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II 

中文摘要 

本計劃提出一種能夠實現在電信通訊系統中的麥克風陣列技術運用聲學信

號處理方法，此技術能自動偵測訊號位置以及增進語音辨識率，利用兩麥克風之

間的相位差可獲得聲源角度進而決定波束開口大小以增進語音辨識率，此外利用

波束轉向技術能應付語音訊號不在主軸位置上的情況。運用於車用電子上的電聲

元件可能會成非線性迴聲的產生，針對此種無法由線性回聲消除系統消除的成

分，我們主要利用沃特拉濾波器及漢默斯坦模式達到消除非線性迴聲的目的。 
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英文摘要 

This study proposes microphone array techniques aimed at enhancing speech 

recognition.  If the noise doesn’t come from the rear, on the contrary, it comes from 

the direction closing to the target source, then the phase difference estimation is used 

to solve this problem, which can reduce the noise without distortion even when the 

angle between noise and target source is small.  It is found that the ITD threshold in 

the phase difference estimation plays an important role in enhancing the speech 

recognition, and hence it has to be optimized.  In this paper, GSS is used to search 

the optimal threshold.  If the target source is not from the direction of main lobe, 

beam steering technique has to be applied to the system.  Finally, experiment results 

are discussed to demonstrate that the performance of the proposed algorithm is better 

than conventional methods.  The nonlinear distortions from low cost audio 

equipments degrade the performance of linear acoustic echo cancellation system.  

The approaches of nonlinear adaptive filter are have resorted to discrete-time 

transversal Volterra filters and block-based Hammerstein model. 
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I. INTRODUCTION 

Automatic speech recognizers (ASRs) have significantly improved in recent 

years but the performance degrades rapidly in noisy or reverberant environments.  

Therefore, noisy speech needs to be processed by speech improvement algorithms.  

For instance, the delay-and-sum (DAS) beamformer is a well known algorithm which 

is computational efficiency.  However, it only performed well for uncorrelated noise.  

The one-channel noise reduction (NR) technology has been widely applied in the 

communication community, and was expected to enhance speech recognition.  

Nevertheless, the improvement of one-channel NR in speech enhancement does not 

always translate into substantial gains in speech recognition performance, because too 

aggressive NR destroys the speech features.  The one-channel NR encounters the 

dilemma of noise reduction or distortion.  Therefore, microphone array is used in the 

proposed algorithm, which can ease the tradeoff of the above situation. 

Lately, a missing-data approach was suggested to enhance speech recognition in 

noisy environments, based on designing whether data are reliable.  The performance 

of the missing-data approach is significantly improved comparing to that of the DAS 

beamformer.  Nevertheless, the success of this technique depends on the sufficiency 

of reliable data and errors in imputation procedures affect the performance.  The 

speech recognition in the environments with non-stationary noise still remains a tough 

problem.  An alternative is the binaural processing which is well known for 

separating speech signals.  Several algorithms were discussed the phenomena of 

binaural system, such as interaural time difference (ITD) and interaural intensity 

difference (IID).  Recently, computational auditory scene analysis (CASA) systems 

were developed to construct an ideal binary mask by comparing the signals at the two 

microphones in binaural systems.  Both voice and unvoiced speech signals could be 

segregated by CASA systems from a noisy environment.  However, the computation 
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of the CASA systems is quite complex. 

In this study, microphone arrays are used for enhancing speech recognition in 

noisy and reverberant environments.  Typically, there are two types of microphone 

array— the broadside and endfire arrays.  When the maximum of the array beam 

pattern (the mainlobe) is alone a line perpendicular to the axial direction of the 

microphone array, the array is called a broadside array.  On the contrary, an endfire 

array means that the mainlobe is in the direction diaphragm to the microphone axis, 

“off the end” rather than off the side and consequently the name is endfire array.     

Since the directivity of super-directive microphone arrays is higher than that of a 

uniformly summed array in the same condition, it can not only suppress noise and 

reverberation coming from all directions well but also keep the feature of the target 

signal from the principal direction.  Furthermore, although in many applications the 

direction of the target signal can’t be predetermined, it is usually in front of the array 

and disturbances are at the rear.  In these cases, the endfire array is suitable than a 

broadside array. 

With the aid of phase-difference estimation, speech signal can be separated well 

without distortion and the recognition rate is enhanced. Because this algorithm is very 

sensitive to the choice of ITD threshold in binary masking criterion, how to choose 

ITD threshold becomes an important problem.  An automatic selection of ITD 

threshold proposed by Kim et al is based on minimizing the cross correlation between 

the target and the interference signals.  However, the performance of the automatic 

selection algorithm degrades significantly when signal-to-noise ratio (SNR) and the 

subtending angle between speech and noise signal are small.  Hence, this paper 

proposes an optimal threshold varying with the subtending angle, which is based on 

finding the minimum of the WER by GSS.  Using the optimal ITD threshold 

proposed in this paper, PDE algorithm can perform well with small SNR and 

http://tw.dictionary.yahoo.com/search?ei=UTF-8&p=contrary
http://tw.dictionary.yahoo.com/search?ei=UTF-8&p=contrary
http://tw.dictionary.yahoo.com/search?ei=UTF-8&p=contrary
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subtending angle.  Furthermore, the selection of volume affects the performance and 

needs to be adjusted, which is also discussed in this paper. The speech recognition 

will decrease when the sound source isn’t on the main lobe of microphone arrays, and 

the system needs the beam-steering technique to change the main lobe of array pattern 

by electronic compensation.   

Current AECs which use linear adaptive filter are hinged on the assumption that 

an acoustic echo path can be modeled as the linear filter.  However, there are 

nonlinear components in the echo path due to low-cost audio equipment.  The main 

nonlinearities are generated from the loudspeaker and power amplifier in the 

transmission path.  The performance of AEC is degraded with this nonlinear 

distortion.  As a result, the nonlinear model has to be taken into account.  In this 

study, we neglect the nonlinearities of A/D and D/A converter.  Since the signal 

power is small in the microphone, the microphone behaves linearly even it is cheap.  

The nonlinear distortions are generated when the amplifier is overdriven, and they are 

memoryless.  The Hammerstein model consisting of a cascade of memoryless 

polynomial filter and finite impulse response filter has been proposed to overcome 

this nonlinearity.  Another sort of nonlinear distortion is caused by the loudspeaker 

since the time constants of their electro-mechanical systems are large compared to the 

sampling rate, and this nonlinearity behaves with memory.  To compensate the 

nonlinearities with memory, the adaptive Volterra filter has been utilized to model the 

echo path in the acoustic echo cancellation system.  In this study, we propose the 

modified system for Hammerstein model to avoid instability of convergence. 
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II. PHASE-DIFFERENCE ESTIMATION (PDE) 

    

 

Fig.  1  The block diagram of phase-difference estimation. 

    The block diagram of PDE algorithm is illustrated in Fig. 1.  The noisy 

signal received in two microphones is first segmented to frames by applying a moving 

Hamming window and then transferred to the time-frequency domain by Short-Time  

Fourier transform (STFT) as follows: 
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where k is the frequency index and l is the frame index, ( ),X k l  and 

( ),iN k l represent the speech and the ith noise signals, respectively, ( )1 ,P k l  and 

( )2 ,P k l  are the signals at the first and second microphone, and 

2 /  for 0 / 2 1k k N k Nω π= ≤ ≤ − , where N is the STFT size.  The frame length here 

is 75ms and the hub size is half of frame length.  It is assumed that the target signal 

is at the location alone the perpendicular bisector of the line between two 

microphones, and therefore its ITD is equal to zero.   On the other hand, ( ),id k l is 
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the ITD of the ith noise signal dependent on time and frequency.  If a time-frequency 

bin ( ),m mk l  is controlled by a strongest interference source n, the above equations 

can be approximated as 

( ) ( )1 , ,m m n m mP k l N k l≈                                          (3) 

( ) ( ) ( ),
2 , ,k n m mmj d k l

m m n m mP k l e N k lω−≈                                (4) 

and the ITD of this bin can be estimated by calculating the unwrapped phase 

difference between two microphones: 

( ) ( ) ( )1 2
1, min , , 2

m

n m m m m m mr
k

d k l P k l P k l rπ
ω

≈ ∠ −∠ −                 (5) 

Then, a binary mask can be formulated as 

( ) ( )1,        if ,
,

0.01,   otherwise         
n m m

m m

d k l
B k l

τ ≤= 


                               (6) 

where τ is the ITD threshold. It means that only bins with its ITD smaller than τ are 

supposed to belong to the target signal.  Correspondingly, the speech signal ( ),S k l  

is re-established from multiplying the average signals of the two microphones 

( ),P k l  by the mask ( )j , jB k l  got in above formula. 

( ) ( ) ( ){ }1 2
1, , ,
2

P k l P k l P k l= +                                      (7) 

( ) ( ) ( ), , ,S k l B k l P k l=                                           (8) 

Finally, the enhanced speech signal is converted to the time-domain with the aid of 

inverse fast Fourier transform (IFFT) and overlap addition (OLA) method.  In this 

paper, three approaches of technical refinement are exploited to enhance the 

aforementioned PDE algorithm.  As shown in Fig. 2, after the received signal is 

transformed to the time-frequency domain, the system estimates the speech and noise 
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location.  The subtending angle between speech and noise is used to select the 

corresponding optimal ITD threshold searched by GSS.  If the target source is not 

from the designed direction, beam steering technique is applied to orient the main 

lobe to the target source location.  After IFFT and OLA, the time domain signal is 

scaled to the optimal volume to further increase the WRR. 

 Fig. 2  The block diagram of the proposed PDE-based enhancement algorithm, 

where θ is the subtending angle estimated by DOA. 

A. Optimization of the ITD threshold using GSS 

As mentioned previously, the parameter τ is used in the binary mask principle as 

the ITD threshold having profound impact on mask estimation and hence on the 

performance of the speech recognition.  As expected, it is found that this parameter 

is related to the included angle between speech and noise sources.  Therefore, it is 

worth exploring how to adjust this parameter such that the recognition rate can be 

maximized. In the following, a procedure based on the GSS is presented for 

automated tuning of the ITD threshold. 

1. Golden section search  

The goals of GSS are to get an optimal reduction factor for a search interval and 

to minimize the number of the iterations.  By GSS, the minimum can be searched 

efficiently within a finite number of steps, and do not need to evaluate numerical 
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gradients.  Assume a function ( )f x  is continuous and having only one minimum 

over the interval [a, b].  An interior point c is between a and b, and 

 ,         1c a b cw w
b a b a
− −

= = −
− −

                                   (9) 

where 
10
2

w< < .  Suppose another interior point d is over [c, b], and 

 
d c z
b a
−

=
−

                                                    (10) 

Notice that the choosing of d is applied the same strategy as that of c, which means 

1
z w
w
=

−
                                                    (11) 

For minimizing the number of the iterations, the fraction 1-w musts equal to w+z, i.e. 

the new point d is the symmetric point of c in the interval[a, b], namely 

 1 2z w= −                                                     (12) 

Comparison of Eqs. (11) and (12) yields the following quadratic equation 

 2 3 1 0w w− + =                                                (13) 

and the root  

3 5 0.382
2

w −
= ≈                                            (14) 

is used. Note that the number is related to the golden ratio g, where 

 
5 1 1
2 1

g
w

+
= =

−
                                            (15) 

Therefore it’s called “golden section search”.  Now comparing ( )f c  and ( )f d , 

if ( ) ( )f c f d< , then the new interval is [a, d]; otherwise, it becomes [c, b].  The 

rule at each stage is to keep a center point lower than the two outside points.  The 
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process above iterates until the interval is tolerably small, and the question here is 

how to decide the time to stop the iteration.  According to Taylor’s theorem, the 

value of the function ( )f x  near xm is approximately 

( ) ( ) ( )( )21 ''
2m m mf x f x f x x x≈ + −                             (16) 

If ( )f x  is enough close to ( )mf x , then the second term can be quite small and 

negligible, which can be represented as 

 ( )( ) ( )21 "
2 m m mf x x x f xε− <                                  (17) 

where εis usually set to 10-2 for single precision. 

2. The Optimal ITD threshold varying with the included angle 

The searching process of the optimal ITD threshold by GSS is shown in Fig. 3, 

where the noise type is babble at SNR 6dB and the included angle is 15 degrees.  

The SNR here were conducted according to ITU P.56 standard, which defined as 

2

10 210 log xSNR
n

 
= ∗  

 
                                          (18) 

where x and n represent the speech signal and noise respectively.   

 

(a) The searching process of τ 
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(b) Relative recognition rate 

Fig.  3  The searching process of the ITD threshold by GSS. 

 

Fig. 4(a) shows the performance of PD algorithm where the ITD threshold τ varies 

from 0.1 to 1.5.   It can be found that the recognition rate gets better by increasing τ 

but decreases sharply whenτ exceeds a value which differs with the included angle.  

It turns out that there is a relation between τ and the included angle.  To find the 

optimal ITD threshold, GSS is used in this paper, which can quickly search the local 

minimal of a function in an interval.  The result of the optimal τ found by GSS is 

shown in Fig. 4(b).  The included angle is from 15 degrees to 90 degrees at SNR 0dB 

and 6dB, and “babble” noise is used as the noise source.  It indicates that the optimal 

thresholds τ at SNR 0dB and 6dB are similar to each other, which means the influence 

of SNR is small and can be disregard.  Because the curve of the optimal τ has an 

obvious trend, it can be fitted by a polynomial of low degree easily.  A polynomial 

fitting of degree 2 is shown in Fig. 4(b), which is found to be 

 ( ) ( ) ( ) ( )5 2 2 27.76*10 1.69*10 5.45*10i i iτ − − −= − + −             (19) 

where i is the included angle.  It revealed that, by using a polynomial fitting, it can 

use only 3 parameters to represent the optimal τ varying with the included angle very 



 

10 

well.  By comparing the effective beamwidth and the real spanning angles, the 

effective beamwidth is smaller but the differences become smaller as the subtending 

angle decreases.  The reason is that, the effective beamwidth has to be smaller than 

the real subtending angle, or the noise will be received in the binary mask, while if the 

effective beamwidth is too small, some speech signals will not be picked up in the 

binary mask and some feature will lose.  For ASR, preservation of speech features is 

crucial.  Loss of speech features causes the WRR to markedly decrease.  Even if the 

noise is close to the target source, the effective beamwidth can not be too small. 

 

(a) 

 

(b) 
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Fig.  4   (a) Recognition rate in babble noise at SNR 0dB. (b) The optimal ITD 

threshold tau and the polynomial fitting. 

B. Beam steering 

The beam steering technique is discussed in this section to overcome the problem 

about the movement of the target source. With the aid of electronic compensation, the 

direction of the main lobe of the microphone array pattern can be changed. Assume 

the angle to be moved is θM, then the beam steering filters are given as 

sin
sin

s M
M

j f nd
j n k d c

nw e e
ω θ

θ
−

−= =                            (20) 

where n is array index, ω is the frequency index, and fs is the sampling rate, d is the 

spacing between microphones. In time domain, the beam steering filter can be written 

as a delay: 

sins Mf nd
delay c

θ
=                                            (21) 

That is, by applying different delays to the signal received in every microphone, the 

direction of main lobe can be controlled and steered to any desired directions. One 

thing has to be noticed is that these delays are not integer delays, hence Lagrange 

interpolation is used here to interpolate fractional delay values, which is easier to 

achieve and more flexible. Simplicity, it can approximate a fractional delay by a FIR 

filter, 

0
( )   for 0,1, 2...

N

k
k n

D kh n n N
n k=

≠

−
= =

−Π                                   (22) 

where N is the order of the filter. The case N=1 corresponds to linear interpolation 

between two samples, which suffices when the sampling frequency is high enough. 

The result is in Fig. 5 with the target source angle from 15° to 75° aside the main lobe. 

When the target source is far from the main lobe, the recognition rate degrades 
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correspondingly. By using beam steering technique, the performance is enhanced 

obviously, as shown in Fig. 6. 

 

Fig.  5  Comparing recognition rate in different volume. 

 

 

 

 

Fig.  6  Comparing the recognition rate when the source is not at the direction 

of the designed mainlobe and the effect of beam steering, where “15degs.” means the 

source is aside the desired main axis 15 degrees.



 

13 

C.  Simulation and Experiment 

The simulated and experimental results are presented in this section.  The input 

stimuli are 50 commends (547 wave files) rendered from a point source placed at 90 

degrees (the look direction).  The speech recognizer is based on continuous density 

Hidden Markov Model (HMM) with Mel-Frequency Cepstral Coefficients (MFCCs) 

as features.  As shown in Fig. 7, the interelement spacing is 5 cm and the sampling 

rate is 8 KHz, the distance between microphone array and the speakers is 30 cm. 

 

 

 

 

 

 

 

Fig.  7  The simulated and experimental environments. 

 

  Assume a room of dimensions 12 12 9× ×  m, with the microphone located 

at the center of the room.  The SNR is from 0 to 15dB and the subtending angle is 

from 15 to 90 degrees.  Babble noise is used as the noise source.  FIG. 8 compares 

the performance of the original noisy signal, PDE algorithm with fixed ITD threshold, 

automatic ITD threshold selection algorithm, and the proposed PDE-based 

enhancement algorithm.  The subtending angle between target source and 

interference signal is 15°, 45°, and 75°, and there is no reberberation. The volume 

gain here is set to be 0.0945.   The original noisy signal is the signal received in one 

microphone, and PDE algorithm with fixed ITD threshold is the result of the basic 

PDE system, where the ITD threshold is chose to be 0.4.   
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 (a) 

 

(b) 

 

(c) 

 

Fig.  8  Comparing the performance of the original noisy signal, PDE algorithm 

with fixed ITD threshold, automatic ITD threshold selection algorithm, and the 
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proposed PDE-based enhancement algorithm (a) Subtending angle = 75°. (b) 

Subtending angle = 45°. (c) Subtending angle = 15°. 

 

Automatic ITD threshold selection algorithm is organized as follows:  First, two 

complementary masks are constructed using the binary threshold, one for the target 

signal, the other for interference signal.  After that, the short-time power for the 

target and the interference is calculated.  Finally, the ITD threshold is obtained by 

minimizing the cross-correlation of the target and interfering signals after a 

compressive nonlinearity, as shown below: 

0

0 0
1

0

1 [ | ) [ | )
ˆ arg min

T I

T I

L

T I R R
l

R R

R l R l
N

τ

τ τ µ µ
τ

σ σ
=

−
=

∑
                   (23) 

where RT[l | τ0) and RI[l | τ0) are the power of the target and the interference signals 

after nonlinearity, 
TRσ and 

IRσ  are the standard deviations of RT[l | τ0) and RI[l | τ0) , 

respectively, and 
TRµ  and 

IRµ  are the means of RT[l| τ0) and RI[l | τ0), respectively.    

From F4. 18 can find that, the proposed PDE-based enhancement algorithm gets 

excellent performance no matter what subtending angle it is, which enhances WRR 

about 50-60% at SNR 0dB and all the accuracies in different subtending angles are 

above 90% even if the noise is very close to the target source like 15 degrees, whereas 

the fixed-threshold PDE and the automatic-threshold selection algorithm degrade at 

low SNR.  Furthermore, the automatic-threshold selection algorithm performs as 

well as the proposed algorithm when the subtending angle is large, like 75 degrees, 

but significantly degrades if the subtending angle is small and SNR is low. 

The effect of reverberation presents in Fig. 9.  The Room Impulse Response 

(RIR) software is used here to simulate reverberation effects.  T60 represents the 
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reverberation time, which is the time it takes for the reverberation level to drop by 60 

dB.  When the reverberation time T60 is small, the effect of reverberation is not 

obvious, and the performance after the proposed algorithm is almost above 85% at 

SNR 0dB.  One thing to be noticed is that, PDE technique doesn’t work if noise and 

speech come from the same direction, as shown in Fig. 9.  It even gets worse WRR 

than the original signal when the reverberation time is long because of the distortion 

of speech signal.  The performance decreases quickly when T60 is larger than 2 

seconds.  Even with the aid of the proposed PDE-based enhancement algorithm,  

WRR only increases to about 60% at SNR 0dB, and the result is worse than the 

original signal at high SNR because of the distortion of speech signal.   

 

 

(a) 
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(b) 

 

(c) 

 

Fig.  9  The effect of reverberation, where the subtending angle is from 0 to 90 

degrees. (a)T60=0.138 secs. (b)T60=0.966 secs. (c)T60=2.898 secs. 

 

FIG. 10 is recognition rate of record wave files. The recording is at an anchor 

chamber, and therefore the effect of reverberation can be neglected.  SNR is 0dB in 

this case, and the noise source is babble noise.  It indicates that, all WRR of original 

signals are low, between 10% and 30%, and after the proposed PDE-based 

enhancement algorithm, the performance is excellent even when SNR is low. 

 

Fig. 10  The recognition rate with the optimal threshold of record wave file. 
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III. NONLINEAR ACOUSTIC ECHO CANCELLATION 

The acoustic echo cancellers to date generally rely on the assumption of linear 

echo path.  The nonlinear distortions from low-cost audio devices can adversely 

impact the performance of linear acoustic echo cancellation system.  In this section, 

two methods are presented to deal with nonlinear echoes. 

A. Second-order Volterra Filter 

 One of the sources of nonlinearity is the loudspeaker when overdriven beyond its 

linear region.  When the loudspeaker is operated at the power limit, the nonlinear 

distortions will damage the linear echo cancellation.  Since the time constants of 

their electro-mechanical system are large compared to the sampling rate, the 

loudspeaker causes nonlinearities with memory.  For this nonlinear system with 

memory, the adaptive Volterra filters have been proposed to nonlinear echo 

cancellation system.   

 

Fig. 11 Nonlinear acoustic echo canceller using 2nd order adaptive Volterra filter. 

 

The Volterra filter, extension of the Taylor series, is a general type of nonlinear 

filters.  Consider an N-th order discrete Volterra filter representation described as 

 
1

1 1
1 1

( ) ( , , ) ( ) ( )
r r

N M M

r r r
r

y n h x n x n
κ κ κ

κ κ κ κ
= = −

= − −∑∑ ∑                  (24) 
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where M is the memory length and hr are the r-th order Volterra kernels.  x(n) and 

y(n) are the input and output signals, respectively.  However, the numerical 

complexity of Volterra filter is too high for the practical acoustic echo cancellation 

system.  The AEC using second order Volterra filter (Fig. 11) was proposed.4  For 

the first order volterra kernel, the input vector is 

 [ ]1( ) ( ) ( 1) ( 1) Tn x n x n x n M= − − +x                 (25) 

where M is memory length.  The first-order filter can be represented as 

 1 1 1 1
ˆ ˆ ˆˆ [ (0) (1)  ( 1)]Th h h M= −h                                  (26) 

For the second-order volterra kernel, the input vector is 

 
2

2 ( ) [ ( ) ( ) ( 1)  ( ) ( 1)

             ( 1) ( 1)  ( 1) ( 1)]T

n x n x n x n x n x n M
x n x n x n M x n M

= − − +

− − − + − +

x 



                  (27) 

and the second order filter is 

 2 2 2 2

2 2

ˆ ˆ ˆˆ [ (0,0)  (0,1)  (0, 1)
ˆ ˆ          (1,1)  ( 1, 1)] ,T

h h h M

h h M M

= −

− −

h 



                          (28) 

The PNLMS adaptive Volterra filter can be formulated as 

 1 1 2 2
ˆ ˆ( ) ( ) ( ) ( )T Te n d n n n= − −h x h x                                  (29) 

 1 1
1 1

1 1

( ) ( ) ( )ˆ ˆ( 1) ( )
( ) ( ) ( )T

n e n nn n
n n n

α
+ = +

K xh h
x K x

                              (30) 

 2 2
2 2

2 2

( ) ( ) ( )ˆ ˆ( 1) ( )
( ) ( ) ( )T

n e n nn n
n n n

α
+ = +

K xh h
x K x

                   (31) 

where 1α  and 2α  are the first and second kernel step size, respectively.   

B. Hammerstein Model 

The over driven amplifier mainly generates the memoryless nonlinear distortions.  

The nonlinear AEC dealing with memoryless nonlinearity is proposed in this section.  

The Hammerstein model consisting of linear FIR filter and the nonlinear function is 

illustrated in Fig. 12.  The memoryless nonlinear function f is the polynomial model 
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and then can model saturation effects found in the amplifier.  The PNLMS adaption 

for linear FIR filter based on the error signal ( )e n  in Fig. 12 is used for two stages of 

Hammerstein model.   

 

Fig. 12 Nonlinear acoustic echo canceller using Hammerstein model. 

 

First, the function f can be represented by a Pth-order polynomial, and the output 

of the nonlinear function is denoted by ˆ( )s n  

 1ˆ( ) [ ( ) ( )  ( )]T
Pn a n a n a n=a                                       (32) 

 
1

ˆˆ ˆ( ) ( ( ), ( )) ( ) ( )
P

p
p

p
s n f n x n a n x n

=

= =∑a                                (33) 

where ˆ( )na  is the 1P×  column vector.  The input vector ˆ( )ns  to the linear FIR 

filter 0 1 1
ˆ ˆ ˆˆ ( ) [ ( ) ( )  ( )]T

Nn h n h n h n−=h   is formed by N latest values of nonlinear 

function output 

 ˆ ˆ ˆ ˆ( ) [ ( ) ( 1)  ( 1)]Tn s n s n s n N= − − +s                                (34) 

The error signal ( )e n  is the difference between the linear FIR filter output and the 

microphone signal ( )d n  

 ˆ ˆˆ ˆ( ) ( ) ( ( ), ( )) ( ) ( ) ( )T Te n d n n n d n n n= − = −h f a x h s                      (35) 

 ˆ ˆ ˆ ˆ( ( ), ( )) [ ( ( ), ( )) ( ( ), ( 1)  ( ( ), ( 1))]Tn n f n x n f n x n f n x n N= − − +f a x a a a    (36) 
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The update equation of ˆ ( )nh  is based on PNLMS algorithm 

 1 ˆ( ) ( ) ( )ˆ ˆ( 1) ( )
ˆ ˆ( ) ( ) ( )T

n e n nn n
n n n

α
+ = +

K sh h
s K s

                   (37) 

In an LMS-type adaptation for adaptive filter is derived by forming the gradient of 

squared error simple with respect to the adaptive coefficients.  From the Eq. (35) and 

Eq. (36),  

 
2 ( ) ˆˆ2 ( ) ( ( ), ( )) ( )
ˆ( )

Te n e n n n n
n

∂ ′= −
∂

f a x h
a

                                (38) 

and 

 ˆ ˆ ˆ( ( ), ( )) [ ( ) ( 1)  ( 1)] ( ) ( ) ( )T
p p p Pn n n n n N n n n= − − + =f a x x x x a X a       (39) 

 2( ) [ ( ) ( )  ( )]P T
p n x n x n x n=x   (40) 

As a result, the Eq. (34) becomes  

 
2 ( ) ˆ2 ( ) ( ) ( )
ˆ( )

T
P

e n e n n n
n

∂
= −

∂
X h

a
                                    (41) 

the update equation of ˆ( )na  based on NLMS algorithm is  

 
2
2

ˆˆ ˆ( 1) ( ) ( ) ( ) ( )ˆ|| ( ) ( ) ||
Ta

PT
P

n n n n e n
n n
α

+ = +a a X h
X h

                    (42) 

 

C. Modified Nonlinear Adaptive Algorithms 

The divergence behavior has been observed in both nonlinear AEC systems. 

Although the Volterra kernels are adapted separately, the error introduced by a 

misadjusted linear kernel acts as a distortion for the adaption of the quadratic kernel.  

Therefore, the adaptive Volterra filter system is modified as shown in Fig. 13.  The 

main idea of this system is to choose the smaller error signal for the linear kernel 

adaption.  First, we define  

 2 2 2
1 1 1 1 1 1

ˆ( ) ( ) ( ),   ( ) ( 1) (1 )Te n d n n e n e n eλ λ= − = − + −h x                   (43) 

 2 2 2
1 1 2 2

ˆ ˆ( ) ( ) ( ) ( ),   ( ) ( 1) (1 )T Te n d n n n e n e n eλ λ= − − = − + −h x h x          (44) 



 

22 

where the forgetting factor λ  is chosen 0.1 .  The error signal  

 
2 2

1 1
1 2 2

1

( ),  if ( ) ( )
ˆ ( )

( ),  if ( ) ( ) 

e n e n e n
e n

e n e n e n

 <= 
≥

                                  (45) 

is used for the adaption of the linear kernel in Eq. (31).  The error signal 1̂( )e n  also 

represents the residual echo signal.  The unstable behavior also occurs due to 

misadjustment on the preprocessor and linear FIR filter.  Consequently, we apply the 

preceding comparison idea to the Hammerstein model to avoid divergence, as shown 

in Fig. 14.  Another linear FIR filter 0 1 1ˆ ˆ ˆ ˆ( ) [ ( ), ( ), , ( )]T
Nn w n w n w n−=w   is parallel to 

the cascade connection of nonlinear function f and linear FIR filter ˆ ( )nh .  We define  

 2 2 2ˆ( ) ( ) ( ),   ( ) ( 1) (1 )T
w w w we n d n n e n e n eλ λ= − = − + −wx                   (46) 

 2 2 2ˆ ˆ( ) ( ) ( ) ( ),  ( ) ( 1) (1 )Te n d n n n e n e n eλ λ= − = − + −h s                   (47) 

where the forgetting factor λ  is chosen to be 0.1 .  The error signal  

 
2 2

2 2

( ),  if ( ) ( )
ˆ ( )

( ),  if ( ) ( ) 
w w

w
w

e n e n e n
e n

e n e n e n

 <= 
≥

                                 (48) 

is used for the adaption of the linear kernel in Eq. (34).  The error signal ˆ ( )we n  

also represents the residual echo signal. 

 

Fig. 13 Modified Volterra filter system. 
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Fig. 14 Modified Volterra filter system. 

D.  Performance evaluation of nonlinear echo cancellation  

In the aspect of experiment about nonlinear echo cancellation, in order to create 

nonlinearity into AEC system, we turn the level of loudspeaker larger.  In the 

following experiments, we used female speech signal and CSS as the echo signals.  

The experimental configuration is the same as the previous settings for the linear 

AECs.  The sample rate here is also 16 kHz.  First we evaluated the nonlinear AEC 

performance using modified Volterra filter method.  For the speech input signal, the 

ERLE obtained using linear PNLMS algorithm denoted by the solid line in Fig. 15 

reaches approximately 18 dB. The ERLE of the modified Volterra filter (dotted line) is 

further increased by 3 dB with nonlinear processing.  For the CSS input, the ERLE 

can be increased by 5 dB via the modified Volterra filter method.   Next, by the 

same protocol, we examine the nonlinear AEC with the modified Hammerstein model.  

For the speech and the CSS as the input signals, the ERLE can be increased by 3 dB 

and 5 dB with nonlinear processing (Fig. 16). 
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Fig. 15 The ERLE for a recorded echo for the speech input signal. 
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Fig. 16 The ERLE for a recorded echo for the CSS input signal. 

 

IV. CONCLUSION 

 When the noise signal is close to the speech, PD is proposed to solve this 

problem. Using GSS to find the optimal ITD threshold differing with the included 

angle and the optimal volume can further improve the speech recognition. Finally, 

simulated and experimental results are discussed to prove effective in enhancement of 

speech recognition. The performance of linear acoustic echo cancellers is limited by 

nonlinear components in the echo path.  We used a nonlinear AEC to deal with 

nonlinear echoes.  Experiment results showed that the proposed nonlinear AEC 
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provided increased echo attenuation, as compared to a linear AEC applied to a 

nonlinear echo path.  For recorded echoes, the ERLE can reach approximately 3 dB 

for the female speech signal and 5 dB for the CSS.  In the modified nonlinear AEC, 

the Volterra filter and Hammerstein model are effective in dealing with nonlinear 

echoes with ensured convergence. 
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