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1.中文摘要 
 
1.1 中文摘要 

 
本計畫第二年期旨在結合格位傳遞理論（cell transmission model, CTM）及卡門濾波理論

（extended Kalman filtering, EKF），提出一個整合型動態起迄矩陣反覆推估方法。其中，CTM
為一中觀車流模擬方法，可用以精確且迅速地推估上匝道車流至目的地匝道之到達時間與分

佈型態，並將其輸入 EKF 進行該時段之起迄矩陣推估。而推估所得之起迄矩陣則進一步再代

入 CTM 重新模擬其到達型態，如此反覆以致收斂為止。 
為驗證本模式之有效性與應用性，分別應用於簡例及實例（中山高北部路段）。結果顯示，

在簡例驗證上，本模式可達到相當精確之成果，其RMSE可達0.0414。但在實例應用時，則

RMSE值則較高，顯示仍存有相當程度之改善空間。基此，本計畫後續將進一步進行本演算

法之改良，以作為下一研究年度進一步與車牌辨識系統結合之基礎。 
關鍵字：動態起迄矩陣推估、格位傳遞模式、卡門濾波 
 
1.2 Abstract 
 
The second research year of this project aims to propose an integrated algorithm by hybridizing cell 
transmission model (CTM) and extended Kalman filtering (EKF) to estimate arrival distribution and 
O-D proportions respectively and iteratively. An exemplified example of a freeway corridor are 
used to investigate the capability of CTM in replicating traffic dispersion phenomenon. Results 
show that CTM can accurately capture the traffic dispersion under various traffic conditions. The 
degree of traffic dispersion gets large as traffic flow increases. To demonstrate the applicability of 
the proposed estimation algorithm, a case study of Taiwan No.1 Freeway is conducted. Results 
show that the proposed algorithm can estimate the O-D proportion with a low average RMSE of 
0.0414. However, the results of the case study of a larger scale field case show that the RMSE 
values are high, leaving a lot of room for improvement. Thus, this project will continue to improve 
the proposed algorithm. 
Keywords：Dynamic origin-destination, Cell transmission model, Extended Kalman filtering. 
 
2. INTRODUCTION 
 
Accurate dynamic origin-destination (O-D) information is required for the implementation of 
real-time traffic control measures, such as real-time route guidance and signal control. Numerous 
studies have devoted to developing estimation algorithms for the dynamic O-D matrix based mainly 
on observable mainline and ramp flow rates. The dynamic O-D matrices estimation algorithms can 
be divided into two categories (Ho, 2008): assignment-based (e.g. Ashok and Ben-Akiva, 2000, 
2002) and non-assignment-based (e.g. Chang and Wu, 1994; Chang and Tao, 1996, 1999; Lin and 
Chang, 2005, 2007). The assignment-based method primarily relies on a dynamic traffic assignment 
algorithm to generate link flows; while the non-assignment-based method directly estimates O-D 
matrices. However, this issue remains challenging in that the number of parameters to be estimated 
is always far greater than the available information, thus additional assumption or exogenous 
information, such as route choice behaviors, priori O-D matrix information, sequence of 
observational periods of traffic counts data (e.g. Bell, 1983, 1991; Yang et al., 1992, 1995; Vardi, 
1996; Lo, et al., 1996; Hazelton, 2001), should be further considered. 
 
One of the most challenging issues remained to be tackled in the context of dynamic O-D matrices 
estimation is the impact of travel time variability on the time-varying O-D matrices. Chang and Wu 
(1994) assumed that the vehicles entering the freeway in a time interval are distributed in a small 
range (within two time intervals). However, if an O-D pair traffic traverses a sufficiently long 
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distance or experiences moderate to heavy congestions, then the travel time variability may be 
rather large, which can result in a serious traffic dispersion phenomenon. As a result, the O-D pair 
traffic entering the freeway in a specific narrow time interval will reach their destinations over a 
wide time interval, which will greatly increase the difficulty in accurately estimating the dynamic 
O-D matrices. In other words, an accurate prediction model for the arrival distribution of entering 
O-D pair traffic under various traffic conditions is undoubtedly imperial for dynamic O-D matrices 
estimation. 
 
Based on this, Chang and Tao (1995) assumed a macroscopic traffic model to efficiently predict the 
travel time according to concurrent traffic conditions and used the predicted travel time to estimate 
traffic arrival distributions and then to estimate the O-D matrices. Lin and Chang (2005, 2007) 
further assumed the travel time of drivers departing from i during time interval k to j following a 
certain distribution and then used such a distribution to estimate their arrival patterns. However, the 
studies of Chang and Wu (1994), Chang and Tao (1995) and Lin and Chang (2005, 2007) all made 
strong assumptions regarding the prediction of traffic dispersion, which might not be valid for 
various conditions from free-flow to gridlock. In addition, the state equations in the 
abovementioned studies may involve relatively too many parameters, largely increasing the model 
complexity to be implemented. 
 
To efficiently and accurately capture the traffic behaviors along with their arrival distributions under 
various traffic conditions, this paper combines cell transmission model (CTM) and extended 
Kalman filtering (EKF) to simulate the traffic movement behaviors, to predict the arrival 
distributions of all O-D pair traffic in various time intervals, and then to estimate the dynamic OD 
matrices. CTM, proposed by Daganzo (1994), can efficiently simulate traffic hydrodynamics under 
various traffic conditions. Moreover, the conceptual representation of spatial (cell) and temporal 
(discrete time click) of traffic makes CTM especially suitable for dynamic O-D matrices estimation. 
Our proposed model not only results in a substantial increase of system observability with 
significantly less parameters than those in literature, but also contributes to enhance the quality of 
dynamic O-D matrices estimation. 
 
The remainder of this paper is organized as follows. Section 2 gives the definitions of the problem, 
variables and related parameters. Section 3 presents the proposed cell-based arrival distribution 
prediction model. An exemplified freeway corridor with six interchanges is used to investigate the 
degree of traffic dispersion under traffic scenarios ranging from free-flow to congested flow 
conditions. Section 4 introduces the framework of the proposed algorithm. A case study is 
conducted in Section 5 to validate the applicability and performance of the proposed algorithm. 
Finally, concluding remarks and suggestions for future research follow. 
 
 
3. PROBLEM DEFINITION 
 
Consider a typical linear freeway corridor with N segments, coding 0 to N-1, as shown in Figure 1. 
Assume that detectors are installed at all on-ramps, off-ramps, and mainline links. The information 
that is readily available for estimation of dynamic O-D distribution is the time series of entering 
flow, , exiting flow, , and mainline flow, . The notations used in this paper are 
defined in Table 1. 

)(kqi )(ky j )(kUl
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Table 1 Definition of variables and parameters 
Variables/ 
parameters 

Definition 

)(0 kq  The number of vehicles entering the upstream boundary of the freeway section 
during time interval k. 

)(kqi  The number of vehicles entering freeway from on-ramp i during time interval 
k, i = 1,2,. . . , N - 1. 

)(ky j  The number of vehicles leaving freeway from off-ramp j during time interval 
k, j = 1,2,. . . , N - 1. 

)(kyN  The mainline volume at the downstream end of the freeway section during 
time interval k. 

)(kUi  The number of vehicles crossing the upstream boundary of segment i during 
time interval k, i = 1,2,. . . , N - 1. 

)(kTij  The number of vehicles entering the freeway from on-ramp i during time 
interval k that are destined to off-ramp j, where Nji ≤<≤0 . 

0t  The length of one unit time interval. 
)(kbij  The proportion of qi(k) heading toward destination node j during time interval 

k. 
)(km

ij
ρ  The fraction of Tij(k-m) vehicles departing from entry node i during time 

interval k that takes m time intervals to exiting node j. 
)(km

ilj
ρ  The fraction of Tij(k-m) trips from entry node i during time interval k that takes 

m time intervals to mainline node. 
 
 

 

 
Figure 1 A typical linear freeway corridor 

 
The relation between the dynamic O-D pattern and resulting link flow can be expressed by 
equations (Lin and Chang, 2007): 

1,...,1,0),()(
1

−== ∑
+=

NikTkq
N

ij
iji  (1) 

NjikbkqkT ijiij ≤<≤⋅= 0),()()(  (2) 
 
The above two equations are subjected to the following natural constraints: 

Njikbij ≤<≤≤≤ 0,1)(0  (3) 
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1
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+=
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N

ij
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Consider the speed variation among drivers, it is reasonable to assume that the travel time of 
vehicles from node i to node j during time interval k are distributed among time intervals k-M,…, 
k-1, and k where M is the maximum number of intervals required for vehicles to traverse the entire 
freeway section. The traffic volume leaving freeway from off-ramp j, , can thus be expressed 
as 

)(ky j
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where  shall satisfy the following relations: )(km
ij

ρ
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Obviously, the system formulation has a large number of state parameters, i.e., bij(k) and . 
The number of these unknown parameters increases with the necessary M value. As such, some 
more information is required to ensure this proposed model to be computationally efficient and 
tractable. 

)(km
ij

ρ

 
To deal with the large number of unknown parameters, Chang and Wu (1994) simplified the 
formulations by assuming that the speeds of vehicles entering the freeway at the same time interval 
are distributed in a small range. Therefore, Eqs. (5) and (6) can be rewritten as 
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By simplifying the formulation as Eqs. (9) and (10), the number of unknown parameters reduces 
from (M + 1)N(N + 1)/2 to 3N(N + 1)/2. However, if the target freeway corridor is sufficiently long 
and experiences moderate congestion, the speeds of vehicles for the same O-D may vary in a wide 
range. Then, Eqs. (9) and (10) are not adequate for capturing all complex interrelations between 
traffic flows and O-D patterns. To deal with these limitations, Lin and Chang (2005) proposed a 
new set of generalized formulations by employing a distribution to represent the potential variation 
of travel times among drivers due to the impact of congestion and due to the difference in their 
desired speeds. They assumed that the travel time of drivers departing from node i during time 
interval k to node j follow a specific distribution. Since the travel times for the same O-D pair 
drivers departing during the same time interval follow a distribution, Lin and Chang (2005) 
replaced  with a cumulative density function for one time interval as follows: )(km

ij
ρ
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By applying the above travel time distribution concept, the relationships between ramp volumes and 
O-D proportions can be rewritten as: 
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Compared to Chang and Wu (1994), the number of unknown parameters for Eqs. (12) and (13) has 
reduced from 3N(N + 1)/2 to 2N(N + 1)/2. On the other hand, Lin and Chang (2005) represented 
the different speeds of vehicles for the same O-D pair with a distribution of travel time. 
 
Although the relevant studies (e.g. Chang and Wu, 1994; Chang and Tao, 1995; Lin and Chang, 
2005, 2007) have shed light on the dynamic OD matrices estimation, most of them made 
subjectively assumptions regarding arrival distributions, which may not be valid for various 
conditions from free-flow to gridlock. In addition, most of these models are too complex, causing 
low efficiency in estimation. In view of the importance of the arrival distribution prediction and the 
estimation efficiency required for real-time implementation, this study aims to develop a model that 
can accurate capture the traffic hydrodynamics under various traffic conditions in an efficient 
manner. 
 
 
4. CELL-BASED ARRIVAL DISTRIBUTION MODELING 
 
The present paper employs CTM to predict the arrival distribution of an O-D pair traffic, which will 
then be used to compute . )(km

ij
ρ

 
4.1 Cell Transmission Model 
 
As shown in Figure 2, a freeway is equally discretized into homogeneous sections (cells), numbered 
consecutively from i = 1 to I starting with the upstream end of the road, where the length of each 
cell is the distance traveled by a vehicle in one clock tick under light traffic. 

 

i=1   ,  2   , …,           j     ,…,           I   

… cell Origin cell cell … cell cellcell Destination 

 
Figure 2 Cell representation of a freeway corridor 

 
In light traffic, all vehicles in a cell can be assumed to advance to the next cell with each click. It is 
unnecessary to know where within the cell they are located. Therefore, the system’s evolution 
obeys: 
 
ni+1(t + 1) = ni(t)   for t = 0, 1, 2, …, T  (13)  

 
where ni(t) is the number of vehicles in cell i at time t. It is assumed that this equation holds true for 
all traffic flows unless queuing occurs. The following two variables are introduced to incorporate 
queuing in the model: (1) Qi(t), the maximum flow from cell i – 1 to i during time interval t (when 
the clock advances from t to t + 1), also known as “capacity,” and (2) Ni(t), the maximum number 
of vehicles that can be present in cell i in time t. Thus, Ni(t) – ni(t) is the amount of empty space in 
cell i at time t. 
 
The CTM assumes a simplified version of the fundamental diagram, usually based on a trapezium 
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form, as shown in Figure 3, and provides simple solutions for realistic networks. It is assumed that a 
free-flow speed v at low densities and a backward shockwave speed w for high densities are 
constant (v ≥ w). 

 
Figure 3 Fundamental diagram of CTM 

 
With these, we define yi(t) as the number of vehicles that can flow into i for time interval t as: 

yi(t) = min{ni-1(t) , Qi(t) , v
w [Ni(t) – ni(t)]}  (14) 

 
The CTM is based on a recursion where the cell occupancy at time t + 1 equals its occupancy at 
time t, plus its inflow and minus the outflow: 
ni(t + 1) = ni(t) + yi(t) – yi+1(t)  (15) 
 

If the remaining storage capacity and flow capacity of next cell is sufficient, all vehicles will move 
forward to the next cell; otherwise, only part of them can move proportionally, the logic is as: 
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4.2 Replicating Traffic Dispersion Phenomenon 
 
To demonstrate the capability of CTM in replicating the traffic hydrodynamics and to investigate 
the degree of traffic dispersion under various traffic conditions, a simulation on a three-lane 
freeway section with eight interchanges has been conducted. Parameters are set as follows: free 
flow speed=120 km/hr, jam density=125 vehicles per kilometre per lane, capacity=7,200 vehicles 
per hour, cell storage capability=375 vehicles, time click=30 seconds, and cell length=1 km. 
 
Four scenarios with various traffic conditions are simulated, including free-flow, light synchronized 
flow, heavy synchronized flow and congested flow. Taking the traffics entering at seven 
interchanges (No.1 to No.7) and heading to No.8 interchange in time interval t=1 for example, their 
arrival distributions under various traffic conditions are graphically depicted in Figure 4. As shown 
in Figure 4 (a), almost all traffics arrive at No.8 interchange within one or two time intervals under 
free-flow condition. Once the traffic flow increases, the degree of traffic dispersion will 
significantly appear. As shown in Figures 4(b)-(d), the same entering traffic will arrive at No.8 
interchange among a wider range of time intervals ranging from two to three time intervals under 
light synchronized flow, four to five time intervals under heavy synchronized flow, and six to eight 
time intervals under congested flow, suggesting the capability of the CTM model in replicating 
traffic dispersion phenomenon. 
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(a) Free-flow 
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(b) Light synchronized flow 
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(c) Heavy synchronized flow 
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(d) Congested flow 

Figure 4 Distributions of No.8 interchange arrival traffics from various origins 
 
 
5. THE PROPOSED ESTIMATION ALOGRITHM 
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5.1 Model Framework 
 
To replicate traffic behaviors by CTM, traffic demand of each OD pair has to be given in advance. 
That is, a set of bij(k) has to be determined and used to assign the detected on-ramp traffics to 
different downstream interchanges. Once the arrival distributions of all entering traffic have been 
successfully simulated,  can be computed and used to calibrate the O-D proportions of 
entering traffic qi(k) by EKF, namely bij’(k). Then, the new O-D proportions bij’(k) will be used to 
replicate a revised arrival distribution  in an iterative manner. The proposed algorithm for 
estimating dynamic O-D matrices is depicted in Figure 5. 
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Figure 5 Framework of the proposed algorithm 

 
In the above model formulation, the information of each O-D pair can be estimated using the data 
provided by the surveillance system or historical information, and the unknown set of parameters 
are O-D proportions, . )(kbij

 
As used in most existing approaches, the dynamic O-D parameters, , are assumed to follow 
the random walk process between successive time intervals: 

)(kbij

Njikwkbkb ijijij ≤<≤+=+ 0),()()1(                                   (18) 
)()()1( kWkBkB +=+                                                   (19) 

)()()()( kWkBkHkZ +⋅=                                                (20) 
[ ]TNNN kqkUkqkUkykykykZ )()(),...,()();(),...,(),()( 111121 −− −−=                ( 2 1 ) 

where, wij(k), a random term, is an independent Gaussian white noise sequence with zero mean and 
its covariance, Z(k), is a column vector, H(k) is a matrix with its entries given by the corresponding 
coefficients in Eqs. (12) and (13), and e(k) is an observation noise vector, which can be defined as a 
Gaussian white noise with zero mean and its covariance matrix, and R = Var[e(k)] = diag[r1, . . . , 
r2N-1] is a diagonal positive definite matrix. B(k) is a matrix of the O-D proportions of entering flows 
bij(k). W(k) is a matrix of white noise wij(k). 
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The proposed estimation algorithm, based on the extended Kalman filtering concept, is presented as 
follows. 
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Step 3: Initialization of the sequential Kalman filtering method. 

set  )1(0 += kbb
Dpp k += +10  where  is a covariance matrix of W(k) [ bb ddD ,...,= ]

 
Step 4: Sequential Kalman filtering iterations. 

For i = 1, 2, …, 2N-1 
[ ] 111 −−− += i

T
i

i
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T
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i
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Set [ ] [ ] iiii gbb αδ+= −1  
Normalization: 
For m=1, 2, …, N-2 
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N
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1
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m

i
mji

mj
bb β=     j=m+1,…, N. 

Step 5: Stop condition test. 
Check the convergence of estimated O-D proportions. If preset stop conditions (convergence 
level or number of iterations) has not been met, then go to Step 1. Otherwise, go to Step 6. 

Step 6: Prediction of the states. 
Set  and [ ]12 −= N

k pp [ ]12)( −= Nbkb , k = k + 1, go to Step 1. 
 
 
6. CASE STUDY 
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To demonstrate the performance and applicability of the proposed estimation algorithm, a section of 
Taiwan No.1 Freeway (Taishan toll station to Yangmei toll station) is studied. This is a 36 km 
three-lane freeway section with 6 interchanges containing 28 O-D pairs, as shown in Figure 6. 
 
To generate real time-dependent traffic flows, the time series of four hours O-D traffics under 
different traffic conditions are given. Based on the assumed O-D pair flows, DynaTaiwan, a traffic 
simulation software modified from DynaSmart to account for the traffic behaviors in Taiwan, is 
used to generate real-time on-ramp, link, and off-ramp traffic flows at every 30-second time click. 
The three simulated real-time detected traffic flows are then inputted into the proposed estimation 
algorithm. 
 

3y2y 4y 5y1q 2q 3q 4q 5q

T a ish a n  
T o ll S ta tio n

L in k o u  
In te rc h a n g e

T a o y u a n  
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N e ili 
In te rch a n g e

Jh o n g li 
In te rc h an g e

Y o u th  
In te rch a n g e

Y a n g m e i
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Y an g m e i
T o ll S ta tu o n

6 k m 8 k m 8 k m 5 k m 5 k m 2 k m 2 k m

q 0

q 6y 6

y 7

y 1

U 1 U 2 U 3 U 4 U 5 U 6

 
Figure 6 Northern section of Taiwan No.1 Freeway 

 
The deviation of the estimated O-D proportions of each time click and each O-D pair from given 
O-D proportions is used as a measure of model performance. The root-mean-square error (RMSE) 
is used to evaluate the performance of the proposed algorithm, which is defined as: 

TNN

kbkb
RMSE

N

i

N

ij

T

k
ijij

)1(

))(ˆ)((
1

1 1 1

2

−

−
=
∑ ∑ ∑
−

= += =                                       (22) 

where,  is the estimated O-D proportions of traffic entering interchange i and heading to 
interchange j. 

)(ˆ kbij

 
To investigate the effects of initial value settings of O-D proportions on the performance of the 
proposed algorithm, two initial value setting approaches are adopted and compared: randomly 
generated (RG) approach and equal share (ES) approach. Take origin No.4 interchange as an 
example, the associated O-D proportions are denoted as b45(k), b46(k), and b47(k). For the RG 
approach, three random numbers 0.123, 0.341, and 0.782 are generated and then normalized such 
that the sum of three proportions equals 1. Thus, b45(k)=0.099, b46(k)=0.274, and b47(k)=0.628. In 
contrast, for the ES approach, three proportions for the same example is simply set as b45(k)=0.333, 
b46(k)=0.333, and b47(k)=0.334. 
 
The distributions of real b15 proportions (from Linkou interchange to Youth interchange) along with 
estimated O-D proportions by RG and ES approaches are given in Figure 7. Note that the proposed 
algorithm can predict real O-D proportions accurately regardless which initial value setting 
approaches being adopted. However, the predicted result by RG approach is slightly superior to that 
by ES approach. Thus, the RG approach will be adopted in predicting other O-D proportions. 
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Figure 4 Distributions of real and two predicted b15 proportions by EG and ES approaches 

 
Table 5 reports the RMSE values of 28 O-D proportions of the proposed integrated algorithm. 
Results show that the overall average RMSE is 0.0414, indicating a rather good fitness of the 
proposed algorithm. The applicability of the proposed algorithm has been proven. 
 
Table 5 RMSE values of the proposed algorithm of the case study 

        To 
From 

Linkou 
interchange 

Taoyuan 
interchange 

Neili 
interchange

Jhongli 
interchange

Youth 
interchange

Yangmei 
interchange 

Yangmei 
toll station 

Taishan 
toll station 

0.0399 0.0435 0.0337 0.0197 0.0201 0.0202 0.0258

Linkou 
interchange 

- 0.0361 0.0463 0.0411 0.0441 0.0438 0.0404

Taoyuan 
interchange 

- - 0.0502 0.0398 0.0289 0.0376 0.0444

Neili 
interchange 

- - - 0.0471 0.0359 0.0426 0.0419

Jhongli 
interchange 

- - - - 0.0439 0.0305 0.0612

Youth 
interchange 

- - - - - 0.0739 0.0688

Yangmei 
interchange 

- - - - - - 0.0698

 
 
7. CONCLUDING REMARKS 
 
This paper has developed an integrated estimation algorithm by combining cell transmission model 
(CTM) and extended Kalman filtering (EKF) to respectively and iteratively estimate the arrival 
distribution and the O-D proportions. Our results from an exemplified example of a freeway 
corridor have shown that CTM can surely capture the traffic dispersion under various traffic 
conditions. The degree of traffic dispersion will get enlarged as traffic flow increases. The results 
from a case study on Taiwan No.1 Freeway have also shown that the proposed algorithm can 
accurately estimate the O-D proportions with a low RMSE of 0.0414. The applicability of the 
proposed integrated algorithm has been proven. 
 
Several directions for future research can be identified. First, the applicability and efficiency of the 
proposed algorithm on a large scale network should be further examined. Second, due to data 
availability in the case study, the O-D matrices are arbitrarily given and then used to generate “real 
time” detected traffic flows by traffic simulation software, DynaTaiwan. However, with advanced 
traffic surveillance technologies, it is feasible to collect real time traffic information in the future 
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study to further examine the applicability of the proposed algorithm. Third, the proposed algorithm 
is only valid for the case of linear freeway corridor. In the future study, route choice behaviors 
should be incorporated to the proposed algorithm to suit for more complicated networks. Fourth, the 
estimation accuracy of the proposed algorithm under various traffic conditions also deserves further 
investigation and comparison. Last but not least, comparisons with other algorithms should also be 
conducted to demonstrate the superiority of the proposed algorithm. 
 
 
8. 計畫成果自評 
 

本計畫為三年期計畫。本年期所列之主要工作項目，預期之研究成果如下： 
1.蒐集 AVI 系統辨識車輛之歷史資料 

為分析及探討 AVI 所辨識車輛之行徑資料，本研究擬蒐集其歷史資料，並利用統計分析

技術，如卡方檢定及判別分析，以探討各用路人使用道路之習慣。 
 
2.建立 AVI 系統辨識車輛之預測模式 

在進行動態起迄旅次矩陣預測時，由於 AVI 所辨識車輛之部份行徑資料必須加以進一步

推估及判斷，方能據以建立有效之流量方程式。基此，本研究擬利用巨觀車流模式（traffic 
stream model）及灰預測模式進行短期車輛推移之模擬，再進一步利用 AVI 歷史資料，依據其

車型、自用或營業用、使用時段及行駛路段，利用存活理論建立其通過其他座 AVI 系統之「存

活」預測模型。 
 
3.灰預測模式 

本研究擬利用灰預測模式（grey prediction model, GM）建立「車輛推移之預測模組」時，

俾能在有限資料下，提供短期交通資訊之預測。 
 
4. 建立動態起迄旅次矩陣之推估模型 

動態起迄旅次矩陣推估方法甚多，如貝氏推論法、卡門濾波法等。本研究將比較各方法

在本課題之適用狀況及績效表現，再據以選擇最適用之方法。 
 
上述第 1 及 2 項研究成果，於本年期研究過程中，發現以巨觀車流模式進行推估將導致

相當大之誤差。因此，已改採中觀車流模式之格位傳遞模式（CTM）進行推估。而本研究成

果也驗證此一方法之精確度與可行性。至於灰預測模式已於之前研究中完成，並已發表。將

於下一年度進一步加以整合。因此，本年期主要研究成果為第 4 項研究內容，並已順利達成。

此外，本計畫之主要成果已分別發表國際研討會 2 篇文章[18, 20]、國內研討會 1 篇學術論文

[17]，並已改寫投稿學術期刊中[19, 20]。此外，本計畫亦用以指導兩名碩士生進行論文寫作

[21, 22]及一名博士生進行論文寫作[23]，其中碩士生均已順利畢業。 
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