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Abstract

This project covers three research years. The first research year is to apply the technique of
automatic vehicle identification (AVI) to enhance the estimation of OD matrices. License plate
recognition system (LPR) is one of the most popular and mature AVI techniques, which can
efficiently identify, store and match license plate numbers of passing vehicles to provide partial trail
information for the estimation of O-D matrices. The second research year of this project aims to
propose an integrated algorithm by hybridizing cell transmission model (CTM) and extended
Kaman filtering (EKF) to estimate arrival distribution and O-D proportions respectively and
iteratively. In the third research year, a novel approach is proposed to estimate medium-to-long term
freeway on ramp traffic which is then used to estimate dynamic origin-destination (O-D) matrices
by integrating the proposed models in the previous research years. The research results are briefly
introduced below:

The first research year is to apply the technique of LPR technology to enhance the estimation
of OD matrices. Based on this, this study proposes a bi-level multi-objective programming model to
determine the optimal locations of LPR by minimizing three objectives: error rate of estimated O-D
matrix, LPR installation cost and privacy invaded. Due to the combinatorial characteristics of this
problem, genetic algorithm (GA) is employed to solve the optima locations of LPR. A
pseudoinverse technique is further used to estimate the O-D matrix based on the information
provided by loop detectors at roadway segments as well as by LPR installed at some selected
locations. These extra traffic equations are derived from a pairwise comparison of the recognized
license plate numbers between any two arbitrary LPR. To investigate the applicability and
effectiveness of our proposed model and solving algorithms, one exemplified example and one field
case study (Taiwan No.l1 freeway) are conducted. The results consistently show that the optimal
locations of LPR would be at both ends and middle of a series of the segments with heavy link
traffic, should arelative small number of LPR be installed. For wider coverage, additional LPR may
be installed at the segments with light link traffic to account for the privacy invasion.

The second research year of this project aims to propose an integrated algorithm by
hybridizing cell transmission model (CTM) and extended Kaman filtering (EKF) to estimate arrival
distribution and O-D proportions respectively and iteratively. An exemplified example of a freeway
corridor are used to investigate the capability of CTM in replicating traffic dispersion phenomenon.
Results show that CTM can accurately capture the traffic dispersion under various traffic conditions.
The degree of traffic dispersion gets large as traffic flow increases. To demonstrate the applicability
of the proposed estimation algorithm, a case study of Taiwan No.1 Freeway is conducted. Results
show that the proposed algorithm can estimate the O-D proportion with a low average RMSE of
0.0414.

In the third research year, we propose a novel approach to estimate medium-to-long term
freeway dynamic origin-destination (O-D) matrices. The proposed approach includes a two-stage
prediction model with an integrated algorithm. The two-stage prediction model uses K-means
algorithm to extract clusters of traffic patterns and then employs genetic programming to predict the
traffic in each cluster. The integrated algorithm combines cell transmission model with extended
Kaman filtering to estimate the arrival distributions and the O-D proportions. To demonstrate the
applicability of the proposed approach, a field study of on-ramp traffic patterns on a freeway is
examined. The results show that the proposed approach can accurately predict the traffic and
satisfactorily estimate the O-D proportions along a freeway.

Keywords. Dynamic origin-destination matrices estimation, License plate recognition, Cell
transmission model, Kalman filtering model, Genetic programming.



1. INTRODUCTION

Accurate dynamic origin-destination (O-D) information is essential for implementing rea-time
traffic control applications, such as route guidance and ramp metering. Over the past two decades,
some researchers have devoted to develop the estimation algorithms for the dynamic O-D matrices
based on observable mainline and ramp flow rates (e.g. Chang and Wu, 1994; Chang and Tao, 1996,
1999; Lin and Chang, 2005, 2007); while some others have introduced additional assumptions or
exogenous information, such as route choice behaviors, prior O-D matrix information, and sequence
of observational periods of traffic counts data, while estimating the dynamic O-D matrices (e.g. Bell,
1983, 1991; Yang et al., 1992, 1995; Lo et al., 1996; Hazelton, 2001). Yet estimation of dynamic
O-D matrices still remains challenging in that the number of estimated parametersis far greater than
the available information. To tackle this challenge, Chang and Wu (1994) subjectively assumed that
the vehicles entering a freeway in a specific time interval are distributed within a small range (i.e.,
two time intervals). This assumption certainly limits the applicability and accuracy of the
algorithms. Some previous studies (e.g. Chang and Wu, 1994; Chang and Tao, 1996; Lin and
Chang, 2005, 2007) also made subjective assumptions on traffic arrival distributions, which are not
valid for various traffic conditions from free-flow to gridliock.

In view of the importance of arrival distribution prediction in estimating the O-D matrices and the
essence of estimation efficiency for real-time applications, more recently, Chiou et al. (2010) have
proposed an integrated algorithm which combined cell transmission model (CTM) with extended
Kaman filtering (EKF) to respectively and iteratively estimate the arrival distributions and O-D
proportions. Firstly introduced by Daganzo (1994), the CTM can efficiently simulate traffic
hydrodynamics under various traffic conditions. However, the arrival distribution estimations using
CTM are based on an unredlistic assumption that the on-ramp traffic along a freeway remains
unchanged over time. To rectify this unrealistic assumption, a medium-to-long term (e.g. next two
to four hours) prediction model of on-ramp traffic aong afreeway is required.

Most of the existing traffic prediction models use statistical methods or artificial intelligent methods
to conduct a short-term prediction (e.g. next 5 minutes). Such short-term prediction models may
experience low performance for medium-to-long term traffic prediction since traffic patterns can
change dramatically (e.g., from peak hours to off-peak and vice versa). According to field
observation, daily traffic patterns do repeat spatially and temporally over and over again. To
enhance the prediction performance for a medium-to-long term traffic, this paper proposes a novel
approach, which includes a two-stage prediction model with K-means algorithm to extract clusters
of traffic patterns and a genetic programming (GP) to predict the traffic for each cluster separately.
In the prediction process, 10 hours of historical traffic data are collected and used to identify the
similar cluster of traffic patterns. The input values of learned GP model belonging to that cluster are
used to predict the subsequent two hours. With the predicted medium-to-long on-ramp traffic, CTM
is used to simulate the arrival patterns. EKF is then employed to estimate the O-D proportions. To
validate the accuracy and applicability of the proposed approach, an empirical study on afreeway is
examined.

The remainder of this paper is organized as follows. Section 2 gives the definition of the problem,
variables and related parameters. Section 3 introduces the framework, the traffic prediction model,
the CTM arrival distribution model, and the EKF O-D matrices estimation. A freeway corridor with
15 interchanges is conducted to demonstrate the applicability and performance of the proposed
approach in Section 4. Finaly, concluding remarks and suggestions for future research are
discussed.



2. PROBLEM DEFINITION

Consider atypical linear freeway corridor with N segments, coding O to N-1, as shown in Figure 1.
Assume that detectors are installed at all on-ramps, off-ramps, and mainline links. The information
that is readily available for estimation of dynamic O-D distribution is the time series of entering
flow, g (k), exiting flow, y,(k), and mainline flow, U, (k). The notations used in this paper are

defined in Table 1.
Table 1 Definition of variables and parameters
Variables/ Definition
parameters

0, (K) The number of vehicles entering the upstream boundary of the freeway section
during time interval k.

q (k) The number of vehicles entering freeway from on-ramp i during time interval
kii=12...,N-1

y,; (k) The number of vehicles leaving freeway from off-ramp j during time interval
k,j=12...,N-1

yy(k)  The mainline volume at the downstream end of the freeway section during
timeinterval k.

U, (k) The number of vehicles crossing the upstream boundary of segment i during
timeinterval k,i=12,...,N- 1,

T, (k) The number of vehicles entering the freeway from on-ramp i during time
interval k that are destined to off-ramp j, where 0<i< j<N.

t, The length of one unit time interval.

b; (k) The proportion of gi(k) heading toward destination node j during time interval
k.

p"™(K) The fraction of Tij(k-m) vehicles departing from entry node i during time

! interval k that takes mtime intervals to exiting node j.
p"™(K) The fraction of Tij(k-m) trips from entry node i during time interval k that takes

m time intervals to mainline node.

U, Us Un.i

qo—> U—»
Vi \Y/ ! V2 q: s s PNt -1

Figure 1 A typical linear freeway corridor
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The relation between the dynamic O-D pattern and resulting link flow can be expressed by
equations (Lin and Chang, 2007):

qu:iﬂﬂq i=01..,N-1 D
T, (K)=q(k)-b(k), O<i<j<N (2)

The above two equations are subjected to the following natural constraints:

0<b(k)<l O0<i<j<N

3)

iblj (k)=1 i=012..N-1 4

j=i+l



Consider the speed variation among drivers, it is reasonable to assume that the travel time of
vehicles from node i to node j during time interval k are distributed among time intervals k-M,...,
k-1, and k where M is the maximum number of intervals required for vehicles to traverse the entire
freeway section. The traffic volume leaving freeway from off-ramp j, y;(k), can thus be expressed

as

yj(k)=22 G (k—m)-p(k)-b (k—m) (5)
Ui0)-a00= 23 ¥ [ak-mpl ()b (k—m) ©
where pi'j“(k) shall satisfy the following relations:

0<p"(k)<1, 0<i<j<N, m=0Ll..,M (7
ipign(k—km):l, 0<i<j<N )

Obvioudly, the system formulation has a large number of state parameters, i.e., b;(k) and p;"(k).

The number of these unknown parameters increases with the necessary M value. As such, some
more information is required to ensure this proposed model to be computationally efficient and
tractable.

To deal with the large number of unknown parameters, Chang and Wu (1994) simplified the
formulations by assuming that the speeds of vehicles entering the freeway at the same time interval
are distributed in asmall range. Therefore, Egs. (5) and (6) can be rewritten as

j-1 j-1

Y, (k) = 3 o (k — t; (k)P (0b, (k—t; (k) + 3 [ (k= (k)P (k)b (k —t; (k) ©

i=0 i=0

U - (k) =3 3 [ k=t (k)b (b, (k -t (k) + i[qi (k—t; ()P, (b, (k-t; () (10)

i=0 j=1+1

By simplifying the formulation as Egs. (9) and (10), the number of unknown parameters reduces
from (M + 1)N(N + 1)/2 to 3N(N + 1)/2. However, if the target freeway corridor is sufficiently long
and experiences moderate congestion, the speeds of vehicles for the same O-D may vary in awide
range. Then, Egs. (9) and (10) are not adequate for capturing all complex interrelations between
traffic flows and O-D patterns. To dea with these limitations, Lin and Chang (2005) proposed a
new set of generalized formulations by employing a distribution to represent the potential variation
of travel times among drivers due to the impact of congestion and due to the difference in their
desired speeds. They assumed that the travel time of drivers departing from node i during time
interval k to node j follow a specific distribution. Since the travel times for the same O-D pair
drivers departing during the same time interval follow a distribution, Lin and Chang (2005)

replaced pi'j“(k) with acumulative density function for one timeinterval as follows:

m (m+1)ty m
P (K) = jmto f,m(x)dx i

By applying the above travel time distribution concept, the relationships between ramp volumes and
O-D proportions can be rewritten as:



;_\

-

y;(k) =2, g; (k—m)-p " (k)-b, (k—m)

m=0 i=0

- i’zl (k-m)- U‘m”“ ,.m(x)dx]b_(k—m) (12)
U 00-a (0= 35 Sfak-mpr oo (k-m
=353 ad-m] [T 179 (k-m) 13

Compared to Chang and Wu (1994), the number of unknown parameters for Egs. (12) and (13) has
reduced from 3N(N + 1)/2 to 2N(N + 1)/2. On the other hand, Lin and Chang (2005) represented
the different speeds of vehicles for the same O-D pair with a distribution of travel time.

Although the relevant studies (e.g. Chang and Wu, 1994; Chang and Tao, 1995; Lin and Chang,
2005, 2007) have shed light on the dynamic OD matrices estimation, most of them made
subjectively assumptions regarding arrival distributions, which may not be valid for various
conditions from free-flow to gridlock. In addition, most of these models are too complex, causing
low efficiency in estimation. In view of the importance of the arrival distribution prediction and the
estimation efficiency required for real-time implementation, this study aims to develop a model that
can accurate capture the traffic hydrodynamics under various traffic conditions in an efficient
manner.



3. THE PROPOSED FRAMEWORK

Figure 2 presents the detailed framework of the proposed approach. Throughout the prediction
process, K-means algorithm is used to cluster traffic patterns and genetic programming (GP) is used
to predict traffic information. Moreover, CTM is used to ssmulate the arrival patterns and EKF is
used to estimate the O-D proportions.

Historical tt‘afﬁc Detected traffic
counts counts
l On On Off
ramp links ramp
. a@®| (U] |y;(K)
Predict traffic

counts by GP

l v v

| Al
pfﬂedlCt | Calibrate bij (k)
R (k+D by
by CTM i) Kalman filtering

Figure 2. Framework of the proposed approach

To replicate traffic behaviors by CTM, traffic demand of each OD pair has to be given in advance.
That is, a set of bj(k) has to be determined and used to assign the detected on-ramp traffics to
different downstream interchanges. Once the arrival distributions of all entering traffic have been

successfully simulated, pi’i“(k) can be computed and used to calibrate the O-D proportions of
entering traffic gi(k) by EKF, namely b;;’(K). Then, the new O-D proportions by; '(K) will be used to
replicate a revised arrival distribution p;”'(k) in an iterative manner. The proposed algorithm for
estimating dynamic O-D matricesis depicted in Figure 3.
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Step 2. Compute the linearized transformation matrix
H* = [H kfl]
[H kil]: [h1'h2 vvvv hzw—l]
Z'(K) = [y2(K),-- U 1K) = Ay 4 (K)]
Step 3. Initiaization of the sequential kalman filtering
b,=b(k-1) P°=P_,+D
Step 4. Sequential Kalman filtering iteration
g =P P ]
p —p-t_ gihi pi-t
5= Y, (k) —hb(k-1)
Step 5. Prediction of the states
st P =P  and [b(k)]=[p>""]

Figure 3 Framework of the proposed algorithm

From Figures 2 and 3, there are three sub-models in the proposed framework: traffic prediction
model, cell-based traffic arrival pattern distribution model, and extended Kaman filtering model,
each of which are described in the following sections, respectively.



4. TWO-STAGE TRAFFIC PREDICTION MODEL

Although numerous studies have employed various methods to predict traffic flows, such as the
statistical time-series or regression model (Chang and Miaou, 1999), Sequential Learning model
(Chen, 2001), Artificial Neural network (Dia, 2001), Kalman Filtering model (Okutani, 1984), and
Grey Prediction model (Chiou et al., 2007). However, most of these studies mainly focused on
short-term traffic prediction under the assumption that the traffic pattern will remain unchanged. In
this case, the traffic flow for medium-to-long term traffic periods may significantly differ from
previous short-term traffic periods, hence the mentioned prediction models are inapplicable. In
Taiwan’s case, to stimulate the arrival distribution of traffic flow from Taipei to Kaohsiung,
on-ramp freeway traffic for the next four to six hours must be effectively and efficiently predicted.
Hence, medium-to-long term traffic prediction becomes necessary.

According to our field observations, traffic pattern did repeat spatialy and temporally over and over
again. In order to ssimplify the prediction process, past historical traffic flows (a week or a month)
are divided into sufficient long traffic periods which will allow a specific pattern to be recognized
(e.g. twelve hours) with a rolling horizon concept. These traffic periods are then classified into
several clusters so that the traffic period in each cluster will exhibit a similar pattern. Finaly,
genetic programming (GP) is employed to develop a traffic prediction model for each cluster
separately. Thus, two-stage traffic prediction model is proposed in this study.

With respect to the nature of traffic patterns which may repeat spatially and temporally, the purpose
of this study is to classify traffic patterns into a certain number of clusters each of which exhibit
similar patterns. The traffic pattern is defined as a sequence constituted by 5-minute traffic data
within a twelve hours period. Consequently, each of traffic patterns contains a total of 144 time
intervals (5-minute). By using a concept of rolling horizon as depicted in Figure 4, each of traffic
patterns is generated in alag of one-hour. For example, the first traffic pattern of an on-ramp traffic
datais Monday 12:00 am ~ 12:00 pm, the second traffic pattern is Monday 1:00 am ~ 1:00 pm, the
third is Monday 2:00 am ~ 2:00 pm, etc. Taking the middle part of Taiwan No.1 Freeway between
Toufen Interchange to Beidou Interchange (a total of 15 interchanges) during May 25™ to May 31%
(from aMonday to Sunday).The number of traffic patternsis totally 2,355.

Primitive sequence

1 2 3 n

GPi
GP2
GP 2

Xo(r +1) Xo(r +2) X, (r +i)

o><)

Predicted sequence

Figure 4. The concept of rolling-horizon

By following the generation of traffic patterns, a K-means method is used to classify them into
several exclusive clusters. For each of clusters, the first 120 time intervals of each traffic patternsin
the same cluster is used to train the genetic programming (GP) prediction model while the rest of 24

10



time intervals of these traffic patternsis used to validate the model performance.

The traffic prediction input and output nonlinear system can be expressed as:
X(t+2) = f[x(t),x(t-1),...,x(t —d)] (14)

where x(t) denotes the detected traffic data at time t. The maximum number of time lags is denoted
as d the relationship between the traffic datain previous and current time intervals is represented by
the a nonlinear function f[]. The nonlinear system is assumed to be modeled by a p™ order finite
traffic pattern:

x(t+1):bO+zp:bk(dl,d2,...,dk)ﬁx(t—dj) (15)

Where by(dy,d,,...,dk) is the coefficient of the K" order of traffic data with alag of dy,db,...,dy, and
d <d.,<d.

i+l —

4.1 Traffic Patterns Clustering

Clustering is a process in which a group of unlabeled patterns are partitioned into a number of sets
so that similar patterns are assigned to the same cluster, and dissimilar patterns are assigned to
different clusters. Clustering has become a widely studied problem in a variety of application
domain, such as data mining and statistical data analysis. While several agorithms have been
proposed in literatures for clustering, the K-means method remains an effective and easily
implemented algorithm.

The K-means algorithm must extract a given number of clusters of patterns from atraining set. This
research uses a two-step clustering process to find the optimal number of clusters, and then uses
K-means to assign these traffic periods into several clusters so that the traffic period in each cluster
will exhibit asimilar pattern.

This clustering algorithm is composed of the following steps:

Setp 1: Find the optimal number of clusters with two-step clustering.

Step 2: Randomly select the initial candidates D-periods space point for k cluster from the dataset.
Step 3: Assign each pattern to the nearest cluster using distance measurements as indicator

variables{rk(“’ } In the assignment step, this research set {rk(“’} equals to one, if mean k is
the closest mean to data point {x(“’}; otherwise {rk‘”)} is zero.
K™ = argmin{ d(m®,x™)}

k

o [L KO =k (16)
“© loif k™ Kk
Step 4: Re-compute the centroids of these k clusters to find new cluster centers D-periods space
point,
[y
mW=mn____ @ where R® = Zn:rk‘“) (17)

and compute the sum of square error E. The algorithm achieves this result by minimizing a
square-error function E of the sum of all distances of points from the mean of their clusters,
such that

DI IND I CIRY (18)
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Step 5: Repeat Steps 3 and 4 until convergence. Typical convergence criteria includes no further

reassignment of patterns to new clusters, the change in error function E falls below a
threshold, or a predetermined number of iterations has been reached.

where X, =

Is the mean point of cluster C;.

4.2 Traffic Prediction

The medium-to-long term traffic prediction models are developed in this study and employed to
predict a total of m (i.en+1‘h,n+2‘h,...,n+ m‘h) periods of sequence based on its historical and
primitive n time-series data, X° = {x°(k)1<k < n| for each cluster separately, wherex°(k) is a
time-series data at time k and m is the length of prediction period. Since the number of traffic
patterns needed to construct the prediction model is unknown a priori, the GP agorithm is
especialy suitable for the traffic prediction model. Genetic programming is a technique for
programming computers by means of natural selection (Koza, 1992). It is a variant of the genetic
algorithm developed by Holland et al. (1975), based on the concept of adaptive survival in natural
organisms.

The GP algorithm is a global optimization scheme based on the mechanism of natural selection and
offspring generation. It starts with a population of randomly generated individual trees. Every tree
corresponds to the linear combination of traffic flow. Every generated tree is then evaluated for
fitness. The fitness value of every tree is utilized as the measurement for selection to generate
offspring trees. Brief introductions to these methods are provided below.
Step 0: Define function set and terminal set.
Programs are expressed in genetic programming as syntax trees rather than as lines of code.
The tree includes nodes and links. The nodes indicate the instructions to execute. Function
sets may consist of the arithmetic functions of addition, subtraction, multiplication, and
division aswell as a conditional branching operator; the function set, F, for thisresearchis F
={+, —, x}. Thelinks indicate that the arguments for each instruction called terminals
set may consist of the program's independent variables and numerical constants. The
terminal set, X, for thisresearch is X = {x(t),x(t-1), ... ,x(t-10), x(t-11)}, and
X(t+1) = f(x(t),x(t-2),...,x(t —11)) (19)
Step 1: Initialize random population size.
Randomly generate a population of N traffic pattern.
Step 2: Evauate fitness value of the chromosome.
Randomly select programs from the population, evaluate them from tree structure of GP
with training cases, and rank them according to fitness.

Given®  (t) = [¢;q (1), 05 (£),-n ey (t)] is convert from g™ generation and g™ tree of GP,

k
where ¢§q (t) isoneof Hlx(t —d;) by (2) andr is the number of item jth of thetree. C,,
=

is coefficient of @ (t)

The fitness measure defined as the value of the meaning sgquare error between the value of
the individual mathematical expression and the target polynomial, the fitness vaue is
expressed as.

- szﬂ(y(t)—égqégq(t))z
9 L

where L is the number of data series used for evaluations, the traffic pattern in the g™
generation is contained in the terminals of the best tree associated with the least fitness value

(20)
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defined as:
E, = qglur(]2 (Ey) (21)

Step 3: Generate a new individual by applying genetic operations. The genetic operations include
reproduction, crossover and mutation:

Step 3-1: Reproduction. Replace the least fit two programs by copies of the best fit two.

Step 3-2: Crossover. Create a new offspring for the new population by recombining randomly
chosen parts from two selected programs in each parent tree and swapping the sub-tree
rooted at crossover points as exemplified in Figure 5(a).

Step 3-3: Mutation. Randomly select a mutation point in atree and substitute the sub-tree rooted
there with arandomly generated sub-tree, asillustrated in Figure 5(b).

Parents + * Original +

@ s o . <o ' "

Mutated

+ +

Children

@ ®

Crossover Mutation

(@) Crossover (b) Mutation
Figure 5. Genetic operations

Step 4. If fitness tends to zero, stop the procedure. Otherwise proceed to next step.
Step 5: Generate a new population using genetic operations, and return to Step 2.

4.3 Pattern Recognition

The pattern recognition stage first employs the cluster center of every group produced by K means
as cluster seed, then calculates the squared Euclidean distance of the input series and cluster center
of every clusters. It then assigns the input objects to specific cluster according to the nearest cluster

using a distance measure. For each pattern x;, compute its membership m(c; ‘xi) in each cluster c;.

The membership function m(cj‘xi) defines the proportion of pattern x that belongs to the i
cluster c;. The k-means algorithm uses a hard membership function, that is the membership
m(c; ‘xi) € {0,1}, if the pattern x; closest to the cluster ¢; (minimum squared Euclidean distance), then
m(c;|x ) =1; otherwise m(c;|x) =0.

The process can be summarized in the following steps:
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Step O: Input aset Sof D-periods point set.
Step 1: The cluster center of every group produced by K means used as cluster seed.
Step 2: Compute the distance of each input objects such that

dist(x, y) = > (% - %)* 9)

Step 3: Assign the input objects to specific cluster according to minimum squared Euclidean
distance.

Step 4: Use the input objects and the prediction patterns of the specific cluster to predict traffic
flow.

4.4 Reaults

To examine the feasibility of the proposed prediction model, the traffic data sets were employed and
implemented. This research applied traffic counts with five minutes time interval in real-time
from loop detectors at the mid-section of Taiwan No.1 Freeway, a three-lane freeway measuring
120 km long, with 15 on ramp interchanges from Toufen Interchange to Beidou Interchange within
aweek (2009, May 25™ to 2009, May 31%). The week of traffic data an hour into the future are
then inputted into the proposed prediction algorithm.

This section introduces k-means agorithm to the cluster traffic patterns, and employs genetic
programming (GP) to develop a traffic prediction model for each cluster separately. The detailed
process and resultsis as presented.

4.4.1 Clustering Traffic Pattern with K-means

Using k-means to cluster a week of traffic data with a rolling horizon concept between Toufen
Interchange and Beidou Interchange, when traffic pattern reaches 2355, for example, the optimal
clustering number is 72 clusters. Within the 3 cluster groups, each cluster consist of 4 traffic
pattern. Cluster Group 1 includes Taichang (Mon.12-24), Taichang system (Tue.12-24), Taichang
(Wed.12-24) and Taichang (Thu. 12-24) traffic patterns. The Cluster Group 2 includes Taichang
system (Mon. 8-20), Taichang system (Tue.8-20), Taichang system (Wed. 8-20) and Taichang
system (Thu. 8-20). Fengyuan (Mon.21-Tue.9), Fengyuan (Tue. 21-Wed.9), Fengyuan (Wed.
21-Thu.9) and Fengyuan (Thu. 21-Fri.9) are in Cluster Group 3, with atotal of 46 traffic patterns
clustered in the same group.
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(c) Traffic patterns of Cluster 3
Figure 6. Examples of clustered traffic patterns

4.4.2 Estimated Traffic Predicting M odels

Because the system is to find a mathematical function of some independent variable, the terminal
set of GP includes the independent variable and numerical constants. The terminal set of this
research, T, is {x(t), x(t —1),...,x(t —11)}, the Function set is {+,—,x}, and the population size will
be 50. The crossover operation is commonly performed on about 60% of the individuals in the
population, the reproduction operation is performed on about 8% of the population, and the
mutation operation is performed on about 1% of the population. The fitness is the Mean square

error, and the initialization method is the direct method, while the other parameters are as shown in
Table 1.

Table 1. Parameter settings of GP

Parameters Values

Fitness Mean square error
Terminal set X(t), x(t-1),..., x(t-11),
Function set +, —, X
Population size 50

Reproduction probability 0.08

Crossover probability 0.6

Mutation probability 0.01

Initial minimum depth 2

Number of generations 300

Initialization method Direct method

The medium-to-long term traffic prediction model employs genetic programming (GP) to develop a
traffic prediction model for each cluster separately. As mentioned above, for the three Cluster
Groups, the prediction model is shown in the Table. Accordingly, Cluster 1 with x(t) and square of
X(t) is used to predict next time interval traffic , Cluster 2 with x(t) x(t-1) x(t-2) x(t-5) and x(t-10) is
used to predict next time interval traffic, and Cluster 3 with x(t) x(t-2) x(t-3) and x(t-5) is used to
predict next timeinterval traffic.

Table 2. Estimated GP traffic prediction models
Clusters GP models
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Cluster 1 x(t+1)= -0.003054x(t) X(t) +1.451312x(t)
Cluster 2 x(t+1)=0.000004x(t-2)x(t-5)x(t-10)-0.000249x(t)X(t-1)+0.076631x(t-2)+0.992306x(t)

Cluster 3 x(t+1)= 1.0081 x(t)+0.000062 x(t-2)x(t-4)x(t-5) -0.000117 x(t)x(t-3)x(t-5)

4.4.3 Prediction Performance

The mean absolute percentage error (MAPE) of the predicted traffic value of each time interval and
each real traffic value is used to evaluate the performance of the proposed agorithm, defined as:

X*(1) - %°(t)

. 18
Traning MAPE = —
g z XO (t)

N

x100% (22)

X’ (1) -%°(t)
x*(t)
where %°(k) is the predicted value of traffic entering interchange and x°(k) is the real value of

traffic entering interchange.

Validation MAPE = iz
Mia

x 100% (23)

Using the GP traffic prediction model for the data set between Toufen Interchange and Beidou
Interchange (traffic data with a rolling horizon), the optimal clustering number is 72. Taking GP
with 120 rolling interval, each predicts next 2 hours, using 24 time intervals. Taking the three
Cluster Groups, as mentioned above for example, the training MAPE of various cluster are 6.48%,
6.91% and 5.93%, with the Vaidation MAPE equal to 9.02%, 9.50% and 10.21% respectively.
All cluster average training and the Vaidation MAPE is 6.88% and 10.35%. The comparison
between the predicted versus the center traffic pattern of cluster under the three clustersis shown in
the figure below.
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Figure 7. Predicted and real traffic patterns of three example clusters
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5. CELL-BASED ARRIVAL DISTRIBUTION MODELING

This study employs CTM to predict the arrival distribution of an O-D pair traffic, which will then
be used to compute pi’i“(k) .

5.1 Céll Transmission Modé€

Asshown in Figure 8, afreeway is equally discretized into homogeneous sections (cells), numbered
consecutively from i = 1 to | starting with the upstream end of the road, where the length of each
cell isthe distance traveled by avehicle in one clock tick under light traffic.

Origin cell cell cell aoc . cell cell cell | pestination

i=1 , 2 .. i |

Figure 8. Cell representation of afreeway corridor

In light traffic, al vehiclesin a cell can be assumed to advance to the next cell with each click. It is
unnecessary to know where within the cell they are located. Therefore, the system’s evolution
obeys:

n+(t+1)=n() fort=0,1,2,...,T (24)

where ni(t) is the number of vehiclesin cell i at timet. It isassumed that this equation holds true for
all traffic flows unless queuing occurs. The following two variables are introduced to incorporate
gueuing in the model: (1) Qi(t), the maximum flow from cell i — 1 to i during time interval t (when
the clock advances fromttot + 1), also known as “capacity,” and (2) Ni(t), the maximum number
of vehicles that can be present in cell i in timet. Thus, Ni(t) — ni(t) is the amount of empty spacein
cell i at timet.

The CTM assumes a simplified version of the fundamental diagram, usually based on a trapezium
form, as shown in Figure 9, and provides simple solutions for realistic networks. It is assumed that a
free-flow speed v a low densities and a backward shockwave speed w for high densities are

constant (v> w).

Flow y
F )

Oma

kla :}(b kra’m D:nsity k
Figure 9. Fundamental diagram of CTM

With these, we define y;(t) as the number of vehiclesthat can flow intoi for timeinterval t as:
() = min{na(®), Q) .+ [N - n(o} (25)

The CTM is based on a recursion where the cell occupancy at timet + 1 equals its occupancy at
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timet, plusitsinflow and minus the outflow:
mi(t + 1) = ni(t) + yi(t) — Yiva(t) (26)

If the remaining storage capacity and flow capacity of next cell is sufficient, all vehicles will move
forward to the next cell; otherwise, only part of them can move proportionally, thelogicis as:
if y,(t+2) +r(t+1) <min[Q (t +1),N —n, (t +1)]

then Qut+) =y ({t+D)+r(t+1) (27)
if y (t+D)+r(t+1) > minQ (t+1),N —n (t+1)]

. ] 28

then  Qut+y-1-[MIQEEDNTREDLE ) “

5.2 Replicating Traffic Dispersion Phenomenon

To demonstrate the capability of CTM in replicating the traffic hydrodynamics and to investigate
the degree of traffic dispersion under various traffic conditions, a simulation on a three-lane
freeway section with eight interchanges has been conducted. Parameters are set as follows: free
flow speed=120 km/hr, jam density=125 vehicles per kilometre per lane, capacity=7,200 vehicles
per hour, cell storage capability=375 vehicles, time click=30 seconds, and cell length=1 km.

Four scenarios with various traffic conditions are simulated, including free-flow, light synchronized
flow, heavy synchronized flow and congested flow. Taking the traffics entering at seven
interchanges (No.1 to No.7) and heading to No.8 interchange in time interval t=1 for example, their
arrival distributions under various traffic conditions are graphically depicted in Figure 10. As shown
in Figure 10(a), amost al traffics arrive at N0.8 interchange within one or two time intervals under
free-flow condition. Once the traffic flow increases, the degree of traffic dispersion will
significantly appear. As shown in Figures 10(b)-(d), the same entering traffic will arrive at No.8
interchange among a wider range of time intervals ranging from two to three time intervals under
light synchronized flow, four to five time intervals under heavy synchronized flow, and six to eight
time intervals under congested flow, suggesting the capability of the CTM model in replicating
traffic dispersion phenomenon.

1.00 m7-->8
0.80 - O06-->8
o 0.60 4 H5->8
T -
C 040 4 04-->8
03->8
0.20 -
m2-->8
o-m T1TTT TIT T T T T T T T T ITT TT 1T L TTT 11T D 1--> 8
1 4 7 101316 19 22 25 28 31 34 37 40 43 46—
Time click
(a) Free-flow
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0.80 4 06-->8
o 060 | m5->38
g .
B o0 - 04->8
03->8
0.20 |
m2>->8
O.m T TT T T I T T T T T ITTT TTT LT T TT L
O1->8
1 4 7 101316 19 22 25 28 31 34 37 40 43 46—
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(b) Light synchronized flow
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(c) Heavy synchronized flow
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0-00 TITTTTTTTT TTT T T T I T T TTTTT L D l__> 8

1 4 7 101316 19 22 25 28 31 34 37 40 43 46 49
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(d) Congested flow
Figure 10. Distributions of No.8 interchange arrival traffics from various origins
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6. EXTENDED KALMAN FILTERING MODEL

In the above model formulation, the information of each O-D pair can be estimated using the data
provided by the surveillance system or historical information, and the unknown set of parameters
are O-D proportions, b; (k) .

As used in most existing approaches, the dynamic O-D parameters, b, (k) , are assumed to follow

the random walk process between successive time intervals:
b, (k+1) =b;(k) +w;(k), 0<i<j<N

(29)
B(k +1) = B(k) +W(k) (30)
Z(k) = H(k) - B(k) + W(k) (31)
Z(K) = [y1(K), Y5 (K)sevey Yoy (K);U, () = 0 (K)o, Uy 5 (K) = a5 (O (32)

where, wij(K), a random term, is an independent Gaussian white noise sequence with zero mean and
its covariance, Z(k), is a column vector, H(K) is a matrix with its entries given by the corresponding
coefficientsin Egs. (12) and (13), and e(k) is an observation noise vector, which can be defined as a
Gaussian white noise with zero mean and its covariance matrix, and R = Var[e(K)] = diag[r, . . .,
ron-1] ISadiagonal positive definite matrix. B(k) is amatrix of the O-D proportions of entering flows
bij(K). W(K) is amatrix of white noise w;(K).

The proposed estimation algorithm, based on the extended Ka man filtering concept, is presented as
follows.
Step O: Initialization.

Parameters settings include cell length L, i = 0,1,. . . , N-1, time interva, to.
var[e(k)] = diag]r,,r,...]. X(0) = E[b(0)]. P(0) =Var[b(0)]. Besides, on-ramp, link and
off-ramp flows are given.

Step 1: Determine p;f'(K) by CTM.

Step 2: Compute the linearized transformation matrix based on the determinant p;" (K) .
HK—l:[H k-1

M
H;(,Ni+j—i(i+l) = ZQi(k—m)’Pi;n(k) for O<i<j<N
m=0

M
Hllil+I,Ni+j—i(i+1) = ZQi (k- m)'PiEn(k) for 0<i<j<N
m=0

[H K_l]: [hl’ h,,..., th—1]T

Z'(k) = [y2(K), Y (K),.s Yy (K); U1 (K) = Gy (K)o, Uy (K) = Gy ()T
Step 3: Initialization of the sequential Ka man filtering method.

set b, =b(k+1)

Py = Py + D wWhere D =]d,,...d,] isacovariance matrix of W(K)

Step 4. Sequential Kalman filtering iterations.
Fori=1,2, ...,2N-1
g'=p~h [hi phT +r, ]_1
pi _ pi—l _ gihi pi—l
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§' = Y (k) —hb(k - 1)
Truncation:
o' = MAX|alo<[b*]+ as'g' <1

O<a<l
Set [bi]:[ i—l]+a5igi
Normalization:
Form=1, 2, ..., N-2

ﬂm = Z’j\lzm+lbri‘1

. b, .
bmj:%m j=m+1,..., N.

Step 5: Stop condition test.

Check the convergence of estimated O-D proportions. If preset stop conditions (convergence

level or number of iterations) has not been met, then go to Step 1. Otherwise, go to Step 6.
Step 6: Prediction of the states.

Set p=p™* and [o(k)]=[o*""], k=k+1, gotoStep 1.
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7. CASE STUDY

In this empirical case study, an entire week (from May 25 to May 31, 2009) of 5-minute traffic
counts are extracted from the loop detectors over the 120-km stretch of Taiwan Freeway No. 1
between Toufen Interchange and Beidou Interchange, within which 15 on-ramp interchanges exist.
The mainline of this stretch has three lanes.

To investigate the effects of initia value settings of O-D proportions on the performance of the
proposed approach, two initial value settings are attempted: one by randomly generated (RG)
technique and the other by equal share (ES) technique. Taking origin interchange No. 12 as an
example, the associated O-D proportions are denoted as bi213(K), bi214(K), and by 15(K). With RG
technique, three random numbers 0.2, 0.9, and 0.5 are generated and then normalized such that the
sum of three proportions equals 1; namely, bi2 13 (k)=0.125, b;2 14 (K)=0.563, and b;2 15 (k)=0.312. In
contrast, with ES technique, the three proportions are ssimply set as by213 (K)=0.333, b12,14 (K)=0.333,
and b12,15 (k)20333

The distributions of real biy15 proportions (from Zhanghua Interchange to Yuanlin Interchange)
along with the estimated O-D proportions by both RG and ES techniques are demonstrated in
Figure 11. Note that the proposed approach can predict real O-D proportions quite accurately for
these two initial value setting techniques. However, RG technique is dightly superior to the ES
technique in terms of the prediction accuracy. Thus, the RG technique is adopted for predicting the
remained O-D proportions.

0.4
03 f PR Pl
£ g PRy AV eV
5 02
% —4@— Real
= o1 b —8— Predicted by RG
Predicted by ES
O L L L L L L
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Time interval(30sec)

Figure 11. Comparison of real b; 15 proportions with predicted values by RG and ES techniques

Figure 12 displays the process of convergence for the time interval k=986, b, 15, Toufen Interchange
to Beidou Interchange. The results show that the overall RMSE is 0.1043, indicating a rather good
fitness of the proposed approach.

Ratio k=986, b1,15 Toufen toBeidou
0.068
0.064 N N
0.06 \\/“\,W"\/V/
0.056 |~~~ —
0.052 T T T T T T T T

| teration

Figure 12. The process of convergence
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8. CONCLUDING REMARKS

This paper has developed an integrated estimation algorithm by combining cell transmission model
(CTM) and extended Kaman filtering (EKF) to respectively and iteratively estimate the arrival
distribution and the O-D proportions. Our results from an exemplified example of a freeway
corridor have shown that CTM can surely capture the traffic dispersion under various traffic
conditions. The degree of traffic dispersion will get enlarged as traffic flow increases. The results
from a case study on Taiwan No.1 Freeway have also shown that the proposed agorithm can
accurately estimate the O-D proportions with a low RMSE of 0.0414. The applicability of the
proposed integrated al gorithm has been proven.

Severa directions for future research can be identified. First, the applicability and efficiency of the
proposed agorithm on a large scale network should be further examined. Second, due to data
availability in the case study, the O-D matrices are arbitrarily given and then used to generate “real
time” detected traffic flows by traffic smulation software, DynaTaiwan. However, with advanced
traffic surveillance technologies, it is feasible to collect rea time traffic information in the future
study to further examine the applicability of the proposed algorithm. Third, the proposed agorithm
is only valid for the case of linear freeway corridor. In the future study, route choice behaviors
should be incorporated to the proposed a gorithm to suit for more complicated networks. Fourth, the
estimation accuracy of the proposed algorithm under various traffic conditions also deserves further
investigation and comparison. Last but not least, comparisons with other algorithms should also be
conducted to demonstrate the superiority of the proposed algorithm.
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