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This study proposes microphone array techniques aimed at enhancing speech
recognition. If the noise doesn’t come from the rear, on the contrary, it comes from
the direction closing to the target source, then the phase difference estimation is used
to solve this problem, which can reduce the noise without distortion even when the
angle between noise and target source is small. It is found that the ITD threshold in
the phase difference estimation plays an important role in enhancing the speech
recognition, and hence it has to be optimized. In this paper, GSS is used to search
the optimal threshold. If the target source is not from the direction of main lobe,
beam steering technique has to be applied to the system. Finally, experiment results
are discussed to demonstrate that the performance of the proposed algorithm is better
than conventional methods. The nonlinear distortions from low cost audio
equipments degrade the performance of linear acoustic echo cancellation system.
The approaches of nonlinear adaptive filter are have resorted to discrete-time

transversal \Volterra filters and block-based Hammerstein model.



I. INTRODUCTION

Automatic speech recognizers (ASRs) have significantly improved in recent
years but the performance degrades rapidly in noisy or reverberant environments.
Therefore, noisy speech needs to be processed by speech improvement algorithms.
For instance, the delay-and-sum (DAS) beamformer is a well known algorithm which
iIs computational efficiency. However, it only performed well for uncorrelated noise.
The one-channel noise reduction (NR) technology has been widely applied in the
communication community, and was expected to enhance speech recognition.
Nevertheless, the improvement of one-channel NR in speech enhancement does not
always translate into substantial gains in speech recognition performance, because too
aggressive NR destroys the speech features. The one-channel NR encounters the
dilemma of noise reduction or distortion. Therefore, microphone array is used in the
proposed algorithm, which can ease the tradeoff of the above situation.

Lately, a missing-data approach was suggested to enhance speech recognition in
noisy environments, based on designing whether data are reliable. The performance
of the missing-data approach is significantly improved comparing to that of the DAS
beamformer. Nevertheless, the success of this technique depends on the sufficiency
of reliable data and errors in imputation procedures affect the performance. The
speech recognition in the environments with non-stationary noise still remains a tough
problem.  An alternative is the binaural processing which is well known for
separating speech signals. Several algorithms were discussed the phenomena of
binaural system, such as interaural time difference (ITD) and interaural intensity
difference (11D). Recently, computational auditory scene analysis (CASA) systems
were developed to construct an ideal binary mask by comparing the signals at the two
microphones in binaural systems. Both voice and unvoiced speech signals could be

segregated by CASA systems from a noisy environment. However, the computation
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of the CASA systems is quite complex.

In this study, microphone arrays are used for enhancing speech recognition in
noisy and reverberant environments. Typically, there are two types of microphone
array— the broadside and endfire arrays. When the maximum of the array beam
pattern (the mainlobe) is alone a line perpendicular to the axial direction of the
microphone array, the array is called a broadside array. On the contrary, an endfire
array means that the mainlobe is in the direction diaphragm to the microphone axis,
“off the end” rather than off the side and consequently the name is endfire array.
Since the directivity of super-directive microphone arrays is higher than that of a
uniformly summed array in the same condition, it can not only suppress noise and
reverberation coming from all directions well but also keep the feature of the target
signal from the principal direction. Furthermore, although in many applications the
direction of the target signal can’t be predetermined, it is usually in front of the array
and disturbances are at the rear. In these cases, the endfire array is suitable than a
broadside array.

With the aid of phase-difference estimation, speech signal can be separated well
without distortion and the recognition rate is enhanced. Because this algorithm is very
sensitive to the choice of ITD threshold in binary masking criterion, how to choose
ITD threshold becomes an important problem. An automatic selection of ITD
threshold proposed by Kim et al is based on minimizing the cross correlation between
the target and the interference signals. However, the performance of the automatic
selection algorithm degrades significantly when signal-to-noise ratio (SNR) and the
subtending angle between speech and noise signal are small. Hence, this paper
proposes an optimal threshold varying with the subtending angle, which is based on
finding the minimum of the WER by GSS. Using the optimal ITD threshold

proposed in this paper, PDE algorithm can perform well with small SNR and
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subtending angle. Furthermore, the selection of volume affects the performance and
needs to be adjusted, which is also discussed in this paper. The speech recognition
will decrease when the sound source isn’t on the main lobe of microphone arrays, and
the system needs the beam-steering technique to change the main lobe of array pattern
by electronic compensation.

Current AECs which use linear adaptive filter are hinged on the assumption that
an acoustic echo path can be modeled as the linear filter. However, there are
nonlinear components in the echo path due to low-cost audio equipment. The main
nonlinearities are generated from the loudspeaker and power amplifier in the
transmission path. The performance of AEC is degraded with this nonlinear
distortion. As a result, the nonlinear model has to be taken into account. In this
study, we neglect the nonlinearities of A/D and D/A converter. Since the signal
power is small in the microphone, the microphone behaves linearly even it is cheap.
The nonlinear distortions are generated when the amplifier is overdriven, and they are
memoryless. The Hammerstein model consisting of a cascade of memoryless
polynomial filter and finite impulse response filter has been proposed to overcome
this nonlinearity. Another sort of nonlinear distortion is caused by the loudspeaker
since the time constants of their electro-mechanical systems are large compared to the
sampling rate, and this nonlinearity behaves with memory. To compensate the
nonlinearities with memory, the adaptive Volterra filter has been utilized to model the
echo path in the acoustic echo cancellation system. In this study, we propose the

modified system for Hammerstein model to avoid instability of convergence.



Il. PHASE-DIFFERENCE ESTIMATION (PDE)
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Fig. 1 The block diagram of phase-difference estimation.
The block diagram of PDE algorithm is illustrated in Fig. 1. The noisy
signal received in two microphones is first segmented to frames by applying a moving
Hamming window and then transferred to the time-frequency domain by Short-Time

Fourier transform (STFT) as follows:

R (k)= X (k1) + 2N, (k) (1
Pz(k,|)=x(k,|)+ie'j“’kdi<k">Ni(k,l) (2)

i=0

where k is the frequency index and | is the frame index, X(k,I) and
N; (k,I)represent the speech and the ith noise signals, respectively, P (k,l) and

P,(k,1) are the signals at the first and second microphone, and

o, =27k /N for 0<k <N/2-1, where N is the STFT size. The frame length here
is 75ms and the hub size is half of frame length. It is assumed that the target signal

is at the location alone the perpendicular bisector of the line between two

microphones, and therefore its ITD is equal to zero. ~ On the other hand, d, (k,I)is
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the ITD of the ith noise signal dependent on time and frequency. If a time-frequency

bin (k,.l,) is controlled by a strongest interference source n, the above equations

can be approximated as

Pl(km’lm)an(kam) (3)

P, (K, 1y ) me P lotIN (kL) (4)

and the ITD of this bin can be estimated by calculating the unwrapped phase
difference between two microphones:

d, (Ko 1) wl min
k

2B (Kol ) = 2Py (Kq 1y ) = 271 (5)

Then, a binary mask can be formulated as

L ifld, (k

0.01, otherwise

I)‘Sr

m?'m

B(km,lm):{ (6)

where 1 is the ITD threshold. It means that only bins with its ITD smaller than t are

supposed to belong to the target signal. Correspondingly, the speech signal S(k,1)

is re-established from multiplying the average signals of the two microphones

P(k,1) by the mask B(kj,lj) got in above formula.

5(k,|)=%{ﬂ(k,l)+P2(k,l)} (7)

S(k,1)=B(k,1)P(k,1) (8)
Finally, the enhanced speech signal is converted to the time-domain with the aid of
inverse fast Fourier transform (IFFT) and overlap addition (OLA) method. In this
paper, three approaches of technical refinement are exploited to enhance the

aforementioned PDE algorithm. As shown in Fig. 2, after the received signal is

transformed to the time-frequency domain, the system estimates the speech and noise



location. The subtending angle between speech and noise is used to select the
corresponding optimal ITD threshold searched by GSS. If the target source is not
from the designed direction, beam steering technique is applied to orient the main
lobe to the target source location. After IFFT and OLA, the time domain signal is

scaled to the optimal volume to further increase the WRR.

Volume
scaling

P(k,I) 7(0)
(O—>»{ Fer l
IFFT
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Fig. 2 The block diagram of the proposed PDE-based enhancement algorithm,

where 6 is the subtending angle estimated by DOA.
A. Optimization of the ITD threshold using GSS

As mentioned previously, the parameter T is used in the binary mask principle as
the ITD threshold having profound impact on mask estimation and hence on the
performance of the speech recognition. As expected, it is found that this parameter
is related to the included angle between speech and noise sources. Therefore, it is
worth exploring how to adjust this parameter such that the recognition rate can be
maximized. In the following, a procedure based on the GSS is presented for
automated tuning of the ITD threshold.
1. Golden section search

The goals of GSS are to get an optimal reduction factor for a search interval and
to minimize the number of the iterations. By GSS, the minimum can be searched

efficiently within a finite number of steps, and do not need to evaluate numerical




gradients. Assume a function f (x) is continuous and having only one minimum
over the interval [a, b].  An interior point c is between a and b, and

A, Dty 9)
b-a

o

(e

QD

1
where O<w< E Suppose another interior point d is over [c, b], and

d-
= 10
b-— : a0

S N )

Notice that the choosing of d is applied the same strategy as that of ¢, which means
—f —w (11)

For minimizing the number of the iterations, the fraction 1-w musts equal to w+z, i.e.
the new point d is the symmetric point of ¢ in the interval[a, b], namely

z=1-2w (12)
Comparison of Egs. (11) and (12) yields the following quadratic equation

w? —3w+1=0 (13)

and the root

3-5
2

W=

~0.382 (14)

is used. Note that the number is related to the golden ratio g, where

5+l 1

2 1-w

(15)

Therefore it’s called “golden section search”. Now comparing f(c) and f(d),

if f(c)< f(d),then the new interval is [a, d]; otherwise, it becomes [c, b]. The

rule at each stage is to keep a center point lower than the two outside points. The



process above iterates until the interval is tolerably small, and the question here is

how to decide the time to stop the iteration. According to Taylor’s theorem, the

value of the function f (x) near Xp, is approximately

f(x)~ f(xm)+% £2(x,)(x=x, ) (16)
If f(x) isenough close to f (X, ), then the second term can be quite small and

negligible, which can be represented as
1., 2
(%, ) (X=%,)" <] F (%)) (17)

where &is usually set to 10 for single precision.

2. The Optimal ITD threshold varying with the included angle
The searching process of the optimal ITD threshold by GSS is shown in Fig. 3,

where the noise type is babble at SNR 6dB and the included angle is 15 degrees.

The SNR here were conducted according to ITU P.56 standard, which defined as
X2
SNR =10+ log,, (_Zj (18)
n

where x and n represent the speech signal and noise respectively.

Golden Ratio ,\SMR=6dE, babble, angle=15
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(a) The searching process of t
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Fig. 3 The searching process of the ITD threshold by GSS.

Fig. 4(a) shows the performance of PD algorithm where the ITD threshold t varies
from 0.1 to 1.5. It can be found that the recognition rate gets better by increasing t
but decreases sharply whent exceeds a value which differs with the included angle.
It turns out that there is a relation between t and the included angle. To find the
optimal ITD threshold, GSS is used in this paper, which can quickly search the local
minimal of a function in an interval. The result of the optimal T found by GSS is
shown in Fig. 4(b). The included angle is from 15 degrees to 90 degrees at SNR 0dB
and 6dB, and “babble” noise is used as the noise source. It indicates that the optimal
thresholds T at SNR 0dB and 6dB are similar to each other, which means the influence
of SNR is small and can be disregard. Because the curve of the optimal t has an
obvious trend, it can be fitted by a polynomial of low degree easily. A polynomial

fitting of degree 2 is shown in Fig. 4(b), which is found to be
7(i)=(-7.76*10"°)i* +(1.69*10% )i - (5.45*10°%) (19)
where i is the included angle. It revealed that, by using a polynomial fitting, it can

use only 3 parameters to represent the optimal T varying with the included angle very
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well. By comparing the effective beamwidth and the real spanning angles, the
effective beamwidth is smaller but the differences become smaller as the subtending
angle decreases. The reason is that, the effective beamwidth has to be smaller than
the real subtending angle, or the noise will be received in the binary mask, while if the
effective beamwidth is too small, some speech signals will not be picked up in the
binary mask and some feature will lose. For ASR, preservation of speech features is
crucial. Loss of speech features causes the WRR to markedly decrease. Even if the

noise is close to the target source, the effective beamwidth can not be too small.

Recognition rate in babble noise at SNR O dB
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Fig. 4 (a) Recognition rate in babble noise at SNR 0dB. (b) The optimal ITD
threshold tau and the polynomial fitting.
B. Beam steering
The beam steering technique is discussed in this section to overcome the problem
about the movement of the target source. With the aid of electronic compensation, the
direction of the main lobe of the microphone array pattern can be changed. Assume
the angle to be moved is O, then the beam steering filters are given as

—jo f, ndsing,

_ g inkdsingy _ g o 20)

Wn

where n is array index, o is the frequency index, and fs is the sampling rate, d is the
spacing between microphones. In time domain, the beam steering filter can be written

as a delay:

f; ndsing,
c (21)

That is, by applying different delays to the signal received in every microphone, the

delay =

direction of main lobe can be controlled and steered to any desired directions. One
thing has to be noticed is that these delays are not integer delays, hence Lagrange
interpolation is used here to interpolate fractional delay values, which is easier to
achieve and more flexible. Simplicity, it can approximate a fractional delay by a FIR
filter,
N D-k
h(n)=][—— forn=0,1,2..N (22)
ko N—K

k#n
where N is the order of the filter. The case N=1 corresponds to linear interpolation
between two samples, which suffices when the sampling frequency is high enough.
The result is in Fig. 5 with the target source angle from 15° to 75° aside the main lobe.

When the target source is far from the main lobe, the recognition rate degrades
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correspondingly. By using beam steering technique, the performance is enhanced

obviously, as shown in Fig. 6.
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Fig. 5 Comparing recognition rate in different volume.
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Fig. 6 Comparing the recognition rate when the source is not at the direction
of the designed mainlobe and the effect of beam steering, where “15degs.” means the

source is aside the desired main axis 15 degrees.
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C. Simulation and Experiment

The simulated and experimental results are presented in this section. The input
stimuli are 50 commends (547 wave files) rendered from a point source placed at 90
degrees (the look direction). The speech recognizer is based on continuous density
Hidden Markov Model (HMM) with Mel-Frequency Cepstral Coefficients (MFCCs)
as features. As shown in Fig. 7, the interelement spacing is 5 cm and the sampling

rate is 8 KHz, the distance between microphone array and the speakers is 30 cm.

5cm
center —

o O
\ 9m

O O 0.3 M ["subtending angle
1m I microphone array /
A m S

12m noise

A
v

target sources

Fig. 7 The simulated and experimental environments.

Assume a room of dimensions 12x12x9 m, with the microphone located
at the center of the room. The SNR is from 0 to 15dB and the subtending angle is
from 15 to 90 degrees. Babble noise is used as the noise source. FIG. 8 compares
the performance of the original noisy signal, PDE algorithm with fixed ITD threshold,
automatic ITD threshold selection algorithm, and the proposed PDE-based
enhancement algorithm.  The subtending angle between target source and
interference signal is 15°, 45° and 75°, and there is no reberberation. The volume
gain here is set to be 0.0945.  The original noisy signal is the signal received in one
microphone, and PDE algorithm with fixed ITD threshold is the result of the basic

PDE system, where the ITD threshold is chose to be 0.4.
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Fig. 8 Comparing the performance of the original noisy signal, PDE algorithm

with fixed ITD threshold, automatic ITD threshold selection algorithm, and the
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proposed PDE-based enhancement algorithm (a) Subtending angle = 75°. (b)

Subtending angle = 45°. (c) Subtending angle = 15°.

Automatic ITD threshold selection algorithm is organized as follows: First, two
complementary masks are constructed using the binary threshold, one for the target
signal, the other for interference signal. After that, the short-time power for the
target and the interference is calculated. Finally, the ITD threshold is obtained by
minimizing the cross-correlation of the target and interfering signals after a

compressive nonlinearity, as shown below:

1 L
NZRT [H7o)R, [T 7) — Hg Mg,
7, =argmin|—=

o GRT GRI

(23)

where R1[l | 7o) and R[l | 7o) are the power of the target and the interference signals

after nonlinearity;, Op. and Op are the standard deviations of R¢[l | 7o) and Ry[l | 7o) ,

respectively, and Mg, and Mg are the means of Rt[l| 7o) and Ri[l | 7o), respectively.

From F4. 18 can find that, the proposed PDE-based enhancement algorithm gets
excellent performance no matter what subtending angle it is, which enhances WRR
about 50-60% at SNR 0dB and all the accuracies in different subtending angles are
above 90% even if the noise is very close to the target source like 15 degrees, whereas
the fixed-threshold PDE and the automatic-threshold selection algorithm degrade at
low SNR. Furthermore, the automatic-threshold selection algorithm performs as
well as the proposed algorithm when the subtending angle is large, like 75 degrees,
but significantly degrades if the subtending angle is small and SNR is low.

The effect of reverberation presents in Fig. 9. The Room Impulse Response

(RIR) software is used here to simulate reverberation effects. T60 represents the
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reverberation time, which is the time it takes for the reverberation level to drop by 60
dB. When the reverberation time T60 is small, the effect of reverberation is not
obvious, and the performance after the proposed algorithm is almost above 85% at
SNR 0dB. One thing to be noticed is that, PDE technique doesn’t work if noise and
speech come from the same direction, as shown in Fig. 9. It even gets worse WRR
than the original signal when the reverberation time is long because of the distortion
of speech signal. The performance decreases quickly when T60 is larger than 2
seconds. Even with the aid of the proposed PDE-based enhancement algorithm,
WRR only increases to about 60% at SNR 0dB, and the result is worse than the

original signal at high SNR because of the distortion of speech signal.
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Fig. 9 The effect of reverberation, where the subtending angle is from 0 to 90

degrees. (a)Tg0=0.138 secs. (b)T¢x=0.966 secs. (¢)Ts=2.898 secs.

FIG. 10 is recognition rate of record wave files. The recording is at an anchor
chamber, and therefore the effect of reverberation can be neglected. SNR is 0dB in
this case, and the noise source is babble noise. It indicates that, all WRR of original
signals are low, between 10% and 30%, and after the proposed PDE-based

enhancement algorithm, the performance is excellent even when SNR is low.

100

90 F
80
0r

60 F

0r D
20‘* &

1n0F —after PO
=== Criginal
. 1 . . . 1
20 30 40 S0 =] 70 a0 90
Subtending angle (degres)

WRR (%)
3

Fig. 10 The recognition rate with the optimal threshold of record wave file.
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I11. NONLINEAR ACOUSTIC ECHO CANCELLATION

The acoustic echo cancellers to date generally rely on the assumption of linear
echo path. The nonlinear distortions from low-cost audio devices can adversely
impact the performance of linear acoustic echo cancellation system. In this section,
two methods are presented to deal with nonlinear echoes.
A. Second-order Volterra Filter

One of the sources of nonlinearity is the loudspeaker when overdriven beyond its
linear region. When the loudspeaker is operated at the power limit, the nonlinear
distortions will damage the linear echo cancellation. Since the time constants of
their electro-mechanical system are large compared to the sampling rate, the
loudspeaker causes nonlinearities with memory. For this nonlinear system with
memory, the adaptive \olterra filters have been proposed to nonlinear echo
cancellation system.

x(n)

2nd /
Volterra Linear Echo
kernel filter path
h, h, h
L i b
Sy +

Fig. 11 Nonlinear acoustic echo canceller using 2" order adaptive Volterra filter.

The Wolterra filter, extension of the Taylor series, is a general type of nonlinear
filters. Consider an N-th order discrete \Volterra filter representation described as
M

Y=Y 3 3R (k) X(0—)X(0 k) (24)

r=1 K=, -1
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where M is the memory length and h, are the r-th order \Wlterra kernels. x(n) and
y(n) are the input and output signals, respectively. However, the numerical
complexity of Volterra filter is too high for the practical acoustic echo cancellation
system. The AEC using second order \olterra filter (Fig. 11) was proposed.® For
the first order volterra kernel, the input vector is

x (M =[x() x(n-1) - x(n-M+1] (25)
where M is memory length. The first-order filter can be represented as

h, = [, (0) h,(@) - A(M - (26)
For the second-order volterra kernel, the input vector is

X,(n) =[x*(n) x(n)x(n=1) --- x(n)x(n—M +1)

(27)
x(n=Dx(n=1) --- x(n—=M +1)x(n—M + DT’
and the second order filter is
hz =[hi(0,0) hz(?,l) h2(0, M _1) (28)
h,@1) - h(M-1LM -1,
The PNLMS adaptive Volterra filter can be formulated as
e(n) =d(n)—hx] (n)—h,x] (n) (29)
. _h o K(n)e(n)x, (n)
h,(n+1) =h,(n)+ XT KM, () (30)
A (n+1) = b, () + 2 W)X, (1) (31)

X; (N)K(n)x,(n)

where «, and «, are the first and second kernel step size, respectively.

B. Hammerstein Model

The over driven amplifier mainly generates the memoryless nonlinear distortions.
The nonlinear AEC dealing with memoryless nonlinearity is proposed in this section.
The Hammerstein model consisting of linear FIR filter and the nonlinear function is

illustrated in Fig. 12. The memoryless nonlinear function f is the polynomial model
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and then can model saturation effects found in the amplifier. The PNLMS adaption

for linear FIR filter based on the error signal e(n) in Fig. 12 is used for two stages of

Hammerstein model.

x(m)
. //’
f(a(n), x(n)) '
/
l Echo
y path
inear
filter — h
— |
e(n) dn) = dn)
« D

Fig. 12 Nonlinear acoustic echo canceller using Hammerstein model.

First, the function f can be represented by a Pth-order polynomial, and the output

of the nonlinear function is denoted by $(n)

a(n)=[a(n) a,(n) - a, (I’ (32)
§(n) = f(a(n), x(n)) = Zplﬁp (Mx®(n) (33)

where a(n) is the Px1 column vector. The input vector $(n) to the linear FIR
filter h(n) =[h,(n) R (n) -~ hy_, (NI is formed by N latest values of nonlinear

function output
§(n) =[$(n) §(n—-12) --- §(n—N +1T (34)
The error signal e(n) is the difference between the linear FIR filter output and the

microphone signal d(n)
e(n) =d(n)—h"f(&(n), x(n)) =d(n)—h" ()5(n) (35)

f@(n),x(n) =[f @), x(n)) f @), x(n-1) - f@Mn),x(n-N+H)I"  (36)
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The update equation of h(n) is based on PNLMS algorithm

a,K(n)e(n)s(n)
ST (N)K(n)s(n)

h(n+1) =h(n) + (37)

In an LMS-type adaptation for adaptive filter is derived by forming the gradient of

squared error simple with respect to the adaptive coefficients. From the Eqg. (35) and

Eqg. (36),
an (n) _ (A Th
Zaln) =-2e(n)f'(a(n),x(n)) h(n) (38)
and
f(a(n),x(n)) =[x, (n) x,(n=1)--- x, (=N +1)]"&(n) = X, (n)a(n) (39)
X, () =[x(n) x*(n) - x"(n)T' (40)

As a result, the Eq. (34) becomes

oe*(n) e
AN 2e(n)X, (n)" h(n) (41)

the update equation of a(n) based on NLMS algorithm is

a(n+1) =a(n)+ X, ()" h(n)e(n) (42)

aa
I X (M) ;

C. Modified Nonlinear Adaptive Algorithms

The divergence behavior has been observed in both nonlinear AEC systems.
Although the \olterra kernels are adapted separately, the error introduced by a
misadjusted linear kernel acts as a distortion for the adaption of the quadratic kernel.
Therefore, the adaptive Volterra filter system is modified as shown in Fig. 13. The
main idea of this system is to choose the smaller error signal for the linear kernel

adaption. First, we define

e,(n) =d(n)—hx (n), & (n)=A8’(n-1)+(1-A)e’ (43)

e(n) =d(n)—hx] (n)—h,x](n), &2(n)=A8%(n—1)+(1—A)e’ (44)
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where the forgetting factor A ischosen 0.1. The error signal

() = {el(n), if e’ (n) <2 (n) (45)

e(n), if &°(n) >€>(n)
is used for the adaption of the linear kernel in Eq. (31). The error signal € (n) also
represents the residual echo signal. The unstable behavior also occurs due to

misadjustment on the preprocessor and linear FIR filter. Consequently, we apply the

preceding comparison idea to the Hammerstein model to avoid divergence, as shown

in Fig. 14.  Another linear FIR filter W(n) =[W,(n), W, (n),---,W,_,(n)]" is parallel to
the cascade connection of nonlinear function f and linear FIR filter h(n). We define
e,(n)=d(n)—wx' (n), &2(n)=A182(n-1)+1-A)e> (46)

e(n) =d(n)—h" (N3(n), &2(n) = A82(n-1) + (1— A)e’ (47)

where the forgetting factor A ischosento be 0.1. The error signal

& (m)= {ew(n), ifg2(n) <e*(n) “8)

e(n), if&2(n) >€*(n)
is used for the adaption of the linear kernel in Eq. (34). The error signal €,(n)
also represents the residual echo signal.

x(1)

/ / Echo
ﬁ ﬁ1 path
2
h
d,(r) d(r)
é(n) ‘ N d(r)
comparator

Fig. 13 Modified Volterra filter system.

22



x(n)

a h 4
l P Echo
v W path
. h
h
. 6?1 (n)
d, (n)
é ( n ) Y h 4 d(n)
- comparator

Fig. 14 Modified Volterra filter system.

D. Performance evaluation of nonlinear echo cancellation

In the aspect of experiment about nonlinear echo cancellation, in order to create
nonlinearity into AEC system, we turn the level of loudspeaker larger. In the
following experiments, we used female speech signal and CSS as the echo signals.
The experimental configuration is the same as the previous settings for the linear
AECs. The sample rate here is also 16 kHz.  First we evaluated the nonlinear AEC
performance using modified Volterra filter method. For the speech input signal, the
ERLE obtained using linear PNLMS algorithm denoted by the solid line in Fig. 15
reaches approximately 18 dB. The ERLE of the modified \Volterra filter (dotted line) is
further increased by 3 dB with nonlinear processing. For the CSS input, the ERLE
can be increased by 5 dB via the modified \olterra filter method.  Next, by the
same protocol, we examine the nonlinear AEC with the modified Hammerstein model.
For the speech and the CSS as the input signals, the ERLE can be increased by 3 dB

and 5 dB with nonlinear processing (Fig. 16).
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Fig. 15 The ERLE for a recorded echo for the speech input signal.
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Fig. 16 The ERLE for a recorded echo for the CSS input signal.

IV. CONCLUSION
When the noise signal is close to the speech, PD is proposed to solve this

problem. Using GSS to find the optimal ITD threshold differing with the included
angle and the optimal volume can further improve the speech recognition. Finally,
simulated and experimental results are discussed to prove effective in enhancement of
speech recognition. The performance of linear acoustic echo cancellers is limited by
nonlinear components in the echo path. We used a nonlinear AEC to deal with
nonlinear echoes. Experiment results showed that the proposed nonlinear AEC
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provided increased echo attenuation, as compared to a linear AEC applied to a
nonlinear echo path. For recorded echoes, the ERLE can reach approximately 3 dB
for the female speech signal and 5 dB for the CSS. In the modified nonlinear AEC,
the \olterra filter and Hammerstein model are effective in dealing with nonlinear

echoes with ensured convergence.
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