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Abstract

Discussion on wavelength dependent ‘‘anharmonic’’ effects in a pump–probe signal for a system of wavepacket on one- and two-
dimensional harmonic potentials was given. The Fourier power spectrum of the signal, calculated for a model composed of a three-state
electronic system coupled to a set of displaced harmonic oscillators, depends on the pulse duration. Condition under which the wave-
packet motion in the harmonic potential substantially deviates from that of the classical point mass is derived. The Fourier power spec-
trum has enhanced components with frequencies of harmonics even in a system composed of ideally harmonic potentials. Utility of the
Fourier analysis of the spectrum for clarification of the squeezed molecular vibrational state is discussed. Calculated oscillatory behavior
in phase of a pump–probe signal, as a function of probe frequency, was discussed in terms of a two-dimensional effect on a pump–probe
signal.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Pump–probe spectroscopy using a femtosecond laser is a
powerful tool for detecting ultra-fast phenomena such as
molecular vibrations [1–11], ultra-fast chemical reactions
[1–3,12,13], and exciton dynamics [14–16]. The observed
results often have been interpreted in terms of a wavepac-
ket picture, by which one can set theoretical bases on
the experimental results and predict novel phenomena
[17–22]. A classical vibrational motion is obtained as
far as the wavepacket is well localized in a vibrational coor-
dinate and vibrational coherence is maintained. An oscilla-
tory structure reflecting the wavepacket motion is obtained
0301-0104/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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in a time-resolved pump–probe signal. A vibrational mode
analysis (VMA) is based on the decomposition of the signal
into several vibrational modes by the Fourier analysis [23]
or the singular-value decomposition [24]. In practice, the
signal may not be merely a damped sinusoidal oscillation,
but it may follow a complicated dynamics such as a power
law due to the process of diffusion [14,15,25–29] and a
stretched exponential decay due to distributed decay rates
[30]. Even for a system in which such complicated elec-
tronic state dynamics are not dominant, they have usually
several modes coupled to the electronic excitation. The
Fourier power spectrum is formulated and the real-time
trace can be analyzed by using the harmonic oscillator
model [31]. When a wavepacket is excited in a region near
the equilibrium position of a certain excited state, one can
approximate the bound-state potential curves under con-
sideration as being harmonic with specified frequencies.
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A common theoretical analysis is to use a harmonic poten-
tial as an approximation of a real bound-state potential or
those closer to real such as the Morse type [32]. Under the
conditions that justify this approximation, however, one
needs to consider another issue concerning the excitation
process: squeezing of the molecular vibrational wavepacket
[33]. It is shown that a substantial difference can be
obtained in the Fourier decomposition of experimental
spectra for the coherent phonon and the squeezed phonon
even for a system containing a realistic amount of electron–
phonon coupling [34]. Assume that every mode, which is
decomposed either by Fourier decomposition or by SVD,
can be well-approximated by a harmonic oscillator. It is
discussed that the influences from higher-order compo-
nents on the VMA are inevitable, that is, there is not
always one-to-one correspondence between signals
obtained in VMA and vibrational modes of the system
under consideration. Focusing on a single vibrational
mode, the influence of higher-order components on VMA
is quantitatively studied. Intensities of decomposed fre-
quency components vary with change in the probe fre-
quency. It is shown that one can tell, for instance, which
peak obtained in VMA is the fundamental frequency
component and which ones are the contributions from
higher-order components, since decomposed frequency
components have different dependences on probe fre-
quency with each other.

In case two vibrational modes are taken into account,
wavepacket is considered to move around on a 2D poten-
tial surface. Chemical reaction control based on the quan-
tum optimal control simulation using model potential
energy surfaces [35–37], and dependence of vibrational dis-
tribution on an electronic excited state on the intensity of
excitation pulse [38] have been discussed so far. Few
reports, however, have aimed at a detailed discussion on
the pump–probe signal in such a system. Phase of molecu-
lar vibration has been addressed both theoretically and
experimentally [31,39]. Pulse width dependent behavior of
the phase as a function of probe frequency was observed
that shows excellent agreement with theoretical prediction
[39]. If the vibrational mode under consideration can be
approximated by the harmonic potential, the phase of
molecular vibration changes p at the equilibrium position.
Strong deviation from this typical behavior in phase was
observed in our group [40], in which the phase showed a
clear oscillation as a function of the probe frequency. Part
of this work is motivated by an idea that the anomalous
behavior in phase is due to the wavepacket propagation
on 2D potential surfaces, that is, the system is composed
of a superposition of two vibrational modes. Calculation
of the pump–probe signal for the 2D system is made and,
based on the results, phase of molecular vibration is dis-
cussed in connection with the observation.

Squeezed molecular vibration was initially discussed as a
realization of squeezing of general quantum oscillator in
the molecular system. Its generation mechanisms, such as
excitation with a chirped optical pulse [41], sudden change
in vibrational frequencies during the Franck–Condon tran-
sition [42], and superposition of the coherent states in a one
dimensional configuration [43], have been proposed. Sev-
eral proposals were made for the detection of squeezed
molecular state [33,41]. In this study, another proposal is
made for the detection, based on the Fourier decomposi-
tion of the pump–probe signal. It is investigated whether
the ratio between the intensity of the fundamental compo-
nent and that of the higher-order harmonics is valid as a
means for the judgment of squeezing.

Effect of the ‘‘apparent anharmonicity’’ that emerges in
the transient pump–probe signal is discussed, in connection
with vibrational scheme of molecule, in Section 2. Squeez-
ing effect in the signal is discussed in detail based on the
Fourier analysis. In Section 3, discussion of this anomalous
‘‘apparent anharmonicity’’ is extended to the case of two-
mode system described by 2D potential surfaces. In an
experiment in our group, it was observed that the phase
of a pump–probe signal that oscillates with delay-time
oscillates with respect to the probe frequency [40]. Two-
dimensional effect on a pump–probe signal is discussed
concerning this effect, in Section 4.

2. A single mode case

In this chapter, effect of phonon squeezing on the tran-
sient spectrum of a system with much smaller coupling
strength, which is frequently encountered in real molecular
systems is studied. In such a system, the spectra are modi-
fied due to squeezed phonons, which are visually less obvi-
ous than those discussed in Ref. [33]. We will demonstrate
in this paper how the squeezing of phonons substantially
influences the Fourier components of the spectrum in such
realistic cases. Hereafter the intramolecular vibration is
called ‘‘phonon’’ for simplicity.

2.1. Phonon statistics

The pump–probe signal obtained in the short-pulse limit
has a Gaussian-like dependence on the probe frequency,
which does not change its height during the period of
molecular vibration, and vibration of the signal along the
delay time is sinusoidal at any probe frequency. For a
longer pulse, however, the signal changes its shape during
the vibrational period, and its vibration is not sinusoidal.
With a finite pulse width, therefore, contributions of the
second and higher-order components of Fourier decompo-
sition are expected to be more significant than those with
the short-pulse limit. In this context, the deviation of the
wavepacket formation scheme from the coherent excitation
is called ‘‘apparent anharmonicity’’. This is due to the devi-
ation of the quantum harmonic system from the classical
one.

It was shown that the transient pump–probe spectra
obtained for a molecular system is sensitive to the scheme
of phonon excitation [33]. The phonon generated through
optical excitation, with reciprocal pulse duration, u, in an



Fig. 1. Plots of Fourier transformation applied to the delay time-
dependent spectrum for the strong coupling regime in the case of u = 4x.
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electronic excited state has its own quantum mechanical
statistics. The statistics changes according to the amount
of u relative to the vibrational mode frequency, x, which
is measured by an impulse factor, I = u/x [39]. In the
short-pulse limit, u� x, the system undergoes a coherent
excitation, and the generated phonon exhibits a vibration
well-approximated by a classical motion. In this excitation
condition, the phonon is characterized by the variances of
the phonon quadratures, given in terms of the phonon
operators as bX þ ¼ b̂þ b̂y and bX � ¼ �iðb̂� b̂yÞ, of a coher-
ent state as

DX 2
� ¼ 1: ð1Þ

Note that DX 2
� depends only on the excitation condition,

such as the pulse width and its chirp. It was shown that
the phonon is maximally squeezed at u � 4x as far as
Gaussian pulses are used [33], where the variances are
determined as

DX 2
þ � 0:31; ð2Þ

and

DX 2
� � 4:0: ð3Þ

Here DX 2
� are evaluated just after the Franck–Condon

transition, at which DX 2
þ is known to take its minimum

value when the molecular vibration is squeezed. While a
remarkable change in the profile of the spectrum due to
the distribution of phonon was clearly shown [33], the elec-
tron–phonon coupling used in this calculation exceeded
that observed in actual molecular systems.

2.2. Fourier analysis of the transient spectrum

The molecule is initially assumed to be in its electronic
ground state j1i. Molecular system is assumed to be com-
posed of three electronic states coupled to a set of displaced
harmonic oscillators. The pump and probe pulses interact
with different electronic transitions; that is, the pump gen-
erates a population at the first excited state j2i, while the
probe is responsible for the transition between j2i and
the second excited state j3i. The transient spectrum is
defined as the population in j3i, p3, formulation for which
is given in appendix.. The transient spectra, defined by p3 as
a function of the delay time and probe frequency, are cal-
culated for pulse widths between the cases of the nearly
coherent phonon (u = 8x) and the quasi-number state pho-
non (u = x), including the one close to most efficiently
squeezed phonon (u = 4x). The calculations are performed
for the weak (g12 = g23 = 1) and the strong (g12 = g23 = 3)
electron–phonon coupling regimes. Phonon squeezing is
shown to change the transient spectrum substantially,
reflecting the deviation of the molecular vibration from a
classical analog of vibration.

The spectrum for a squeezed phonon exhibits an oscilla-
tory change in its width and shape due to the periodic
reduction/expansion and expansion/reduction of the wave-
packet associated with the molecular vibration coordinates
and conjugate momenta, respectively. The transient spec-
trum changes its peak position during the vibrational per-
iod, according to the wavepacket motion on the first
excited potential curve. It was shown in Ref. [33] that the
transient spectrum changed its width during the period of
vibration. In contrast, such a squeezing effect in the width
is not clear in our case, where the electron–phonon cou-
pling is much smaller. This is a distinct feature of the weak
coupling regime, which was not discussed in Ref. [33]. To
elucidate the effect of phonon squeezing on the spectrum,
Fourier transformation against the delay time is applied
to p3 for each probe frequency given as a function of the
delay time, from which relative contributions of harmonics
are estimated. The results on the pulse duration of u = 4x
for the strong coupling regime (g12 = g23 = 3) are shown in
Fig. 1. The probe central frequency, ranging from �13x to
20x, is expressed as a difference from the electronic gap
between the minima of two relevant potential curves. One
can see a dominant component of the fundamental fre-
quency, x. Another component corresponding to 2x, also
detectable, has a peak corresponding to the double-fre-
quency region that lies around the equilibrium position
of the potential. This is because the wavepacket passes
through this region twice in each period of vibration. The
wavepacket, on the other hand, passes the turning points
once in each period, leading to the two main peaks in the
fundamental order component at the probe frequencies res-
onant to the turning points.

These are common features observed in any case of the
pulse duration and coupling strength in the present formu-
lation. The spectrum changes its shape during the vibra-
tional period as far as the excitation pulse has a finite
width, and consequently the excited vibration is neither
in a vibrational coherent state nor a vibrational eigenstate.
As a general feature, generation of high harmonics is
enhanced in a stronger coupling regime. This is because
the change in the spectral shape is more significant in the
case of stronger electron–phonon coupling. This change
in the shape includes an oscillatory change in the width



Fig. 3. Dependence of R on the pulse width: (a) g12 = g23 = 1 and (b)
g12 = g23 = 3.
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of an asymmetric profile, which leads to a deviation of the
temporal vibration of each point of the spectrum from a
sinusoidal one.

The contribution of the second and higher-order har-
monics components to the spectrum, integrated over the
probe frequency, is evaluated by the ratio to that of the first
order, as plotted in Fig. 2. A comparison is made for the
pulse width ranging from 0.5x, which corresponds to the
long-pulse limit generating nearly vibrational eigenstate,
to 8x, the short-pulse limit leading to a coherent excitation.
A comparison with the strong electron–phonon coupling
regime is also made. In both cases, the high harmonics
components are remarkably enhanced with an intermediate
pulse width characterized by the most efficient squeezing
condition (u = 4x). It is also seen that, especially in the
strong coupling regime, the contribution of higher harmon-
ics is not negligible when the pulses are short enough to
excite a coherent phonon.

2.3. Phonon characterization

The contribution of higher harmonics is plotted as a
function of the pulse width in Fig. 3. Here R is defined as
R = Is/If, where If and Is are the integrated Fourier power
spectrum in terms of probe frequency of the fundamental
and the second harmonic, respectively. Each contribution
is estimated by integration along the probe frequency esti-
mated in Fig. 2. Note that only the second harmonic com-
ponent is selected in this estimation for a practical reason:
it is difficult to evaluate the effects of third and higher-order
contributions quantitatively from a noisy pump–probe
signal.

Oscillation of a signal along the delay time at each probe
frequency, excited with a pulse of finite width, makes a
more contribution of the second and higher-order compo-
nents of Fourier decomposition than that excited with a
short-limit pulse. On the other hand, no wavepacket is gen-
Fig. 2. Ratios of each harmonics component to the fundamental x componen
erated in the long-pulse limit; only a single vibrational level
is excited under this condition. In this limit the obtained
signal has no delay-time dependence. In this respect, one
can understand that R, as a function of the pulse width,
has a maximum at a certain point, as displayed in Fig. 3.
Squeezing also has its maximum at u � 4x [33].

For experimental identification of the squeezed phonon,
squared variance of phonon quadratures, DX 2

þ, is plotted
in Fig. 4 as a function of R for both weak and strong cou-
pling regimes. In both cases, DX 2

þ is less than unity for lar-
ger R; that is, the molecular wavepacket is squeezed. In
other words, one can confirm the squeezing by determining
the relative contributions of higher harmonics to the
observed pump–probe transient spectrum in such a system
t: (a) g12 = g23 = 1 and (b) g12 = g23 = 3.



Fig. 4. Squared variance of phonon quadratures as a function of R. (a)
g12 = g23 = 1 and (b) g12 = g23 = 3.
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that is precisely described by harmonic potentials. It
is shown that a Fourier power analysis can be used for
detecting the squeezing of molecular wavepacket in the
range of electron–phonon coupling strength covered in this
work.

To summarize, statistical features of a wavepacket of
molecular vibration affect the pump–probe transient spec-
trum. We have demonstrated a substantial difference in
the Fourier decomposition of experimental spectra for
the coherent phonon and the squeezed phonon even for a
system containing a realistic amount of electron–phonon
coupling. Therefore, one needs to be careful in a frequency
analysis of molecular vibration, which can be modified by a
deformed molecular vibrational wavepacket.

As discussed above, the possibility that a single vibra-
tional mode behaves like two modes in a mode analysis
increases when the condition of excitation satisfies that of
creating a squeezed phonon. We have shown that Fourier
analysis of an observed spectrum can manifest generation
of a squeezed molecular vibrational state. As a counterpart
of the present theoretical study, where only a single vibra-
tional mode is considered, spectroscopic studies have been
made, in many cases, on more complicated samples such as
polymers and metal complexes containing many vibra-
tional modes. In such a practical measurement, decomposi-
tion to single modes and estimation of their Fourier
components are much harder because of the modes lying
close to one another and coupling effects among them. A
pump–probe experiment on a simpler system such as a dia-
tomic molecule using a sub-5fs laser system seems to be the
first feasible approach to overcome this problem.
3. A two-mode system

Let us consider a two-mode system. Photo-induced
dynamics of the wavepacket on 2D potential energy sur-
faces is obtained in the time-dependent picture based on
the Schroedinger equation numerically solved on a grid
using the second-order operator splitting method [44].
The fast Fourier transform method is employed to evaluate
the propagator of the nuclear kinetic energy operator. Our
system is composed of three electronic states, jgi, jei, and
jfi, on which the wavepacket propagates. Initially, the sys-
tem is in the vibrational ground states of jgi in both modes
I and II. The system undergoes jgi ! jei and jei ! jfi opti-
cal transitions in pump and probe processes, respectively.
Delay-time dependence of the absorption probability of
probe pulse is obtained for probe frequencies that range
from �2x1 to 2.5x1, where x1 is the frequency of mode
I, that cover the dynamic range of the signal. Pump pulse
is assumed be resonant to the jgi ! jei transition. In the
following, probe frequency Dxr is expressed as a deviation
from the energy difference between vibrational ground
states in jgi and jei. Huang-Rhys factor is fixed to 0.5 at
each mode and transition.
3.1. Analysis based on the Fourier power spectra

We have shown in the previous chapter that the vibra-
tion of signal obtained by the pump–probe spectroscopy
does not always consist of the fundamental frequency of
the molecular vibrational mode under consideration, but
can contain higher-order components even in the ideally
harmonic systems [34]. In this study, it was found that
the contribution of these ‘‘higher-order’’ components
depends on the central frequency of the probe pulse and
on the vibrational scheme of the molecular vibrational
wavepacket that was created by the pump pulse. Vibra-
tional scheme is determined only by the relation between
the mode frequency and the pulse width, and can be char-
acterized by the impulse factor, I, defined by [39]

I ¼ u
x
; ð4Þ

where u is the reciprocal pulse duration defined in Eq.
(A.7), and x is the vibrational mode frequency. If the pulse
width is considerably shorter than the period of vibration,
the system is excited coherently, which can be described by
well-localized vibrational wavepacket. If the pulse width is
sufficiently longer than the vibration period, on the other
hand, only a single vibrational eigenstate is excited, with-
out forming a wavepacket. When the molecular vibration
is squeezed, maximally localized states of the two quadra-
ture components of the vibrational wavepacket emerge
temporally alternatively, in the vibrational degree of free-
dom. It was shown that, from the ratio between contribu-
tions of the first and higher-order components, one could
clarify the squeezing of the wavepacket in the case of single
vibrational mode in the previous chapter. First, the Fourier



194 T. Taneichi, T. Kobayashi / Chemical Physics 341 (2007) 189–199
power spectra of pump–probe signal obtained for the case
in which molecular vibration of one of the two vibrational
modes (mode II) is squeezed.

Prior to discussion of squeezing, Fourier power spectra
of the signal expected to the pump probe experiment in
which the probe frequencies are resonant to the turning
and equilibrium positions of the vibration are shown in
Fig. 5, for the cases of x2 = 1.5x1 and

ffiffiffi
2
p

x1. It is obvious
that, similar to the single mode, one cannot neglect the con-
tributions from components other than fundamental one,
and that the amounts of higher-order contributions depend
on the probe frequency. It is also similar to the case of sin-
gle mode that the contributions from the third and higher-
orders are negligibly small. Note that, depending on the
probe frequency, either second harmonic or difference- as
well as sum-frequency components are obtained. It has
been shown in our previous analysis [34] that larger contri-
butions from the second and higher-order were obtained
for probe frequency in resonance to equilibrium position
of vibration. In the case where two modes of vibration is
taken into account, as one can see from Fig. 5, the second
harmonic components of both modes have considerable
contributions to the signal in the same region of probe fre-
quency. Sum and difference frequency components, on the
other hand, are the main constituents of the signal, in addi-
tion to the fundamental frequency components, for probe
frequencies in resonance to the turning points of vibration,
of both higher and lower sides in energy region. This is a
contrasting feature of the present system to the case of sin-
gle mode in which one can resolve only the sum-frequency
Fig. 5. Fourier power spectra of the signal in which the probe frequencies ar
regions, and equilibrium positions (b), of the vibration, for the cases of x2 =
component as the second harmonic one even in the energy
region that are resonant to the turning points as well as
equilibrium position. It is suggested that, based on a
multi-mode pump–probe signal, one can tell which mode
frequencies are contributing to the data under consider-
ation, by comparing the Fourier power spectra obtained
at the turning and the equilibrium position of the vibration,
that is, the Fourier power spectrum obtained at the probe
frequency resonant to the equilibrium position is composed
of the fundamental and the second-order components and
the one obtained at the region of turning position, on the
other hand, is composed of the sum frequency component
in the higher and the difference frequency one in the lower
energy region in place of the second-order one, in addition
to the fundamental order component. Therefore, one needs
to be cautious about the possibility that a measured signal,
which has a complicated profile composed of several
Fourier components in its appearance at single probe
frequency, may be interpreted in terms of relatively small
number of modes.

Effect of squeezing of phonon, in a case of single mode,
appears in the Fourier power spectrum of the pump–probe
signal. The ratio R increases with the squeezing of phonon
as was discussed in the previous chapter. Let us suppose
that the envelope function of the pump pulse is defined as

exp � u2ðt�t0Þ2
2

h i
, where t0 is time of the pulse peak. The pho-

non is known to be maximally squeezed when pulse width
satisfies u ’ 4x, where x is the mode frequency [33]. In
the present study, u = 10x1, which leads to a well-localized
e resonant to the turning positions in the lower (a) and higher (c) energy
1.5x1 and

ffiffiffi
2
p

x1.
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coherent phonon in the mode I. In mode II, on the other
hand, phonon is squeezed if x2 = 2.5x1 is satisfied. R is cal-
culated, which is shown in Fig. 6, for x2 = 2.5x1 together
with other x2’s, for comparison. It is shown that, in contrast
to the single mode system, R decreases monotonically with
the ratio of mode frequencies and no signature of squeezing
Fig. 6. R as a function of x2 for x2 = 1.1x1, x2 = 1.5x1, x2 = 1.9x1 and
x2 = 2.5x1 (squeezed).

Fig. 7. Observed and calculated plots of the phase dependence on the probe fr
and calculated phases, respectively. Mode frequencies are: (a) 140 cm�1, (b) 4
that appears as a considerable increase in R for the case of
single mode, is seen. It is, therefore, concluded that one can
no more judge correctly if the phonon is squeezed, based on
R in the pump–probe signal obtained from multi-mode
intramolecular system.

4. Oscillation in probe-frequency dependent phase

Let us consider the oscillatory behavior of the phase of
the pump–probe signal as a function of probe photon
energy. In order to determine the vibrational phase, ph,
delay-time dependent absorption probability, which is
measured by the population generated in jfi through the
interaction with the probe pulse, is fitted with the following
sinusoidal function for each probe photon energy:

pA cosðpxt þ phÞ þ pslow: ð5Þ
Here pA, px, ph and pslow are the amplitude, frequency,
phase of the oscillation and slow decaying amplitude,
respectively. Detailed discussion on the phase of molecular
vibration is given in Refs. [31,39]. Phase of the signal
obtained in the single mode system is characterized as a p
jump at the equilibrium position (Fig. 7). Observation
equency for three modes [39]. Solid dots and solid lines show the observed
40 cm�1, and (c) 730 cm�1.



196 T. Taneichi, T. Kobayashi / Chemical Physics 341 (2007) 189–199
was made for a cyanine dye sample [39]. The pulse width
was 20 fs. Vibrational phases obtained for three vibrational
modes that have different frequencies are shown. Due to
the change in relation between pulse width and the mode
frequencies, probe-frequency dependent behavior in phase
changes substantially, but is essentially characterized by
the p shift at the equilibrium position of the molecular
vibration. Let us consider a system, which consists of two
vibrational modes (modes I and II) with frequencies x1

and x2 (>x1), respectively. If the ratio of these frequencies
is an integer, mode II vibrates the integer times during one
period of mode I. If the frequency ratio is rational, vibra-
tions of modes I and II synchronize with a period identical
to the least common multiple of periods of both modes. In
these cases, the orbit in the 2D potential is known to be a
closed curve, that is, the Lissajous’ curve. Consider the sim-
ple case in which frequency ratio is an integer. Mode II
oscillates integer times during one period of mode I, lead-
ing to the integer number of oscillation in phase, which cor-
Fig. 8. Phase of superposed modes calculated as a function of the prob
rational, and irrational.
responds to the vibration in mode II, in the region of probe
frequency resonant to both of the modes. As a conse-
quence, the phase, obtained by fitting the signal for several
periods of signal, is expected to show an oscillatory behav-
ior due to the superposition of the two modes. The phase of
superposed modes is calculated as a function of the probe
frequency. The results are shown in Fig. 8, for the cases
in which the frequency ratios are integer, rational, and irra-
tional for comparison. It is obvious that, in the range of
frequency ratio considered in the present study, the ob-
served oscillatory behavior in the phase as a function of
the probe frequency is not obtained in every case. As a
result, the phase does not behave in a considerably different
way from that of single mode case.

Another origin of deviation of phase behavior from that
in single mode case is considered to be due to different res-
onance condition in these two modes, that is, difference in
the resonance energies among two modes leads to a shift in
probe frequency of phase jump (typical p jump in the single
e frequency, for the cases in which the frequency ratios are integer,



Fig. 10. Absorption probability of the probe pulse as a function of probe
frequency and delay time.
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mode system is seen in Fig. 7), resulting in the change in the
behavior of phase. Phase is calculated for a case in which
resonance condition for the probe process (jei ! jfi) is dif-
ferent among modes while keeping the resonance condition
for the pump process (jgi ! jei) identical to the previous
calculation, that is, resonant to the pump pulse. Here the
probe pulse is assumed to be resonant to the probe process
in mode I, while it is not, on the other hand, in mode II
(Fig. 9). A parameter DX � Xequi

res � Xequi
offres, where Xequi

res

and Xequi
offres are the vertical energy gaps between jei and jfi

of mode II at the equilibrium position of jei of resonant
and off-resonant cases, respectively, is amount of off reso-
nance in unit of the frequency of mode I x1. Roughly three
types of probe-frequency dependence is identified; (1) phase
undergoes p shift at the phase jump points (PJP’s) of both
modes and 2p overall shift (x2 = x1,DX = 1.4x1), (2)
phase undergoes p overall shift with one or two PJP ( 0s)
(x2 = 1.5x1,DX = 1.4x1, etc.), and (3) phase derived at
higher probe frequency is identical to the one at lower
probe frequency with two PJP’s (x2 = 2.0x1,DX = 0.5x1).
Absorption probability (AP) of the probe pulse as a func-
tion of probe frequency and delay time is shown in Fig. 10,
in order to discuss the phase that is identical across two
PJP’s. PJP of AP corresponding to the molecular vibration
in mode I is obvious when Dxr = 0.5x1 is satisfied, and
one can also see that AP splits at Dxr = 0 (indicated by a
Fig. 9. Phase calculated for a case in which resonance condition for the pro
circle), which corresponds to the equilibrium position of
mode II with DX = 0.5x1, pointed by an arrow. It is com-
prehensible qualitatively, from Fig. 10, for the phase to be
identical in lower and higher energy region due to the split.

As a whole, the vibrational phase as a function of probe
frequency is no longer monotonic in the case of 2D system,
but shows a variety of probe frequency dependence
be process is different among modes while pump pulse is in resonance.
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including successive rising and falling. Although change in
the behavior of phase cannot be related to the excitation
conditions, such as detuning and frequency difference
among modes, in a definitive way, one can rationally con-
clude that the oscillation in the observed phase is due to the
multi-mode effect in molecular vibration.

5. Conclusion

In conclusion, statistical feature of the molecular vibra-
tional wavepacket is shown to affect the pump–probe spec-
trum. Remarkable difference is seen in the Fourier
decomposition of spectra for the coherent phonon and
the squeezed phonon even in case the electron–phonon
coupling is of realistic amount. One has to be careful in
the frequency analysis of molecular vibration which can
be modified due to the deformed molecular vibrational
wavepacket. Concerning the results obtained in our discus-
sion, the possibility for which a single vibrational mode
behaves as two modes during the mode analysis increases
if the excitation condition satisfies that of creating squeezed
phonon. It is shown that, for multi-mode system, in con-
trast to the single mode one, the Fourier power analysis
of a pump–probe signal is no more adoptive in telling
whether the system is in the squeezed state. A novel oscil-
latory behavior in the probe-frequency dependent vibra-
tional phase is discussed and is shown that it is possible
to interpret it as a consequence of multi-mode effect. In a
system that can be approximated well by a harmonic
potential in a single vibrational mode, one can clarify
squeezing phenomenon by studying the contribution of
high harmonics to the observed pump–probe spectrum.
However, the same is not valid for the system if it has
multi-dimensional potential surfaces.
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Appendix A

Transient spectrum is obtained as follows. The Hamilto-
nian is given as

bH ¼ bH 0 þ bV ðtÞ; ðA:1Þ

where

bH 0 ¼
X

i

eiâ
y
i âi þ

X
ik

�hxkcikðb̂yk þ b̂kÞâyi âi þ
X

k

�hxkb̂ykb̂k

ðA:2Þ
is a molecular Hamiltonian composed of three electronic
states coupled with a phonon. Here âi and b̂k denote elec-
tron and phonon operators, respectively, ei is the electronic
energy, xk is the phonon frequency, and cik is the electron–
phonon coupling constant. Note that the frequency of the
vibrational mode under consideration is assumed to remain
unchanged after the electronic transition. The interaction
Hamiltonian between the external field and the molecule,bV , is represented using the rotating-wave approximation as

bV ðtÞ ¼X
i>j

½l�ij ðtÞâ
y
i â
þ
j lþji ðtÞâ

y
j âi�; ðA:3Þ

where

l�ij ðtÞ ¼ l�ij eaðtÞ expð�iXatÞ; ðA:4Þ

l�ij ¼
1

2
dijE�a; ðA:5Þ

lþji ðtÞ ¼ l�ij ðtÞ
�
; ðA:6Þ

and

eaðtÞ ¼ p�1=4 exp½�u2
aðt � T aÞ2=2�: ðA:7Þ

Here dij is the dipole moment of an electronic transition,
and Ea (a = u,r) denotes the field amplitudes for the pump
(Eu) and probe (Er) pulses. Xa and u�1

a are the central fre-
quency and pulse duration of those pulses, respectively.
Ta is the time of the pulse arrival. Let us consider a simpler
model, in which only a single vibrational mode is involved,
and assume that its frequency remains unchanged after the
electronic transition, namely the curvatures of the ground-
and excited-state potential curves are identical. The pump
pulse interacts with the system at t = 0. The probe pulse
then arrives with a time delay T. By use of the fourth-order
perturbation theory in terms of the field amplitude, the
population in j3i is found to be

p3 ¼ jl12j
2jl23j

2p�1�h�4N�1

Z 1

�1
dt1

Z t1

�1
dt2

Z 1

�1
dt4

Z t4

�1
dt3

	 exp � u2
r

2
ðt1 � T Þ2 � u2

u

2
t2
2 �

u2
u

2
t2
3 �

u2
r

2
ðt4 � T Þ2

�
þ idrðt1 � t4Þ þ iduðt2 � t3Þ�
	 TrðbD32ðt1ÞbD21ðt2Þq0

bDy21ðt3ÞbDy32ðt4ÞÞ: ðA:8Þ

Here q0 is the initial vibrational density matrix, and N is
the normalization factor. The detuning for the transitions
induced by pump (u) and probe (r) pulses are given by

da ¼ ei=�h� ej=�h� Xa ðA:9Þ
with a set of parameters (a, i, j) = (u, 2,1), or (r,3,2). Here ei

and Xa are the energy of the ith electronic state and the cen-
tral frequency of the external electric field, respectively. The
vibrational displacement operator, bDij, can be expressed in
terms of phonon operators, b̂y and b̂, as

bDij ¼ expðgijðb̂y � b̂ÞÞ; ðA:10Þ

with the difference gij = ci � cj in the electron–phonon cou-
pling constants, ci (i=1, 2, and 3). Pump and probe pulses
are assumed to have an identical time duration, u�1

a , and
their electric field amplitudes are Ea. Dipolar interactions,
lij ¼ 1

2
dijEa, are given by the transition dipole moment dij.
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