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一、摘要 
 
1.1 中文摘要 

 
傳統以個體角度進行事故分析之方法，例如，判別分析（discrimination analysis）、羅吉

斯迴歸（logistic regression）、次序普羅比（ordered probit）、羅吉特（logit）及混合羅吉特（mixed 
probit）等模式，大多僅能探討單一危險因素之影響程度。事實上，事故嚴重與否大多係由多

項因素同時發生所導致。此一綜合多項因素之危險情況，在統計分析上，甚難加以窮舉分析。

基此，本計畫乃於第一年期提出基因規則探勘模式（Genetic rule mining, GRM），可由探勘所

得之規則的前半部，判斷何謂危險情況，進而加以避免。惟本研究所提出之 GRM 必須先固

定規則數量，再同時進行最佳規則組合之尋優。因此，具有染色體長度過長，尋優效果不佳，

以及探勘過多衝突或重覆規則的傾向，進而導致規則難以詮釋，無法提出具體之安全改善策

略。 
有鑑於此，本計畫第二年期乃提出改良式的基因規則探勘模式（Genetic rule mining, 

GRM），稱為逐步基因規則探勘模式（Stepwise GRM, SGRM）。SGRM 一次僅挑選使事故嚴

重度預測率精確率最高的一條規則，再以此規則為基礎，進行下一條規則之選取，直到精確

率無法再改善為止。如此，即可避免選擇規則過多，且相互重覆或矛盾的問題。此外，由於

不同類型事故之影響因素與危險情況不一定相同，因此，有必要加以區隔分析。本年度以先

以總計 5563 件單車事故（single vehicle accident）為分析基礎。結果顯示，本模式共選擇了

38 條規則，其訓練準確度達 75.1%，而驗證準確度則達 73.8%均遠高於決策樹之預測結果。

而影響事故嚴重度之危險情況也加以確認，並研提改善策略。 
關鍵字：事故分析、逐步基因規則探勘、事故嚴重度、決策樹。 

 
1.2 Abstract 
 

Conventional individual approach to conduct accident analysis is to associate the crash severity 
with driver, vehicle and roadway factors by using discrimination analysis, logistic regression, 
ordered probit, logit and mixed logit models. Although statistic models are the commonly used 
methods in the context of crash data analysis, most of them have their own assumptions and 
complexity in the model estimation and interpretation. Once the assumptions were violated, the 
model could lead to erroneous estimation results, especially for the individual approach wherein 
most variables explaining the individual crashes are categorical. It is difficult to develop parametric 
statistical models based upon the categorical data. In addition, most of statistical methods only 
provide calibrated parameters with significance tests, which are then used to examine the effects of 
the corresponding variables on crash counts or crash severity. The interrelationship among 
explanatory factors cannot be examined in details. According to “error chain theory” a crash is often 
caused by a series of errors, not solely by a single factor. As such, mining the explanatory rules is 
deemed necessary for crash data analysis. To this end, the first research year of this project has 
proposed genetic rule mining models to discover the key rules (i.e. risky conditions). However, 
since the proposed GRM models simultaneously select the rule combinations under a given upper 
limit of rule number and tend to mine too many conflict or redundant rules, making the rule 
interpretation difficult. 

Based on this, the second year of this project further propose a stepwise GRM (SGRM) model, 
which select the optimal one rule at a time and iteratively proceed to select the next best rule based 
on the selected rules until model performance (accuracy) can’t not improved. Since the risky 
conditions and contributory factors of various types of crashes will significantly vary, the analysis is 
conducted on each type of accidents separately. Taking single-vehicle accident for instance, a total 
of 5,563 crashes on Taiwan’s freeway network from 2003 to 2007 are collected, where numbers of 
A1 (fatal crash), A2 (injury crash), and A3 (property damage only crash) are 226, 1,593, and 3,744, 

 2



respectively - an uneven distribution commonly seen in the context of crash analysis. A total of 38 
rules have been mined which can achieve overall correct rates of 75.1% in training and of 73.8% in 
validation, respectively, much higher than those yield by the decision tree model. Risky conditions 
along with their corresponding improvement strategies have been identified. 
 
Key Words: Crash analysis, stepwise genetic rule mining, crash severity, decision tree analysis. 
 
二、主要研究成果 
 
2.1 Introduction 
 
Crash data analysis can be carried out by two main approaches: collective approach and individual 
approach (Abdel-Aty and Pande, 2007). The collective approach is characterized by crash 
frequency modeling. Frequency of crashes is aggregated over specific time periods (months or years) 
and locations (segments or intersections). Most of these studies attempt to explore the relationship 
between crash counts and explanatory variables, such as roadway geometry, traffic control facilities, 
traffic conditions, and so on by using Poisson or Negative Binomial regression models (e.g. Poch 
and Mannering, 1996; Milton and Mannering, 1998; Ivan et al., 1999; Abdel-Aty and Radwan, 
2000; Greibe, 2003; Abdel-Aty and Pande, 2007; Wong et al., 2007). For the collective approach, 
however, individual contributing factors to the crash (e.g., driver demographics, driver behaviors, 
vehicle types) are not considered and factors affecting the crash severity cannot be identified either. 
Therefore, some studies employed individual approach to crash data analysis. The individual 
approach is characterized by each individual crash case. The main focus of these studies was to 
associate the crash severity with driver, vehicle and roadway factors by using ordered probit/logit  
model or logistic regression (e.g., Shanker and Mannering, 1996; Dissanayake et al., 2002; 
Al-Ghamdi, 2002; Delen, et al., 2002; Tay and Rifaat, 2007; Sze and Wong, 2007). More advanced 
logit-based approaches, such as nested logit model or mixed logit model, were also employed to 
analyze the same issue (e.g. Shanker, et al., 1996; Chang and Mannering, 1999; Milton, et al., 
2008). 
 
Although statistic models are the commonly used methods in the context of crash data analysis 
either collectively or individually, most of them have their own assumptions and complexity in the 
model estimation and interpretation. Once the assumptions were violated, the model could lead to 
erroneous estimation results, especially for the individual approach wherein most variables 
explaining the individual crashes are categorical (e.g., driver gender, road type, lighting condition, 
violation, weather condition, and severity degree, among others). It is difficult to develop 
parametric statistical models based upon the categorical data. Therefore, a number of 
distribution-free methods, such as decision tree (Chang and Chen, 2005; Chang and Wang, 2006) 
and artificial neural network (Chiou, 2006; Delen et al., 2006), were adopted to deal with the 
classification and prediction problems. However, two gaps still remain. First, the interpretations of 
classification results with such methods are weak. The knowledge lying in the crash data cannot be 
fully discovered, because artificial neural network is in essence a black box and the prediction error 
of decision tree is usually high. Second, most of statistical methods only provide calibrated 
parameters with significance tests, which are then used to examine the effects of the corresponding 
variables on crash counts or crash severity. The interrelationship among explanatory factors cannot 
be examined in details. According to “error chain theory,” a crash is often caused by a series of 
errors, not solely by a single factor. As such, mining the explanatory rules is deemed necessary for 
crash data analysis. It is shown in Figure 1 that limited information could be mined from the 
influence of single variable on crash severity. In contrast, combination of multiple variables would 
reveal explicit tendency in crash severity as shown in Figure 2 (The four rules in it is selected from 
the final rule set in this study). 
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Figure 1 analysis of single variable          Figure 2 applying rules to analyze 

 
Rule mining, also known as rule generation, rule recovery, or classification/association rule mining, 
is one of data mining techniques intended to mine for knowledge from available databases and 
toward decision support. Rule mining is naturally modeled as multi-objective problems with three 
criteria: (1) predictive accuracy, (2) comprehensibility, and (3) interestingness (Freitas, 1999; Ghosh 
and Nath, 2004). To automatically search for the optimal combination of rules from a considerable 
number of potential rules, genetic algorithms (GAs) are perhaps the most commonly used method. 
By employing GAs to learn of rules is named as genetic mining rule (GMR) (e.g. Freitas, 1999; 
Shin and Lee, 2002; Ghosh and Nath, 2004; Dehuri and Mall, 2006; Chen and Hsu, 2006). The 
performances of rule mining algorithms have been proven and applied in many fields. Thus, this 
paper aims to develop GMR model that can determine the optimal combination of decision rules to 
achieve the following goals: (1) to discover the key rules that determine the combination of 
contributing factors’ level to crash severity; (2) to provide the possibility of post-adjustment 
(fine-tune) of the rules mined; (3) to accurately predict the crash severity. Previous relevant studies 
have seldom considered the problem of conflict and redundancy among the rules mined, our 
proposed GMR model will account for the conflict and redundancy in addition to conventional 
objectives: coverage ratio and predictive accuracy. 
 
2.2 Data 
 
The crash data were collected from 2003-2007 National Traffic Accident Investigation Reports 
compiled by National Police Agency, Taiwan. Each accident investigation report has been digitized 
and maintained in the database from which detailed individual crash data of freeway accidents are 
obtained. The individual crash data include detailed information regarding injury severity of each 
involved individual, time of accident, driver demographics (age, gender, driver sobriety), involved 
vehicle types, roadway geometry, traffic control condition, weather condition (clear, rain, fog), 
pavement conditions (wet, dry), lighting condition, and vehicle actions (moving straight, right-turn, 
left-turn, lane-change).  
 
Considering the characteristics of crash occurrence may differ in collision type, the single-vehicle 
accident data are chosen to diminish the heterogeneity of crash data. Single-vehicle accidents are 
those in which only a single vehicle is involved. There are 5,563 single-vehicle crash cases 
occurring on Taiwan’s freeways from 2003 to 2007. The injury severity of crashes is determined 
according to the injury degree of the worst-injured victims in the accident. Table 1 presents the 
definition and description of potential explanatory variables to crash severity. 
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Table 1 Crash data summarized from police accident investigation reports 
Information Variable Type Description 
Surface condition x1 Categorical 1, dry; 2, wet or slippery 

Signal control x2 Categorical 1, none; 2, yes 

Driver gender x3 Categorical 1, male; 2, female 

Weather x4 Categorical 1, sunny; 2, cloudy; 3, rain, storm, fog, etc. 

Obstacle x5 Categorical 1, none; 2, work zone; 3, others 

Lighting condition x6 Categorical 1, daytime; 2, dawn or dusk; 3, nighttime with illumination; 4, nighttime without 
illumination 

Speed limit x7 Categorical 
(discretized) 

1, 110 KPH; 2, 100KPH; 3, 90-70KPH; 4, 60-40KPH 

Road status x8 Categorical 1, straight road; 2, grade and curved road; 3, tunnel, bridge, culvert,  overpass; 4, 
others 

Marking x9 Categorical 1, lane line with marker; 2, lane line without marker; 3, no lane-changing line; 4, 
no lane line 

Use of safety belt x10 Categorical 1, safety belt fastened; 2, safety belt not fastened; 3, others or unknown 

Use of cell phone x11 Categorical 1, use; 2, not in use; 3, others or unknown 

License x12 Categorical 1, with license; 2, without license; 3, unknown 

Driver occupation x13 Categorical 1, in job; 2, student; 3, jobless; 4, unknown 

Driver age x14 Categorical 
(discretized) 

1, under 30 years old; 2, 30-40 years old; 3, 40-50 years old; 4, 50-65 years old; 5, 
above 65 years old  

Travel period x15 Categorical 
(discretized) 

1, 07:01-09:00 morning peak; 2, 09:01-16:00 day off-peak; 3, 16:01-19:00 
afternoon peak; 4, 19:01-23:00 night-peak; 5, 23:01-07:00 midnight to morning 

Location x16 Categorical 1, fast lane, general lane; 2, shoulder, edge; 3, median; 4, accelerating or 
decelerating lane, ramp; 5, toll plaza and others 

Vehicle type x17 Categorical 1, passenger car; 2, truck; 3, bus; 4, heavy truck, trailer truck, tractor; 5, others 

Action x18 Categorical 1, forward; 2, left lane-change; 3, right lane-change; 4, urgent deceleration or stop; 
5, others 

Alcoholic use x19 Categorical 1, no; 2, under 0.25 mg/l (or 0.05%); 3, over 0.25 mg/l (or 0.05%); 4, cannot be 
tested; 5, unknown 

Journey purpose x20 Categorical 1, work trip or school trip; 2, business trip; 3, transportation activity; 4, visiting, 
shopping; 5, others or unknown 

Major cause x21 Categorical 1, improper lane-change; 2, speeding; 3, fail to keep a safe distance; 4, alcoholic 
use; 5, fail to pay attention to the front; 6, other driver’s liability; 7, factors not 
attributed to drivers 

Severity y Categorical 1, fatality; 2, injury; 3, no-injury 

 
In Taiwan, crash severity in police investigation report is classified into three degrees: A1 (fatal 
crash), A2 (injury crash), and A3 (non-injury crash). The cases for these three degrees of crash 
severity are 226, 1,593, and 3,744, respectively—an uneven distribution commonly seen in the 
context of crash analysis. Furthermore, 70% of these 5,563 crash cases are randomly chosen for 
training (i.e., 3,895 cases) and the remaining 1,668 cases are used for model validation. χ2-test is 
performed and the result shows that severity distributions between training and validation datasets 
do not significantly differ. 
 
2.3 Genetic rule mining model 
 
Genetic mining rule (GMR), which can automatically learn of comprehensive rules from available 
dataset and toward decision support, is useful in accident analysis (Clarke et al., 1998). The 
encoding method, fitness function, genetic operators, and rule selection of the proposed GMR 
model are narrated below. 
 
2.3.1 Encoding method 
 
To represent the relationship between explanatory variables and crash severity, each chromosome is 
used to represent a potential if-then rule. The conditions associated in the “if part” are termed as 
antecedence part and those in the “then part” are named as consequent part. Besides, the antecedent 
part consists of at least one variable, but at most 21 variables, selected from Table 1. And the 
consequent part is composed by, of course, only one variable: severity degree. In general, a rule is a 
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knowledge representation of the form “If A Then C,” where A is a set of cases satisfying the 
conjunction of predicting attribute values and C is a set of cases with the same predicted degree. 
Thus, a typical rule i can be of the form: Rule i: If x1=ai1 and x2=ai2 …and xj=aij … and x21=ai21 
Then y=gi. Or, in a shorter form: Rule i: If Ai Then Ci, where aij is the categorical value of jth 
attribute variable in rule i. gi is the value of classification variable in rule i, which ranges from 1 to 3 
representing three degrees of crash severity. Ai and Ci are the sets of parties satisfying the 
antecedent part and consequent part of rule i, respectively. 
 

 
Figure 3 Encoding method of the proposed GMR model 

 
By encoding a rule as a chromosome, each gene is used to represent a corresponding variable. Since 
the number of potential variables of antecedent and consequent is respectively 21 and one, the 
length of a chromosome is 22. Each gene will then take one of the categorical values of the 
corresponding variable. Because the ranges of all variables are different, the ranges of gene values 
also vary. Moreover, if a gene in a rule antecedent takes a value of 0, it represents the corresponding 
variable not considered by the rule. If all genes representing the rule antecedent simultaneously take 
0 or if the gene representing the rule consequent is 0, then the rule is not included. 
 
Based on this, a rule of “If surface condition=dry and occupation=in job and actions=left 
lane-change and Then degree of severity=injury” can be encoded as 1000000000001000020002. 
This rule also contains a family of 4.8381010 offspring rules in total, which can be represented by 
“If x1=1 and x2={0, 1, 2} and x3={0, 1, 2} and x4={0, 1,…, 3} and x5={0, 1,…, 3} and x6={0, 1,…, 
4} and x7={0, 1,…, 4} and x8={0, 1,…, 4} and x9={0, 1,…, 4} and x10={0, 1,…, 4} and x11={0, 
1,…, 4} and x12={0, 1,…, 3} and x13=1 and x14={0, 1,…, 5} and x15={0, 1,…, 5} and x16={0, 1,…, 
5} and x17={0, 1,…, 5} and x18=2 and x19={0, 1,…, 5} and x20={0, 1,…, 5} and x21={0, 1,…, 7} and 
Then y=2.” That is, any case satisfying any one of the offspring rules will certainly also satisfy their 
parent rule. Generally, the more variable present in the antecedent part (taking non-zero values), the 
more specific of a rule is (less number of parties will satisfy the rule). 
 
The proposed algorithm aims to select a set of rules which can best predict the severity degree 
based upon these twenty one explanatory variables. The total number of potential rules equals 
333445555444566666668=1.9351014. Obviously, it 
is barely possible to compare all rule combinations through a total enumeration approach. 
 
2.3.2 Fitness function 
 
An individual chromosome, a rule, with a higher fitness function value has a higher probability to 
be selected for reproducing offspring. The role of fitness function is to evaluate the quality of the 
rule numerically. To determine the fitness function, there are three common factors frequently taken 
into consideration: coverage, completeness and confidence of the rule. The coverage ratio of rule i 
(i.e., the cases satisfied by the rule antecedent) is denoted by A : the cardinality of set A (the 

number of elements in set A). The completeness of the rule (i.e., the proportion of cases of the target 
class covered by the rule) is given by CCA / . The confidence of rule i (i.e., the predictive 

accuracy) is given by ACA /  (Freitas, 1999). Shin and Lee(2002) adopted hit ratio(confidence) 
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as the fitness function which is also defined as predictive accuracy plus coverage in another 
study(Kim and Han, 2003). However, it is the performance of the entire rule set that should be 
emphasized instead of those ones of individual rules themselves. In other words, the good 
performances of individual rules do not guarantee that the combination of these rules also performs 
well. It results from the redundancy and conflict between rules. In order to overcome this problem, 
the fitness function is set in this paper as the increase of correctly classified cases by the rule set 
combining the previous mined rules and the new rule, which can be expressed as follows:  

fi =·Nnrs – Nprs                                                        (1) 

where, Nnrs is the number of cases that are correctly classified by the rule set combining the 
previous mined rules with the rule i, and Nprs is the number of cases that are correctly classified by 
the previous mined rules.  
The previous mined rules are also called the temporary rule set in this study. By means of the fitness 
function above, the effect caused by redundancy or conflict between rules would be effectively 
reduced in rule mining process. When a new rule is extracted from the final population, it would 
certainly increase the performance of entire rule set as the new rule set combines the new rule with 
the temporary rule set. 
 
2.3.3 Genetic operators 
 
Because the genes in our GMR model are not encoded binary, simple genetic algorithms proposed 
by Goldberg (1989) cannot be used. Instead, we employ the max-min-arithmetical crossover 
proposed by Herrera et al. (1998) and the non-uniform mutation proposed by Michalewicz (1992). 
A brief description is given below. 
 
(1) Max-min-arithmetical crossover 

Let Gw
t ={ gw1

t ,…, gwk
t ,…, gwK

t } and Gv
t ={ gv1

t ,…, gvk
t ,…, gvK

t } be two 
chromosomes selected for crossover, the following four offsprings can be generated: 

 G1
t+1  = aGw

t + (1-a)Gv
t                                                

                                                        (2) 
G2

t+1  = aGv
t + (1-a)Gw

t                                                
                                                        (3) 

G3
t+1 with g3k

t+1=min{gwk
t, gvk

t}                                           
                                                 (4) 

G4
t+1 with g4k

t+1=max{gwk
t, gvk

t}                                          
                                                 (5) 

where a is a parameter (0 < a < 1) and t is the number of generations.  
 
(2) Non-uniform mutation 
Let Gt = { g1

t ,…, gk
t ,…, gK

t } be a chromosome and the gene gk
t be selected for mutation (the 

domain of gk
t is [gk

l, gk
u]), the value of gk

t+1 after mutation can be computed as follows: 











1),(

0),(1

bifggtg

bifggtg
g

l
k

t
k

t
k

t
k

u
k

t
kt

k
　　　

　　　

                                                

                          
   (6)

 
where b randomly takes the binary value of 0 or 1. The function ),( zt  returns to a value in the 
range of [0, z] such that the probability of ),( zt  approaches to 0 as t increases: 

)1(),( )/1( hTtrzzt                                                                
                                           (7) 

where r is a random number in the interval [0,1], T is the maximum number of generations and h is 
a given constant. In eq. (7), the value returned by ),( zt  will gradually decrease as the evolution 
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progresses. 
 
2.3.4 Rule selection  
 
The method of extracting rules has profound effects on their accompanied performance. 
Conventionally, a group of different rules is obtained simultaneously from the final results as the 
stopping criterion is met. Generally speaking, it is an important issue to avoid selecting redundant 
or conflicting rules during the rule selection process. The redundancy or conflict between the 
selected rules would lead to reduce the performance of the prediction model, as well as increasing 
the difficulty in interpreting the causal relationship between explanatory variables and crash severity. 
However, it is probably difficult to avoid this condition and little information could be found in the 
literature on dealing with this issue (Shin and Lee, 2002; Kim and Han, 2003; Chen and Hsu, 2006). 
On the other hand, the mined rules are often too complicated to be understood instead of being 
interpretable, shorter, and simpler. In order to improve these problems, a learn-one-rule function 
combining with a neighborhood search was introduced over the rule mining process in this study. 
Instead of searching a good rule set at a time, a stepwise rue set building procedure with a greedy 
strategy is proposed. Applying the learn-one-rule function combining with a neighborhood search, 
the rule set is constructed according to the following steps (as shown in Figure 4):  
 
Step 1: Rank rules in the final population according to their fitness values in a descending order. 
Step 2: Select the rule with the highest fitness value and perform a neighborhood search with 

improvement and parsimony principle for rule modification. 
Step 3: Update the temporary rule set by the modified rule. 
Step 4: Terminate until the number of rules in the temporary rule set hit the preset number. 

Otherwise, implement the GAs for another run and go to Step 1. 
 

Initialization of
the Population

Rule Conversion

Parents Selection

Genetic Operations

New Generation

Rule Evaluation

Check
Convergence

Mining
Additional Rule

Discovery of
Decision Rules

Yes

Yes

No

No

Select the Best Rule
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with Improvement 
Replacement and 

Parsimony Principle

Update the Temporary 
Rule Set

 
Figure 4 The GA based mining approach 

 
After a rule is selected, a rule modification scheme is introduced. There are two mechanisms in the 
rule modification process, including improvement replacement and parsimony principle. Due to the 
characteristic of stochastic operation in evolutional process, it is understandable that there might be 
some better points existing near the current solution point in the search space. Based on this, 
Comparative rules are created by enumerating all other attribute values of one variable controlling 
all other variables. In the mechanism of improvement replacement, when the predictive accuracy of 
a comparative rule combining with the previous rule set is better than the raw rule in the same 
condition, the value of the checked variable would be substituted by the value of the same variable 
in that comparative rule, as shown in the left part in Figure 5. If there is no better point found, the 
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mechanism of parsimony principle will hold. When the original value of the checked variable is not 
zero, but the value of the checked variable is zero in comparative rule with the same predictive 
accuracy in the same condition, the value of the checked variable would be substituted by zero, as 
shown in the right part in Figure 5. In this study, the order of checking all explanatory variables is 
from x1 to x21. After all explanatory variables are checked, the last adjusted rule will be put into the 
temporary rule set for next rule mining if needed.  
 

 x1 x2 x3 ···     x21 y 

2 2 1 ··· 5 1

0 2 1 ··· 5 1

2 1 ··· 5 1

the raw rule

comparative rule 1-1
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predictive
accuracy= 0.7
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Figure 5 Rule modification process 

 
It is almost inevitable that two or more rules with different predicted classes may be simultaneously 
fired by a crash case. In this situation, the case is would be predicted as the class of the rule with the 
highest accuracy if two or more rules are applied to the case at the same time. 
 
2.4 Results 
 
The parameters of the proposed GMR model are set as follows: population size=50, crossover 
rate=0.85, mutation rate=0.08, and maximum number of generations=1,000 (the stopping criterion). 
The number of rules to mine is set as 55. The learning process of the GMR model is shown in 
Figure 6. 
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Figure 6 Learning process of the GMR model  

 
Theoretically, the misclassification rate can be lowered to zero monotonically by increasing the 
number of rules in the GMR model. However, a good classification model should not only fit the 
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training data well, it must also accurately classify records it has never seen before. To avoid model 
overfitting, 38 rules are selected in the GMR model as the misclassification rate of validation data 
hit the lowest value. Table 2 shows the final selected rules along with its corresponding 
performance indices. Note that a total of 38 rules are selected with a descending order according to 
PAi. In terms of predictive accuracy (PAi), the top twenty five rules have remarkably higher values 
than the rest of thirteen rules. In terms of coverage ratio (CRi), R23 can explain 3,800 cases, 
followed by R30 (1,460 cases) and R31 (529 cases). In contrast, some rules cover only very few 
cases, such as R1 (6 cases), R6 (6 cases) or R7 (6 cases). 
 
The importance of variable can be identified by the number of its presence in all rules. The number 
of variables with values other than 0 (i.e. the variable is not considered by the rule) in all rules is 
then calculated. In this regard, x13 (driver occupation) is the most important variable which appears 
in 16 rules, followed by x16 (location), x15 (travel period), and x17 (vehicle type). Two variables are 
shown in less than three rules, which are x2 (signal control) and x8 (road status), indicating their 
least significance to crash severity. There are six rules associated with A1 crash, twenty-eight rules 
with A2 crash, and four rules with A3 crash.  
 
Most of the rules could be readily inspected and explained by the if-then relationship of the rules 
themselves. Taking R1 for instance, the rule indicates that when speed limit is 40~60 KPH and 
driver’s age is over 65 years old, it tends to lead A2 crash. R2 shows when drivers are male, in job 
and under 30 years old, speed limit is 100 KPH, travel period is midnight to morning, and major 
cause is alcoholic, it tends to lead A2 crash. As to R19, when safety belt is not fastened with driver’s 
speeding, it tends to cause A1 crash. In contrast to R19, R23 reveals when safety belt is fastened, it 
tends to be less severe (A3 crash). The rest may be deduced by analogy. More exploration of the 
potential implications of the rules is depicted as the following. In regard to driver characteristics, it 
is interesting that jobless driver combining with specific conditions would tend to cause A2 crash. 
The conditions include cloud (R3), nighttime with illumination, under 30 years old, and midnight to 
morning (R20), and no obstacle (R26). Regarding Behavior and environment factors, when safety 
belt is not fastened with driver’s speeding, it tends to cause A1 crash (R19). Use of cell phone 
combining with the antecedents of R14 and R35 tends to lead A2 crash. The alcoholic use has 
positive correlation in crash severity. On the other hand, wet or slippery surface condition and 
obstacle do not have significant effects on crash severity. About vehicle type, truck combining with 
the antecedents of R6, R13, R18, and R27 is likely to lead A2 crash. As to trip characteristic, 
midnight to morning combining with the antecedents of R2, R5, R20, R21, and R29 also tends to 
lead A2 crash. The above-rule interpretations might be useful references for law enforcement or 
management by the related authorities. 
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Table 2 Combination of rules mined by GMR model 
Rules x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 y CRi PAi 

R1 1     1 4  1 5 1   2 6 1.000 
R2   1 1   2   1 1 1 5 1  4 2 12 0.917 
R3    2      3   2 12 0.917 
R4   2    1   1 1 2   2 10 0.900 
R5 1  1       3 1 3   2 12 0.833 
R6    1      1 5 2 2   2 6 0.833 
R7 1    1   1  3 3 2   2 6 0.833 
R8          5 3   2 12 0.833 
R9   1   3   3 1 1 1   2 11 0.818 
R10    1   2  1 4 1 5 7 2 16 0.813 
R11    1   1   2 1   2 16 0.813 
R12      1 3   1 5  3 64 0.813 
R13 1         2 2 2   2 10 0.800 
R14     1  3   1 2   2 15 0.800 
R15   1 1      1 4 1   3 239 0.799 
R16 1    1 4    1 3 2   2 22 0.773 
R17          1 2 2 5  2 12 0.750 
R18   2       1 2 2 5  2 12 0.750 
R19          2  2 1 11 0.727 
R20      3    3 1 5   2 11 0.727 
R21          4 5 1 2   2 25 0.720 
R22 1      3  1 2 2   2 14 0.714 
R23          1   3 3800 0.687 
R24      4    1 1 1   3 201 0.687 
R25          3   1 106 0.613 
R26     1     3   2 154 0.435 
R27    1      2 1  2 77 0.429 
R28          4   1 47 0.426 
R29 1         1 3 5 1   2 91 0.374 
R30 1    1   1 1 1 1   2 1460 0.325 
R31      4   1 1   2 529 0.319 
R32       3   1 1 1   2 305 0.302 
R33          2 2   2 64 0.297 
R34 2         4 1   2 149 0.262 
R35      1 1   1 1 1 1 2 1 1   2 121 0.215 
R36 1         1  2 1 97 0.196 
R37   1 1  3    2 1   1 75 0.080 
R38          1 2 1 1   1 267 0.064 
m 10 0 7 8 5 9 10 2 6 5 4 7 16 9 11 13 11 8 10 5 4 - - - 
Note: m is the number of variable presence in the selected 38 rules. 
 
Table 3 gives the distribution of cases with degree of severity predicted by GMR model and with 
real degree of severity. As shown in Table 3, in the training dataset, the proposed GMR model can 
actually predict the A3 crash (correct rate 80.77%), followed by A2 crash (64.90%) and A1 
(53.13%). The overall correct rate of the proposed GMR model in training has achieved 75.10%. In 
the validation dataset, the overall correct rate has achieved 73.80%. 
 

Table 3 Number of cases with degree of severity predicted by GMR 
Predicted severity 

Datasets Real severity 
A1 A2 A3 

Total 

 A1 85 (53.13%) 46 (28.75%) 29 (18.13%)  160 (100.00) 
Training A2 32 (2.87%) 723 (64.90%) 359 (32.23%)  1114 (100.00) 
 A3 22 (0.84%) 482 (18.39%) 2117 (80.77%)  2621 (100.00) 
 Total 139 1251 2505 3895 

 A1 37 (56.06%) 15 (22.73%) 14 (21.21%)  66 (100.00) 
Validation A2 3 (0.63%) 307 (64.09%) 169 (35.28%)  479 (100.00) 
 A3 11 (0.98%) 225 (20.04%) 887 (78.98%)  1123 (100.00) 
 Total 51 547 1070 1668

Note: The percentages are given in the parentheses. 
 
2.5 Comparisons 
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For comparison purpose, a decision tree (DT) model is also used to mine the rules explaining the 
same crash dataset. The DT model is performed by SAS Enterprise Miner Release 4.3. Several 
settings of the DT model are tried and the best performed settings are as follows. Splitting criterion 
is Gini reduction. Minimum number of observations in a leaf is 1. Observations required for a split 
search is 8. Maximum number of branches from a node is 2. Maximum depth of tree is 6. Splitting 
rules saved in each node is 5. The learning process of the DT model is depicted in Figure 7. Note 
that the misclassification rate decreases as the number of leaves gets larger.  
 
Table 4 presents the number of cases with various degrees of severity predicted by the DT model. 
Note that the DT model performs better in predicting the A3 crash (correct rates in training and 
validation are 97.71% and 97.15%, respectively) than the proposed GMR model. However, the DT 
model performs much worse than the proposed GMR model while predicting both A1 and A2 
crashes. Averagely, the overall correct rates of the DT model in training and validation are 70.24% 
and 69.54%, respectively, which are inferior to the proposed GMR model. 
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Figure 7 Learning process of the DT model 
 
Table 4 Number of cases with degree of severity predicted by DT based on balanced dataset 

Predicted severity 
Datasets Real severity 

A1 A2 A3 
Total 

 A1 71 (44.38%) 10 (6.25%) 79 (49.38%)  160 (100.00) 
Training A2 34 (3.05%) 104 (9.34%) 976 (87.61%)  1114 (100.00) 
 A3 10 (0.38%) 50 (1.91%) 2561 (97.71%)  2621 (100.00) 
 Total 115 164 3616 3895 

 A1 36 (54.55%) 1 (1.52%) 29 (43.94%)  66 (100.00) 
Validation A2 7 (1.46%) 33 (6.89%) 439 (91.65%)  479 (100.00) 
 A3 7 (0.62%) 25 (2.23%) 1091 (97.15%)  1123 (100.00) 
 Total 50 59 1559 1668

Note: The percentages are given in the parentheses. 
 
A total of 18 rules are generated by the DT model as follows: two rules associated with A1 crash, 
six rules with A2 crash, and ten rules with A3 crash. 
R1: If x11=3 Then y=1 
R2: If x11=2 Then y=3 
R3: If x21=2 and x10= {2, 3} and x17= {1, 4} and x11=1 Then y=1 
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R4: If x3=2 and x4= {2, 3} and x17= {2, 3, 5} and x11=1 Then y=2 
R5: If x3=1 and x4= {2, 3} and x17= {2, 3, 5} and x11=1 Then y=3 
R6: If x12=1 and x19=1 and x10=1 and x17= {1, 4} and x11=1 Then y=3 
R7: If x21= {2, 3, 4, 5, 7} and x19= {2, 3, 4, 5} and x10=1 and x17= {1, 4} and x11=1 Then y=3 
R8: If x15= {2, 4, 5} and x21= {1, 3, 4, 5, 6, 7} and x10= {2, 3} and x17= {1, 4} and x11=1 Then y=2 
R9: If x15= {1, 3} and x21= {1, 3, 4, 5, 6, 7} and x10= {2, 3} and x17= {1, 4} and x11= 1 Then y=3 
R10: If x13= {1, 2, 4} and x21= {2, 3, 6} and x4= 1 and x17= {2, 3, 5} and x11=1 Then y=3 
R11: If x13=3 and x21= {2, 3, 6} and x4=1 and x17= {2, 3, 5} and x11=1 Then y=2 
R12: If x20=3 and x21= {1, 4, 5, 7} and x4=1 and x17= {2, 3, 5} and x11=1 Then y=3 
R13: If x21= {1, 2, 3, 6, 7} and x12= {2, 3} and x19=1 and x10=1 and x17= {1, 4} and x11=1 Then y=3 
R14: If x21=5 and x12= {2, 3} and x19=1 and x10=1 and x17= {1, 4} and x11=1 Then y=2 
R15: If x14= {1, 2} and x21= {1, 6} and x19= {2, 3, 4, 5} and x10=1 and x17= {1, 4} and x11=1 Then y=2 
R16: If x14= {2, 3, 5} and x21= {1, 6} and x19= {2, 3, 4, 5} and x10=1 and x17= {1, 4} and x11=1 Then 

y=3 
R17: If x15= {1, 2, 3, 4} and x20= {1, 2, 4, 5} and x21= {1, 4, 5, 7} and x4=1 and x17= {2, 3, 5} and 

x11=1 Then y=3 
R18: If x15=5 and x20= {1, 2, 4, 5} and x21= {1, 4, 5, 7} and x4=1 and x17= {2, 3, 5} and x11=1 Then y=2 
 
2.6 Conclusion 
 
This paper identifies risky conditions (joint effects of risk factors) to crash severity by developing a 
novel genetic mining rule (GMR) model. Three different types of A1, A2 and A3 single-vehicle 
crash cases are drawn from 2003-2007 Taiwan’s freeway accidents dataset. A total of 38 rules have 
been mined which can achieve an overall correct rate of 75.10% in training and 73.80% in 
validation, respectively. Our proposed GMR model has demonstrated superior to the conventional 
decision tree (DT) model, which can only achieve an overall correct rate of 70.24% in training and 
69.54% in validation, respectively, with the same database. According to the mined rules, x13 (driver 
occupation), x16 (location), x15 (travel period), and x17 (vehicle type) are the four key factors 
contributing to crash severity. Consequently, attention must be paid to these four factors to 
ameliorate the traffic safety. 
 
Some directions for future studies can be identified. First, the neighboring traffic condition of the 
crash is also an important factor to crash severity; however, the police accident investigation report 
did not record such information. The crash data may be further matched with the traffic database so 
as to gain more information regarding the contributing factors to crash severity. Second, in order to 
lessen the model complexity, various performance indices may be integrated into an overall fitness 
function; namely, a multi-objective GMR model deserves further elaboration. Last but not least, 
more comparisons can be made to other commonly used methods (e.g., logistic regression model, 
ordered Logit model, artificial neural network) to demonstrate the superiority of the proposed 
model. 

 
 
三、計畫成果自評 
 

本計畫為三年期計畫。其中，本期中報告已完成第二年期之研究內容，依據本研究計畫

書之原訂研究內容，完成之研究成果如下： 
 
1.研究目的與範圍確立 

本年度之研究係奠基於第一個研究年期之主要研究成果，原擬進一步建立螞蟻規則探勘

模式，以高速公路事故資料為應用實例，進行分析與預測模式之構建，並與基因規則探勘、

判別分析、羅吉斯迴歸等模式績效進行比較分析。惟由於螞蟻規則探勘模式之績效表現不佳，
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故改提出「改良型逐步基因規則探勘模式（Stepwise GRM, SGRM）」。後續有關螞蟻規則探勘

之相關研究課題，均以 SGRM 模式替代之。 
 
2.相關文獻彙析 

本研究擬利用數位圖書館及網際網路等資源，檢索有關規則探勘、螞多目標數學規劃及

事故分析與預測等相關文獻資料，俾供本研究進行模式建構與比較分析之參考。 

 
3.蒐集高速公路事故資料並篩選重要解釋變數 

高速公路事故資料分為 A1（死亡事故）、A2（受傷事故）、A3（財損事故）三大類。相

關變數包括：事故發生時間地點、當時天候狀況資料、當地道路幾何條件資料、事故類型、

主要肇事原因、傷亡狀況、交通管制狀況、駕駛人行為與違規狀況等。將利用交叉分析表方

式，先作顯著變數之初步篩選。此外，由於不同類型事故之危險因子與危險情況可能差異甚

大，因此，本研究乃先加以分類後，再進行應用分析。以單車事故為例，共計蒐集 2003 至

2007 年間，5,563 事故件數，其中，A1、A2 及 A3 各 226 件、1,593 件，以及 3,744 件。 
 
4.建立高速公路事故分析與預測模式 

以第一個研究年期所建構之基因規則探勘模式為基礎，進一步提出改良式逐步基因規則

探勘模式，並應用於高速公路事故分析與預測案例。在規則學習與驗證上，本研究採用交叉

驗證方式，將所有案例分為兩部份，分別作為訓練資料及驗證資料。 
 
5.模式績效之比較分析 

本研究將除與基因規則探勘模式進行比較外，並將同時與決策樹分析結果進行比較。 
 
6.推理規則之產生與詮釋 

經由比較分析後，可依據表現較佳之規則探勘模式所挑選規則，進行分析及詮釋，並加

以整理列表。以深入了解各環境變數群、交通管制變數群、駕駛人行為變數群間對事故嚴重

性之聯合效果關係，並據以研提改善策略。 
 

7.結論與建議 
由本年度之研究經驗、求解結果及比較分析，研提具體研究結論與後續研究方向之建議。 
 
上述第二個年期之預期研究成果已順利達成，並為下一年度之研究奠定良好基礎。此外，

本計畫之主要成果已分別發表國際期刊 1 篇文章[28]，並已改寫投稿國際研討會及學術期刊

中[29, 30]。此外，本計畫亦用以指導一名博士生進行論文寫作[31]。 
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