
 1

設計及製作介面系統產生器用於整合連結前端認知辨識系統及後端
應用軟體系統(1/3)

The design and Implementation of Interface Interfacing generator
for integrating and bridging front-end recognizers and back-end

application software systems (1/3)
計畫編號：NSC97-2221-E-009-062-MY3

執行期限：97年 08月 01日至 100年 07月 31日
主持人：陳登吉 交通大學資訊工程系教授

一、摘要
中文摘要

在[17]的文獻中指出大部份的應用軟體系統裡幾乎有80%的軟體程式碼是

和介面系統有相關的。介面系統的花費是開發應用軟體時必需面對的議題，應用

軟體的使用者常以人機介面的好壞來評定該應用軟體的好壞。如何快速並簡化介

面系統的開發或修改是一重要的研究主題。一般而言，介面系統可分為人機介面

系統和應用軟體及應用軟體之間的整合介面系統。前者是目前較常見的議題，我

們已在上期國科會三年期研究計畫有開發一使用者人機介面產生器，而後者是強

調在兩種應用軟體之間的整合時所設計的介面系統。本研究針對後者提出一個為

期三年的研究計畫。期待能達到有彈性且易延伸的介面之介面系統架構

Interface Interfacing System (如圖1所示)，期待能給軟體開發者在製作應

用軟體的介面系統時能有較彈性且易維護的解決方式。此計畫的完成我們將予提

供一簡易的橋樑，來協助系統開發者將兩種應用軟體(前端的認知器與後端GUI

的應用軟體)整合成以前端認知器為人機介面的應用系統，將可和前期的國科會

計畫整體連成一無縫式的軟體介面系統的整體解決方案。對軟體介面將有重要的

貢獻。

下圖為整合後端 window環境內的傷心小棧應用軟體及前端語音辨識應用軟

體之間的介面整合的interface interfacing system。透過此介面系統 軟體開

發者可較容易整合一使用語音為輸入的傷心小棧(solitary)的應用軟體。換句話

說是將現有的傷心小棧(solitary)的軟體可透過語音的方式來做人機操作介面

的軟體。其他應用軟體若要使用相同語音方式來操控應用軟體亦可，此

interface interfacing system將比傳統的方法在製作介面系統時達快速且不

易出錯的好處，同時可減輕介面軟體程式設計製作者的維護。

 2

圖1. The proposed Interface Interfacing System

此 Interface Interfacing System，我們已做了先期研究。部份內容已發

表在 Journal of Information Science and Engineering期刊上。本計畫基於

此研究成果上，重新作一較完整的規畫並實作完成此理想的架構及系統。

 在第一年的計畫裡我們將先期研究成果重新規畫並定義其系統架構，包括前

端的語音命令語言(command language)、parser，以及後端的應用程式的介面整

合模組。建立基本架構與定義所需的Script語言及GUI模組，先以滑鼠進行測

試，接著企圖提供一個有系統的方法利用語音辨識操控應用軟體來和滑鼠模組結

合以達使用語音來控制滑鼠的互動工作。

在第二年裡我們將把第一年在PC上開發的觀念架構修整使其能使用到手持

裝置上(如PDA、smart phone等環境)，專注於設計及製作一個應用程式介面載

入器用以載入PC上Java AP與處理來自手機操作介面程式的控制命令。設計及

製作一個手機內Java程式之介面產生器用以產生手機內的Java應用軟體之介面

設定使其遙控PC上相同之應用軟體。前端的認知器改為遙控方式而後端的應用

程式則在PC環境模擬成功後再移植到手持系統的環境。本研究以Java Midlet AP

為例子，透過Smart phone的手持系統實際遙控應用軟體，圖2為一各模組間的

Remote Interfacing System架構。

語音辨識軟體

介面產生器

傷心小棧應用軟體

 3

圖2、Remote Control Interfacing System Overview

第三年我們將前兩年的研究成果加以應用到多媒體內容的製作及不同的多

媒體播放平台上，例如行動多媒體名片樣板編輯器及播放器、電子賀卡樣板編輯

器及播放器，最後考量這些已編輯完成的多媒體軟體內容在大型LCD及LED平台

上可以撥放的多媒體協調技術，並實際以這些應用軟體為例來驗證所提出的介面

整合系統的效益。

關鍵詞：See-through interface、程式碼的剖析器(Parser Generator)、介面

產生器、認知辨識、語音辨識(Speech Recognizers)、軟體工程

英文摘要

It has been shown that the major effort spent on the design and implementation

of the application system software is the user interfaces (UI) [17] (or human-machine

interface (HMI)). If UI can be developed in a short time, it will be a great help to

reduce development time for application software systems. Therefore, many

researchers have been seeking better solutions to aid UI designers to create UI

systems.

In general, there are two kinds of interface system: human-machine interface and

interface for bridging application software as one. The former concerns the GUI

design and implementation for the application software. The later concerns with the

integration of recognizer and application software together to form a new application

 4

software that uses the recognizer as the front-end system. In this proposal research,

we layout a three-year integration project that focus on the later interface technology,

called generic Interface Interfacing system, Figure 1 depicts the detailed components.

Figure 1、The proposed Interface Interfacing System

Basically, application systems that utilize recognition technologies such as

speech, gesture, and color recognition provide human-machine interfacing to those

users that are physically unable to interact with computers through traditional input

devices such as the mouse and keyboard. Current solutions, however, use an ad hoc

approach and lack of a generic and systematic way of interfacing application systems

with recognizers. The common approach used is to interface with recognizers through

low-level programmed wrappers that are application dependent and require the details

of system design and programming knowledge to perform the interfacing and to make

any modifications to it. Thus, a generic and systematic approach to bridge the

interface between recognizers and application systems must be quested.

In the first year of this integration research work, we propose a generic and

visual interfacing framework for bridging the interface between application systems

and recognizers through the application system’s front end, applying a visual level

interfacing without requiring the detailed system design and programming knowledge,

allowing for modifications to an interfacing environment to be made on the fly and

more importantly allowing the interfacing with the 3rd party applications without

requiring access to the application’s source code. Specifically, an interfacing script

語音辨識軟體

介面產生器

傷心小棧應用軟體

 5

language for building the interfacing framework is designed and implemented. The

interfacing framework uses a see-through grid layout mechanism to position the

graphic user interface icons defined in the interfaced application system. The

proposed interfacing framework is then used to bridge the visual interface commands

defined in application systems to the voice commands trained in speech recognizers.

The proposed system achieved the vision of interface interfacing by providing a

see-through grid layout with a visual interfacing script language for users to perform

the interfacing process. Moreover such method can be applied to commercial

applications without the need of accessing their internal code, and also allowing the

composition of macros to release interaction overhead to users through the automation

of tasks. Figure 1 also indicates an example that a solitary game or an authoring

system in window system can be played using the speech recognizer in window

system after the integration using the proposed approach.

The main contributions of such interface interfacing system include 1)

Productivity is reasonable good: system developers no need to trace the low level

code (without requiring the detailed system design and programming knowledge)

while integration the recognizer with the application software, 2) Maintenances effort

is low: allowing for modifications to an interfacing environment to be made on the fly,

and 3) Flexibility is good: allowing the interfacing with the 3rd party applications

without requiring access to the application’s source code.

In the 2nd year project, we continue the concept used in the first year to

investigate the handheld device environment such as PDA or Smart phone. In this

case, we use the remote control capability in the smart phone as the front-end

recognizer and java program as the back-end application software. The choice of the

java as the implementation language is rested on its heterogeneous platform

adaptation features. Specifically, we will propose an interface generator, similar to the

concept of the parser generator, to automatically generate remote control programs for

a specific multimedia application in the smart phone. With this generator, designer

does not need to write the textual remote control programs in the smart phone. This

will simplify the development process and make the control system development and

modification more flexible. Figure 2 depicts the detailed components. In Figure 2, it

indicates that a interface generator (the interface interfacing system) can proceed to

perform a code generation (Java Midlet AP) after the back-end application software in

the PC environment has been integrated with the remote control module using the

 6

proposed approach. Of course, the remote control module can be replaced by Wii- like

recognizer if it is needed.

Figure 2、Remote Control Interfacing System Overview

With the quick advance of technology, screen display of digital TV and mobile

system becomes more and more elegant and is able to present fine and vivid

multimedia contents. Most of the multimedia contents, such as advertisement, motion

pictures, messages, etc., can be displayed on different kinds of platforms. If user can

use some simple instruments (such as smart phone, PDA, etc.) to remotely

communicate with the multimedia application module in the display device (such as

PC monitor, digital TV, etc.), then the control becomes live and interesting. But there

are various control instruments and display devices, and different kinds of control

methods. If one wants to write the control program or partially modify the control

features for the multimedia application module in the display device, then he needs to

know the software source code in the multimedia application module that will be

remotely controlled, so that he can custom-design a set of remote control programs for

each multimedia application. However, there is a lot of multimedia application; a

custom design for each of these applications becomes time consuming and less

efficient.

Once we have built the interface interfacing system for both in the PC

environment (the first-year project) and smart phone environment (the 2nd year

project), we are ready to author various kinds of multimedia presentation such as

 7

mobile name card template system or e-card presentation and use smart phone to

remotely synchronize the presentation on top the big LCD and LED displayers。This

is the major effort spent in the 3rd year.

Keywords：See-through interface、 Software Engineering、 Parser Generator 、

Interface generator、Recognizers、 Speech Recognizers

二、計畫緣由與目的
In a Windows environment, the commonly used traditional method, which

allows developed window application programs with Human Computer Interaction

(HCI) control ability, is directly to write the control procedures into the application

programs while using low-order designing formula to package procedures into single

application system. To apply such devising method, the designer must possess certain

knowledge about application system designing and programming in order to devise an

application system with HCI control functions. Particularly when the design is

completed, it is relatively difficult to revise or add any system functions to it without

the primitive code, as shown in figure 1.

Figure 1 General developing method of HCI control

Three major problems may exist under such development of HCI control

procedures. First, system designers must be equipped with abundant knowledge about

the design of HCI and programming languages in order to design an application with

HCI function. Second, if we want to design an application, which lacked interaction

ability before, we need to obtain the primitive code of the particular application due to

the difficulty in modifying new programs without the code. Third, even if we have

obtained the code, we need to re-analyze the entire structure of application in order to

write a suitable control program. These tasks will leave the designer with much

 8

trouble and seemingly resulting in less flexibility and efficiency.

To overcome these issues, we emphasize on the research of Software Engineer

Methodology to develop a visual generic interface bridge (GIB) system and

introducing this system into two parts: First, the “Integration of GIB and Speech

HCI,” and secondly, “GIB-based Application Interface (GAI) generation,” in which a

PDA device is taken as an example. The GIB provides visual operating interface,

under which designers draw recognizing square object at any corresponding position

on the windows and name each square object. Subsequently, we can easily use speech

command to control mouse and keyboard actions corresponding to the position of

square object. By increasing the operation of application with more flexibility and

expandability, we use macro command to define and combine the control commands.

One macro command may be combined with several control commands; this will

avoid noise effect between long commands and make the application control more

flexible with grammar analysis technology. Through this process we can make any

application, which did not have HCI control ability previously, with speech or

wireless remote HCI control functions in an easier and more efficient manner and do

not need to write any program code, as shown in figure 2.

Figure 2 Architecture of GIB control system

三、結果與討論 (第一年)
In the following, we present the 1st year research results of this three years project.

3.1. Introduction (outline of the scope of this three-year project)
Interfacing applications with various recognition technologies (such as speech,

 9

gesture, and color recognition) will impact current methods of interaction in the area

of human-machine interfacing technology. Interfacing application systems with these

different recognition technologies have opened wide possibilities to these types of

users; however current ways of interfacing applications with recognizers are lacking

of a generic and systematic way, time consuming, and highly application systems

coupled and dependent. Particularly, current solutions that aim at bridging the

interface between speech recognizers and application systems usually lead to tightly

coupled systems where one application is wrapped by a specific recognizer through a

low-level programming implementation that makes the future modifications very

difficult. Also, without supporting mechanisms to abstract group of actions into single

reusable macro- level commands to simplify user interaction tasks creates intense and

time-consuming overheads for end users. Applications systems, especially multimedia

oriented ones deal with highly dynamic content, interfacing of this kind of content is

not yet addressed. A generic application- independent speech-driven interface

framework that allows the generation of a modifiable visual interfacing environment

without the need of dealing with low-level details must be quested.

In this research, we attempt to provide a generic and visual interfacing framework

for bridging the interface between application systems and recognizers through a

generic and systematic approach. Specifically, an interfacing script language is

designed and implemented that allows users to define the interfacing commands

between a speech recognizer and application software.

3.2. Related Work and the Proposed Solution
Current approaches to interface the interface of speech recognizers and the

interface of application software uses a wrapping integration approach that focuses on

the integration of the recognizer’s API and the application’s components through a

direct and tightly coupled way (Fig. 1). The application is in charge of setting up the

recognizer’s environment, grammar domain, receiving recognition results and

interpreting these results to perform the respective internal invocations to execute

interactions on its GUI [1]. As it can be foreseen, in Fig. 1, the integration results is

one application interfaced with one speech recognizer through a interfacing layer that

is in charge of directly mapping speech commands into actions on the application’s

components.

 10

Figure 1、 Wrapping integration.

Most of speech-driven robots adopt such interfacing approach for its design and

implementation, for instance, the AT&T’s Speech-Actuated Manipulator (SAM) [2].

Under such a tightly coupled-system, it is not surprising that any modifications on the

low level application software’s commands will result in the recoding of the speech

interface, leading to the recompilation of the whole system. Other related application

systems such as Vspeech 1.0 [3] and Voxx 4.0 [4] provide interfacing by integrating a

speech recognizer with the Window OS environment that is in charge of handling the

windows of applications; however they still suffer from the limitations such as

low-level interface and requiring detailed system design and programming

knowledge.

The common interface approach used in these speech-recognition systems is to

interface with recognizers through low-level programmed wrappers that are

application dependent and require the details of system design and programming

knowledge to perform the interfacing and to make any modifications to it. Thus, we

proposed an application- independent visual interfacing generator to bridge the

interface of a speech recognizer [5] and the interface of application systems. In the

proposed approach, when incorporating a speech-recognizer to an application system,

a user through a visual interfacing framework composes a visual interfacing

environment by drawing reference zones on top of the GUI’s interactive areas

(buttons, menu items, links, and containers) of application system, without the need of

programming low-level code for the integration. User-generated visual interfacing

environments (Fig. 2) for applications are interacted with by the system as it processes

user’s requests to perform interaction on the environment’s zones that are graphically

positioned over interaction objects of applications.

 11

(a) Application without reference zone. (b) Application with reference zone.

Figure 2、 The interfacing visual environment

The proposed system interacts with target applications by performing

invocations to the Operating System’s API and then controls and manipulates the

original input-device (such as mouse) defined in the target application under the

window environments to perform interactions directly on the visual interfacing

environment that lays above target applications’ GUI.

3.3. Involved technologies

Creating a successful generic and visual interfacing system for integrating

applications with recognizers required the understanding on several technologies,

including the “See-Through Interface” paradigm [6], the proposed interfacing script

language, and the localized speech-recognizer interfacing mechanisms. These

technologies individually be- long to different fields of study, however when

implemented in a cooperative environment, these technologies merge to contribute

towards the vision of interface interfacing.

3.3.1 See-Through Interface Paradigm

In our visual interfacing framework, the concept of “See-Through Interface”

paradigm [6] is employed to construct a transparent grid layout that allows application

front- end integration with recognizers through the drawing of reference zones.

In [7], the authors create an immersive environment that submerges users into a

virtual space, effectively transcending the boundary between the real and the virtual

world. Transparent interfacing allows this virtual 3D world to be manipulated by the

user without the need of relaying on traditional input devices such as the mouse or

keyboard for interaction.

In our visual interfacing framework, we use a transparent grid layout mechanism

to position the GUI icons defined in the interfaced application system. In this way,

any GUI based application systems can be interfaced using the proposed visual

 12

framework with different recognizers.

3.3.2 An Interfacing Script Languages

The language specification of the designed script language for this study is

simple enough to allow programmers to quickly achieve fluency in the language. Our

language design is based on Just-In-Time compilation by compiling the code as

necessary, running it in an interpreted framework [9]. In the following subsections, we

describe the proposed interfacing script language.

3.3.2.1 Data types

Types limit the values that a variable can hold or that an expression can produce,

limit the operations supported on those values and determine the meaning of

operations. Strong typing helps detect errors at compile time [9, 10].

3.3.2.2 General static semantics

Commands in the Interfacing Script Language are separated into selection

commands that take care of switching the different interfacing visual environment

content. Assignment commands that take care of assigning values to system internal

ident ifiers and lastly action commands that focus on interacting with application

system’s interfacing content, performing actions that directly affect the target

application.

3.3.3 Localized Recognizer Interfacing

In our visual interfacing framework, a localized recognizer interfacing by

integrating a speech recognizer [5] through its API is designed and implemented. The

interface is done by a specialized component that allows the future integration of

other recognizers without performing modifications to the rest of the system. The

assigned tasks to this component are kept to a minimal in order to maintain the

complexity of interfacing a new recognizer at the lowest. These tasks include the

listening of recognition content, initialization, setup and handling of the target

recognizer only. A more detailed treatment on the proposed interfacing script language

can be found in [12].

3.4 the Details of the visual interfacing framework
The proposed visual interfacing framework system interacts with target

applications by performing invocations to the Operating System’s API to manipulate

 13

its input-device and windows environments to perform interactions directly on the

“Transparent Interface” that sits on top of the GUI of the target applications. In the

proposed approach, the interfacing of recognition devices and applications is done

through two different interfacing layers that interact directly with the system’s kernel

(Fig. 3).

Figure 3、The proposed interface interfacing system.

3.4.1 Interface Input Module Processes

When the speech recognition engine recognizes spoken phrases, it outputs those

phrases as text streams in the spoken language, according to how they are defined in

the recognizer’s XML Grammar Definition. The stream of text is then passed down to

a component in charge of translating recognized text into the standard language of the

system.

The Macro Interpreter then receives the stream of text and checks if it contains

keywords that reference macros, it does so by querying the Macro Data Repository for

matches. If a match is found, the keyword inside the stream of text gets replaced with

the corresponding macro. Once a macro is loaded, it is passed down to the Wild Card

Translator that checks for the presence of wildcards. Wildcards are part of the

system’s design strategy to allow the reutilization of a macro with different dynamic

entities (Actors) by allowing the user to assign values to wildcards during runtime, in

this way avoiding the redefinition of macros for every dynamic entity. When a

wildcard is found, it is replaced with the current actor that has focus applying the

macro to it. Fig. 4 depicts the above mentioned processes.

3.4.2 Kernel Module Processes

Translated commands that result from the Interfacing Input Module process are

sent to the Kernel so that they can be interpreted into a target program (Fig. 5) that

 14

provides the interaction behavior to be applied to the interfacing environment. As the

stream of text enters the kernel, the Lexical Translator splits the stream of text into

token sets. Each token set represents a single command that is fed down to the

Syntactic Analyzer for interpretation. When the Syntactic Analyzer receives a token

set, it analyses it token by token and traverses the parsing structure until a match of a

valid command with a compatible format is found. Once the parsing is successful, the

corresponding target program is executed at the Event Delegating Component that

delegates the invocations to the respective system components involved in the

interaction.

Figure 4、Command translation process. Figure 5、Command interpretation process.

The Lexical Analyzer distributes its chores to four sub-programs (Fig. 6), one in

charge of getting the next stream input through an event handling function, other one

in charge of building lexemes as described above, other tokenizing sub-program to

take care of removing non-relevant characters and finally a subprogram that handles

the recognition of reserved words, constants and identifier names. The later with the

purpose of validating the content of the data types of the command in question by

looking them up in their corresponding tables to make sure they exist in the system

and that no reserved word are being used.

In our syntactic analysis we trace a leftmost derivation (Fig. 7), tracing the parse

tree in preorder, beginning with the root and following branches in left-to-right order.

Expanding non-terminal symbols to get the next sentential form in the leftmost

 15

derivation, basing the expansion route on the type of the non-terminal symbol [9].

Due to the simplicity and recursive nature of the language’s grammatical rules, our

approach implements a recursive descent parser rather than utilizing parsing tables to

accomplish the syntactic analysis, in this way assuring that the next token represents

the left most token of input that has not been used in the parsing, this token is

compared against the first portion of all existing right hand sides of the non-terminal

symbol, selecting the right hand sides where a match is found.

removeSeparators Terminators removeSpaces;

getInput;

Start Lexime Building Tokenizing

Valid Token Sets

Validating

Validate Tokens;

Figure 6、Tokenizing transitions Figure 7、Parsing tree of ‘dragSquare’

Bin

Applications

Application A Application B

Grids Stages Actors

objectgrid volumegird Grid N movieeditor mainscreen Stage N Profile 1 Profile 2 Profile N

Figure 8、Interfacing objects hierarchical organization.

The Kernel module is also in charge of storing, retrieving, and performing the

object activation on the different interfacing objects that are used for building a visual

interfacing environment of an application. It also handles the dynamic interfacing

content and provides the tracking mechanism to relocate dynamic interfacing object

whenever a user interacts with such content. The interfacing script language supports

scripting commands for the Kernel module to perform loading, storing, and removing

 16

of objects of type application. These interfacing script commands include square,

actor, actor profile, stage, and grid. The Kernel module also supports the querying

mechanism used by other system internal components to retrieve specific information

of objects as needed during the interaction process of interaction. Reference

interfacing objects of the system are stored- retrieved and modified dynamically into

and from a four level hierarchical directory structure, as in Fig. 8.

3.4.3 Interface Output Module Processes

The main function of the Interfacing Output Module is to provide the

mechanisms to interact directly with the front-end of application system through the

interfacing visual environment by performing input-device emulation and window’s

environment manipulation, taking care of manipulating input devices to perform

mouse or keyboard related actions on the Interfacing Visual Environment through the

Input Device Controller component. This component takes care of emulating the

following mouse actions: -Left_ Mouse_Click, -Left_Mouse_Double_Click,

-Right_Mouse_Click, -Right_Mouse_Double_ Click, -Drag_and_Drop, -Move.

Figure 9、Visual interfacing environment interaction process.

Target programs that result from the syntactic analysis are executed through the

Event Delegating Component. Depending on the command, the requests for each of

the involved events is sent to corresponding component that interact directly with the

interfacing environment through the mechanisms described above, accomplishing the

completeness of a command’s execution process (Fig. 9). A labeling system is also

developed to visually label each of the registered reference zones at their graphic

 17

location with their corresponding registered identification name

3.5 Interfacing procedures and Examples

The procedure involved in interfacing a target application with a speech

recognizer through our proposed framework requires the fulfillment of multiple steps

that are done to ensure a successful interfacing.

3.5.1 Interface Interfacing Procedures

The interfacing procedure is separated into multiple steps as depicted in Fig. 10:

Step 1: Interface the Target Application.

The first step involved in interfacing an application to a speech recognizer is to

register a desired application into the proposed system. Once the target application is

registered, we create the visual interfacing environment by drawing reference zones

on the transparent interface that lays on top of the application’s GUI, in this way

referencing application’s content such as buttons, containers and menus through the

graphic registration of grids and squares, separating this content into stages that each

represent the different GUIs of the application. Fig. 11 lists the detailed procedures of

the target application software registration.

Figure 10、Interface interfacing procedure Figure 11、Registration target application

 18

Figure 12、Recognizer interfacing steps Figure 12a、Installation of speech-recognizer.

(b) (c)

Figure 12b、12c、The Microsoft’s speech-recognizer training.

Step 2: Interface the Target Recognizer.

The second step is to interface the chosen recognizer, that wanted to be

integrated into the proposed interfacing framework system, by programming the

recognizer’s API calls that are used to start, setup and handle the recognizer and as

well as the calls involved in retrieving recognition content in the system’s specialized

recognizer interfacing component. In the following, we provide an example by

illustrating the interface of the Microsoft’s Speech-Recognizer V.6.1 [5] with the

proposed interfacing framework system. Fig. 12 shows the major steps in this

Speech-Recognizer integration. Procedures to install and training the Microsoft’s

Speech-Recognizer V.6.1 are listed as shown in Figs. 12 (a-c).

<RULE NAME="sqrs ">

<l> <P>save</P> <P>player</P> <P>new</P> <P>normal</P>

<P>duplicate</P>

Continues …

Figure 12d、Recognition vocabulary preparation.

<RULE NAME="dragsquare" TOPLEVEL="ACTIVE">

<P>dragsquare</P> <o>

<RULEREF NAME = "sqrs" / > <o> <p>to</p>

<l> <P>save</P> <P>player</P> <P>new</P> <P>normal</P>

<P>duplicate</P>

Continues …

 19

Figure 12e Composed rule definition that uses references to other lower- level rules.

<grammar>

<word NAME="Actor">Actor</word>

<word NAME="Profile">Profile</word>

Continues …

Figure 12f、Translation repository.

Whenever an application is interfaced with the system, a copy of this generic

grammar definition is customized by adding the corresponding vocabulary that was

used to create the interfacing environment of the application in question (Fig. 12 (d)).

The script program will be generated automatically.

The grammar definition cons ists of a set of rules that are defined through

extensible markup language (Fig. 12 (e)). These set of rules are used by the

speech-recognizer to validate recognized words, restricting the possible words or

sentences chosen during the speech recognition process.

Not in all cases the grammar defined for the recognizer’s will match the exact

syntax of the system’s language (perhaps a recognizer that does not support speech is

integrated to the system, such as a motion recognizer), to tackle this problem the

definition of a translation XML resource file is made (Fig. 12 (f)).

Step 3: Macro Composition.

Once an application is properly interfaced with a speech recognizer, we compose

a set of macro commands to simplify user interaction with the interfaced environment

by wrapping complex and repetitive tasks into short, reusable context free commands.

The registration of macro commands (Fig. 13) takes place through a macro

composer where the user composes the macros by writing their execution content in

the system’s defined language and writing a “keyword” that is used to reference the

macro during the invocation process.

Figure 13、Registering a macro Figure 14、Registering squares

 20

3.5.2 Interface Interfacing Objects

When referencing a target application, an interfacing environment is created

where different objects are used to reference interaction areas of the application.

Squares are referencing objects used to interface buttons or zones of applications,

each square has a name given by the user and they are registered by drawing them on

top of the interaction zone to interface. To register a square one must first select the

desired stage to associate the square with. Objects known as stages are created for

organizing and separating the different squares that are registered, separating them

based on the different GUIs that the application presents. Each stage has a name given

by the user. Fig. 14 lists the detailed procedures of registering a square named

‘mountain’.

More complex referencing objects such as grid, are built and composed of auto-

generated square objects and are used to reference panes and containers of the target

application, allowing for a localized referencing through coordinates. Each grid has a

name given by the user, and they are registered through drawing on the desired

interaction zone. Figs. 15 (a-c) lists the detailed procedures of registering grids

command named ‘grids’.

(a) Choose Draw Grid (b) Give grids a file name (c) Procedure of drawing grids

Figure 15、Registering grids.

Fig. 16 lists the detailed procedure of registering an actor profile named

‘TVactor’. P1) Press Add Actor Profile (labeled as 1-0) in Fig. 16 and the system will

generate a profile name automatically. P2) Select an actor (labeled as 2). P3) Choose

an actor control function (labeled as 3). P4) Draw a moving path of actor (labeled as

4). The ‘TVactor’ will move around as specified by the created moving path when a

voice command is given during the run time environment.

 21

Figure 16、Registering dynamic content actors and actor profiles

3.5.3 Examples with Interfacing Applications

The proposed interfacing framework has been used for interfacing several

commercialized applications with the Microsoft Speech-Recognizer. Figs. 17 (a- f)

depicts some snapshots for the interface with Bestwise’s Visual Authoring Tool (2004

version). A completed example can be found in [13].

(a) Choose recognizer language (b) Install interfacing environment (c) Registering macro command

(d) Choose stage and grids (e) Speech a macro to control system (f) Speech a macro to control system

Figure 17、Snapshots for the interface with Bestwise’s Visual Authoring Tool

3.6 Conclusion
This research overcomes some common problems suffered by deve lopers when

bridging an application system to the interface of a recognizer. The proposed approach

presents a more flexible and efficient interfacing. To design and implement the

 22

proposed interface interfacing framework, we addressed a number of challenges and

limitations imposed by current approaches, by employing several techniques such as

the “See-Through Interface”, object oriented design patterns, and incorporate a script

language definition together with a parsing technique. As a result, the proposed

interface interfacing framework enhances the interfacing of applications to

recognizers by making it an easy, generic and flexible process.

The major contributions of this study include:

1) Offers a simplistic and personalized way to interface applications with recognizers

through the front-end, without the need of dealing with low-level issues such as

system design and programming.

2) Allows modifications to a recognition interfacing environment of an application

without requiring the access to source code of applications and re-compilation of it.

3) Offers a generic and custom interface interfacing environment that allows the

coexistence of multiple applications that hold different interfacing requirements.

4) Tackles the challenges and limitations imposed by current solutions that focus on

wrapping a single application with a single recognizer in a highly coupled manner.

四 . 計畫成果自評
 In the 1st year project, we have completed a generic and visual interfacing

framework for bridging the interface between application systems and recognizers

through the application system’s front end, applying a visual level interfacing without

requiring the detailed system design and programming knowledge, allowing for

modifications to an interfacing environment to be made on the fly and more

importantly allowing the interfacing with the 3rd party applications without requiring

access to the application’s source code. Specifically, an interfacing script language

for building the interfacing framework is designed and implemented. The interfacing

framework uses a see-through grid layout mechanism to position the graphic user

interface icons defined in the interfaced application system.

The research results from this project have been submitted to conferences and

journals for publication. Also, part of the technology developed from this research

 23

project has been filed patents application in the territory of Taiwan and the U.S.A.

through the IP office of National Chiao Tung University. These related technology

developed in this project has been technology transferred to industrial sectors.

Papers Publication:

1) Shih-Jung Peng, Jan Karel Ruzicka and Deng-Jyi Chen, “A Generic and Visual

Interfacing Framework for Bridging the Interface between Application Systems

and Recognizers,” Journal of Information Science and Engineering, Vol. 22, No.5,

September 2006, pp.1077-1091 .(SCI)

2) Shih-Jung Peng and Deng-Jyi Chen, “A Generic Interface Methodology for

Bridging Application Systems and Speech Recognizers,” 2007 International

Conference on Information, Communications and Signal Processing (IEEE

ICICS2007), 10-13 December, 2007, in Singapore
3) Deng-Jyi Chen, Shih-Jung Peng and Chin-Eng Ong, “Generate Remote Control

Interface Automatically into Cellular Phone for Controlling Applications running
on PC”, Journal of Information Science and Engineering, (2008.09.16. accepted.)
(SCI)

4) Chung-Yueh Lien, Hsu-Chih Teng, Deng-Ji Chen, Woei-Chyn Chu, and

Chia-Hung Hsiao, “ A Web-Based Solution for Viewing Large-Sized Microscopic

Images” Journal of Digital Imaging, Published online: 27 June 2008,

0897-1889 (Print) 1618-727X (Online). doi: 10.1007/s10278-008-9136-x

http://www.springerlink.com/content/109379/.,

Patent:

1) 專利名稱：介面系統、方法及裝置INTERFACE SYSTEM, METHOD AND APPARATUS .
專利範圍：中華民國(台灣) . 專利發明人: 陳登吉 彭士榮 蔣加洛. 發明專

利號碼: (第 I 299457) . 專利期限: From 2008/08/01 to 2025/11/10.

2) 專利名稱：多媒體簡訊樣板套用系統及播放系統、多媒體簡訊樣板套用方法
及播放方法, 專利範圍：中華民國(台灣) . 專利發明人:陳登吉 洪啟彰 楊

博鈞; 發明專利號碼: (第 I 292667) . 專利期限: From 2008/01/11 to

2025/12/13.

 24

3) A Generic and Visual Interfacing Framework for Bridging the Interface

between Application Systems and Speech Recognizers (USA) inventors:

陳登吉 彭士榮 蔣加洛(pending)

Technology transfer:

1) 學習部落格內的文件控管及保護機制技術(技轉給智勝國際科技公司),July
31, 2008.

五. 參考文獻

1. B. Balentine, D. Morgan, and W. Meisel, How to Build a Speech Recognition

Application, Enterprise Integration Group, 1999.

2. Speech-Actuated Manipulator, http://www.research.att.com/history/89robot

3. VSpeech 1.0, Team BK02 product, http://vspeech.sourceforge.net.

4. Voxx 4.0, Voxx Team product, http://voxxopensource.sourceforge.net.

5. Microsoft’s Speech Recognizer V.6.1, Microsoft product,

http://www.microsoft.com.

6. E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D. DeRose, “Toolglass and

magic lenses: the see-through interface,” Xerox PARC, 3333 Coyote Hill Road,

Palo Alto, CA 94304.

7. Y. Boussemart, F. Rioux, F. Rudzicz, M. Wozniewski, and J. R. Cooperstock, “A

framework for 3D visualization and manipulation in an immersive space using an

untethered bimanual gestural interface,” Centre For Intelligent Machines 3480

University Street Montreal, Quebec, Canada.

8. S. K. Huang, “Objected-oriented program behavior analysis based on control

patterns,” a Ph.D. Dissertation, Department of Computer Science and Information

Engineering, National Chiao Tung University, Taiwan, 2002.

9. R. W. Sebesta, Concepts of Programming Languages, 5th ed., Addison-Wesley

Publishing Company, 2002.

10. J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Language Specification,

2nd ed., Sun Microsystems, Inc., 2000.

11. BestWise International Computing Company, http://www.caidiy.com.tw.

12. J. K. Ruzicka, “The design and implementation of an interfacing framework for

bridging speech recognizer to application system,” a Master Dissertation,

 25

Department of Computer Science and Information Engineering, National Chiao

Tung University, Taiwan, 2005.

13. S. J. Peng, “Bridging the interface between application systems and recognizers,”

Technical Report No. NCTU-CSIE-SE-TR-001, Department of Computer

Science and Information Engineering, National Chiao Tung University, Taiwan,

2005.

14. WinBatch Macro Scripting Language, http://www.winbatch.com/.

15. B. P. Douglas, Real-Time Design Patterns: Robust Scalable Architecture for Real-

Time Systems, Addison-Wesley Publishing Company, 2003.

16. Microsoft Speech SDK, Version 5.1 Documentation, Microsoft Corporation,

2001.

17. E. Lee, “User- interface development tools,” IEEE Software, Vol. 7, 1990,

pp.31-36.

