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中文摘要 
近十多年來由於基因晶片的發明產生了大量高密度的 cDNA 陣列資料。這些資料有著共同的特性就是

樣本數不多但是基因數目很多。解決這類的問題，可以分成兩的步驟。首先是如何挑選重要的基因，

接著是要如何的利用這些基因做分析。在本計畫中，我們對這兩方面做些有系統性的理論研究。在這

些問題上，理論結果並不多。Fan等人近幾年提出關於如何選取恰當的基因數的理論依據，他們選取基

因數目的準則是希望分類成功率愈高愈好。幾年前， Bickel 等人證明如果選取太多的基因，在分類上 

都不會有太好的結果。在理論結果中，共通的假設是當測量的基因數目愈多時，影響某特殊疾病的基

因數目也成一定的方式迅速增多，且觀察的樣本數也以一定的方式增多。在本計畫中，我們討論當樣

本數固定時，可測得的基因數目增加很快。倘若影響某疾病的基因數目也固定（或以非常慢的數度增

加），我們應該選取多少數目的基因以做資料分析最為恰當。在本計畫中的另一個重點在於對 Tibshirasni 

與 Tastie 於2007發表的文章做更深入的坦討與改進。在他們的研究中假設重要致病基因並不是對所有

病人皆會有異常的表現，大約有 ( 20%~100%) 的病人在此基因會有較正常人強烈的表現。對於他們的

方法我們認為還有不少可以討論與改進個空間。同時，我們也採用一些混和的模型對基因表現有異常

的人數做出估計。 

 

 

 

英文摘要 
With advance technology in biology, high-throughput data such as microarry data are frequently seen in 
research work. Those data sets usually contains only a few samples but large number of variables. For 
analyzing this kind of data, fist we need to rank the importance of variables (genes), then we need to choose 
an importance subset of variables (genes) to analyze the microarray data (classification problem). In this 
two-year project, we will try to solve these two problems systematically and find some theoretical results. For 
these problems there are only few theoretical results. Recent years, some researchers find good theoretical 
results about find a good subset of important genes. Many years ago, Bickel showed that if we use too many 
genes to do classification problem, the Fisher discriminant performs poorly. All the theoretically results, under 
large sample, assume that when the number of variables (genes) goes to infinity, the number of sample in 
normal group and disease group are both go to infinity. Also the number of the important variables (genes) 
goes to infinity. In this project, we will discuss the situation when the number of sample size is fixed and the 
number variables (genes) goes to infinity. Also, we will assume that the number of important genes is fixed 
(or goes to infinity in a slow speed). Under above assumptions, we will try to find a good subset of genes to 
do our data analysis. Another purpose of this project is to extend the result by Tibshirasni and Tastie (2007). 
In their paper, they assume that only part of the people (20%~100%) in disease group has abnormal gene 
expression. We hope that we can extend their method and then find a better statistic to rank the importance of 
the variables (genes). 
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1  Introduction  

The microarray data in biomedical research has been studied extensively in the past few years. 

Microarray is a technology to detect mRNA expression level. In general, detecting mRNA expression 

level can help identify genes that contribute to disease. That is, the goal of a microarray 

experiment is to identify those genes that are differentially expressed within different samples. 

Besides, the number of samples we observed is much less than the number of genes in a microarray 

experiment, thus generating a large-scale multiple hypothesis testing problem (Gentleman, Carey, 

Huber, Irizarry, and Dudoit, 2005; Efron, 2007).  

A large-scale multiple hypothesis testing problem in a microarray experiment involves the 

simultaneous test of thousands, or even millions, of null hypotheses (Gentleman et al., 2005). 

Usually we use two-sample t-statistics ti comparing expression levels under two different 

conditions for m genes. Then, the ti’s are transformed to zi’s such that, under normal assumption, 

zi has a standard normal distribution (Efron, 2007). Efron (2007) displayed two histograms of 

zi’s from two microarray experiments and described the zi’s correlations can cause the fact that 

the distribution of the zi’s differs from N(0,1), called theoretical null distribution.  

Since the earlier study did not focus on the reason of the histograms of zi’s differing from 

N(0,1) on multiple testing procedures. Hence, in this paper, we have two purposes: (a) to discuss 

the possible reasons for the distribution of the zi’s differing from N(0,1); (b) to simulate the 

data from the possible models and recommend the possible reasons in large-scale multiple 

hypothesis testing problem.  
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2 Literature Review  

Multiple Hypothesis Testing in a Microarray Experiment  

Suppose we have a microarray experiment which produces gene expression data on m genes for n mRNA 

samples. Then the gene expression levels may be summarized by a m × n matrix X =(xij), where 

xij denotes the expression measures of gene i and sample j. The rows i =1,...,m represent the prob 

sets and the columns j =1,...,n represent the different microarrays. The gene expression levels 

might be either absolute or relative to the expression levels of a suitably defined common 

reference sample.  

In a microarray experiment, the number m is usual several thousands or even millions and the 

number n is usual anywhere between around eight and a few hundreds. In a typical experiment, the 

n samples would consist of n1 treatment samples and n2 control samples, for example, the treatment 

samples are patients with BRCA1 mutations and the control samples are patients with BRCA2 mutations 

in breast cancer study. The goal of a microarray experiment is to identify those genes that are 

differentially expressed in the different mutations of breast cancer. Therefore, suppose the 

single test is considered for each gene, the null hypothesis for testing that the gene i has the 

same expression distribution under two different conditions. For tests of means, the test 

statistic is the usual two-sample t-statistic, where the two-sample t-statistic depends on the 

standard t-test for Welch t-test. Thus, we have m null hypotheses to consider simultaneously, 

each with its own test statistic,  

Null hypothesis : H1,H2,...,Hi,...,Hm  

Test statistic : t1,t2,..., ti,..., tm.  

Then, we transform ti to a zi such that, under normal assumption, zi has a standard normal 

distribution and derive rejection regions (Gentleman et al., 2005). The adjusted p-value for null 

hypotheses is defined as the smallest type I error, α, FWER or FDR, at which one would reject 

Hi in the multiple hypothesis testing problem. Finally, we reject the null hypotheses if the 

adjusted p-value is smaller than α. That is to say, we reject the Hi, means that the gene i is 

differentially expressed under two different mutations of breast cancer. The procedure of the 

several tests with controlled in type I error is called a multiple testing procedure, abbreviated 

MTP.  
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It is noteworthy that Benjamini and Hochberg (1995) de□ned the FDR to be the expected 

proportion of true null hypotheses among the rejected hypotheses, FDR = E(V/R), where V denote 

the number of rejecting H0 under H0 is true and R denote the number of rejecting H0 in all hypotheses. 

Besides, Efron et al. (2001) and Efron (2004) described that local false discovery rate, 

fdr(z)=f0(z)/f(z), is closely related to Benjamini and Hochberg’s FDR criterion. The density f0(z) 

is null probability density function (e.g., theoretical, empirical, or permutation null 

hypothesis distribution) and the density f(z) is probability density function derived from the 

empirical distribution of the zi’s. Moreover, Efron (2004) report that we can find out the genes 

which are differentially expressed by the local fdr. The details about local fdr are described 

in Efron (2004) and Efron et al. (2001).  

The choice of null distribution (e.g., theoretical, empirical, or permutation null hypothesis 

distribution) is important to control the local fdr (Efron 2004, 2006, 2007; Gentleman et al., 

2005). Di□erent choices may in□uence the conclusion on identifying which genes as differential 

or the same in the multiple hypothesis testing (Efron 2004, 2006, 2007; Gentleman et al., 2005). 

Efron (2004) reported that the appropriate choice of null distribution is the empirical null rather 

than the theoretical null or permutation null in some microarray experiments. Also, Efron (2006) 

suggested that the theoretical null or permutation null is inappropriate null in HIV study since 

the theoretical null or permutation null may make there is no differential genes on MTP (Efron, 

2006). Hence, we need to select a suitable distribution in multiple hypothesis testing under 

different microarray experiments.  

 

Microarray Experiments  

For the microarray experiments, we consider the breast cancer study and the HIV study below.  

The Breast Cancer Study  

Hedenfalk, Duggen, Chen, et al. (2001) reported on a microarray experiment concerning the mutant 

genes of hereditary breast cancer. It is known that two different mutations, BRCA1 and BRCA2, 

lead to greatly increased breast cancer risk.  

The experiment included 15 breast cancer patients, 7 from BRCA1 mutation patients and 8 from 

BRCA2. Each patient measured a microarray of expression levels for the same m = 3226 genes. Then, 
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we have a m × n matrix X =(xij) for the breast cancer study, where m = 3226 rows denote genes 

and n = 15 columns denote microarrays. Each row of X (i.e., gene) yielded a two-sample t-statistic 

ti comparing BRCA1 with BRCA2 patients, which was then transformed to a zi.  

zi =Φ
□1

(G0(ti)),i =1, 2, ..., m,  

where Φ is the standard normal cumulative distribution function (c.d.f.), and G0 is the c.d.f. 

of a standard Student’s t distribution with 13 degrees of freedom. Hence, we get m = 3226 test 
statistic zi’s and the distribution of the zi’s are displayed in Figure.  

The HIV Study  

The human immunodeficiency virus (HIV) study, described by van’t Wout et al. (2003), contained 

8 samples, 4 from HIV-positive patients and 4 from HIV-negative controls. Each samples measured 

a microarray of expression levels for the same m = 7680 genes. Then, we have a m × n matrix X 

=(xij) for the HIV study, where m = 7680 rows denote genes and n = 8 columns denote microarrays. 

Each row of X (i.e., gene) yielded a two-sample t-statistic ti comparing HIV-positive patients 

with HIV-negative controls,  

which was then transformed to a zi.  

zi =Φ
□1

(G0(ti)),i =1, 2, ..., m,  

where Φ is the standard normal c.d.f., and G0 is the c.d.f. of a standard Student’s t distribution 

with 6 degrees of freedom. Hence, we get m = 7680 test statistic zi’s and the distribution of the 

zi’s are displayed in Figure 1(b) (Efron, 2004, 2005, 2006, 2007; Gottardo et al., 2006).  

The data from the breast cancer study and the HIV study were two-color cDNA microarrays and 

people make quality assessment and preprocessing (e.g. normalization) for the data before using 

them in multiple hypothesis testing (Dudoit et al., 2003; Gottardo et al., 2006; Gentleman et 

al., 2005).  

Efron (2007) described that we usually presuppose most of the genes to be null in microarray 

experiments, the goal being to identify some signi□cant nonnull genes. Therefore, we expect zi 

to have closely a standard normal distribution for null genes (Efron, 2007). In other words, under 

null hypothesis, zi should have a standard normal distribution if gene i has the same expression 

distribution for BRCA1 and BRCA2 patients or for HIV-positive patients and HIV-negative controls. 

Efron (2007) reported that heavy curves indicate N(0,1) theoretical null densities and light 
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curves indicate empirical null densities □t to central z-values in Figure, as done by Efron (2004). 

However, the histograms of z-values in Figure, where the distribution of the zi’s from breast cancer 

is wider than N(0,1) and from HIV study is narrower than N(0,1) (Efron, 2006, 2007). Efron (2007) 

pointed out that the correlations in multiple hypothesis testing can make the observed all zi’s 

behave as N(0, σ
2

), where σ is obviously different than 1. Next section, we will discuss the 

correlation and other reasons for this phenomenon.  

 

3 The Empirical Distribution of the zi’s  

In this section, we discuss the possible reasons which caused the distribution of the zi’s that 

obviously di□ers from the N(0,1) in microarray experiments. First, Efron (2007) indicated that 

there were some gene correlations in the breast cancer data and in the HIV data. Besides, the 

disease is caused by abnormal genes and there are essential correlations between genes in biology. 

Hence we may say that there are gene correlation structures in the breast cancer data and the 

HIV data.  

Secondly, Hedenfalk et al. (2001) pointed out that these patients with primary breast cancer 

and who had a family history of breast or ovarian cancer or both were asked to provide a blood 

sample for BRCA1 and BRCA2 mutations in the genetic breast cancer. If some of the patients are 

come from the same family, some of their gene may correlate. Hence the patients may correlate 

with the relationship of relatives.  

Furthermore, Efron (2004) indicated that the □rst four and the last four microarrays in the 

BRCA2 patients were mutually correlated. Moreover, since the HIV is a rare disease, the HIV 

patients usually have the same features, for example, the patients are homosexuality, drug addicts 

and infected with mother. According to the above, we may safely say that there are the correlation 

structures among patients (i.e. microarrays ).  

Finally, if the data (xij) are independent and identically distributed (i.i.d.) random 

variables from normal distribution, we may apply the two-sample t-statistic in multiple hypothesis 

testing. In other words, if the data (xij) are independent and identically distributed (i.i.d.) 

random variables from other distributions, the two-sample t-statistic may not have the 

t-distribution.  

Hence, as mentioned above, we may consider the three possible reasons under the following items : 



 9

(1) correlation between genes. (2) correlation among microarrays. (3) various distribution 

assumptions. In the next section, we discuss further the models of these possible reasons. Besides, 

we apply these models for simulating data and then compare the results of the simulation. 

 

4 The Models and Simulation Study  

For generating dependent data, we consider two kinds of time series models: the autoregressive 

model (AR) and the moving average model (MA). We introduce the AR model and the MA model.  

Definition 1 An autoregressive model of order p, abbreviated AR(p), is defined to be  

Xt = φ1Xt□1 + φ2Xt□2 + ... + φpXt□p + Zt,  

where Xt is stationary, φ1,φ2, ..., φp (φp= 0) are constants, and  Zt is a Gaussian white noise 

series with mean 0 and variance σ
2 

.  

Definition 2 A moving average model of order q, abbreviated MA(q), is defined to be  

Xt = Zt + θ1Zt□1 + θ2Zt□2 + ... + θqZt□q,  

where there are q lags in the moving average, θ1,θ2, ..., θq (θq= 0) are constants, and  Zt 

is a Gaussian white noise series with mean 0 and variance σ
2

.  

Suppose a microarray experiment includes n (n = n1 + n2) patients, n1 from group 1 and n2 from 

group 2. Each patient measures a microarray of expression levels for the same m genes. We want 

to identify those genes that are differentially expressed under the two group. Let X =(xij) 

represent gene expression and be a m × n matrix, where i =1, ..., m denotes genes and j =1, ..., 

n (n = n1 + n2) denotes microarrays.  

In the simulation study, we choose m = 100000 genes and n = 14 (n1 = n2 = 7) micrarrays. Then 

we apply the data on the multiple testing procedures. Therefore, we get m = 100000 zi’s. 

Models of correlation between genes  
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In the following models, we consider that there is some correlation between genes, but there is 

no dependence between microarrays.  

Model 1  

For model 1, we consider 

 xi1,xi2, ..., xin
1 
□ i.i.d. N(0,σ

2

) x1j,x2j, ..., xmj □ AR(p), xin
1
+1,xin

1
+2, ..., xin □ i.i.d. 

N(0,σ
2

),  

Model 2  

For model 2, we consider 

 xi1,xi2, ..., xin
1 
□ i.i.d. N(0,σ

2

) x1j,x2j, ..., xmj □ MA(q), xin
1
+1,xin

1
+2, ..., xin □ i.i.d. 

N(0,σ
2

),  

Model 3  

For model 3, we consider  

xi1,xi2, ..., xin
1 
□ i.i.d. N(0,σ

2

)  

xin
1
+1,xin

1
+2, ..., xin □ i.i.d. N(0,σ),  

cor(xkj,xlj)= c, k =1, ..., m, j =1,...,m , k = l,  

Model 4  

We consider xi1,xi2, ..., xin
1 
□ AR(p)  

x1j,x2j, ..., xmj □ i.i.d. N(0,σ
2

), xin
1
+1,xin

1
+2, ..., xin □ AR(p),  

Model 5  

xi1,xi2, ..., xin
1 
□ MA(q) x1j,x2j, ..., xmj □ i.i.d. N(0,σ

2

), xin
1
+1,xin

1
+2, ..., xin □ MA(q),  

Model 6  

For model 6, we consider  

x1j,x2j, ..., xmj □ i.i.d. N(0,σ
2

), cor(xik,xil)= c, k =1, ..., n1,j =1, ..., n1,k = l 

cor(xik,xil)= c, k = n1 +1, ..., n, j = n1 +1, ..., n, k = l,  

 Model 7  
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For model 7, we consider  

xi1,xi2, ..., xin
1 
□ i.i.d. Gamma(α = shape, λ = rate), xin

1
+1,xin

1
+2, ..., xin □ i.i.d. 

Gamma(α = shape, λ = rate),  

Model 8  

For model 8, we consider  

xi1,xi2, ..., xin
1 
□ i.i.d. Cauchy(α = location, λ = scale)  

xin
1
+1,xin

1
+2, ..., xin □ i.i.d. Cauchy(α = location, λ = scale),  

Model 9  

For model 9, we consider  

xi1,xi2, ..., xin
1 
□ i.i.d. W eibull(λ = shape, α = scale, β = location) 

xin
1
+1,xin

1
+2, ..., xin □ i.i.d. W eibull(λ = shape, α = scale, β = location),  

Model 10  

For model 10, we consider  

xi1,xi2, ..., xin
1 
□ i.i.d. Exp(λ = rate) xin

1
+1,xin

1
+2, ..., xin □ i.i.d. Exp(λ = rate),  

Model 11  

For model 11, we consider  

xi1,xi2, ..., xin
1 
□ i.i.d. t(n = degrees of freedom) xin

1
+1,xin

1
+2, ..., xin □ i.i.d. t(n 

= degrees of freedom),  

Model 12  

For model 12, we consider  

xi1,xi2, ..., xin
1 
□ i.i.d. F (v1,v2)(v1,v2 = degrees of freedom)  

xin
1
+1,xin

1
+2, ..., xin □ i.i.d. F (v1,v2)(v1,v2 = degrees of freedom),  

 

5 Real Data  

The data is a microarray experiment about breast cancer, which provided by Department of 

Interdisciplinary Oncology Mo□tt Cancer Center and Research Institute, University of South 

Florida. The experiment included 185 samples, 143 from the normal group and 42 from the patients. 

Each samples measured a microarray of expression levels for the same m = 54675 genes. Then we 
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apply the data on the multiple testing procedures and therefore we get m = 54675 zi’s. The histogram 

of the observed zi’s plot is in the Figure 11. In Figure 11, heavy blue line indicates the theoretical 

null distribution. We can see that the empirical distribution of the zi’s is more wide than the 

N(0,1). Hence, we guess that the data may have correlation among microarrays. Also, if the genes 

are null, these zi’s should have a standard normal distribution under normal assumption. In order 

to solve the problem, we may try some improved method. For example, permutation methods can be 

used to avoid the assumption of zi|Hi □ N(0,1) and possibly make the permutation-improved 

theoretical null will more closely match the empirical null (Efron et al. 2001; Dudoit et al. 

2003; Efron 2004; Efron 2007). Moreover, Efron (2007) referred to the random permutation of the 

microarrays can eliminate the group di□erences and preserve the correlation structure of the 

genes. Hence we apply permutation methods to the breast cancer data.  

Let X represent the 54675 × 185 matrix X =(xij) of the breast cancer data. Each row of X (i.e., 

each gene) yields a two-sample t-statistic ti comparing 143 from the normal group and 42 from the 

patients, which is then transformed to a zi by zi =Φ
□1

(G0(ti)) and we get 54675 zi’s. Then, we 

recalculate the 54675 zi’s by randomly permuting the columns of X. Namely, we recalculate the 54675 

zi’s by randomly dividing the 185 samples into groups of 143 and 42. This process is independently 

repeated 100 times, generating a total of 100 × 54675 permutation zi’s. This testing is called 

permutation testing. Since permutation test is model-free, we can say that permutation test is 

more robust than t-test. The empirical distribution of the 100 × 54675 zi’s (i.e., permutation 

null) plot is in the Figures, heavy red line indicates the distribution of the 100 × 54675 zi’s 

(i.e., permutation null). We can see that the empirical distribution of the zi’s is more wide than 

the permutation null distribution, but the permutation null is more closely match the histogram 

of the observed zi’s than the N(0,1).  

However, permutation methods are a way of avoiding the normal assumption ( Dudoit et al., 2003; 

Efron, 2001, 2004, 2006), but they do not solve the problem of selecting a suitable null hypothesis 

(Efron, 2004). The choice of a suitable null hypothesis can see Efron (2004, 2006, 2007).  

 

6 Conclusions and Future Research  

In this study, we focused on the reasons of empirical distribution of the zi’s differed from N(0,1) 

in large-scale multiple hypothesis testing. We proposed the three possible reasons. The first 
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reason was the correlation between genes. The secondly reason was the correlation among 

microarrays. The third reason was the various distribution assumptions. Moreover, we provided 

twelve models from three different reasons and simulated the data by the models.  

By observing the simulated data from models of correlation among microarrays, we could see 

that the empirical distribution of the zi’s may differs from N(0,1) as the correlation getting 

larger. Also, we see that there is a significant difference between the empirical distribution 

of the zi’s and the N(0,1) by observing the simulated data from models of various distribution 

assumptions. Hence, by the simulation results we conclude that the correlation between genes could 

not affect the empirical distribution of the zi’s and that the correlation among microarrays and 

various distribution assumption are the main reasons.  

This study only proposed three possible reasons in large-scale multiple hypothesis testing. 

It might be worth to discuss further possible reasons that may make the distribution of the zi’s 

differing from N(0,1) and provide appropriate models for the other possible reasons.  

Also, this study used the AR and MA model with different coefficients and order to generate the 

correlation data between genes and among microarrays. Another direction for future research is 

to use an autoregressive moving average (ARMA) model or other correlation model for the proposed 

reasons. In addition, this study provided six different distribution models for the various 

distribution assumptions. It might be assume other distribution models to investigate further 

in future research. 
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