn < n0 < ∞ for all n� n0. Hence

ker(I − An0∗An0) = ran (I − An0∗An0)
⊥ = ran (I − An∗An)

⊥ = ker(I − An∗An)

for n� n0. Let K denote this common subspace. For x in K , we have ‖Anx‖ = ‖x‖ for all n� n0. On the

otherhand, theassumption thatAn → 0 in the strongoperator topologyyields that‖Anx‖ → 0asn →
∞. From these,we conclude that x = 0 and henceK = {0}. This is the same as ker(I − An0∗An0) = {0}
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or ran (I − An0∗An0) = H. Thus dimH = dAn0 < n0, which is a contradiction. Therefore, wemust have

dAn = n for all finite n, 0� n� dimH. �

Let A be a contraction on H. Since A∗ maps Hn to Hn+1 for n� 0 as shown in the proof of Theorem

1.1 (b), we have A∗H∞ ⊆ H∞. Hence

A =
[
A′ 0

B V

]
on H = H∞ ⊕ H⊥∞.

Note that, for any x in H⊥∞ = ∩∞
n=0 ker(I − An∗An), we have A∗Ax = x, which implies that ‖Vx‖ =

‖Ax‖ = ‖x‖. Thus V is isometric on H⊥∞. Recall that a contraction is completely nonunitary (c.n.u.) if it

has no nontrivial reducing subspace on which it is unitary. A can be uniquely decomposed as A1 ⊕ U

on K ⊕ K⊥, where A1 is c.n.u. on K and U is unitary on K⊥ = ∩∞
n=0(ker(I − An∗An) ∩ ker(I − AnAn∗))

(cf. [8, Theorem I.3.2]). Thus the above decomposition can be further refined as

A =
⎡
⎣A′ 0 0

B1 Sm 0

0 0 U

⎤
⎦ ,

where Sm denotes the unilateral shift with multiplicity m(0�m� ∞), A1 =
[
A′ 0
B1 Sm

]
is c.n.u., and

V = Sm ⊕ U corresponds to the Wold decomposition of V (cf. [8, Theorem I.1.1]).

Corollary 1.5. If A is a contraction on a finite-dimensional space with dA = 1, then

dAn =
{
n if 0� n� n0,

n0 if n > n0,

where n0 = dimH∞.

Proof. On a finite-dimensional space, the above representation of A becomes A = A′ ⊕ V on H =
H∞ ⊕ H⊥∞ withV unitary. It is easily seen thatA′ hasnoeigenvalueofmodulusone.HenceA′n converges
to 0 in norm (cf. [6, Problem 88]). Our assertion on dAn then follows from Theorems 1.4 and 1.1 (b). �

The next theorem characterizes those contractions A for which dAn = n for finitely many n’s or for

all n� 0. It generalizes Corollary 1.5.

Recall that an operator A on an n-dimensional space is said to be of class Sn if A is a contraction, its

eigenvalues are all in D and dA = 1. The n-by-n Jordan block

Jn =

⎡
⎢⎢⎢⎢⎢⎣

0 1

0
. . .

. . . 1

0

⎤
⎥⎥⎥⎥⎥⎦

is one example. Such operators and their infinite-dimensional analogues S(φ) (φ an inner function)

are first studied by Sarason [7]. They play the role of the building blocks of the Jordan model for C0
contractions [1,8].

Theorem 1.6. Let A be a contraction on H.

(a) Let n0 be a nonnegative integer. Then

dAn =
{
n if 1� n� n0,

n0 if n > n0

if and only if PH∞A|H∞, the compression of A to H∞, is of class Sn0 . In this case, dimH∞ = n0.
(b) dAn = n for all n, 0� n < ∞, if and only if dA = 1 and dimH∞ = ∞.
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Proof. (a) Let

A =
[
A′ 0

B V

]
on H = H∞ ⊕ H⊥∞,

where V is isometric. First assume that the dAn ’s are as asserted.We need to show that A′ = PH∞A|H∞
is of class Sn0 . Our assumption on dAn implies that H∞ = Hn0 is of dimension n0. Moreover, for any

n� 0, we have

I − An∗An = I −
[
A′n∗ B∗

n
0 Vn∗

] [
A′n 0

Bn Vn

]

=
[
I − A′n∗A′n − B∗

nBn −B∗
nV

n

−Vn∗Bn 0

]

=
[
I − A′n∗A′n − B∗

nBn 0

0 0

]
,

where the last equality holds because I − An∗An � 0. Hence

n = dAn = rank (I − A′n∗A′n − B∗
nBn) � rank (I − A′n∗A′n) = dA′n

for 1� n� n0. If n1 < dA′n1 for some n1, 1� n1 � n0, then the pigeonhole principle and Theorem 1.1 (b)

yield thatdA′n0−1 = dA′n0 . From[3, Lemma2.3] and the fact thatA′ hasnoeigenvalueofmodulusone,we

conclude that I − A′n0−1∗A′n0−1 is one-to-one and hence dA′n0−1 = n0, contradicting our assumption.

Hence dA′n = n for all n, 1� n� n0. [3, Theorem 3.1] implies that A′ is of class Sn0 . This proves one

direction.

For the converse, we derive as above to obtain I − An∗An = (I − A′n∗A′n − B∗
nBn) ⊕ 0 on H =

H∞ ⊕ H⊥∞ and

dAn � dA′n =
{
n if 1� n� n0,

n0 if n > n0
(∗)

by [3, Theorem3.1]. Assume that dAn1 < n1 for some n1, 1� n1 � n0. Then the pigeonhole principle and

Theorem1.1 (b) yielddAn = dAn0 < n0 for alln� n0. This implies thatHn = Hn0 for alln� n0. Therefore,

H∞ = Hn0 has dimension strictly less than n0, which contradicts the fact that dimH∞ = dA′n0 = n0
(cf. [3, Theorem 3.1]). Hence we have dAn = n for all n, 1� n� n0. If n > n0, then dAn � dAn0 = n0 by

Theorem 1.1 (b) and what we have just proven. This, together with (∗), yields dAn = n0 for n > n0.

(b) Since dimH∞ � dAn for all n, the necessity is obvious. Conversely, assume that dA = 1 and

dimH∞ = ∞. Then dAn � ndA = n by Theorem 1.1 (a). If dAn1 < n1 for some n1 � 2, then an argument

analogous to the one for the second half of (a) yields that H∞ = Hn1 is of dimension less than n1. This

contradicts our assumption. Hence we must have dAn = n for all n. �

We now proceed to consider contractions A with dA = dA∗ and start with the following lemma

giving conditions of the equality of dA and dA∗ for an arbitrary operator A. Note that, in this case, the

definition of the defect index still makes sense.

Lemma 1.7. Let A be an operator on H.

(a) If dim ker A = dim ker A∗, then dA = dA∗ . In particular, if A acts on a finite-dimensional space, then

dA = dA∗ .
(b) If dA is finite, then the following conditions are equivalent:

(1) dA = dA∗;
(2) dim ker A = dim ker A∗;
(3) A∗A and AA∗ are unitarily equivalent;
(4) A is the sum of a unitary operator and a finite-rank operator.
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Proof. (a) If dim ker A = dim ker A∗, then A = U(A∗A)1/2 for some unitary operator U (cf. [6, Problem

135]). Hence AA∗ = U(A∗A)U∗ is unitarily equivalent to A∗A. Then the same is true for I − A∗A and

I − AA∗. Thus dA = dA∗ .
(b) It was proven in [4, Lemma 1.4] that if A∗A = A1 ⊕ 0 (resp., AA∗ = A2 ⊕ 0) on H = ran A∗ ⊕

ker A (resp., H = ran A ⊕ ker A∗), then A1 and A2 are unitarily equivalent. If dA = dA∗ < ∞, then

rank (I − A1) + dim ker A = rank (I − A∗A) = rank (I − AA∗)
= rank (I − A2) + dim ker A∗

and hence dim ker A = dim ker A∗. This proves that (1) implies (2). If (2) holds, then the unitary

equivalence of A1 and A2 implies the same for A∗A and AA∗, that is, (2) implies (3). Now assume

that (3) holds. Since ker A∗A = ker A and ker AA∗ = ker A∗, the unitary equivalence of A∗A and AA∗
implies that dim ker A = dim ker A∗. Hence dA = dA∗ by (a), that is, (1) holds. Finally, the equivalence

of (1) and (4) was proven in [10, Lemma 3.3]. �

Note that, in the preceding lemma, dA = dA∗ = ∞ does not imply dim ker A = dim ker A∗ in

general. For example, if A = diag (1, 1/2, 1/3, . . .) ⊕ S, where S is the (simple) unilateral shift, then

dA = dA∗ = ∞, dim ker A = 0 and dim ker A∗ = 1.

Theorem 1.8. LetAbea contractionwithdA = dA∗ < ∞.ThendimH∞ < ∞ if andonly if the completely

nonunitary part of A acts on a finite-dimensional space.

Proof. Assume that dimH∞ < ∞ and let

A =
⎡
⎣A′ 0 0

B Sm 0

0 0 U

⎤
⎦ on H = H∞ ⊕ K1 ⊕ K2,

where Sm denotes the unilateral shift with multiplicity m, 0�m� ∞, and U is unitary. We need to

show that Sm does not appear in this representation of A or, equivalently, m = 0. We first prove that

m is finite. Indeed, since

I − AA∗ =
⎡
⎣I − A′A′∗ −A′B∗ 0

−BA′∗ I − BB∗ − SmS
∗
m 0

0 0 0

⎤
⎦ ,

we have

m = rank (I − SmS
∗
m) � rank (I − BB∗ − SmS

∗
m) + rank BB∗

� rank (I − AA∗) + rank BB∗
� dA∗ + dimH∞ < ∞

as asserted. Now to show thatm = 0, consider Sm as⎡
⎢⎢⎢⎣
0

Im 0

Im 0

. . .
. . .

⎤
⎥⎥⎥⎦ .

Then B is of the form [B′ 0 0 · · ·]T . Let Ã =
[
A′ 0

B′ 0

]
. Since Ã acts on a finite-dimensional space, we

have dÃ = dÃ∗ by Lemma 1.7 (a). Then

dA∗ = rank (I − AA∗)

= rank

[
I − A′A′∗ −A′B∗
−BA′∗ I − BB∗ − SmS

∗
m

]
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= dÃ∗ = dÃ = rank

[
I − A′∗A′ − B′∗B′ 0

0 Im

]

= m + rank (I − A′∗A′ − B′∗B′)
= m + rank (I − A′∗A′ − B∗B)

= m + rank

⎡
⎣I − A′∗A′ − B∗B 0 0

0 0 0

0 0 0

⎤
⎦

= m + rank (I − A∗A) = m + dA.

We infer from the assumption dA = dA∗ < ∞ thatm = 0. Thus A = A′ ⊕ U, where A′ is the c.n.u. part
of A acting on the finite-dimensional space H∞.

The converse is trivial. �

The next two results are valid for any operators.

Proposition 1.9. If A is an operator with dA = dA∗ , then dAn = dAn∗ for all n� 1.

Proof. If dA = dA∗ < ∞, then A = U + F , where U is unitary and F has finite rank, by Lemma 1.7 (b).

For any n� 1, we have An = Un + Fn, where Fn is some finite-rank operator. By Lemma 1.7 (b) again,

this implies that dAn = dAn∗ . On the other hand, if dA = dA∗ = ∞, then dAn = dAn∗ = ∞ for any n� 1

by Theorem 1.1 (b). This completes the proof. �

Two operators A on H and B on K are said to be quasi-similar if there are operators X : H → K and

Y : K → H which are one-to-one and have dense range such that XA = BX and YB = AY .

We conclude this section with the following result on quasi-similar operators.

Proposition 1.10. Let A and B be quasi-similar operators. If dA = dA∗ < ∞, then dB = dB∗ .

Proof. Our assumption of dA = dA∗ < ∞ implies, by Lemma 1.7 (b), that dim ker A = dim ker A∗. The
quasi-similarity of A and B then yields

dim ker B = dim ker A = dim ker A∗ = dim ker B∗.
Then dB = dB∗ by Lemma 1.7 (a). �

Note that the preceding proposition is false if dA = dA∗ = ∞.

Example 1.11. Let {an}∞n=1 be a sequence of distinct complex numbers in D with
∑

n(1 − |an|) < ∞.

Let A = diag (a1, a2, . . .) ⊕ S, where S denotes the (simple) unilateral shift. Let φ be the Blaschke

product with zeros an:

φ(z) =
∞∏
n=1

an

|an|
z − an

1 − anz
, z ∈ D,

and let B = S(φ) ⊕ S, where S(φ) denotes the compression of the shift

S(φ)f = P(zf (z)), f ∈ H2 � φH2,

P being the (orthogonal) projection from H2 onto H2 � φH2. It is known that diag (an) is itself a

C0 contraction which is quasi-similar to S(φ) (cf. [9, Theorem 3]). Thus A is quasi-similar to B. But

dA = dA∗ = ∞, dB = 1 and dB∗ = 2.
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2. Relation to norm-one index

As defined in [3, p. 364], the norm-one index of a contraction A onH is kA ≡ sup{n� 0 : ‖An‖ = 1}.
This number is to measure how far the powers of A remain to have norm one. It is easily seen that (1)

0� kA � ∞, (2) kA = 0 if and only if ‖A‖ < 1, and (3) kA = ∞ if and only if σ(A) ∩ ∂D /= ∅. Themain

results in [3] say that if dimH = m < ∞, then (4) 0� kA �m − 1 or kA = ∞ [3, Proposition 2.1 or

Theorem 2.2], (5) kA = m − 1 if and only if A is of class Sm [3, Theorem 3.1], and (6) kA �(m/dA) − 1

[3, Theorem 2.2]. The purpose of this section is to determine when the equality holds in (6).

Theorem 2.1. Let A be a contraction on an m-dimensional space. Then kA = (m/dA) − 1 if and only if

one of the following holds:
(a) A is unitary,

(b) σ (A) ⊆ D, dA divides m, and dAn = ndA for all n, 1� n�m/dA.

Proof. AssumethatkA = (m/dA) − 1. Ifσ(A) ∩ ∂D /= ∅, then (m/dA) − 1 = kA = ∞,which implies

thatdA = 0orA is unitary.Hencewemayassume thatσ(A) ⊆ D. Then kA < ∞. From kA = (m/dA) −
1,wehave dA|m. By the pigeonhole principle and Theorem1.1 (b), there is a smallest integer l, 1� l �m,

such that dAl = dAl+1 . Since A has no unitary part, this is equivalent to I − Al∗Al being one-to-one

(cf. [3, Lemma 2.3]) or ‖Al‖ < 1. As l is the smallest such integer, we obtain kA = l − 1. From kA =
(m/dA) − 1, we havem/dA = l. Note that dAn � ndA for 1� n� l by Theorem 1.1 (a). If dAn0 < n0dA for

some n0, 1� n0 � l, then

dAl � dAn0 + dAl−n0 < n0dA + (l − n0)dA = ldA = m

again by Theorem 1.1 (a). This contradicts the fact that I − Al∗Al is one-to-one. Hence we must have

dAn = ndA for 1� n�m/dA. This proves (b).
Conversely, if (a) holds, that is, if A is unitary, then kA = ∞ and dA = 0. Hence kA = (m/dA) − 1.

Now assume that (b) holds. If l = m/dA, then our assumptions imply that 1� dA < dA2 < · · · < dAl =
m. Hence I − Al∗Al is one-to-one, but I − Al−1∗Al−1 is not. Thus ‖Al‖ < 1 and ‖Al−1‖ = 1. This yields

kA = l − 1 = (m/dA) − 1 as required. �
On an m-dimensional space, other than unitary operators, Sm-operators and strict contractions

(operators with norm strictly less than one), which correspond to dA = 0, 1 andm, respectively, there

are other contractions A satisfying kA = (m/dA) − 1. For example, if A = Jl ⊕ · · · ⊕ Jl︸ ︷︷ ︸
m/l

, where l divides

m, then kA = l − 1 = (m/dA) − 1. The same is true for the more general B = A1 ⊕ · · · ⊕ A1︸ ︷︷ ︸
m/l

, where

A1 is an Sl-operator. Another generalization of the contraction A is

C =

⎡
⎢⎢⎢⎢⎢⎣

0 a1

0
. . .

. . . am−1

0

⎤
⎥⎥⎥⎥⎥⎦ ,

where |aj| < 1 for j = kl, 1� k �(m/l) − 1 (l|m), and |aj| = 1 for all other j’s. In this case, it is easily

seen that dC equals m minus the number of j’s for which |aj| = 1 and hence dC = m/l. On the other

hand, kC equals themaximumnumber of consecutive j’s with |aj| = 1, and thus kC = l − 1. Therefore,

kC = (m/dC) − 1 holds.

3. Contractive functions of a contraction

In this section, we consider the defect indices of contractive functions of a contraction, instead of

just its powers. The first one is finite Blaschke products:
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f (z) =
n∏

j=1

z − aj

1 − ajz
, z ∈ D,

where |aj| < 1 for all j.

Theorem 3.1. If A is a contraction on H and f is a Blaschke product with n zeros (counting multiplicity),
then df (A) = dAn .

Note that if f is as above, then f (A) = ∏n
j=1(A − ajI)(I − ajA)

−1 is also a contraction (cf. [8, Theorem

III.2.1 (b)]).

Proof of Theorem 3.1. Let f be as above and let fj(z) = (z − aj)/(1 − ajz), z ∈ D, for each j. Let

X = ∏n
j=1(I − ajA), K1 = ker(I − An∗An) and K2 = ker(I − f (A)∗f (A)). We first show that XK1 ⊆ K2.

Indeed, if x is in K1, then ‖Anx‖ = ‖x‖. Applying [3, Lemma 1.2] once (with φ1 there as f1 and the

remaining φj ’s given by φj(z) = z) yields ‖f1(A)An−1(I − a1A)x‖ = ‖(I − a1A)x‖. We then apply [3,

Lemma 1.2] repeatedly to obtain ‖f1(A) · · · fn(A)Xx‖ = ‖Xx‖. This means that Xx is in K2. Hence we

have XK1 ⊆ K2 as asserted. Since X is invertible, if

X =
[
X1 ∗
0 X2

]
: H = K1 ⊕ K⊥

1 → H = K2 ⊕ K⊥
2 ,

then X2 has dense range. Thus X∗
2 : K⊥

2 → K⊥
1 is one-to-one. Therefore,

df (A) = dim K⊥
2 � dim K⊥

1 = dAn

(cf. [6, Problem 56]). In a similar fashion, if Y = ∏n
j=1(I + ajA), then successive applications of

[3, Lemma 1.2] also yield YK2 ⊆ K1. We can then infer as above that dAn � df (A). This proves their

equality. �

For more general functions, we use the Sz.-Nagy–Foiaş functional calculus for contractions [8, Sec-

tion III.2]. For any absolutely continuous contraction A (this means that A has no nontrivial reducing

subspace on which A is a singular unitary operator) and any function f in H∞ with ‖f‖∞ � 1, the

operator f (A) can be defined and is again a contraction. Note that every function inH∞ can be factored

as the product of an inner and an outer function, and every inner function is the product of a Blaschke

product and a singular inner function (cf. [8, Section III.1]).

Theorem 3.2. LetAbeanabsolutely continuous contractiononH and f bea function inH∞ with‖f‖∞ � 1.

(a) If f has an infinite Blaschke product factor, then df (A) � sup{dAn : n� 0}.
(b) If f is a (nonconstant) inner function, then df (A) � sup{dAn : n� 0}. In particular, if f is an inner

function with an infinite Blaschke product factor, then df (A) = sup{dAn : n� 0}.
Proof. (a) For each n� 1, let f = fngn, where fn is a finite Blaschke product with n zeros and gn is in

H∞. Then f (A) = fn(A)gn(A). Theorem 3.1 and Lemma 1.2 imply that dAn = dfn(A) � df (A) for all n� 1.

Thus df (A) � sup{dAn : n� 0}.
(b) We may assume that n0 ≡ sup{dAn : n� 0} < ∞. This means that dimH∞ = n0 is finite. Let

A =
⎡
⎣A′ 0 0

B Sm 0

0 0 U

⎤
⎦ on H = H∞ ⊕ K1 ⊕ K2,

where Sm is the unilateral shift with multiplicity m, 0�m� ∞, and U is unitary. Then

f (A) =
⎡
⎣f (A′) 0 0

C f (Sm) 0

0 0 f (U)

⎤
⎦ .
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Note that f (Sm) is itself a unilateral shift, say, Sl(0� l � ∞) (cf. [2,5]) and f (U) is unitary because f is

inner. Hence

I − f (A)∗f (A) =
⎡
⎣I − f (A′)∗f (A′) − C∗C −C∗Sl 0

−S∗
l C 0 0

0 0 0

⎤
⎦

=
⎡
⎣I − f (A′)∗f (A′) − C∗C 0 0

0 0 0

0 0 0

⎤
⎦

since I − f (A)∗f (A) � 0. Therefore,

df (A) = rank (I − f (A′)∗f (A′) − C∗C) � rank (I − f (A′)∗f (A′))
= df (A′) � n0.

This completes the proof. �

Note that Theorem 3.2 (a) is in general false if f is a finite Blaschke product. For example, if A =[
0 1
0 0

]
and f (z) = z, then df (A) = dA = 1, but sup{dAn : n� 0} = 2. Theorem 3.2 (b) is also false for

general f in H∞ with ‖f‖∞ � 1. As an example, let A be the (simple) unilateral shift. Then sup{dAn :
n� 0} = 0. On the other hand, f (A) is an analytic Toeplitz operatorwith symbol f , which is an isometry

if and only if f is inner (cf. [2]). Thus df (A) = 0 can happen only when f is inner.

The next corollary generalizes Proposition 1.9.

Corollary 3.3. If A is an absolutely continuous contraction and f is either a finite Blaschke product or an

inner function with an infinite Blaschke product factor, then df (A) = df (A)∗ .

Proof. Since f (A)∗ = f̃ (A∗), where f̃ (z) = f (z) for z ∈ D, the assertion follows easily from Theorems

3.1 and 3.2. �
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