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With advance technology in biology, high-throughput data such as microarry data are frequently seen in
research work. Those data sets usually contains only a few samples but large number of variables. For
analyzing this kind of data, fist we need to rank the importance of variables (genes), then we need to choose
an importance subset of variables (genes) to analyze the microarray data (classification problem). In this
two-year project, we will try to solve these two problems systematically and find some theoretical results. For
these problems there are only few theoretical results. Recent years, some researchers find good theoretical
results about find a good subset of important genes. Many years ago, Bickel showed that if we use too many
genes to do classification problem, the Fisher discriminant performs poorly. All the theoretically results, under
large sample, assume that when the number of variables (genes) goes to infinity, the number of sample in
normal group and disease group are both go to infinity. Also the number of the important variables (genes)
goes to infinity. In this project, we will discuss the situation when the number of sample size is fixed and the
number variables (genes) goes to infinity. Also, we will assume that the number of important genes is fixed
(or goes to infinity in a slow speed). Under above assumptions, we will try to find a good subset of genes to
do our data analysis. Another purpose of this project is to extend the result by Tibshirasni and Tastie (2007).
In their paper, they assume that only part of the people (20%~100%) in disease group has abnormal gene
expression. We hope that we can extend their method and then find a better statistic to rank the importance of
the variables (genes).
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I Introduction

The microarray data in biomedical research has been studied extensively in the past fevw years.
Microarray is a technology to detect mRNA expression level. In general, detecting mRNA expression
level can help identify genes that contribute to disease. That is, the goal of a microarray
experiment is to identify those genes that are differentially expressed within different samples.
Besides, the number of samples we observed is much less than the number of genes in a microarray
experiment, thus generating a large-scale multiple hypothesis testing problem (Gentleman, Carey,
Huber, Irizarry, and Dudoit, 2005; Efron, 2007).

A large-scale multiple hypothesis testing problem in a microarray experiment involves the
simultaneous test of thousands, or even millions, of null hypotheses (Gentleman et al., 2005).
Usually we use two-sample t-statistics ti comparing expression levels under two different
conditions for m genes. Then, the ti's are transformed to zi's such that, under normal assumption,
Zi has a standard normal distribution (Efron, 2007). Efron (2007) displayed two histograms of
zZi's from two microarray experiments and described the zi's correlations can cause the fact that
the distribution of the zi's differs from N(0,I), called theoretical null distribution.

Since the earlier study did not focus on the reason of the histograms of zi's differing from
N(0,I) on multiple testing procedures. Hence, in this paper, we have two purposes: (a) to discuss
the possible reasons for the distribution of the zi's differing from N(0,I); (b) to simulate the
data from the possible models and recommend the possible reasons in large-scale multiple

hypothesis testing problem.



2 Literature Review

Multiple Hypothesis Testing in a Microarray Experiment

Suppose we have a microarray experiment which produces gene expression data on m genes for n mRNA
samples. Then the gene expression levels may be summarized by a m X n matrix X =(xij), where
Xij denotes the expression measures of gene i and sample j. The rows i =1,...,m represent the prob
sets and the columns j =1,...,n represent the different microarrays. The gene expression levels
might be either absolute or relative to the expression levels of a suitably defined common
reference sample.

In a microarray experiment, the number m is usual several thousands or even millions and the
number n is usual anywvhere between around eight and a fewv hundreds. In a typical experiment, the
n samples wvould consist of n1 treatment samples and nz control samples, for example, the treatment
samples are patients with BRCAI mutations and the control samples are patients with BRCA2Z mutations
in breast cancer study. The goal of a microarray experiment is to identify those genes that are
differentially expressed in the different mutations of breast cancer. Therefore, suppose the
single test is considered for each gene, the null hypothesis for testing that the gene i has the
same expression distribution under two different conditions. For tests of means, the test
statistic is the usual two-sample t-statistic, where the tvo-sample t-statistic depends on the
standard t-test for Welch t-test. Thus, we have m null hypotheses to consider simultaneously,
each with its own test statistic,

Null hypothesis : Hi,Hz,...,Hiy.c. Hn
Test statistic : ti,t2y...y Cigyeooy tm.
Then, we transform ti to a zi such that, under normal assumption, zi has a standard normal
distribution and derive rejection regions (Gentleman et al., 2005). The adjusted p-value for null
hypotheses is defined as the smallest type I error, «, FWVER or FDR, at which one would reject
Hi in the multiple hypothesis testing problem. Finally, we reject the null hypotheses if the
adjusted p-value is smaller than « . That is to say, we reject the Hi, means that the gene i is
differentially expressed under two different mutations of breast cancer. The procedure of the
several tests vwith controlled in type I error is called a multiple testing procedure, abbreviated

MTP.



It is notevorthy that Benjamini and Hochberg (1995) de[ |[ned the FDR to be the expected
proportion of true null hypotheses among the rejected hypotheses, FDR = E(V/R), where V denote
the number of rejecting Ho under Ho is true and R denote the number of rejecting Ho in all hypotheses.
Besides, Efron et al. (2001) and Efron (2004) described that local false discovery rate,
fdr(z)=£0(z)/£(z), is closely related to Benjamini and Hochberg's FDR criterion. The density £o(z)
is null probability density function (e.g., theoretical, empirical, or permutation null
hypothesis distribution) and the density £(z) is probability density function derived £rom the
empirical distribution of the zi's. Moreover, Efron (2004) report that we can £ind out the genes
wvhich are differentially expressed by the local fdr. The details about local fdr are described
in Efron (2004) and Efron et al. (2001).

The choice of null distribution (e.g., theoretical, empirical, or permutation null hypothesis
distribution) is important to control the local fdr (Efron 2004, 2006, 2007; Gentleman et al.,
2005). Di[ |erent choices may in[ Juence the conclusion on identifying which genes as differential
or the same in the multiple hypothesis testing (Efron 2004, 2006, 2007; Gentleman et al., 2005).
Efron (2004) reported that the appropriate choice of null distribution is the empirical null rather
than the theoretical null or permutation null in some microarray experiments. Also, Efron (2006)
suggested that the theoretical null or permutation null is inappropriate null in HIV study since
the theoretical null or permutation null may make there is no differential genes on MTP (Efron,
2006). Hence, we need to select a suitable distribution in multiple hypothesis testing under

different microarray experiments.

Microarray Experiments

For the microarray experiments, we consider the breast cancer study and the HIV study below.

The Breast Cancer Study

Hedenfalk, Duggen, Chen, et al. (2001) reported on a microarray experiment concerning the mutant
genes of hereditary breast cancer. It is known that two different mutations, BRCAI and BRCA2,
lead to greatly increased breast cancer risk.

The experiment included IS breast cancer patients, 7 from BRCAI mutation patients and 8 from

BRCA2. Each patient measured a microarray of expression levels for the same m = 3226 genes. Then,
6



wve have a m X n matrix X =(xij) for the breast cancer study, where m = 3226 rows denote genes
and n = 15 columns denote microarrays. Each row of X (i.e., gene) yielded a two-sample t-statistic

ti comparing BRCAL with BRCA2 patients, which was then transformed to a zi.
zi =@ (Go(ti)),i =1, 2, ..., m,

vhere & is the standard normal cumulative distribution function (c.d.£.), and Go is the c.d.f.
of a standard Student's t distribution with I3 degrees of freedom. Hence, we get m = 3226 test

statistic zi's and the distribution of the zi's are displayed in Figure.

The HIV Study

The human immunodeficiency virus (HIV) study, described by van't Wout et al. (2003), contained
8 samples, 4 £rom HIV-positive patients and 4 £from HIV-negative controls. Each samples measured
a microarray of expression levels for the same m = 7680 genes. Then, we have a m X n matrix X
=(xij) for the HIV study, where m = 7680 rows denote genes and n = 8 columns denote microarrays.
Each rov of X (i.e., gene) yielded a twvo-sample t-statistic ti comparing HIV-positive patients

with HIV-negative controls,
which was then transformed to a Zi.

2i =0 (Go(ti)),i =1, 2, ..., m,

wvhere @ is the standard normal c.d.£., and Go is the c.d.£. of a standard Student's t distribution
with 6 degrees of freedom. Hence, we get m = 7680 test statistic zi's and the distribution of the
zi's are displayed in Figure I(b) (Efron, 2004, 2005, 2006, 2007; Gottardo et al., 2006).

The data from the breast cancer study and the HIV study were two-color cDNA microarrays and
people make quality assessment and preprocessing (e.g. normalization) for the data before using
them in multiple hypothesis testing (Dudoit et al., 2003; Gottardo et al., 2006; Gentleman et
al., 2005).

Efron (2007) described that we usually presuppose most of the genes to be null in microarray
experiments, the goal being to identify some signi[ Icant nonnull genes. Therefore, we expect zi
to have closely a standard normal distribution for null genes (Efron, 2007). In other vords, under
null hypothesis, zi should have a standard normal distribution if gene i has the same expression
distribution for BRCAI and BRCA2 patients or for HIV-positive patients and HIV-negative controls.

Efron (2007) reported that heavy curves indicate N(0,1) theoretical null densities and light

7



curves indicate empirical null densities [ |t to central z-values in Figure, as done by Efron (2004).
However, the histograms of z-values in Figure, where the distribution of the zi's from breast cancer
is wider than N(0,I) and £rom HIV study is narrower than N(0,1) (Efron, 2006, 2007). Efron (2007)

pointed out that the correlations in multiple hypothesis testing can make the observed all zi's

2
behave as N(0, o ), where o is obviously different than 1. Next section, we will discuss the

correlation and other reasons for this phenomenon.

3 The Empirical Distribution of the z's

In this section, we discuss the possible reasons which caused the distribution of the zi's that
obviously di[ |ers £from the N(0,I) in microarray experiments. First, Efron (2007) indicated that
there were some gene correlations in the breast cancer data and in the HIV data. Besides, the
disease is caused by abnormal genes and there are essential correlations between genes in biology.
Hence we may say that there are gene correlation structures in the breast cancer data and the
HIV data.

Secondly, Hedenfalk et al. (2001) pointed out that these patients with primary breast cancer
and who had a family history of breast or ovarian cancer or both wvere asked to provide a blood
sample for BRCAI and BRCA2 mutations in the genetic breast cancer. If some of the patients are
come from the same family, some of their gene may correlate. Hence the patients may correlate
with the relationship of relatives.

Furthermore, Efron (2004) indicated that the [ |rst four and the last four microarrays in the
BRCA2 patients were mutually correlated. Moreover, since the HIV is a rare disease, the HIV
patients usually have the same features, for example, the patients are homosexuality, drug addicts
and infected with mother. According to the above, ve may safely say that there are the correlation
structures among patients (i.e. microarrays ).

Finally, if the data (xij) are independent and identically distributed (i.i.d.) random
variables from normal distribution, we may apply the tvo-sample t-statistic in multiple hypothesis
testing. In other vords, if the data (xij) are independent and identically distributed (i.i.d.)
random variables from other distributions, the two-sample t-statistic may not have the
t-distribution.

Hence, as mentioned above, we may consider the three possible reasons under the folloving items :
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(I) correlation between genes. (2) correlation among microarrays. (3) various distribution
assumptions. In the next section, ve discuss further the models of these possible reasons. Besides,

wve apply these models for simulating data and then compare the results of the simulation.

4 The Models and Simulation Study

For generating dependent data, we consider two kinds of time series models: the autoregressive

model (AR) and the moving average model (MA). We introduce the AR model and the MA model.

Definition I An autoregressive model of order p, abbreviated AR(p), is defined to be

Xe= da1Xegr + d2Xe2+ ooe + ¢ pXelp + Ze,

vhere X: is stationary, 41,92, ..., 99 (9p=0) are constants, and Z: is a Gaussian white noise

series with mean 0 and variance o .

Definition 2 A moving average model of order q, abbreviated MA(q), is defined to be

Xe =2¢+ O1Ze01+ O2Ze2+ ... + 6 qZt[1q,

vhere there are q lags in the moving average, 01,02y, ...y G4q (0q= 0) are constants, and Z:

is a Gaussian white noise series with mean 0 and variance o".

Suppose a microarray experiment includes n (n = n1 + m2) patients, ni from group 1 and n2 £rom
group 2. Each patient measures a microarray of expression levels for the same m genes. We want
to identify those genes that are differentially expressed under the two group. Let X =(Xij)
represent gene expression and be am X n matrix, where i =1, ..., m denotes genes and j =1, ...,
n (n = n1 + n2) denotes microarrays.

In the simulation study, we choose m = 100000 genes and n = I4 (n1 = n2 = 7) micrarrays. Then

wve apply the data on the multiple testing procedures. Therefore, we get m = 100000 zi's.

Models of correlation between genes



In the following models, we consider that there is some correlation between genes, but there is

no dependence between microarrays.

Model I
For model I, we consider

Xil,Xiz, eoey xill‘D ioiodo N(o, G.z) Xli,xzi, eoey Xmi D AR(p), Xin‘+I,Xinl+2, eoey Xin D i.i.d.
N, ),

Model 2
For model 2, we consider

Xil,Xi2y «ooy Xin[ | i.i.d. N(O, 0‘1) X1jyX2jy ooy Xnj [ | MA(Q)y Xin+L,Xin+2y ccoy Xin [ | i.i.d.
N(O, o),

Model 3
For model 3, we consider

Xil,Xi2y ...y Xin[ | i.9.d. N(o,dl)

Xin‘+I,Xilll+z, eoey Xin D ioiod. N(o, 6),
cor(xkj,xij)=¢, k=1, ..., my, j =I,...,m , k=1,
Model 4

We consider xi1,Xiz, ..., Xin[ | AR(D)

X1§,X2§y +eey Xnj [] i.i.d. N0, 0 ), Xin+I,Xin+2, ..., Xin [] AR(D),

Model §

Xil,Xiz, eoey XinlD MA(q) Xli,xzi, eoey Xmi D i-iodo N(o, 61), Xin‘+l,Xin‘+z, eoey Xin D MA(q),

Model 6

For model 6, we consider

X1jyX2jy eeoy Xmj [ | i.i.d. N(O, o‘z), cor(Xxik,xi1)= ¢, kK =1, ..., ni,j =1, ..., ni,k = 1
cor(Xik,Xi1)= ¢y k=nm+1, ..., n, j=n+l, ..., n, k=1,

Model 7

10



For model 7, we consider

XiIyXi2y eeoy Xin[ | i.i.d. Gamma(« = shape, 1 = rate), Xin+I,Xin+2, ..., Xin [ ] i.i.d.
Gamma( « = shape, A = rate),

Model 8
For model 8, we consider

XilyXi2y ceo Xin‘|:| i.i.d. Cauchy( « = location, A = scale)

Xin+1,Xin4+2, ..., Xin [] i.i.d. Cauchy(« = location, A = scale),

Model 9

For model 9, we consider

Xil,Xi2y ...y Xin[ | i.i.d. W eibull(1 = shape, a« = scale, 5 = location)
Xin+1,Xin+2, ..., Xin [] i.i.d. W eibull( L = shape, « = scale, 3 = location),

Model 10
For model 10, we consider

Xil,Xiz, eoey XinlD ioi-d- Exp( /1 = l‘ate) Xin‘+l,Xin‘+2, LN N Xin D ioiod- Exp( A, = l‘ate),
Model 11

For model 11, we consider

Xil,Xi2y «..y Xin[ ]| i.i.d. t(n = degrees of freedom) Xin+I,Xin+2, ..., Xin [ | i.i.d. t(n
= degrees of freedom),

Model 12
For model 12, we consider

Xi1yXi2y «..y Xin [ | i.i.d. F (v1i,v2)(v1,v2 = degrees of freedom)

Xin+I,Xin+2, ..., Xin [ ] i.i.d. F (v1,v2)(v1,v2 = degrees of freedom),

5 Real Data

The data is a microarray experiment about breast cancer, vwhich provided by Department of
Interdisciplinary Oncology Mo[ [tt Cancer Center and Research Institute, University of South
Florida. The experiment included 185 samples, 143 from the normal group and 42 £rom the patients.

Each samples measured a microarray of expression levels for the same m = 54675 genes. Then we

11



apply the data on the multiple testing procedures and therefore we get m = 54675 zi's. The histogram
of the observed zi's plot is in the Figure 11. In Figure 11, heavy blue line indicates the theoretical
null distribution. We can see that the empirical distribution of the zi's is more wide than the
N(0,1). Hence, we guess that the data may have correlation among microarrays. Also, if the genes
are null, these zi's should have a standard normal distribution under normal assumption. In order
to solve the problem, we may try some improved method. For example, permutation methods can be
used to avoid the assumption of zi|Hi [ ] N(0,I) and possibly make the permutation-improved
theoretical null will more closely match the empirical null (Efron et al. 2001; Dudoit et al.
2003; Efron 2004; Efron 2007). Moreover, Efron (2007) referred to the random permutation of the
microarrays can eliminate the group di[ |erences and preserve the correlation structure of the
genes. Hence we apply permutation methods to the breast cancer data.

Let X represent the 54675 X 185 matrix X =(xij) of the breast cancer data. Each rov of X (i.e.,
each gene) yields a two-sample t-statistic ti comparing 143 £rom the normal group and 42 from the
patients, which is then transformed to a zi vy Zi =<1>D1(Go(ti)) and we get 54675 zi's. Then, we
recalculate the 54675 zi's by randomly permuting the columns of X. Namely, we recalculate the 54675
Zi's by randomly dividing the 185 samples into groups of 143 and 42. This process is independently
repeated 100 times, generating a total of 100 X 54675 permutation zi's. This testing is called
permutation testing. Since permutation test is model-free, we can say that permutation test is
more robust than t-test. The empirical distribution of the 100 X 54675 zi's (i.e., permutation
null) plot is in the Figures, heavy red line indicates the distribution of the 100 X 54675 zi's
(i.e., permutation null). We can see that the empirical distribution of the zi's is more wide than
the permutation null distribution, but the permutation null is more closely match the histogranm
of the observed zi's than the N(0,I).

However, permutation methods are a way of avoiding the normal assumption ( Dudoit et al., 2003;
Efron, 2001, 2004, 2006), but they do not solve the problem of selecting a suitable null hypothesis

(Efron, 2004). The choice of a suitable null hypothesis can see Efron (2004, 2006, 2007).

6 Conclusions and Future Research

In this study, we focused on the reasons of empirical distribution of the zi's differed £rom N(0,I)
in large-scale multiple hypothesis testing. We proposed the three possible reasons. The first

12



reason wvas the correlation between genes. The secondly reason was the correlation among
microarrays. The third reason was the various distribution assumptions. Moreover, we provided
tvelve models from three different reasons and simulated the data by the models.

By observing the simulated data from models of correlation among microarrays, we could see
that the empirical distribution of the zi's may differs from N(0,I) as the correlation getting
larger. Also, we see that there is a significant difference between the empirical distribution
of the zi's and the N(0,I) by observing the simulated data from models of various distribution
assumptions. Hence, by the simulation results we conclude that the correlation between genes could
not affect the empirical distribution of the zi's and that the correlation among microarrays and
various distribution assumption are the main reasons.

This study only proposed three possible reasons in large-scale multiple hypothesis testing.
It might be worth to discuss further possible reasons that may make the distribution of the zi's
differing from N(0,I) and provide appropriate models for the other possible reasons.

Also, this study used the AR and MA model with different coefficients and order to generate the
correlation data between genes and among microarrays. Another direction for future research is
to use an autoregressive moving average (ARMA) model or other correlation model for the proposed
reasons. In addition, this study provided six different distribution models for the various

distribution assumptions. It might be assume other distribution models to investigate further

in future research.
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