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Abstract

We calculate high energy massive scattering amplitudes of closed bosonic string compactified on the
torus. For each fixed mass level with given quantized and winding momenta (m

R
, 1

2nR), we obtain infinite
linear relations among high energy scattering amplitudes of different string states. For some kinematic
regimes, we discover that linear relations with NR = NL break down and, simultaneously, the amplitudes
enhance to power-law behavior instead of the usual exponential fall-off behavior at high energies. It is the
space–time T-duality symmetry that plays a role here. This result is consistent with the coexistence of the
linear relations and the softer exponential fall-off behavior of high energy string scattering amplitudes as
we pointed out previously. It is also reminiscent of our previous work on the power-law behavior of high
energy string/domain-wall scatterings.
© 2007 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that there are two fundamental characteristics of high energy string scattering
amplitudes, which make them very different from field theory scatterings. These are the softer
exponential fall-off behavior (in contrast to the power-law behavior of field theory scatterings)
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and the existence of infinite Regge-pole structure in the form factor of the high energy string
scattering amplitudes.

Recently high-energy, fixed angle behavior of string scattering amplitudes [1–3] was inten-
sively reinvestigated for massive string states at arbitrary mass levels [4–12]. An infinite number
of linear relations, or stringy symmetries, among string scattering amplitudes of different string
states were obtained. An important new ingredient of these calculations is the zero-norm states
(ZNS) [13–15] in the old covariant first quantized (OCFQ) string spectrum. The existence of
these infinite linear relations constitutes the third fundamental characteristics of high energy
string scatterings, which is not shared by the usual point-particle field theory scatterings.

These linear relations persist for string scattered from generic Dp-brane [16] except
D-instanton and Domain-wall. For the scattering of D-instanton, the form factor exhibits the
well-known power-law behavior without Regge-pole structure, and thus resembles a field theory
amplitude. For the special case of Domain-wall (D24-brane) scattering, it was discovered [17]
recently that, in contrast to the common wisdom of exponential fall off behavior [18,19], its form
factor behaves as power-law with Regge-pole structure. This discovery makes Domain-wall scat-
terings a hybrid of string and field theory scatterings. Moreover, it was shown [17] that the linear
relations break down for the Domain-wall scattering due to this unusual power-law behavior.
This result gives a strong evidence that the existence of the infinite linear relations, or stringy
symmetries, of high-energy string scattering amplitudes is responsible for the softer (exponential
fall-off) high-energy string scatterings than the (power-law) field theory scatterings.

To further convince ourselves with the coexistence of the infinite linear relations and the softer
exponential fall-off behavior of string scatterings at high energies, it is important to find more
examples of high energy string scatterings, which show the unusual power-law behavior and,
simultaneously, give the breakdown of the infinite linear relations. With this in mind, in this pa-
per we calculate high energy massive scattering amplitudes of closed bosonic string with some
coordinates compactified on the torus [20,21]. For each fixed mass level with given quantized
and winding momenta (m

R
, 1

2nR), we obtain infinite linear relations among high energy scatter-
ing amplitudes of different string states. This result is reminiscent of the existence of an infinite
number of massive soliton ZNS in the compactified string constructed in [22]. We then discover
that, for some kinematic regime, so-called Mende regime (MR), infinite linear relations with
NR = NL break down and, simultaneously, the amplitudes enhance to power-law behavior in-
stead of the usual exponential fall-off behavior at high energies. It is the space–time T-duality
symmetry that plays a role here.

The power-law behavior of high energy string scatterings in a compact space was first sug-
gested by Mende [20]. Here we give an explicit calculation of the conjecture. Moreover, in
addition to the high energy string/domain-wall scatterings mentioned above [17], our result in
this paper gives another evidence to support the coexistence of the infinite linear relations and
the softer exponential fall-off behavior of high energy string scattering amplitudes as we pointed
out previously [17,23]. The result also suggests that the infinite linear relations are closely related
to the full 26D space–time symmetry of closed bosonic string theory. This paper is organized as
following. In Section 2, we set up the kinematic for the compactified string and calculate the
four-tachyon (NR = NL = 0) scattering amplitudes with arbitrary winding. In Section 3, we de-
rive the infinite linear relations among high energy scattering amplitudes of different string states
with given (m

R
, 1

2nR) for each fixed mass level. We then discuss the power-law behavior of the
amplitudes and breakdown of the infinite linear relations in the Mende regime. A brief conclusion
is given in Section 4.
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2. String compactified on torus

2.1. Winding string and kinematic setup

We consider 26D closed bosonic string with one coordinate compactified on S1 with radius R.
As we will see later, it is straightforward to generalize our calculation to more compactified
coordinates. The closed string boundary condition for the compactified coordinate is (we use the
notation in [24])

(2.1)X25(σ + 2π, τ) = X25(σ, τ ) + 2πRn,

where n is the winding number. The momentum in the X25 direction is then quantized to be

(2.2)K = m

R
,

where m is an integer. The mode expansion of the compactified coordinate is

(2.3)X25(σ, τ ) = X25
R (σ − τ) + X25

L (σ + τ),

where

(2.4)X25
R (σ − τ) = 1

2
x + KR(σ − τ) + i

∑
k=0

1

k
α25

k e−2ik(σ−τ),

(2.5)X25
L (σ + τ) = 1

2
x + KL(σ + τ) + i

∑
k=0

1

k
α̃25

k e−2ik(σ+τ).

The left and right momenta are defined to be

(2.6)KL,R = K ± L = m

R
± 1

2
nR ⇒ K = 1

2
(KL + KR),

and the mass spectrum can be calculated to be

(2.7)

{
M2 = (m2

R2 + 1
4n2R2) + NR + NL − 2 ≡ K2

L + M2
L ≡ K2

R + M2
R,

NR − NL = mn,

where NR and NL are the number operators for the right and left movers, which include the
counting of the compactified coordinate. We have also introduced the left and the right level
masses as

(2.8)M2
L,R ≡ 2(NL,R − 1).

Note that for the compactified closed string NR and NL are correlated through the winding
modes.

In the center of momentum frame, the kinematic can be set up to be

(2.9)k1L,R = ( +
√

p2 + M2
1 ,−p,0,−K1L,R

)
,

(2.10)k2L,R = ( +
√

p2 + M2
2 ,+p,0,+K2L,R

)
,

(2.11)k3L,R = (−√
q2 + M2

3 ,−q cosφ,−q sinφ,−K3L,R

)
,

(2.12)k4L,R = (−√
q2 + M2,+q cosφ,+q sinφ,+K4L,R

)

4
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where p ≡ |�p| and q ≡ |�q| and

(2.13)ki ≡ 1

2
(kiR + kiL),

(2.14)k2
i = K2

i − M2
i ,

(2.15)k2
iL,R = K2

iL,R − M2
i ≡ −M2

iL,R.

With this setup, the center of mass energy E is

(2.16)E = 1

2

(√
p2 + M2

1 +
√

p2 + M2
2

) = 1

2

(√
q2 + M2

3 +
√

q2 + M2
4

)
.

The conservation of momentum on the compactified direction gives

(2.17)m1 − m2 + m3 − m4 = 0,

and T-duality symmetry implies conservation of winding number

(2.18)n1 − n2 + n3 − n4 = 0.

One can easily calculate the following kinematic relations

(2.19)−k1L,R · k2L,R =
√

p2 + M2
1 ·

√
p2 + M2

2 + p2 + �K1L,R · �K2L,R

(2.20)= 1

2

(
sL,R + k2

1L,R + k2
2L,R

) = 1

2
sL,R − 1

2

(
M2

1L,R + M2
2L,R

)
,

(2.21)−k2L,R · k3L,R = −
√

p2 + M2
2 ·

√
q2 + M2

3 + pq cosφ + �K2L,R · �K3L,R

(2.22)= 1

2

(
tL,R + k2

2L,R + k2
3L,R

) = 1

2
tL,R − 1

2

(
M2

2L,R + M2
3L,R

)
,

(2.23)−k1L,R · k3L,R = −
√

p2 + M2
1 ·

√
q2 + M2

3 − pq cosφ − �K1L,R · �K3L,R

(2.24)= 1

2

(
uL,R + k2

1L,R + k2
3L,R

) = 1

2
uL,R − 1

2

(
M2

1L,R + M2
3L,R

)
,

where the left and the right Mandelstam variables are defined to be

(2.25)sL,R ≡ −(k1L,R + k2L,R)2,

(2.26)tL,R ≡ −(k2L,R + k3L,R)2,

(2.27)uL,R ≡ −(k1L,R + k3L,R)2,

with

(2.28)sL,R + tL,R + uL,R =
∑

i

M2
iL,R.

2.2. Four-tachyon scatterings with NR = NL = 0

We are now ready to calculate the string scattering amplitudes. Let us first calculate the case
with NR + NL = 0 (or NR = NL = 0),
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A
(NR+NL=0)
closed (s, t, u)

=
∫

d2z exp
{
k1L · k2L ln z + k1R · k2R ln z̄

+ k2L · k3L ln(1 − z) + k2R · k3R ln(1 − z̄)
}

=
∫

d2z exp
{
2k1R · k2R ln |z| + 2k2R · k3R ln |1 − z|

(2.29)+ (k1L · k2L − k1R · k2R) ln z + (k2L · k3L − k2R · k3R) ln(1 − z)
}
,

where we have used α′ = 2 for closed string propagators

(2.30)
〈
X(z)X(z′)

〉 = −α′

2
ln(z − z′),

(2.31)
〈
X̃(z̄)X̃(z̄′)

〉 = −α′

2
ln(z̄ − z̄′).

Note that for this simple case, Eq. (2.7) implies either m = 0 or n = 0. However, we will keep
track of the general values of (m,n) here for the reference of future calculations. By using the
formula [25]

I =
∫

d2z

π
|z|α|1 − z|βzn(1 − z)m

(2.32)= �(−1 − 1
2α − 1

2β)�(1 + n + 1
2α)�(1 + m + 1

2β)

�(− 1
2α)�(− 1

2β)�(2 + n + m + 1
2α + 1

2β)
,

we obtain

A
(NR+NL=0)
closed (s, t, u)

= π
�(−1 − k1R · k2R − k2R · k3R)�(1 + k1L · k2L)�(1 + k2L · k3L)

�(−k1R · k2R)�(−k2R · k3R)�(2 + k1L · k2L + k2L · k3L)

= sin(−πk1R · k2R) sin(−πk2R · k3R)

sin(−π − πk1R · k2R − πk2R · k3R)

× �(1 + k1R · k2R)�(1 + k2R · k3R)

�(2 + k1R · k2R + k2R · k3R)

�(1 + k1L · k2L)�(1 + k2L · k3L)

�(2 + k1L · k2L + k2L · k3L)

(2.33)� sin(πsL/2) sin(πtR/2)

sin(πuL/2)

�(−1 − tR
2 )�(−1 − uR

2 )

�(2 + sR
2 )

�(−1 − tL
2 )�(−1 − uL

2 )

�(2 + sL
2 )

,

where we have used M2
iL,R = −2 for i = 1,2,3,4. In the above calculation, we have used the

following well-known formula for gamma function

(2.34)�(x) = π

sin(πx)�(1 − x)
.

3. High energy behaviors

3.1. High energy massive scatterings for general NR + NL

We now proceed to calculate the high energy scattering amplitudes for general higher mass
levels with fixed NR + NL. With one compactified coordinate, the mass spectrum of the second
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Fig. 1. Different regimes of “high energy limit”. The high energy regime defined by E2 � M2
2 � NR +NL will be called

Mende regime (MR). The high energy regime defined by E2 � M2
2 , E2 � NR + NL will be called Gross regime (GR).

vertex of the amplitude is

(3.1)M2
2 =

(
m2

2

R2
+ 1

4
n2

2R
2
)

+ NR + NL − 2.

We now have more mass parameters to define the “high energy limit”. So let us first clear and
redefine the concept of “high energy limit” in our following calculations. We are going to use
three quantities E2,M2

2 and NR + NL to define different regimes of “high energy limit”. See
Fig. 1. The high energy regime defined by E2 � M2

2 � NR + NL will be called Mende regime
(MR). The high energy regime defined by E2 � M2

2 , E2 � NR + NL will be called Gross
region (GR). In the high energy limit, the polarizations on the scattering plane for the second
vertex operator are defined to be

(3.2)eP = 1

M2

(√
p2 + M2

2 ,p,0,0
)
,

(3.3)eL = 1

M2

(
p,

√
p2 + M2

2 ,0,0
)
,

(3.4)eT = (0,0,1,0)

where the fourth component refers to the compactified direction. One can calculate the following
formulas in the high energy limit

eP · k1L = eP · k1R = − 1

M2

(√
p2 + M2

1

√
p2 + M2

2 + p2)
(3.5)= − p2

M2

(
2 + M2

1

2p2
+ M2

2

2p2

)
+O

(
p−2),

eP · k3L = eP · k3R = 1

M2

(√
q2 + M2

3

√
p2 + M2

2 − pq cosφ
)

(3.6)= pq
[

1 − cosφ + M2
2
2

+ M2
3
2

]
+O

(
p−2),
M2 2p 2q
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eL · k1L = eL · k1R = − p

M2

(√
p2 + M2

1 +
√

p2 + M2
2

)
(3.7)= − p2

M2

(
2 + M2

1

2p2
+ M2

2

2p2

)
+O

(
p−2),

eL · k3L = eL · k3R = 1

M2

(
p

√
q2 + M2

3 − q

√
p2 + M2

2 cosφ
)

(3.8)= pq

M2

[
1 + M2

3

2q2
−

(
1 + M2

2

2p2

)
cosφ

]
+O

(
p−2),

(3.9)eT · k1L = eT · k1R = 0,

(3.10)eT · k3L = eT · k3R = −q sinφ,

which will be useful in the calculations of high energy string scattering amplitudes.
For the noncompactified open string, it was shown that [7,8], at each fixed mass level M2

op =
2(N − 1), a four-point function is at the leading order in high energy (GR) only for states of the
following form

(3.11)|N,2l, q〉 ≡ (
αT−1

)N−2l−2q(
αL−1

)2l(
αL−2

)q |0, k〉,
where N � 2l + 2q, l, q � 0. To avoid the complicated subleading order calculation due to the
αL−1 operator, we will choose the simple case l = 0. We made a similar choice when dealing
with the high energy string/D-brane scatterings [16,17,23]. There is still one complication in the
case of compactified string due to the possible choices of α25−n and α̃25−m in the vertex operator.
However, it can be easily shown that for each fixed mass level with given quantized and winding
momenta (m

R
, 1

2nR), and thus fixed NR + NL level, vertex operators containing α25−n or α̃25−m are
subleading order in energy in the high energy expansion compared to other choices αT−1(α̃

T−1)

and αL−2 (α̃L−2) on the noncompact directions. In conclusion, in the calculation of compactified
closed string in the GR, we are going to consider tensor state of the form

(3.12)|NL,R, qL,R〉 ≡ (
αT−1

)NL−2qL
(
αL−2

)qL ⊗ (
α̃T−1

)NR−2qR
(
α̃L−2

)qR |0〉,
at general NR + NL level scattered from three other tachyon states with NR + NL = 0.

Note that, in the GR, one can identify eP with eL as usual [4,5]. However, in the MR, one
cannot identify eP with eL. This can be seen from Eq. (3.5) to Eq. (3.8). In the MR, instead of
using the tensor vertex in Eq. (3.12), we will use

(3.13)|NL,R, qL,R〉 ≡ (
αT−1

)NL−2qL
(
αP−2

)qL ⊗ (
α̃T−1

)NR−2qR
(
α̃P−2

)qR |0〉,
as the second vertex operator in the calculation of high energy scattering amplitudes. Note also
that, in the MR, states in Eq. (3.13) may not be the only states which contribute to the high
energy scattering amplitudes as in the GR. However, we will just choose these states to calculate
the scattering amplitudes in order to compare with the corresponding high energy scattering
amplitudes in the GR.

The high energy scattering amplitudes in the MR can be calculated to be

A = εTNL−2qL PqL ,TNR−2qR PqR

∫
d2z1 d2z2 d2z3 d2z4

× 〈
V1(z1, z̄1)V

TNL−2qL PqL ,TNR−2qR PqR
(z2, z̄2)V3(z3, z̄3)V4(z4, z̄4)

〉

2
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= εTNL−2qL PqL ,TNR−−2qR PqR

∫
d2z1 d2z2 d2z3 d2z4

〈
eik1LX(z1)e

ik1RX̃(z̄1)

× (
∂XT)NL−2qL

(
i∂2XP)qLeik2LX(z2)

(
∂̄X̃T)NR−2qR

(
i∂̄2X̃P)qReik2RX̃(z̄2)

× eik3LX(z3)e
ik3RX̃(z̄3)e

ik4LX(z4)e
ik4RX̃(z̄4)

〉
=

∫
d2z1 d2z2 d2z3 d2z4 ·

[∏
i<j

(zi − zj )
kiL·kjL(z̄i − z̄j )

kiR ·kjR

]

×
[
ieT · k1L

z1 − z2
+ ieT · k3L

z3 − z2
+ ieT · k4L

z4 − z2

]NL−2qL

×
[

eP · k1L

(z1 − z2)2
+ eP · k3L

(z3 − z2)2
+ eP · k4L

(z4 − z2)2

]qL

×
[
ieT · k1R

z̄1 − z̄2
+ ieT · k3R

z̄3 − z̄2
+ ieT · k4R

z̄4 − z̄2

]NR−2qR

(3.14)×
[

eP · k1R

(z̄1 − z̄2)2
+ eP · k3R

(z̄3 − z̄2)2
+ eP · k4R

(z̄4 − z̄2)2

]qR

.

After the standard SL(2,C) gauge fixing, we get

A � (−1)k1L·k2L+k1R ·k2R+k1L·k3L+k1R ·k3R+k2L·k3L+k2R ·k3R

×
∫

d2z · zk1L·k2L · z̄k1R ·k2R · (1 − z)k2L·k3L(1 − z̄)k2R ·k3R

×
[
ieT · k1L

z
− ieT · k3L

1 − z

]NL−2qL

·
[
ieT · k1R

z̄
− ieT · k3R

1 − z̄

]NR−2qR

(3.15)×
[
eP · k1L

z2
+ eP · k3L

(1 − z)2

]qL

·
[

eP · k1R

z̄2
+ eP · k3R

(1 − z̄)2

]qR

.

By using Eqs. (3.5) to (3.10), the amplitude can be written as

A ∼ (−1)n+q+q ′+k1L·k2L+k1R ·k2R+k1L·k3L+k1R ·k3R+k2L·k3L+k2R ·k3R (q sinφ)NL+NR−2qL−2qR

×
∫

d2z · zk1L·k2L · z̄k1R ·k2R · (1 − z)k2L·k3L(1 − z̄)k2R ·k3R

×
[

1

1 − z

]NL−2qL
[

1

1 − z̄

]NR−2qR

×
[− 1

M2
(

√
p2 + M2

1

√
p2 + M2

2 + p2)

z2

+
1

M2
(

√
q2 + M2

3

√
p2 + M2

2 − pq cosφ)

(1 − z)2

]qL

×
[− 1

M2
(

√
p2 + M2

1

√
p2 + M2

2 + p2)

z̄2
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+
1

M2
(

√
q2 + M2

3

√
p2 + M2

2 − pq cosφ)

(1 − z̄)2

]qR

= (−1)k1L·k2L+k1R ·k2R+k1L·k3L+k1R ·k3R+k2L·k3L+k2R ·k3R

× (q sinφ)NL+NR

(
1

M2q2 sin2 φ

)qL+qR

×
∫

d2z · zk1L·k2L · z̄k1R ·k2R · (1 − z)k2L·k3L(1 − z̄)k2R ·k3R

×
[

1

1 − z

]NL−2qL
[

1

1 − z̄

]NR−2qR

×
q∑

i=0

q ′∑
j=0

(
q

i

)(
q ′

j

)(√
p2 + M2

1

√
p2 + M2

2 + p2

z2

)i

×
(√

p2 + M2
1

√
p2 + M2

2 + p2

z̄2

)j

= (−1)k1L·k2L+k1R ·k2R+k1L·k3L+k1R ·k3R+k2L·k3L+k2R ·k3R (q sinφ)NL+NR

×
(

−
√

q2 + M2
3

√
p2 + M2

2 − pq cosφ

M2q2 sin2 φ

)qL+qR

×
qL∑
i=0

qR∑
j=0

(
qL

i

)(
qR

j

)( √
p2 + M2

1

√
p2 + M2

2 + p2

−
√

q2 + M2
3

√
p2 + M2

2 + pq cosφ

)i+j

× sin[−π(k1R · k2R − 2j)] sin[−π(k2R · k3R − NR + 2j)]
sin[−π(1 + k1R · k2R + k2R · k3R − NR)]

× �(1 + k1R · k2R − 2j)�(1 + k2R · k3R − NR + 2j)

�(2 + k1R · k2R + k2R · k3R − NR)

(3.16)× �(1 + k1L · k2L − 2i)�(1 + k2L · k3L + 2i − NL)

�(2 + k1L · k2L + k2L · k3L − NL)
,

where, as in the calculation of Section 2 for the GR, we have used Eq. (2.32) to do the integration.
It is easy to do the following approximations for the gamma functions

A � (−1)k1L·k2L+k1R ·k2R+k1L·k3L+k1R ·k3R+k2L·k3L+k2R ·k3R (q sinφ)NL+NR

×
(

−
√

q2 + M2
3

√
p2 + M2

2 − pq cosφ

M2q2 sin2 φ

)qL+qR

×
qL∑
i=0

qR∑
j=0

(
qL

i

)(
qR

j

)( √
p2 + M2

1

√
p2 + M2

2 + p2

−
√

q2 + M2
3

√
p2 + M2

2 + pq cosφ

)i+j

× sin[−πk1R · k2R] sin[−πk2R · k3R]
sin[−π(1 + k1R · k2R + k2R · k3R)]

× �(1 + k1R · k2R)�(1 + k2R · k3R)�(1 + k1L · k2L)�(1 + k2L · k3L)
�(2 + k1R · k2R + k2R · k3R)�(2 + k1L · k2L + k2L · k3L)



J.-C. Lee, Y. Yang / Nuclear Physics B 784 (2007) 22–35 31
(3.17)× (k1R · k2R)−2j (k2R · k3R)−NR+2j

(k1R · k2R + k2R · k3R)−NR

(k1L · k2L)−2i (k2L · k3L)−NL+2i

(k1L · k2L + k2L · k3L)−NL
.

One can now do the double summation and drop out the MiL,R terms to get

A �
(

−q sinφ(sL + tL)

tL

)NL
(

−q sinφ(sR + tR)

tR

)NR
(

1

2M2q2 sin2 φ

)qL+qR

×
(

(tR − 2 �K2R · �K3R) + t2
R(sR − 2 �K1R · �K2R)

s2
R

)qR

×
(

(tL − 2 �K2L · �K3L) + t2
L(sL − 2 �K1L · �K2L)

s2
L

)qL

(3.18)× sin(πsL/2) sin(πtR/2)

sin(πuL/2)
B

(
−1 − tR

2
,−1 − uR

2

)
B

(
−1 − tL

2
,−1 − uL

2

)
.

Eq. (3.18) is valid for E2 � NR + NL, M2
2 � NR + NL.

3.2. The infinite linear relations in the GR

For the special case of GR with E2 � M2
2 , one can identify q with p, and the amplitude in

Eq. (3.18) further reduces to

lim
E2�M2

2

A =
(

2p cos3 φ
2

sin φ
2

)NL+NR
(

− 1

2M2

)qL+qR sin(πsL/2) sin(πtR/2)

sin(πuL/2)

(3.19)× B

(
−1 − tR

2
,−1 − uR

2

)
B

(
−1 − tL

2
,−1 − uL

2

)
.

It is crucial to note that the high energy limit of the beta function with s + t + u = 2n − 8 is [4]

B

(
−1 − t

2
,−1 − u

2

)
= �(− t

2 − 1)�(−u
2 − 1)

�( s
2 + 2)

� E−1−2n

(
sin

φ

2

)−3(
cos

φ

2

)5−2n

(3.20)× exp

(
− t ln t + u lnu − (t + u) ln(t + u)

2

)
,

where we have calculated the approximation up to the next leading order in energy E. Note that
the appearance of the prepower factors in front of the exponential fall-off factor. For our purpose
here, with Eq. (2.28), we have

(3.21)sL,R + tL,R + uL,R =
∑

i

M2
iL,R = 2NL,R − 8,

and the high energy limit of the beta functions in Eq. (3.19) can be further calculated to be

B

(
−1 − tR

2
,−1 − uR

2

)
B

(
−1 − tL

2
,−1 − uL

2

)

� E−1−2(NL+NR)

(
sin

φ
)−3(

cos
φ

)5−2(NL+NR)
2 2
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× exp

(
− tL ln tL + uL lnuL − (tL + uL) ln(tL + uL)

2

)

× exp

(
− tR ln tR + uR lnuR − (tR + uR) ln(tR + uR)

2

)

� E−1−2(NL+NR)

(
sin

φ

2

)−3(
cos

φ

2

)5−2(NL+NR)

(3.22)× exp

(
− t ln t + u lnu − (t + u) ln(t + u)

4

)
,

where we have implicitly used the relation α′
closed = 4α′

open = 2. By combining Eq. (3.19) and
Eq. (3.22), we end up with

lim
E2�M2

2

A �
(

−2 cot φ
2

E

)NL+NR
(

− 1

2M2

)qL+qR

E−1
(

sin
φ

2

)−3(
cos

φ

2

)5

(3.23)× sin(πsL/2) sin(πtR/2)

sin(πuL/2)
exp

(
− t ln t + u lnu − (t + u) ln(t + u)

4

)
.

We see that there is a (m
R

, 1
2nR) dependence in the sin(πsL/2) sin(πtR/2)

sin(πuL/2)
factor in our final result.

This is physically consistent as one expects a (m
R

, 1
2nR) dependent Regge-pole and zero struc-

tures in the high energy string scattering amplitudes. In conclusion, in the GR, for each fixed
mass level with given quantized and winding momenta (m

R
, 1

2nR) (thus fixed NL and NR by
Eq. (2.7)), we have obtained infinite linear relations among high energy scattering amplitudes
of different string states with various (qL, qR). Note also that this result reproduces the correct
ratios (− 1

2M2
)qL+qR obtained in the previous works [16,17,23]. However, the mass parameter M2

here depends on (m
R

, 1
2nR). It is also interesting to see that, if not for the (m

R
, 1

2nR) dependence

in the sin(πsL/2) sin(πtR/2)
sin(πuL/2)

factor in the high energy scattering amplitudes in the GR, we would
have had a linear relation among scattering amplitudes of different string states in different mass
levels with fixed (NR + NL).

Presumably, the infinite linear relations obtained above can be reproduced by using the method
of high energy ZNS, or high energy Ward identities, adopted in the previous works [4–11]. The
existence of soliton ZNS at arbitrary mass levels was constructed in [22]. A closer look in this
direction seems worthwhile. In the paper, however, we are more interested in understanding the
power-law behavior of the high energy string scattering amplitudes and breakdown of the infinite
linear relations as we will discuss in the next section.

3.3. Power-law and breakdown of the infinite linear relations in the MR

In this section we discuss the power-law behavior of high energy string scattering amplitudes
in a compact space. We will see that, in the MR, the infinite linear relations derived in Sec-
tion 3.2 break down and, simultaneously, the UV exponential fall-off behavior of high energy
string scattering amplitudes enhances to power-law behavior. The power-law behavior of high
energy string scatterings in a compact space was first suggested by Mende [20]. Here we give a
mathematically more concrete description. It is easy to see that the “power law” condition, i.e.
Eq. (3.7) in Mende’s paper [20],

(3.24)k1L · k2L + k1R · k2R = const,
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turns out to be

−(k1L · k2L + k1R · k2R)

=
√

p2 + M2
1 ·

√
p2 + M2

2 + p2 + ( �K1L · �K2L + �K1R · �K2R)

=
√

p2 + M2
1 ·

√
p2 + M2

2 + p2 + 2( �K1 · �K2 + �L1 · �L2)

(3.25)= const.

As p → ∞, due to the existence of winding modes in the compactified closed string, it is possible
to choose ( �K1, �K2; �L1, �L2) such that

(3.26)�K1 · �K2 + �L1 · �L2 < 0,

and let ( �K1 · �K2 + �L1 · �L2) → −∞ to make

(3.27)k1L · k2L + k1R · k2R � const

(3.28)⇒ sL + sR � const.

In our calculation, this condition implies the beta functions in Eq. (3.18) reduce to

B

(
−1 − tR

2
,−1 − uR

2

)
B

(
−1 − tL

2
,−1 − uL

2

)

= �(− tR
2 − 1)�(−uR

2 − 1)

�( sR
2 + 2)

�(− tL
2 − 1)�(−uL

2 − 1)

�( sL
2 + 2)

(3.29)= sin(πsR/2)�(− tR
2 − 1)�(−uR

2 − 1)�(− tL
2 − 1)�(−uL

2 − 1)

π sR
2 (1 + sR

2 )(−1 + sR
2 )

,

which behaves as power-law in the high energy limit! On the other hand, it is obvious that the
(qL, qR) dependent power factors of the amplitude in Eq. (3.18)

AqL,qR
�

(
1

2M2q2 sin2 φ

)qL+qR

×
(

(tR − 2 �K2R · �K3R) + t2
R(sR − 2 �K1R · �K2R)

s2
R

)qR

(3.30)×
(

(tL − 2 �K2L · �K3L) + t2
L(sL − 2 �K1L · �K2L)

s2
L

)qL

show no linear relations in the MR. This is very different from the case of high energy scattering
amplitude in Eq. (3.23) in the GR, which shows nice linear relations

(3.31)AqL,qR
�

(
− 1

2M2

)qL+qR

.

Note that the mechanism to break the linear relations and the mechanism to enhance the ampli-
tude to power-law are all due to E � M2 in the MR. In our notation, Eq. (3.24) is equivalent to
the following condition

(3.32)lim
p→∞

√
p2 + M2

1 ·
√

p2 + M2
2 + p2

�K1 · �K2 + �L1 · �L2
∼ E2(

m1m2 + 1n1n2R2
) ∼ −O(1).
R2 4
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For our purpose here, as we will see soon, it is good enough to choose only one compactified
coordinate to realize Eq. (3.32). First of all, in addition to Eqs. (2.17) and (2.18), Eq. (2.7) implies

(3.33)mini = 0, i = 1,2,3,4 (no sum on i).

This is because three of the four vertex are tachyons. Also, since we are going to take n2 to
infinity with fixed NR + NL in order to satisfy Eq. (3.32), we are forced to take m2 = 0. In sum,
we can take, say, mi = 0 for i = 1,2,3,4, and n1 = −n2 = −n, n3 = −2n, n4 = 0, and then
let n → ∞ to realize Eq. (3.32). Note that it is crucial to choose different sign for n1 and n2 in
order to achieve the minus sign in Eq. (3.32). We stress that there are other choices to realize the
condition. One notes that all choices implies

(3.34)NR = NL.

It is obvious that one can also compactify more than one coordinate to realize the Mende con-
dition. We conclude that the high energy scatterings of the “highly winding string states” of the
compactified closed string in the MR behave as the unusual UV power-law, and the usual linear
relations among scattering amplitudes break down due to the unusual power-law behavior.

4. Conclusion

In this paper we calculate high energy scattering amplitudes of closed bosonic string com-
pactified on torus. We define two regimes of high energy limit, the Gross regime (GR) and the
Mende regime (MR). In the GR, for each fixed mass level with given quantized and winding
momenta (m

R
, 1

2nR), we obtain infinite linear relations among high energy scattering amplitudes
of different string states. In the MR, we discover that linear relations with NR = NL break down
and, simultaneously, the amplitudes enhance to power-law behavior instead of the usual expo-
nential fall-off behavior at high energies. The result of this work gives a concrete example to
justify the coexistence of the linear relations and the softer exponential fall-off behavior of high
energy string scattering amplitudes as we pointed out previously [17,23]. It is also reminiscent of
our previous work on the power-law behavior of high energy string/domain-wall scatterings [17].
However, in the case of string/domain-wall scatterings, the high energy scattering amplitudes be-
haves as power-law for the whole UV kinematic regime, and one cannot see the transition from
UV power-law behavior to the UV exponential fall-off behavior, neither can one see the transi-
tion from nonlinear relations to the linear relations among high energy scattering amplitudes of
different string states. On the contrary, for the high energy scatterings of the compactified closed
string considered in this paper, one gets more kinematic variables, namely (m

R
, 1

2nR), to cover
both GR and MR, so that one can see this interesting transition. Through the observation of this
transition, one further confirms that the infinite linear relations obtained in [4–11] are responsible
for the UV softer string scattering amplitudes than the field theory scatterings.
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