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1.2 Abstract

The second research year of this project aims to propose an integrated algorithm by hybridizing cell
transmission model (CTM) and extended Kalman filtering (EKF) to estimate arrival distribution and
O-D proportions respectively and iteratively. An exemplified example of a freeway corridor are
used to investigate the capability of CTM in replicating traffic dispersion phenomenon. Results
show that CTM can accurately capture the traffic dispersion under various traffic conditions. The
degree of traffic dispersion gets large as traffic flow increases. To demonstrate the applicability of
the proposed estimation algorithm, a case study of Taiwan No.l Freeway is conducted. Results
show that the proposed algorithm can estimate the O-D proportion with a low average RMSE of
0.0414. However, the results of the case study of a larger scale field case show that the RMSE
values are high, leaving a lot of room for improvement. Thus, this project will continue to improve
the proposed algorithm.

Keywords : Dynamic origin-destination, Cell transmission model, Extended Kalman filtering.

2. INTRODUCTION

Accurate dynamic origin-destination (O-D) information is required for the implementation of
real-time traffic control measures, such as real-time route guidance and signal control. Numerous
studies have devoted to developing estimation algorithms for the dynamic O-D matrix based mainly
on observable mainline and ramp flow rates. The dynamic O-D matrices estimation algorithms can
be divided into two categories (Ho, 2008): assignment-based (e.g. Ashok and Ben-Akiva, 2000,
2002) and non-assignment-based (€.9g. Chang and Wu, 1994; Chang and Tao, 1996, 1999; Lin and
Chang, 2005, 2007). The assignment-based method primarily relies on a dynamic traffic assignment
algorithm to generate link flows; while the non-assignment-based method directly estimates O-D
matrices. However, this issue remains challenging in that the number of parameters to be estimated
is always far greater than the available information, thus additional assumption or exogenous
information, such as route choice behaviors, priori O-D matrix information, sequence of
observational periods of traffic counts data (e.g. Bell, 1983, 1991; Yang et al., 1992, 1995; Vardi,
1996; Lo, et al., 1996; Hazelton, 2001), should be further considered.

One of the most challenging issues remained to be tackled in the context of dynamic O-D matrices
estimation is the impact of travel time variability on the time-varying O-D matrices. Chang and Wu
(1994) assumed that the vehicles entering the freeway in a time interval are distributed in a small
range (within two time intervals). However, if an O-D pair traffic traverses a sufficiently long
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distance or experiences moderate to heavy congestions, then the travel time variability may be
rather large, which can result in a serious traffic dispersion phenomenon. As a result, the O-D pair
traffic entering the freeway in a specific narrow time interval will reach their destinations over a
wide time interval, which will greatly increase the difficulty in accurately estimating the dynamic
O-D matrices. In other words, an accurate prediction model for the arrival distribution of entering
O-D pair traffic under various traffic conditions is undoubtedly imperial for dynamic O-D matrices
estimation.

Based on this, Chang and Tao (1995) assumed a macroscopic traffic model to efficiently predict the
travel time according to concurrent traffic conditions and used the predicted travel time to estimate
traffic arrival distributions and then to estimate the O-D matrices. Lin and Chang (2005, 2007)
further assumed the travel time of drivers departing from i during time interval K to j following a
certain distribution and then used such a distribution to estimate their arrival patterns. However, the
studies of Chang and Wu (1994), Chang and Tao (1995) and Lin and Chang (2005, 2007) all made
strong assumptions regarding the prediction of traffic dispersion, which might not be valid for
various conditions from free-flow to gridlock. In addition, the state equations in the
abovementioned studies may involve relatively too many parameters, largely increasing the model
complexity to be implemented.

To efficiently and accurately capture the traffic behaviors along with their arrival distributions under
various traffic conditions, this paper combines cell transmission model (CTM) and extended
Kalman filtering (EKF) to simulate the traffic movement behaviors, to predict the arrival
distributions of all O-D pair traffic in various time intervals, and then to estimate the dynamic OD
matrices. CTM, proposed by Daganzo (1994), can efficiently simulate traffic hydrodynamics under
various traffic conditions. Moreover, the conceptual representation of spatial (cell) and temporal
(discrete time click) of traffic makes CTM especially suitable for dynamic O-D matrices estimation.
Our proposed model not only results in a substantial increase of system observability with
significantly less parameters than those in literature, but also contributes to enhance the quality of
dynamic O-D matrices estimation.

The remainder of this paper is organized as follows. Section 2 gives the definitions of the problem,
variables and related parameters. Section 3 presents the proposed cell-based arrival distribution
prediction model. An exemplified freeway corridor with six interchanges is used to investigate the
degree of traffic dispersion under traffic scenarios ranging from free-flow to congested flow
conditions. Section 4 introduces the framework of the proposed algorithm. A case study is
conducted in Section 5 to validate the applicability and performance of the proposed algorithm.
Finally, concluding remarks and suggestions for future research follow.

3. PROBLEM DEFINITION

Consider a typical linear freeway corridor with N segments, coding 0 to N-1, as shown in Figure 1.
Assume that detectors are installed at all on-ramps, off-ramps, and mainline links. The information
that is readily available for estimation of dynamic O-D distribution is the time series of entering
flow, @;(k), exiting flow, Y,(k), and mainline flow, U, (k). The notations used in this paper are

defined in Table 1.



Table 1 Definition of variables and parameters

Variables/ Definition
parameters
a,(k) The number of vehicles entering the upstream boundary of the freeway section
during time interval k.
q; (k) The number of vehicles entering freeway from on-ramp i during time interval
k,i=12,...,N-1.
y; (k) The number of vehicles leaving freeway from off-ramp j during time interval
K,j=12,...,N-1.
yy (K) The mainline volume at the downstream end of the freeway section during
time interval K.
U, (k) The number of vehicles crossing the upstream boundary of segment i during
time interval k, i=1,2,. .., N-1.
T; (k) The number of vehicles entering the freeway from on-ramp i during time

interval K that are destined to off-ramp j, where 0<i< j<N.
t, The length of one unit time interval.

by (k) The proportion of gi(k) heading toward destination node j during time interval
k.
p"(K) The fraction of Tjj(k-m) vehicles departing from entry node i during time
! interval k that takes m time intervals to exiting node j.
p"(k)  The fraction of Tij(k-m) trips from entry node i during time interval k that takes
! m time intervals to mainline node.
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Figure 1 A typical linear freeway corridor
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The relation between the dynamic O-D pattern and resulting link flow can be expressed by
equations (Lin and Chang, 2007):

g(k)=D Ty(k), i=0]..,N-1 (1)

j=i+l

T;(K) =0, (k)-b;(k), 0<i<j<N 2

The above two equations are subjected to the following natural constraints:

0<b;(k)<l, 0<i<j<N 3)

dbyk)=1 i=012..N-1I (4)

j=i+l

Consider the speed variation among drivers, it is reasonable to assume that the travel time of
vehicles from node i to node j during time interval k are distributed among time intervals k-M,...,
k-1, and k where M is the maximum number of intervals required for vehicles to traverse the entire
freeway section. The traffic volume leaving freeway from off-ramp j, y;(k), can thus be expressed

as

V0= 3 ak—mp k)b (k-m) )

m=0 i=0



U0 =00 = 3 3 o (k= my "k g (k — ) ©

m=0 i=0 j=I+1

where p'Jn (k) shall satisfy the following relations:

0<pf(k)<l, 0<i<j<N, m=0,L..,M (7)
M
Y plk+my=1, 0<i<j<N )
m=0

Obviously, the system formulation has a large number of state parameters, i.e., bjj(k) and p:j“(k).

The number of these unknown parameters increases with the necessary M value. As such, some
more information is required to ensure this proposed model to be computationally efficient and
tractable.

To deal with the large number of unknown parameters, Chang and Wu (1994) simplified the
formulations by assuming that the speeds of vehicles entering the freeway at the same time interval
are distributed in a small range. Therefore, Egs. (5) and (6) can be rewritten as

j-1 j-1
y5(k) = X o (k — t; (kn by (b (k —t; (o)) + 3 [, (k =t (k) b (kb (k —t; (k) o
i=0 i=0 9

j—1

o (k = t; (k) (k)b (k —t; (K)))
(10)

U -0, (k)= 3 3 [o (=t (n by (kb (k =t (k) +

i=0 j=I+1 i=0

By simplifying the formulation as Egs. (9) and (10), the number of unknown parameters reduces
from (M + 1)N(N + 1)/2 to 3N(N + 1)/2. However, if the target freeway corridor is sufficiently long
and experiences moderate congestion, the speeds of vehicles for the same O-D may vary in a wide
range. Then, Egs. (9) and (10) are not adequate for capturing all complex interrelations between
traffic flows and O-D patterns. To deal with these limitations, Lin and Chang (2005) proposed a
new set of generalized formulations by employing a distribution to represent the potential variation
of travel times among drivers due to the impact of congestion and due to the difference in their
desired speeds. They assumed that the travel time of drivers departing from node i during time
interval k to node j follow a specific distribution. Since the travel times for the same O-D pair
drivers departing during the same time interval follow a distribution, Lin and Chang (2005)

replaced p:” (k) with a cumulative density function for one time interval as follows:

"(k) = f."(x)d
pro =] A (d o

(m+1)t,

By applying the above travel time distribution concept, the relationships between ramp volumes and
O-D proportions can be rewritten as:

M-l
y,(k)=> > qi(k—m)'p?(k)-bij(k—m)

m=0 i=0

- ii q; (k= m)'U(Tmo fi,-m(X)dX]bij(k -m) (12)

£ m
m=0 i=



j-1

U, (0 - (k) = D3 > [a (k —m)e™ (k)]bi (k —m)

m=0 i=0 j=I+1
M -l N mety o

>3 > adk-m) [ 1700k k-m) (13)
m=0 i=0 j=l+1 0 ij

Compared to Chang and Wu (1994), the number of unknown parameters for Egs. (12) and (13) has
reduced from 3N(N + 1)/2 to 2N(N + 1)/2. On the other hand, Lin and Chang (2005) represented
the different speeds of vehicles for the same O-D pair with a distribution of travel time.

Although the relevant studies (e.g. Chang and Wu, 1994; Chang and Tao, 1995; Lin and Chang,
2005, 2007) have shed light on the dynamic OD matrices estimation, most of them made
subjectively assumptions regarding arrival distributions, which may not be valid for various
conditions from free-flow to gridlock. In addition, most of these models are too complex, causing
low efficiency in estimation. In view of the importance of the arrival distribution prediction and the
estimation efficiency required for real-time implementation, this study aims to develop a model that
can accurate capture the traffic hydrodynamics under various traffic conditions in an efficient
manner.

4. CELL-BASED ARRIVAL DISTRIBUTION MODELING

The present paper employs CTM to predict the arrival distribution of an O-D pair traffic, which will
then be used to compute p:n (k).

4.1 Cell Transmission Model

As shown in Figure 2, a freeway is equally discretized into homogeneous sections (cells), numbered
consecutively from i = 1 to | starting with the upstream end of the road, where the length of each
cell is the distance traveled by a vehicle in one clock tick under light traffic.

Origin cell | cell | cell | ... cell | cell | cell | pestination

=1 , 2 .. j |

Figure 2 Cell representation of a freeway corridor

In light traffic, all vehicles in a cell can be assumed to advance to the next cell with each click. It is
unnecessary to know where within the cell they are located. Therefore, the system’s evolution
obeys:

Nea(t+1)=nit) fort=0,1,2,....T (13)

where nj(t) is the number of vehicles in cell i at time t. It is assumed that this equation holds true for
all traffic flows unless queuing occurs. The following two variables are introduced to incorporate
queuing in the model: (1) Qj(t), the maximum flow from cell i — 1 to i during time interval t (when
the clock advances from t to t + 1), also known as “capacity,” and (2) Nj(t), the maximum number
of vehicles that can be present in cell i in time t. Thus, Nj(t) — nj(t) is the amount of empty space in
cell i at time t.

The CTM assumes a simplified version of the fundamental diagram, usually based on a trapezium



form, as shown in Figure 3, and provides simple solutions for realistic networks. It is assumed that a
free-flow speed v at low densities and a backward shockwave speed w for high densities are
constant (V> Ww).

kla flq’b kra’m D:nsity k
Figure 3 Fundamental diagram of CTM

With these, we define yj(t) as the number of vehicles that can flow into i for time interval t as:

yi(t) = min{niy(t) , Qi(t), % [N(t) — (D]} (14)

The CTM is based on a recursion where the cell occupancy at time t + 1 equals its occupancy at
time t, plus its inflow and minus the outflow:

ni(t + 1) = ni(t) + yi(t) — Yix1(t) (15)

If the remaining storage capacity and flow capacity of next cell is sufficient, all vehicles will move
forward to the next cell; otherwise, only part of them can move proportionally, the logic is as:
if y,(t+ D) +r(t+1) <min[Q,(t+1),N —n (t +1)]

then Q. (t+1) =y, (t+D)+r(t+1) (16)

if Yo (t+ 1)+ (t+1)>min[Q,(t+1),N —n, (t+1)]

then Q. (t+1)=1- |:min[Qi (t+1,N-n(t+ 1&/

(17)
yi(t+1)+ri(t+1)}

4.2 Replicating Traffic Dispersion Phenomenon

To demonstrate the capability of CTM in replicating the traffic hydrodynamics and to investigate
the degree of traffic dispersion under various traffic conditions, a simulation on a three-lane
freeway section with eight interchanges has been conducted. Parameters are set as follows: free
flow speed=120 km/hr, jam density=125 vehicles per kilometre per lane, capacity=7,200 vehicles
per hour, cell storage capability=375 vehicles, time click=30 seconds, and cell length=1 km.

Four scenarios with various traffic conditions are simulated, including free-flow, light synchronized
flow, heavy synchronized flow and congested flow. Taking the traffics entering at seven
interchanges (No.1 to No.7) and heading to No.8 interchange in time interval t=1 for example, their
arrival distributions under various traffic conditions are graphically depicted in Figure 4. As shown
in Figure 4 (a), almost all traffics arrive at No.8 interchange within one or two time intervals under
free-flow condition. Once the traffic flow increases, the degree of traffic dispersion will
significantly appear. As shown in Figures 4(b)-(d), the same entering traffic will arrive at No.8
interchange among a wider range of time intervals ranging from two to three time intervals under
light synchronized flow, four to five time intervals under heavy synchronized flow, and six to eight
time intervals under congested flow, suggesting the capability of the CTM model in replicating
traffic dispersion phenomenon.
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Figure 4 Distributions of No.8 interchange arrival traffics from various origins

5. THE PROPOSED ESTIMATION ALOGRITHM



5.1 Model Framework

To replicate traffic behaviors by CTM, traffic demand of each OD pair has to be given in advance.
That is, a set of bjj(k) has to be determined and used to assign the detected on-ramp traffics to
different downstream interchanges. Once the arrival distributions of all entering traffic have been

successfully simulated, p;"(k) can be computed and used to calibrate the O-D proportions of
entering traffic gi(k) by EKF, namely bj;’(k). Then, the new O-D proportions bj;’(k) will be used to
replicate a revised arrival distribution pT‘(k) in an iterative manner. The proposed algorithm for

estimating dynamic O-D matrices is depicted in Figure 5.

Detected traffic counts

Onramp | | Onlink || Off ramp
G ] U ] y;k)
I

A 4 A 4

Predict pj' (K +1) by CTM Calibrate by (k) by Kalman Filtering
Measure equation
. M G M j-1
e (k)= mm{Zan (k) y,00= 3 fa,tc-mypn ooy k-m)
k=1 i=l /):Jn(k"'l) m:h;“:;)
M G M G -1 N N
3> a, (k)N (k)= 3 n, (k)} U, (k) -a,(k) = ZZ ;ﬂ[q.(k =m)pT ()Jbi (k ~ m)
k=1 i=l k=1 i=1
Mg, (k+1)= Iterative algorithm
M G M G M G q_b k |
$5 0, 0550, 10- 55 00 T e 1 e e
k=1 i=1 k=1 i=1 k=1 i=1
Step 2. Compute the linearized transformation matrix
2l

[H K4]:[hwhz ----- hzwn]
Z'() = [y, (K, U () = Gy, (K]

Step 3. Initialization of the sequential kalman filtering
b, =bk—1) P°=P_, +D

Step 4. Sequential Kalman filtering iteration

g' =P [h PR e ]
P =P~ g'h,Pi’]
S'= ¥ (k) —hib(k = 1)
Step 5. Prediction of the states
set P =P and  [b(k)]= [b”‘"]

Figure 5 Framework of the proposed algorithm

In the above model formulation, the information of each O-D pair can be estimated using the data
provided by the surveillance system or historical information, and the unknown set of parameters
are O-D proportions, by (k) .

As used in most existing approaches, the dynamic O-D parameters, b; (k) , are assumed to follow

the random walk process between successive time intervals:

b, (k+1)=b,(K)+w,(k), 0<i<j<N

(18)
B(k +1) = B(k) + W (k) (19)
Z(k) = H(k)-B(k) +W (k) (20)
Z(k) = [y1(k)a yz(k):---: Yn (k);Ul(k) - ql(k)v""UN—l(k) - qN—l(k)]T (2 1 )

where, wij(k), a random term, is an independent Gaussian white noise sequence with zero mean and
its covariance, Z(k), is a column vector, H(K) is a matrix with its entries given by the corresponding
coefficients in Egs. (12) and (13), and e(k) is an observation noise vector, which can be defined as a
Gaussian white noise with zero mean and its covariance matrix, and R = Var[e(k)] = diag[ry, . . .,
ron-1] is a diagonal positive definite matrix. B(K) is a matrix of the O-D proportions of entering flows
bij(k). W(K) is a matrix of white noise w;;(K).



The proposed estimation algorithm, based on the extended Kalman filtering concept, is presented as
follows.

Step 0:

Step 1:
Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Initialization.

Parameters settings include cell length Li , 1 =20,1, . ., N-1, time interval, to.
var[e(k)] = diag[r,,r,...]. X(0)=E[b(0)]. P(0)=Var[b(0)]. Besides, on-ramp, link and
off-ramp flows are given.

Determine p; (K) by CTM.

Compute the linearized transformation matrix based on the determinant p; (K).

H K = [H k—l]

rs

M
H :'(,Ni+j—i(i+1) = ZQi(k -m)-pi(k)  for 0<i<j<N
m=0

M
Hlli|+I,Ni+j—i(i+1) = zqi(k - m)'PiT(k) for 0<i<j<N
m=0

[H Kil]: [hI’ hzs---: th—l]T
Z'(k) = [yl(k): yz(k)a--'a YN (k);U1(k) - ql(k),...,U N—l(k) - qul(k)]T

Initialization of the sequential Kalman filtering method.
set b, =b(k +1)

Py = P, + D where D=][d,,...,d,] isa covariance matrix of W(k)

Sequential Kalman filtering iterations.
Fori=1,2,...,2N-1

g' = p~'h/ [y p ]

pi _ pi—l _ gihi pi—l
5 = yi (k) —hb(k =1)
Truncation:

o' = MAX|of0 < o]+ as'g <1

0<a<l
Set |b']=[b"']+as'g’
Normalization:
Form=1, 2, ..., N-2
N i

ﬁm = Zj:mﬂ bmj

P
Stop condition test.
Check the convergence of estimated O-D proportions. If preset stop conditions (convergence

level or number of iterations) has not been met, then go to Step 1. Otherwise, go to Step 6.
Prediction of the states.

Set p,=p>"" and [b(k)]= [b“‘*l], k=k+ 1, go to Step 1.

by = j=m+1,..., N.

6. CASE STUDY
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To demonstrate the performance and applicability of the proposed estimation algorithm, a section of
Taiwan No.l Freeway (Taishan toll station to Yangmei toll station) is studied. This is a 36 km
three-lane freeway section with 6 interchanges containing 28 O-D pairs, as shown in Figure 6.

To generate real time-dependent traffic flows, the time series of four hours O-D traffics under
different traffic conditions are given. Based on the assumed O-D pair flows, DynaTaiwan, a traffic
simulation software modified from DynaSmart to account for the traffic behaviors in Taiwan, is
used to generate real-time on-ramp, link, and off-ramp traffic flows at every 30-second time click.
The three simulated real-time detected traffic flows are then inputted into the proposed estimation
algorithm.

| 6km | 8km | 8km l 5km | 5km I 2km | 2km |

t T 1 t 1 T |

I I I : | | | I

[ ey B e e b |
q0| 1 Uy 1 Uy U3 11Uy 1Us 1IUsg |y7

I - - - - - E———r— 1T

I I | I I | I I

I I I : [\ | | I I

| | I | I | |

| yl|q1 y2| g, Y510, y4|q4 y5| 0s y6|q6 |
Taishan Linkou Taoyuan Neili Jhongli Y outh Yangmei  Yangmei

Toll Station Interchange Interchange Interchange Interchange Interchange Interchange Toll Statuon
Figure 6 Northern section of Taiwan No.1 Freeway

The deviation of the estimated O-D proportions of each time click and each O-D pair from given
O-D proportions is used as a measure of model performance. The root-mean-square error (RMSE)
is used to evaluate the performance of the proposed algorithm, which is defined as:

>SS by (k) b, (k)
RMSE — i=l j=i+1 k=1 (22)
N(N — )T

where, Bij(k) is the estimated O-D proportions of traffic entering interchange i and heading to

interchange j.

To investigate the effects of initial value settings of O-D proportions on the performance of the
proposed algorithm, two initial value setting approaches are adopted and compared: randomly
generated (RG) approach and equal share (ES) approach. Take origin No.4 interchange as an
example, the associated O-D proportions are denoted as bas(k), bag(k), and bsz(k). For the RG
approach, three random numbers 0.123, 0.341, and 0.782 are generated and then normalized such
that the sum of three proportions equals 1. Thus, bss(k)=0.099, bss(k)=0.274, and b47(k)=0.628. In
contrast, for the ES approach, three proportions for the same example is simply set as bgs(k)=0.333,
b46(k)20.333, and b47(k)20.334.

The distributions of real bys proportions (from Linkou interchange to Youth interchange) along with
estimated O-D proportions by RG and ES approaches are given in Figure 7. Note that the proposed
algorithm can predict real O-D proportions accurately regardless which initial value setting
approaches being adopted. However, the predicted result by RG approach is slightly superior to that
by ES approach. Thus, the RG approach will be adopted in predicting other O-D proportions.
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Proportions
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—s=— Predicted by RG
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0 T T e
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Time click
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Figure 4 Distributions of real and two predicted b;s proportions by EG and ES approaches
Table 5 reports the RMSE values of 28 O-D proportions of the proposed integrated algorithm.
Results show that the overall average RMSE is 0.0414, indicating a rather good fitness of the
proposed algorithm. The applicability of the proposed algorithm has been proven.

Table 5 RMSE values of the proposed algorithm of the case study

To| Linkou Taoyuan Neili Jhongli Youth Yangmei Yangmei
From interchange | interchange | interchange | interchange | interchange | interchange | toll station
Taishan 0.0399 0.0435 0.0337 0.0197 0.0201 0.0202 0.0258
toll station
Linkou - 0.0361 0.0463 0.0411 0.0441 0.0438 0.0404
interchange
Taoyuan - - 0.0502 0.0398 0.0289 0.0376 0.0444
interchange
Neili - - - 0.0471 0.0359 0.0426 0.0419
interchange
Jhongli - - - - 0.0439 0.0305 0.0612
interchange
Youth - - - - - 0.0739 0.0688
interchange
Yangmei - - - - - - 0.0698
interchange

7. CONCLUDING REMARKS

This paper has developed an integrated estimation algorithm by combining cell transmission model
(CTM) and extended Kalman filtering (EKF) to respectively and iteratively estimate the arrival
distribution and the O-D proportions. Our results from an exemplified example of a freeway
corridor have shown that CTM can surely capture the traffic dispersion under various traffic
conditions. The degree of traffic dispersion will get enlarged as traffic flow increases. The results
from a case study on Taiwan No.l Freeway have also shown that the proposed algorithm can
accurately estimate the O-D proportions with a low RMSE of 0.0414. The applicability of the
proposed integrated algorithm has been proven.

Several directions for future research can be identified. First, the applicability and efficiency of the
proposed algorithm on a large scale network should be further examined. Second, due to data
availability in the case study, the O-D matrices are arbitrarily given and then used to generate “real
time” detected traffic flows by traffic simulation software, DynaTaiwan. However, with advanced
traffic surveillance technologies, it is feasible to collect real time traffic information in the future
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study to further examine the applicability of the proposed algorithm. Third, the proposed algorithm
is only valid for the case of linear freeway corridor. In the future study, route choice behaviors
should be incorporated to the proposed algorithm to suit for more complicated networks. Fourth, the
estimation accuracy of the proposed algorithm under various traffic conditions also deserves further
investigation and comparison. Last but not least, comparisons with other algorithms should also be
conducted to demonstrate the superiority of the proposed algorithm.
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