
 1

行政院國家科學委員會補助專題研究計畫 

成果報告 
※※※※※※※※※※※※※※※※※※※※※※※※※ 

※                                                                                            ※ 

※    廣義的 shuffle‐exchange網路之訊息傳送演算法之設計    ※ 

※                                                                                            ※ 

※※※※※※※※※※※※※※※※※※※※※※※※※ 

 
計畫類別：■個別型計畫  □整合型計畫 

計畫編號：NSC97－2628－M－009－06－MY3 

執行期間：97年 8月 1日至 100年 10月 31日 

 

計畫主持人：陳秋媛 

     

     

 

 

 

 

 

 

 

 

 

本成果報告包括以下應繳交之附件： 

□赴國外出差或研習心得報告一份 

(另繳)  赴大陸地區出差或研習心得報告一份 

(另繳)  出席國際學術會議心得報告及發表之論文各一份 

□國際合作研究計畫國外研究報告書一份 

 

 
執行單位：國立交通大學應用數學系 

 

 

中 華 民 國 101 年 1 月 20 日



 2

行政院國家科學委員會專題研究計畫成果報告 
國科會專題研究計畫成果報告撰寫格式說明 

Preparation of NSC Project Reports 
計畫編號：NSC 97‐2628‐M‐009‐006‐MY3 

執行期限：97年 8月 1日至 100年 10月 31日 

主持人：陳秋媛      國立交通大學應用數學系 

cychen@mail.nctu.edu.tw 

計畫參與人員：林武雄、藍國元、邱鈺傑、 

吳思賢、黃思綸、羅健峰、 

蔡詩妤、何恭毅、王奕倫、袁智龍 

 
 

一、中文摘要 

 

多級式連接網路在平行和分散式系統中有

相當多的應用，本計畫之目的即在於探討

多級式連接網路中的訊息傳送問題，並以

廣義的 shuffle‐exchange網路之訊息傳送演

算法之設計為主。本計劃為三年期計劃，

在不計入會議論文以及已投稿但尚在審查

中的論文下，本計劃執行過程中共順利投

稿並被接受四篇期刊論文，其中兩篇是關

於「廣義的 shuffle‐exchange 網路」，一篇

是關於「混合的弦環式網路」，一篇是關

於「獨立擴張樹之點猜測問題」。 

 
關 鍵 詞 ： 連 接 網 路 、 訊 息 傳 送 、

shuffle‐exchange 網路、點獨立擴張樹、混

合的弦環式網路、直徑 

 
Abstract 
 
Multistage  interconnection networks (MINs) 
have  many  applications  in  parallel  and 
distributed  computing  systems.    The 
purpose  of  this  project  is  to  study  routing 
problems  that  arise  in  MINs,  especially, 
those  that  arise  in  generalized 
shuffle‐exchange  networks.    This  project  is 
a  three‐year  project.    During  the  three 
years, we have published four journal papers.   
Two  of  them  consider  routing  problems  in 
generalized  shuffle‐exchange networks; one 

of  them  considers  the  mixed  chordal  ring 
networks;  and  one  of  them  discusses  the 
vertex  conjecture  of  the  independent 
spanning trees problem. 
 
Keywords:  interconnection  network, 
message routing, shuffle‐exchange network, 
independent  spanning  trees, mixed  chordal 
ring network, diameter 
 
二、緣由與目的 

 
在過去幾年中，本人所做的研究以「環式

網路」為主；然而，由於「連接網路」及

「無線網路」在現今的研究及實際應用

中，佔有重要地位，故想藉此計劃開始「連

接網路」以及「無線網路」方面之研究。 

 
三、結果與討論 

 

在 1991 年，Padmanabham 提出了廣義的

shuffle‐exchange 網路，其目的在於打破

shuffle‐exchange 網路中、網路節點數必須

是 k 的指數之限制（其中 k 表示網路中的

switching  elements 均為 of  size  k k ），

Padmanabham並給出有效率且簡明的訊息

傳送演算法。在 2003年，  Chen、Liu、Qiu

等三人將廣義的 shuffle‐exchange網路再推

廣為連線均為雙向的；因此雙向的廣義的

shuffle‐exchange 網路中即有正向、及反向

兩網路。 



 3

 

在過去這三年中，我們已經完成、順利投

稿、並被接受四篇期刊論文：其中第一篇

論文被 Discrete  Mathematics,  Algorithms 

and  Applications 接受；第二篇論文被

Information Processing Letters接受；第三篇

及第四篇論文被 Theoretical  Computer 

Science 接受。以上四篇論文之電子檔均附

於報告最後。今簡要敘述四篇論文之結果

如下。 

 

論文一：Efficient  routing  algorithms  for 

generalized shuffle‐exchange networks 

（論文電子檔附於後） 

 

在此論文中，我們探討雙向的廣義的

shuffle‐exchange 網路中的正向及反向網路

之訊息傳送所使用的 routing tags的關係，

我們導出關係式，並得出快速的訊息傳送

演算法。 

 

論文二：Improved upper and lower bounds 

on  the  optimization  of  mixed  chordal  ring 

networks   

（論文電子檔附於後） 

 

Chen等人在文獻[3]中提出「混合的弦環式

網路」。他們並指出：「混合的弦環式網

路」與「雙環式網路」的硬體花費相同，

但是「混合的弦環式網路」的直徑

（communication delay）遠小於「雙環式網

路」的直徑。不幸的是，我們發現文獻[3]

中關於「混合的弦環式網路的直徑」的上

界的推導是有錯誤的。在此論文中，我們

指出文獻[3]的證明中的錯誤、提出更佳之

直徑上界之結果、大大改進文獻[3]的結果。 

 

論文三：All‐to‐all personalized exchange  in 

generalized shuffle‐exchange networks   

（論文電子檔附於後） 

 

全體對全體私有訊息傳送（ all‐to‐all 

personalized exchange）出現在許多平行與

分散式處理系統之應用。在文獻[15]中，

Yang 以及 Wang 運用拉丁方陣的技巧，針

對了具有 unique‐path 以及 self‐routable 性

質的多級式連接網路，提出了時間複雜度

為 )(NO 的最佳全體對全體私人化交換演

算法。所有在文獻[15]中被討論到的網路

（包括 shuffle‐exchange 網路），皆滿足

2nN  （ N 表示多級式網路的輸入及輸出

端的個數，n是多級式網路的階級數）。在

廣 義 的 shuffle‐exchange 網 路 中 ，
12 2n nN   ，不再要求 2nN  。由於廣義

的 shuffle‐exchange 網 路 不 具 有

unique‐path性質，因此無法使用 Yang以及

Wang的演算法。我們的論文的目的即在於

探討廣義的 shuffle‐exchange網路的全體對

全體私有訊息傳送。 

 

論文四：Constructing independent spanning 

trees for locally twisted cubes 

（論文電子檔附於後） 

 
在網路中使用多棵獨立擴張樹對於資料廣

播有相當多的好處，例如：可以提高容錯

以及頻寬等；因此，在各種的網路結構上，

建造多棵獨立擴張樹，一直以來都被廣泛

地研究。Zehavi 和 Itai在文獻[16]中，對於

建造多棵獨立擴張樹提出了兩個猜測。「點

猜測」闡述的是：在一個點連通度為 n 的

圖上，能以圖中任一點為樹根，產生 n 棵

點獨立擴張樹；「邊猜測」闡述的是：在

一個邊連通度為 n 的圖上，能以圖中任一

點為樹根，產生 n 棵邊獨立擴張樹。在文

獻[9]  中，Khuller 和 Schieber證明了點猜測

能涵蓋邊猜測。局部扭轉超立方體是超立

方體的變形。最近，Hsieh 和 Tu 在文獻[6]

中，提出了一個能在 n 維局部扭轉超立方

體上，建造以 0 為樹根的 n 棵邊獨立擴張

樹的演算法。因為局部扭轉超立方體不具

點對稱性質，Hsieh 和 Tu 所提出的演算法

無法解決局部扭轉超立方體的邊猜測。在



 4

這篇論文中，我們提出了一個可以在局部

扭轉超立方體上，以任一點為樹根，建構 n

棵點獨立擴張樹的演算法；我們的演算法

證明了局部扭轉超立方體符合點猜測，當

然，也證明了局部扭轉超立方體符合邊猜

測。 

 
四、計劃成果自評 

 
本計劃之執行成果與預期成果非常相符。 

 
五、參考文獻 

 
[1]  B.  W.  Arden  and  H.  Lee,  Analysis  of 

chordal  ring  network,  IEEE  Trans. 
Computer. 30 (1981) 291‐295. 

[2]  L. Barriere, J. F\'abrega, E. Simo and M. 
Zaragora,  Fault‐tolerant  routing  in 
chordal  ring  networks,  Networks  36 
(2000) 180‐190 

[3]  S.  K.  Chen,  F.  K.  Hwang  and  Y.  C.  Liu, 
Some  combinatorial properties of mixed 
chordal rings,” J. Inter. Networks 4 (2003) 
3‐16. 

[4]  C.  Y.  Chen  and  J.  K.  Luo,  An  efficient 
tag‐based  routing  algorithm  for  the 
backward  network  of  a  bidirectional 
general  shuffle‐exchange  network,  IEEE 
Commun. Lett. 10, no. 4 (2006) 296‐298. 

[5]  Y. Cheng and F. K. Hwang, Diameters of 
weighted  double  loop  networks,  J. 
Algorithms 9 (1988) 401‐410. 

[6]  S.  Y.  Hsieh  and  C.  J.  Tu,  Constructing 
edge‐disjoint  spanning  trees  in  locally 
twisted  cubes,  Theoretical  Computer 
Science 410 (2009) 8‐10. 

[7]  J.  L.  Hurink  and  T.  Nieberg, 
Approximating  minimum  independent 
dominating  sets  in  wireless  networks, 
Information  Processing  Letters,  109,  no. 
2 (2008) 155‐160. 

[8]  F.  K. Hwang,  A  complementary  survey 
on  double‐loop  networks,  Theoret. 
Comput. Sci. 263 (2001) 211‐229. 

[9]  S. Khuller, B. Schieber, On  Insependent 
spanning‐trees,  Information  Processing 
Letters 42 (1992) 321‐323. 

[10]  V. W.  Liu,  C.  Y.  Chen,  and  R.  B.  Chen, 
Optimal  all‐to‐all  personalized  exchange 

in  d‐nary  banyan  multistage 
interconnection  networks,  Journal  of 
Combinatorial  Optimization,  14  (2007)   
131‐142. 

[11]  A.  Massini,  All‐to‐all  personalized 
communication  on  multistage 
interconnection networks, Discrete Appl. 
Math. 128, no. 2 (2003) 435‐446. 

[12]  K.  Padmanabham,  Design  and  analysis 
of  even‐sized  binary  shuffle‐exchange 
networks for multiprocessors, IEEE Trans. 
Parallel  Distrib.  Syst.  2,  no.  4  (1991) 
385‐397. 

[13]  C. S. Raghavendra and J. A. Sylvester, A 
survey  of  multi‐connected  loop 
topologies  for  local  computer  networks, 
Comput.  Netw.  ISDN  Syst.  11  (1986) 
29‐42. 

[14]  Y.  Tscha  and  K.  H.  Lee,  Yet  another 
result  on  multi‐log  N  networks,  IEEE 
Trans. Commu. 47 (1999) 1425–1431. 

[15]  Y.  Yang,  J.  Wang,  Optimal  all‐to‐all 
personalized  exchange  in  self‐routable 
multistage networks,  IEEE Trans. Parallel 
Distrib. Syst. 11, no. 3 (2000) 261‐274. 

[16]  A. Zwhavi and A.  Itai, Three tree‐paths, 
Journal  of  Graph  Theory  13  (1989) 
175‐188.   



June 16, 2009 20:43 WSPC/257-DMAA 00021

Discrete Mathematics, Algorithms and Applications
Vol. 1, No. 2 (2009) 267–281
c© World Scientific Publishing Company

EFFICIENT ROUTING ALGORITHMS FOR
GENERALIZED SHUFFLE-EXCHANGE NETWORKS∗

JAMES K. LAN, WELL Y. CHOU and CHIUYUAN CHEN†

Department of Applied Mathematics
National Chiao Tung University

Hsinchu 300, Taiwan

Accepted 13 February 2009

The shuffle-exchange network has been proposed as a popular architecture for multistage
interconnection networks. In 1991, Padmanabhan introduced the generalized shuffle-
exchange network (GSEN) and proposed an efficient routing algorithm. Later, Chen
et al. further enhanced the GSEN with bidirectional links and proposed the bidirectional
GSEN (BGSEN). A BGSEN consists of the forward and the backward network. Based
on the idea of inversely using the control tag generated by Padmanabhan’s algorithm,
Chen et al. proposed a routing algorithm for the backward network. Recently, Chen and
Lou also proposed a routing algorithm for the backward network. It should be noted,
however, that Padmanabhan’s algorithm is actually an explicit formula for computing
the control tag for routing and takes only O(1) time. Neither the algorithm of Chen
et al. nor the algorithm of Chen and Lou provides an explicit formula for computing the
control tag for routing and both algorithms take at least Ω(n) time, where n + 1 is the
number of stages in the BGSEN. This paper attempts to propose an explicit formula for
computing the control tag for routing in the backward network. We will demonstrate
how this formula greatly simplifies the computation process and how it leads to efficient
routing algorithms. In particular, an O(1)-time one-to-one routing algorithm and an
efficient routing-table construction algorithm have been proposed.

Keywords: Multistage interconnection network; routing; algorithm; shuffle-exchange net-
work; omega network.

Mathematics Subject Classification 2000: 68M10, 68W40, 68M20

1. Introduction

Throughout this paper, N denotes the number of input (output) terminals of a
given multistage interconnection network (MIN) and all the switching elements of
an MIN are assumed to be of size k × k. See Fig. 1 for an example. It is well-
known that k|N . The k-ary shuffle operation on N terminals is the permutation π

∗This research was partially supported by the National Science Council of the Republic of China
under the grants grant NSC97-2628-M-009-006-MY3.
†The corresponding author, e-mail: cychen@mail.nctu.edu.tw

267



June 16, 2009 20:43 WSPC/257-DMAA 00021

268 J. K. Lan, W. Y. Chou & C. Chen

0

1

2

3

4

5

6

7

8

9

10

11

stage 0 stage 1 stage 2

12

13

14

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(a)
…

sub port 0

sub port 1

sub port k -1

…

sub port 0

sub port 1

sub port k-1

(b)

Fig. 1. (a) BGSEN(3,5,3). It is an MIN with N = 15 input (output) terminals and all the switching
elements are of size 3 × 3. One (4,2)-path and two (11,6)-paths are also shown in this figure.
(b) A k × k switching element and its sub ports.

defined by

π(i) =
(

ki +
⌊

ki

N

⌋)
mod N, 0 ≤ i ≤ N − 1.

The shuffle-exchange network is an MIN with N = kd input (output) terminals
such that each stage consists of the k-ary shuffle on N terminals followed by N/k

switching elements. The shuffle-exchange network has been proposed as a popular
architecture for MINs; see [3,4,6,7,9]. When the number of stages is exactly d, the
shuffle-exchange network is also called the omega network; see [7].

Padmanabhan [8] first generalized the shuffle-exchange network to allow N �= kd

and introduced the generalized shuffle-exchange network. More precisely, the gen-
eralized shuffle-exchange network (GSEN) is a network that has N input (output)
terminals and has exactly �logk N� stages such that each stage consists of the k-
ary shuffle on N terminals followed by N/k switching elements; see Fig. 1(a) for
an example. Note that Padmanabhan used the word “general” instead of “gener-
alized.” Also note that an MIN must have at least �logk N� stages to ensure that
every input terminal can get to every output terminal; Padmanabhan used this
minimum number of stages to construct a GSEN.



June 16, 2009 20:43 WSPC/257-DMAA 00021

Efficient Routing Algorithms for Generalized Shuffle-Exchange Networks 269

In an MIN, a path from a source (of a routing request) to a destination can be
described by a sequence of labels that label the successive links on this path. Such
a sequence is called a control tag [8] or tag [1] or path descriptor [5]. The control tag
may be used as a header for routing a message: each successive switching element
uses the first element of the sequence to route the message, and then discards it.
For example, in Fig. 1(a), input 4 can get to output 2 by using the control tag
14 = (1 1 2)3, which means that the routing is via sub port 1 at stage 0, sub port 1
at stage 1, and sub port 2 at stage 2. In [8], Padmanabhan also proposed an elegant
tag-based routing algorithm (call it P-algorithm for convenience) for the GSEN;
this algorithm is actually an explicit formula for computing the control tag.

In [1], Chen et al. further enhanced the GSEN with bidirectional links. Their
reason for enhancing it is that although unidirectional links are extensively used,
bidirectional links can also be widely applicable as suggested in [3]. A bidirectional
generalized shuffle-exchange network (BGSEN) can be divided into two dependent
networks: the forward network and the backward network. The forward network is
from the left-hand side of the network to the right-hand side. A routing in the
forward network is from left to right. The control tags used in the forward network
are called the forward control tags. The backward network is from the right-hand
side of the network to the left-hand side. A routing in the backward network is from
right to left. The control tags used in the backward network are called the backward
control tags.

Since the forward network is the GSEN, Padmanabhan’s elegant tag-based rout-
ing algorithm can thus be applied on it. As for the backward network, Chen et al. [1]
proposed a tag-based routing algorithm (hereafter refers to as CLQ-algorithm) by
using the forward control tag inversely. More precisely, CLQ-algorithm first runs
P-algorithm to obtain the forward control tag. It then obtains the port sequence
used by the forward control tag. Finally, it runs another procedure to convert the
port sequence into the backward control tag. Recently, Chen and Lou [2] showed
that the backward network has a wonderful property: for each destination i, there
are two backward control tags associated with i such that every source j can get
to i by using one of the two backward control tags. They also proposed an efficient
algorithm (hereafter refers to as CL-algorithm) for computing the two associated
backward control tags.

It should be noted that P-algorithm is actually an explicit formula for computing
the control tag (see Sec. 3) and takes only O(1) time. Therefore, there is an explicit
formula for computing the forward control tag. There is, however, neither [1] nor [2]
that provides an explicit formula for computing the backward control tag. In [1]
and [2], an algorithm has to be executed for obtaining the backward control tag
and the algorithm takes at least Ω(n) time, where n + 1 is the number of stages in
the network. In [1], Chen et al. mentioned that the computation of the backward
control tag is still more complex than the forward control tag, and that they asked
whether there is an easy algorithm or a direct relation between the forward control
tag and the backward control tag.



June 16, 2009 20:43 WSPC/257-DMAA 00021

270 J. K. Lan, W. Y. Chou & C. Chen

The purpose of this paper is to provide an affirmative answer to the question
of Chen et al. and to propose efficient routing algorithms for the BGSEN. In par-
ticular, we propose a formula for characterizing the relation between the forward
control tag F and the backward control tag B. This formula will be termed the for-
ward backward control tag (FBCT) formula. We will use FBCT formula to obtain
an explicit formula for computing the backward control tag B. This explicit for-
mula for B greatly simplifies the process of computing the backward control tag B

and leads to an O(1)-time one-to-one routing algorithm for the backward network,
the simplified version of CL-algorithm, and an efficient routing-table construction
algorithm for the backward network.

This paper is organized as follows. Section 2 gives definitions and conventions
that will be used throughout this paper; Sec. 3 briefly reviews P-algorithm, CLQ-
algorithm and CL-algorithm; Sec. 4 contains our main result and its listed appli-
cations; Sec. 5 gives an efficient algorithm for constructing a routing table for the
backward network; concluding remarks are given in the last section.

2. Definitions and Conventions

We will follow most of the notations and terminologies used in [1] and [8]. In par-
ticular, the number of stages is denoted by n + 1 instead of n. BGSEN(k, r, n + 1)
denotes a BGSEN in which the switching elements are aligned in n + 1 stages,
labelled 0, 1, . . . , n, with stage 0 to be the leftmost stage; each stage consists of r

switching elements, labelled 0, 1, . . . , r − 1; and each switching element is a k × k

bidirectional crossbar. For example, the network in Fig. 1(a) is BGSEN(3,5,3). In
BGSEN(k, r, n + 1), there are a total of N = k × r ports on each side of a stage,
labelled 0, 1, . . . , N − 1. The parameters k, r, and n satisfy the following equation:
�logk(k · r)� = �logk N� = n + 1. Throughout this paper, let

N = kn + M, with 0 < M ≤ kn+1 − kn. (2.1)

The following conventions are used in this paper. No matter the network consid-
ered is the forward or the backward network, stage 0 means the leftmost stage. The
switching elements in a stage are considered cyclic; that is, the switching element
labelled 0 is considered to be the successive switching element of the switching ele-
ment labelled r−1. Also, terminal i is assumed on the left-hand side of the network
and terminal j is assumed on the right-hand side of the network. An (

−→
i, j)-request

((
←−
i, j)-request) denotes a routing request or a request for sending a message from i

to j (from j to i). An (i, j)-path denotes a path between i and j.
Note that an (

−→
i, j)-request or an (

←−
i, j)-request can be fulfilled by an (i, j)-path.

Moreover, an (i, j)-path can be characterized by its port sequence, which is the
sequence of ports (R−1, R0, R1, . . . , Rn) passed by this path such that R−1 is defined
to be R−1 = i and R� is the port to the right-hand side of the switching element at
stage � on this path. Clearly, Rn = j. Another way to define the port sequence is
to use the ports on the left-hand side of the switching element at each stage; but in
this paper, we will use the former definition.



June 16, 2009 20:43 WSPC/257-DMAA 00021

Efficient Routing Algorithms for Generalized Shuffle-Exchange Networks 271

All the previous routing algorithms of GSENs and BGSENs are tag-based. A
tag-based routing algorithm sets up a path from the source to the destination by
using a control tag T . Each digit of the k-ary representation of T is used to control
one switching element in the path. More precisely, suppose

T = (t0t1 · · · tn)k,

then digit t� controls the switching element at stage � in the path.
In a BGSEN, there are two types of control tags: the forward control tag and the

backward control tag. The former is comprised of the sub ports on the right-hand
side of the switching elements on the routing path, while the latter is comprised of
the sub ports on the left-hand side of the switching elements on the routing path.
Let F denote a forward control tag and assume

F = (f0f1 · · · fn)k.

Let B denote a backward control tag and assume

B = (b0b1 · · · bn)k.

Clearly, F and B satisfy

F = f0k
n + f1k

n−1 + · · ·+ fn−1k + fnk0 (2.2)

and

B = b0k
n + b1k

n−1 + · · ·+ bn−1k + bnk0. (2.3)

F is used in the order f0 f1 · · · fn−1 fn and B is used in the order bn bn−1 · · · b1 b0.

Note that

0 ≤ fi, bi < k for all i, 0 ≤ i ≤ n, and 0 ≤ F, B < kn+1. (2.4)

Take BGSEN(3,5,3) in Fig. 1(a) for an example. The (
−→
4, 2)-request and also the

(
←−
4, 2)-request can be fulfilled by using the (4, 2)-path shown in this figure. The port

sequence of this (4, 2)-path is (4, 13, 10, 2). So the (
−→
4, 2)-request can be routed

by using the forward control tag F = 14 = (1 1 2)3 and the (
←−
4, 2)-request can be

routed by using the backward control tag B = 8 = (0 2 2)3.

3. Previous Routing Algorithms

We now briefly review previous routing algorithms of GSENs and BGSENs. P-
algorithm was stated in a theorem in [8] and it provides an explicit formula for
computing the control tag of a GSEN and also for computing the forward control
tag of BGSEN(k, r, n + 1).

Theorem 3.1 [8]. Any i, 0 ≤ i < N, can set up a path to a j, 0 ≤ j < N, by using
the control tag

F1 = (j + k ·M · i) mod N. (3.1)

In addition, other control tags (and paths) may be available, specified by

Fp = F1 + (p− 1)N if Fp < kn+1, 1 < p ≤ k. (3.2)



June 16, 2009 20:43 WSPC/257-DMAA 00021

272 J. K. Lan, W. Y. Chou & C. Chen

CLQ-algorithm is based on the idea of inversely using the forward control tag
generated by P-algorithm. See the following.

CLQ-algorithm
Input: i on the left-hand side and j on the right-hand side of BGSEN(k, r, n+1).
Output: A backward control tag B that can send a message from j to i.

1. Use P-algorithm to obtain a forward control tag F = (f0f1 · · · fn)k that can
send a message from i to j.

2. Get the port sequence R� (−1 ≤ � ≤ n) in the path based on F by:

R� =
{

i if � = −1,

(k ·R�−1) mod N + f� if 0 ≤ � ≤ n.

3. Use R� (0 ≤ � ≤ n) to obtain the backward control tag B = (b0b1 · · · bn)k by:

b� =
⌊

k ·R�−1

N

⌋
for 0 ≤ � ≤ n.

Recently, Chen and Lou [2] showed that the backward network of a BGSEN has
a wonderful property: for each destination i, there are two backward control tags
associated with i such that every source j can get to i by using one of the two tags.
See the following.

CL-algorithm
Input: i on the left-hand side of BGSEN(k, r, n + 1).
Output: The value v(i) and the two backward control tags B = (b0 b1 · · · bn)k

and B′ = (b′0 b′1 · · · b′n)k associated with i.

1. for � = 0 to n do C� = (i · k�) mod r end for
2. v(i) = Cn · k
3. if (r − Cn−1) · k ≥ r

then
Dn = 1; for � = 0 to n− 1 do D� = 0 end for;

else
for � = 0 to n do if C� + k� > r then D� = 1 else D� = 0 end if
end for

end if
4. b0 =

⌊
i
r

⌋
; for � = 1 to n do b� =

⌊
k·C�−1

r

⌋
end for

5. for � = 0 to n do b′� = (b� + D�) mod k end for

Chen and Lou proved the following theorem.

Theorem 3.2 [2]. If v(i) ≤ j < N, then j can get to i by using B; if 0 ≤ j < v(i),
then j can get to i by using B′.



June 16, 2009 20:43 WSPC/257-DMAA 00021

Efficient Routing Algorithms for Generalized Shuffle-Exchange Networks 273

4. The Main Result

In [1], Chen et al. pointed out that the computation of the backward control tag
B is still more complex than the forward control tag F . They also asked whether
there is an easy algorithm or a direct relation between F and B. In this section, we
give an affirmative answer to this problem.

This section is organized as follows. Subsection 4.1 gives a formula for the rela-
tion between F and B; Subsection 4.2 gives applications of the formula.

4.1. A formula for the relation between F and B

Consider BGSEN(k, r, n + 1) and an (i, j)-path P in it. Let (i = R−1, R0, R1, . . . ,

Rn = j) be the port sequence of P . Let F be the forward control tag that fulfills
an (
−→
i, j)-request by using P and let B be the backward control tag that fulfills an

(
←−
i, j)-request by using P . See Fig. 2 for an illustration.

Note that when sending a message from i to j along P , the message enters a
switching element at stage � via sub port b� and leaves the switching element via sub
port f�. Conversely, when sending a message from j to i along P , the message enters
a switching element at stage � via sub port f� and leaves the switching element via
sub port b�. The following result has been obtained in [1].

Lemma 4.1 [1]. For 0 ≤ � ≤ n,

(a) R� = (k ·R�−1 + f�) mod N.

(b) b� = �k·R�−1
N 	 = �R�−1

r 	.

The formula stated in the following theorem is our main result. It characterizes
the relation between F and B. We call this formula the forward backward control
tag (FBCT) formula.

Theorem 4.2. (FBCT formula)

kn+1 · i + F = B ·N + j.

Proof. We first prove that

k ·R�−1 + f� = b� ·N + R�, 0 ≤ � ≤ n. (4.1)

… … … … … ………b0

bnf0

f1

b1

fn

i j
stage 0 stage 1 stage n

Fig. 2. An (i, j)-path and the corresponding sub ports.



June 16, 2009 20:43 WSPC/257-DMAA 00021

274 J. K. Lan, W. Y. Chou & C. Chen

By Lemma 4.1(a), R� is the remainder of k ·R�−1 + f� divided by N . Also, by (2.4)
and Lemma 4.1(b),⌊

k · R�−1 + f�

N

⌋
=

⌊
R�−1 + f�

k

r

⌋
=

⌊
R�−1

r

⌋
= b�.

This equation says that b� is the quotient of k ·R�−1 + f� divided by N . Hence we
have (4.1). By (4.1), we have

(k ·R−1 + f0) · kn = (b0 ·N + R0) · kn

(k · R0 + f1) · kn−1 = (b1 ·N + R1) · kn−1

(k · R1 + f2) · kn−2 = (b2 ·N + R2) · kn−2

...
...

(k ·Rn−1 + fn) · k0 = (bn ·N + Rn) · k0.

Since the summation of the left-hand sides of these equations equals to the summa-
tion of the right-hand sides of these equations, we have

kn+1 · R−1 + f0 · kn + · · · + fn · k0︸ ︷︷ ︸
by (2.2), this is F

= ( b0 · kn + · · · + bn · k0︸ ︷︷ ︸
by (2.3), this is B

) ·N + Rn.

Consequently, kn+1 · i + F = B ·N + j.

4.2. Applications of FBCT formula

In this subsection, we show various applications of FBCT formula. We first use it
to obtain the destination j of a message sending from a source i when the forward
control tag is F .

Corollary 4.3. Given i and F, the destination j is given by

j = (kn+1 · i + F ) mod N.

Proof. This corollary follows from FBCT formula.

Define

v(i) = kn+1 · i mod N.

Note that the definition of v(i) is identical to the one used in CL-algorithm. The
following corollary follows immediately from Corollary 4.3 and its proof is omitted.

Lemma 4.4. Given i and F = 0, the destination j is v(i).

Lemma 4.4 indicates that i can get to j = v(i) by always going to sub port 0
of the switching element at each stage. Recall that 0 ≤ F < kn+1 and 0 ≤ j < N .
In the remaining part of this paper, F = 0 is considered to be the successive F

of F = kn+1 − 1, j = 0 is considered to be the successive j of j = N − 1, and



June 16, 2009 20:43 WSPC/257-DMAA 00021

Efficient Routing Algorithms for Generalized Shuffle-Exchange Networks 275

j = N − 1 is considered to be the preceding j of j = 0. Therefore, if F = kn+1 − 1,
then F + 1 = 0; if j = N − 1, then j + 1 = 0; if j = 0, then j − 1 = N − 1. The
following result follows immediately from Corollary 4.3 and its proof is omitted.

Lemma 4.5. Given i, j increases by 1 whenever F increases by 1. Moreover, con-
secutive F ’s will make i get to consecutive j’s.

By Lemma 4.3, we already know which j will receive a message from i when the
forward control tag is F . Conversely, how can j reply a message to i? The following
corollary provides the answer.

Corollary 4.6.

B =
⌊

kn+1 · i + F

N

⌋
.

Proof. This corollary follows from FBCT formula and the fact that
0 ≤ j < N .

This corollary provides a direct conversion from F into its corresponding B.
Consider BGSEN(3,5,3) in Fig. 1(a). Suppose i = 4 and F = 14. Then by Corol-
lary 4.3, j = 2 will receive the message from i. On the contrary, by Corollary 4.6,
j = 2 can reply a message to i = 4 by using B = 8 = (0 2 2)3.

We now use FBCT formula to obtain the destination i of a message sending, in
the backward network, from a source j when the backward control tag is B.

Corollary 4.7. Given j and B, the destination i is given by

i =
⌊

B ·N + j

kn+1

⌋
.

Proof. This follows from FBCT formula and the fact that 0 ≤ F < kn+1.

FBCT formula also suggests the following bounds for B.

Corollary 4.8. For an (
←−
i, j)-request, B satisfies

kn+1 · i− j

N
≤ B <

kn+1 · (i + 1)− j

N
. (4.2)

Moreover, any integer B satisfying (4.2) can serve as a backward control tag for an
(
←−
i, j)-request.

Proof. (4.2) follows from FBCT formula and the fact that 0 ≤ F < kn+1. Suppose
B is an integer satisfying (4.2). Then i ≤ B·N+j

kn+1 < i + 1. By Corollary 4.7, j can
get to i by using B.

The following theorem follows from Corollary 4.8 and its proof is omitted.



June 16, 2009 20:43 WSPC/257-DMAA 00021

276 J. K. Lan, W. Y. Chou & C. Chen

Theorem 4.9. Any j, 0 ≤ j < N, in the backward network of BGSEN(k, r, n + 1)
can set up a path to i, 0 ≤ i < N, by using the backward control tag

B1 =
⌈

kn+1 · i− j

N

⌉
.

In addition, other backward control tags (and paths) may be available, specified by

Bp = B1 + (p− 1) if Bp <
kn+1 · (i + 1)− j

N
, 1 < p ≤ k.

Take the backward network in Fig. 1(a) as an example. By Theorem 4.9, j = 6
can get to i = 11 by using B1 = 20 = (2 0 2)3 and B2 = B1+1 = 21 = (2 1 0)3; the
two routing paths are depicted in Fig. 1(a). Do notice that Theorem 4.9 provides
an explicit formula for computing the backward control tag B; see the following
algorithm. The correctness of this algorithm follows from Theorem 4.9 and it takes
only O(1) time.

ONE-TO-ONE-ROUTING
Input: i on the left-hand side and j on the right-hand side of BGSEN(k, r, n+1).
Output: A backward control tag B, which can be used to send a message from j

to i.

1. B =
⌈

kn+1·i−j
N

⌉
.

Recall that CL-algorithm obtains the two backward control tags B and B′ asso-
ciated with i such that every j can get to i by using one of B and B′. We now
propose a theorem, which is a special case of Theorem 5.2 in Sec. 5, that gives
explicit formulae for computing B and B′.

Theorem 4.10. Given an (
←−
i, j)-request,

(a) if v(i) ≤ j < N, then j can get to i by using B =
⌊

kn+1·i
N

⌋
;

(b) if 0 ≤ j < v(i), then j can get to i by using B′ =
⌊

kn+1·i
N

⌋
+ 1.

Proof. Set q =
⌊

kn+1·i
N

⌋
for easy writing. By the definition of v(i), we have

kn+1 · i− v(i) = q ·N.

We first prove (a). By Lemmas 4.4 and 4.5, setting 0 ≤ F < N − v(i) will make i

get to j, where v(i) ≤ j < N . So

q ≤ kn+1 · i
N

≤ kn+1 · i + F

N
<

kn+1 · i + N − v(i)
N

= q + 1.

By Corollary 4.6, we have B = q =
⌊

kn+1·i
N

⌋
.



June 16, 2009 20:43 WSPC/257-DMAA 00021

Efficient Routing Algorithms for Generalized Shuffle-Exchange Networks 277

We now prove (b). Again, by Lemmas 4.4 and 4.5, setting N − v(i) ≤ F < N

will make i get to j, where 0 ≤ j < v(i). So

q + 1 =
kn+1 · i + N − v(i)

N
≤ kn+1 · i + F

N
<

kn+1 · i
N

+ 1 ≤ q + 2.

Again, by Corollary 4.6, we have B′ = q + 1 =
⌊

kn+1·i
N

⌋
+ 1.

Theorem 4.10 provides explicit formulae for computing the two backward control
tags B and B′ associated with i; see the following algorithm.

COMPUTE-TWO-TAGS
Input: i on the left-hand side of BGSEN(k, r, n + 1).
Output: The value v(i) and the two backward control tags B and B′ associated

with i such that every j can get to i by using one of them.

1. v(i) = kn+1 · i mod N

2. B =
⌊

kn+1·i
N

⌋
and B′ =

⌊
kn+1·i

N

⌋
+ 1

The correctness of this algorithm follows from Theorem 4.10. It takes only O(1)
time and it greatly simplifies CL-algorithm.

5. Constructing Routing Tables for the Backward Network

In [2], Chen and Lou had used CL-algorithm to construct a routing table for the
backward network. However, Chen and Lou’s routing table provides only one back-
ward control tag for an (

←−
i, j)-request. By Theorem 4.9, we know that an (

←−
i, j)-request

in BGSEN(k, r, n+1) may have up to k backward control tags. The purpose of this
section is to construct a routing table so that all the backward control tags for an
(
←−
i, j)-request are in this table. Such a routing table can be used for fault-tolerance.

For convenience, set

ω =
⌈

kn+1

N

⌉
and µ = kn+1 mod N.

Lemma 5.1. For a fixed i, setting F = 0, 1, . . . , kn+1 − 1 will make i get to kn+1

consecutive j’s (not necessarily distinct) and these j’s are:

v(i), v(i) + 1, . . . , v(i + 1)− 1.

Proof. This lemma follows from Lemma 4.4, Lemma 4.5 and the fact that (v(i) +
kn+1 − 1) mod N = v(i + 1)− 1.

Again, take BGSEN(3,5,3) in Fig. 1(a) for an illustration. By Lemma 5.1, setting
F = 0, 1, . . . , kn+1 − 1 will make:

i = 0 get to these j’s: 0, . . . , 14, 0, . . . , 11;
i = 1 get to these j’s: 12, . . . , 14, 0, . . . , 14, 0, . . . , 8;



June 16, 2009 20:43 WSPC/257-DMAA 00021

278 J. K. Lan, W. Y. Chou & C. Chen

j
0 0 0 1 1 2 2 3 3 4 5 5 6 6 7 7 8 8 9
1 0 0 1 1 2 2 3 3 4 5 5 6 6 7 7 8 8 9
2 0 0 1 1 2 2 3 3 4 5 5 6 6 7 7 8 8 9
3 0 0 1 1 2 2 3 4 4 5 5 6 6 7 7 8 9 9
4 0 0 1 1 2 2 3 4 4 5 5 6 6 7 7 8 9 9
5 0 0 1 1 2 2 3 4 4 5 5 6 6 7 7 8 9 9
6 0 0 1 1 2 3 3 4 4 5 5 6 6 7 8 8 9 9
7 0 0 1 1 2 3 3 4 4 5 5 6 6 7 8 8 9 9
8 0 0 1 1 2 3 3 4 4 5 5 6 6 7 8 8 9 9
9 0 0 1 2 2 3 3 4 4 5 5 6 7 7 8 8 9 9

10 0 0 1 2 2 3 3 4 4 5 5 6 7 7 8 8 9 9
11 0 0 1 2 2 3 3 4 4 5 5 6 7 7 8 8 9 9
12 0 1 1 2 2 3 3 4 4 5 6 6 7 7 8 8 9 9
13 0 1 1 2 2 3 3 4 4 5 6 6 7 7 8 8 9 9
14 0 1 1 2 2 3 3 4 4 5 6 6 7 7 8 8 9 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 B

…

Fig. 3. Setting F = 0, 1, . . . , kn+1 − 1 in the forward network of BGSEN(3,5,3) makes an i get
to 27 consecutive j’s; this figure illustrates the case of i = 0, 1, . . . , 9. An i enclosed by a circle
indicates that the corresponding j is v(i). The bottom row indicates the backward control tag B
that can make j get to i.

i = 2 get to these j’s: 9, . . . , 14, 0, . . . , 14, 0, . . . , 5;
i = 3 get to these j’s: 6, . . . , 14, 0, . . . , 14, 0, . . . , 2;
i = 4 get to these j’s: 3, . . . , 14, 0, . . . , 14;

and make i = 5, 6, . . . , 9 get to the same pattern of j’s (see Fig. 3 for an illustration),
and make i = 10, 11, . . . , 14 get to the same pattern of j’s.

See the diagram in Fig. 3 for the following arguments. For a fixed i, by
Corollary 4.6, every N consecutive F ’s would increase B by 1. Consequently,
by Lemma 4.5, every N consecutive j’s would increase B by 1. Since v(0) = 0,
by Corollary 4.6, the first column in this diagram has B = 0, the second column
has B = 1, the third column has B = 2, and so on. For each i, CL-algorithm consid-
ers only the first two columns (i.e., the first two B’s) in this diagram. However, an
i may have up to ω or ω + 1 columns (i.e. up to ω or ω + 1 B’s) associated with it.

The following theorem can be proven by arguments used in the previous para-
graph and we omit its proof.

Theorem 5.2. Given an i,

(a) if v(i)+µ ≤ N, then there are ω backward control tags associated with i, specified
by B1 =

⌊
kn+1·i

N

⌋
and Bp = B1 + (p− 1), 1 < p ≤ ω;

(b) if v(i) + µ > N, then there are ω + 1 backward control tags associated with i,

specified by B1 =
⌊

kn+1·i
N

⌋
and Bp = B1 + (p− 1), 1 < p ≤ ω + 1.

The correctness of the following algorithm follows from Theorem 5.2. This algo-
rithm takes only O(ω) time (note that 1 ≤ ω ≤ k).



June 16, 2009 20:43 WSPC/257-DMAA 00021

Efficient Routing Algorithms for Generalized Shuffle-Exchange Networks 279

Table 1. The routing table for the backward network of the
BGSEN shown in Fig. 1(a).

i v(i) B1 B2 B3 i v(i) B1 B2 B3

0 0 0 1 — 8 6 14 15 16
1 12 1 2 3 9 3 16 17 —
2 9 3 4 5 10 0 18 19 —
3 6 5 6 7 11 12 19 20 21

4 3 7 8 — 12 9 21 22 23
5 0 9 10 — 13 6 23 24 25
6 12 10 11 12 14 3 25 26 —
7 9 12 13 14

COMPUTE-ALL-TAGS
Input: i on the left-hand side of BGSEN(k, r, n + 1).
Output: The value v(i) and the ω or ω + 1 backward control tags B1, B2, . . . , Bω

(Bω+1) associated with i.
1. v(i) = kn+1 · i mod N

2. B1 =
⌊

kn+1·i
N

⌋
3. if v(i) + µ ≤ N then let t = ω else let t = ω + 1
4. for p = 2 to t do Bp = B1 + (p− 1) end for

Table 1 is a routing table generated by algorithm COMPUTE-ALL-TAGS. In
this table, “—” means not available. The size of the routing table generated by
algorithm COMPUTE-ALL-TAGS is only O(N ×ω) and is much smaller than that
of a regular routing table, which is N2 × k.

The routing table generated by algorithm COMPUTE-ALL-TAGS can be used
as follows.

Theorem 5.3. An (
←−
i, j)-request can be fulfilled as follows. (See Fig. 4.)

(a) If v(i) + µ < N, then j can get to i by using B2, B3, . . . , Bω if 0 ≤ j < v(i);
B1, B2, . . . , Bω if v(i) ≤ j < v(i + 1); B1, B2, . . . , Bω−1 if v(i + 1) ≤ j < N .

(b) If v(i) + µ = N, then j can get to i by using B2, B3, . . . , Bω if 0 ≤ j < v(i);
B1, B2, . . . , Bω if v(i) ≤ j < N .

(c) If v(i)+µ > N, then j can get to i by using B2, B3, . . . , Bω+1 if 0 ≤ j < v(i+1);
B2, B3, . . . , Bω if v(i + 1) ≤ j < v(i); B1, B2, . . . , Bω if v(i) ≤ j < N .

This theorem can be proven by using the arguments used in obtaining Fig. 3
and Theorem 5.2; hence we omit the proof.

We now summarize the routing algorithms for the backward network of
BGSEN(k, r, n + 1). In the following table, “algo.” means algorithm, (*1) means
if only one tag is needed for an (

←−
i, j)-request, (*2) means if all tags are needed for

an (
←−
i, j)-request, and “—” means not available.



June 16, 2009 20:43 WSPC/257-DMAA 00021

280 J. K. Lan, W. Y. Chou & C. Chen

j
00
1
2

v(i)… …i

v(i+1)

N-1

…
…

i+1

B1 B2 B -1ω ωB

j
v(i+1) i+1v(i+1)

1
2

v(i)… …i

i+1

N-1

…
…

....

ω ωB1 B2 B -1 B

j
00
1
2

v(i+1)… … i+1

v(i)

N-1

…
i

ω ωω B +1B1 B2 B -1 B

(a) (b) (c)

Fig. 4. An illustration of Theorem 5.3.

Table 2. Comparison of the routing algorithms for the bidirectional generalized shuffle-
exchange network.

Time required to obtain CLQ-algo. CL-algo. This paper (by which algorithm)

a tag for a j to get to an i O(n) O(n) O(1) (ONE-TO-ONE-ROUTING)
tags for all j’s to get to an i O(Nn) O(n) O(1) (COMPUTE-TWO-TAGS)
a routing table (*1) O(N2n) O(Nn) O(N) (COMPUTE-TWO-TAGS)
a routing table (*2) O(N2kn) - O(Nω) (COMPUTE-ALL-TAGS)

6. Concluding Remarks

This paper concerns about the routing problem for the bidirectional generalized
shuffle-exchange network (BGSEN). Especially, we proposed the FBCT formula,
which characterizes the relation between the forward and the backward control
tags of a BGSEN. The FBCT formula is very useful and leads to several efficient
routing algorithms. It leads to a simple O(1)-time one-to-one routing algorithm for
the backward network of a BGSEN. For a destination i of the backward network of
a BGSEN, the FBCT formula leads to a simple O(1)-time algorithm for generating
the two backward control tags associated with i; this algorithm greatly simplifies
Chen and Lou’s algorithm [2]. The FBCT formula also leads to a very simple and
efficient algorithm for constructing a routing table for the backward network of a
BGSEN; such a routing table can be used for fault-tolerance.

References

[1] Z. Chen, Z. Liu and Z. Qiu, Bidirectional shuffle-exchange network and tag-based
routing algorithm, IEEE Commun. Lett. 7 (2003) 121–123.

[2] C. Chen and J. K. Lou, An efficient tag-based routing algorithm for the backward
network of a bidirectional general shuffle-exchange network, IEEE Commun. Lett. 10
(2006) 296–298.

[3] M. Gerla, E. Leonardi, F. Neri and P. Palnati, Routing in the bidirectional shufflenet,
IEEE/ACM Trans. Netw. 9 (2001) 91–103.



June 16, 2009 20:43 WSPC/257-DMAA 00021

Efficient Routing Algorithms for Generalized Shuffle-Exchange Networks 281

[4] F. K. Hwang, The Mathematical Theory of Nonblocking Switching Networks, Series
on Applied Mathematics, Vol. 15 (2004), pp. 12–22.

[5] C. P. Kuruskal, A unified theory of interconnection network structure, Theor. Com-
put. Sci. 48 (1986) 75–94.

[6] D. H. Lawrie, Access and alignment of data in an array processor, IEEE Trans.
Comput. C-24 (1975) 1145–1155.

[7] S. C. Liew, On the stability if shuffle-exchange and bidirectional shuffle-exchange
deflection networkA, IEEE/ACM Trans. Netw. 5 (1997) 87–94.

[8] K. Padmanabhan, Design and analysis of even-sized binary shuffle-exchange networks
for multiprocessors, IEEE Trans. Parallel Distrib. Syst. 2 (1991) 385–397.

[9] R. Ramaswami, Multi-wavelength lightwave networks for computer communication,
IEEE Commun. Mag. 31 (1993) 78–88.

[10] Y. Yang and J. Wang, Optimal all-to-all personalized exchange in a class of optical
multistage networks, IEEE Trans. Parallel Distrib. Syst. 12 (2001) 567–582.



This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Information Processing Letters 109 (2009) 757–762

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Improved upper and lower bounds on the optimization of mixed chordal
ring networks ✩

James K. Lan a, Victor W. Liu b, Chiuyuan Chen a,∗
a Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan
b Department of Electrical & Computer Engineering, The State University of New York at Stony Brook, Stony Brook, NY 11794, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 January 2009
Received in revised form 11 March 2009
Accepted 13 March 2009
Available online 21 March 2009
Communicated by A.A. Bertossi

Keywords:
Optimization
Diameter
Double-loop network
Mixed chordal ring network
Interconnection network
Parallel processing
Ring
Loop

Recently, Chen, Hwang and Liu [S.K. Chen, F.K. Hwang, Y.C. Liu, Some combinatorial
properties of mixed chordal rings, J. Interconnection Networks 1 (2003) 3–16] introduced
the mixed chordal ring network as a topology for interconnection networks. In particular,
they showed that the amount of hardware and the network structure of the mixed chordal
ring network are very comparable to the (directed) double-loop network, yet the mixed
chordal ring network can achieve a better diameter than the double-loop network. More
precisely, the mixed chordal ring network can achieve diameter about

√
2N as compared

to
√

3N for the (directed) double-loop network, where N is the number of nodes in the
network. One of the most important questions in interconnection networks is, for a given
number of nodes, how to find an optimal network (a network with the smallest diameter)
and give the construction of such a network. Chen et al. [S.K. Chen, F.K. Hwang, Y.C.
Liu, Some combinatorial properties of mixed chordal rings, J. Interconnection Networks
1 (2003) 3–16] gave upper and lower bounds for such an optimization problem on the
mixed chordal ring network. In this paper, we improve the upper and lower bounds
as 2�√N/2� + 1 and �√2N − 3/2�, respectively. In addition, we correct some deficient
contexts in [S.K. Chen, F.K. Hwang, Y.C. Liu, Some combinatorial properties of mixed chordal
rings, J. Interconnection Networks 1 (2003) 3–16].

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

One of the most important issues in the design of par-
allel and distributed computing systems is the choice of
an interconnection network suitable for a range of dif-
ferent applications. The diameter of a network, which is
the maximum distance over all node-pairs, represents the
maximum transmission delay between two stations. The
ring network (i.e., the single-loop network) is one of the
most frequently used topologies for interconnection net-

✩ This research was partially supported by the National Science Council
of the Republic of China under the grants grant NSC97-2628-M-009-006-
MY3.

* Corresponding author.
E-mail addresses: drjamesblue@gmail.com (J.K. Lan),

cychen@mail.nctu.edu.tw (C. Chen).

works. It has many attractive properties such as simplic-
ity, extendibility, low degree, and ease of implementation.
Although it has many attractive properties, it has poor
reliability (any failure in an interface or communication
link destroys the function of the network) and it has high
transmission delay (its diameter equals to N − 1 if each
link is directed, where N is the number of nodes). As a re-
sult, a lot of hybrid topologies utilizing the ring network
as a basis for synthesizing richer interconnection schemes
have been proposed to improve the reliability and reduce
the transmission delay [3,4,6,14,17].

One example of the commonly used extensions for the
ring network is the multi-loop network, which was first
proposed by Wong and Coppersmith in [17] for orga-
nizing multi-module memory services. The most studied
multi-loop network is possibly the double-loop network.
The double-loop network DL(N;a,b) is a digraph with N

0020-0190/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2009.03.017



Author's personal copy

758 J.K. Lan et al. / Information Processing Letters 109 (2009) 757–762

Fig. 1. Examples of the double-loop network and the mixed chordal ring network. (a) DL(12;1,3). (b) MCR(12;1,3). (c) Embed MCR(12;1,3) into
DL( 12

2 ; 1−3
2 , 1+3

2 ); i.e., DL(6;5,2).

nodes 0,1, . . . , N − 1 and 2N links (also called steps) (see
Fig. 1(a)):

i → (i + a) mod N, i = 0,1, . . . , N − 1,

i → (i + b) mod N, i = 0,1, . . . , N − 1,

where 1 � a, b < N , a �= b, and gcd(N,a,b) = 1. Doorn [9]
had proven that:

Theorem 1.1. (See [9].) DL(N;a,b) is strongly 2-connected if
and only if gcd(N,a,b) = 1.

Namely, any node or link failure will not disconnect
the network. For a fixed N , let DDL(N) denote the optimal
(i.e., smallest) diameter of all double-loop networks with
N nodes. Many researchers tried to determine the exact
value of DDL(N), but this is a difficult problem even when
one of the two steps is 1 [4]; see also [1,7,8,10,12]. There-
fore, researchers devoted their attention on finding bounds
on DDL(N). A well-known lower bound on DDL(N) is as
follows [17]:

DDL(N) � �√3N� − 2. (1)

For upper bounds on DDL(N), Hwang and Xu [13] managed
to prove, using a heuristic method, that

DDL(N) �
√

3N + 2(3N)1/4 + 5 for N � 6348. (2)

In [16], Rödseth further improved the above upper bound
to be

DDL(N) �
√

3N + (3N)1/4 + 5

2
for N � 1200. (3)

Another example of the commonly used extensions for
the ring network is the chordal ring network; see [3] and
[15]. Recently, Chen et al. [6] proposed the mixed chordal
ring network as a topology of interconnection networks.
The mixed chordal ring network MCR(N; s, w), where N is
even and both s and w are positive odd, is a digraph with
N nodes 0,1, . . . , N −1 and 2N links of the following types
(see Fig. 1(b)):

ring-links:

i → (i + s) mod N, i = 0,1,2, . . . , N − 1,

chordal-links:

i → (i + w) mod N, i = 1,3,5, . . . , N − 1,

chordal-links:

i → (i − w) mod N, i = 0,2,4, . . . , N − 2.

Let d(N; s, w) denote the diameter of MCR(N; s, w). For
a fixed positive even integer N , let DMCR(N) denote the
optimal (i.e., smallest) diameter of all mixed chordal ring
networks with N nodes. It is obvious that each node in the
mixed chordal ring network has two in-links and two out-
links. Therefore, the mixed chordal ring network is very
comparable in hardware to the well-known double-loop
network; see [6]. Surprisingly, Theorems 1.2 and 1.3 show
that the mixed chordal ring network can achieve a bet-
ter diameter than the double-loop network (as compared
to (1), (2) and (3)).

Theorem 1.2. (See [6].) DMCR(N) �
√

2N + o(N1/2).

Theorem 1.3. (See [6].) There exists a choice of s and w such
that the diameter of MCR(N; s, w) is no larger than

√
2N + 3.

In other words, DMCR(N) �
√

2N + 3.

Chen et al. [6] also proved:

Theorem 1.4. (See [6].) MCR(N; s, w) is strongly 2-connected
if and only if gcd(N, s, w) = 1.

The proofs of Theorems 1.3 and 1.4 are based on the
idea of embedding a mixed chordal ring network into a
double-loop network (see Section 2 for details). Unfortu-
nately, we find that this embedding is not always success-
ful and the proofs of Theorems 1.3 and 1.4 are incomplete
(see Section 4 for details). Thus whether

√
2N + 3 is an

upper bound on DMCR(N) and whether gcd(N, s, w) = 1
guarantees the strongly 2-connectivity of MCR(N; s, w) re-
main open. In this paper, we fill these voids by improving
the upper and lower bounds on DMCR(N) and correcting
the proof of Theorems 1.3 and 1.4. We summarize in Ta-
ble 1.

This paper is organized as follows. Section 2 gives some
preliminaries. Section 3 contains our main results. Sec-
tion 4 gives a correct proof to Theorem 1.4. Section 5



Author's personal copy

J.K. Lan et al. / Information Processing Letters 109 (2009) 757–762 759

Table 1

The bounds In paper [6] In this paper

Upper bound on DMCR(N)
√

2N + 3 2�√N/2� + 1

Lower bound on DMCR(N)
√

2N + o(N
1
2 ) �√2N − 3/2�

Fig. 2. The minimum distance diagram of double-loop networks. (a)
The four parameters. (b) The L-shape of DL(9;1,4). (c) The L-shape of
DL(9;1,3).

is for the concluding remarks; some open problems on
the double-loop networks and the mixed chordal ring net-
works are also given here.

2. Preliminaries, assumptions, and embedding

Since the mixed chordal ring network is very related to
the double-loop network, we first introduce some termi-
nologies of the double-loop network. Given a DL(N;a,b), a
minimum distance diagram (MDD) is a diagram with node
0 in cell (0,0) and node v in cell (i, j) if and only if
ia + jb ≡ v (mod N) and i + j is the minimum among all
(i′, j′) satisfying the congruence. In other words, a shortest
path from 0 to v is through taking i a-links and j b-links
(in any order). Note that, in cell (i, j), i (respectively, j) is
the column (respectively, row) index. An MDD includes ev-
ery node exactly once (in case of two shortest paths, the
convention is to choose the cell with the smaller row in-
dex, i.e., the smaller j).

It had been proven that the MDD of DL(N;a,b) is al-
ways an L-shape determined by four parameters �, h, p, n
[17]; see Fig. 2(a). These four parameters are the lengths of
four of the six segments on the boundary of the L-shape.
For example, DL(9;1,4) has � = 4, h = 3, p = 3, and n = 1;
see Fig. 2(b). An L-shape can degenerate into a rectangle
as Fig. 2(c). Fiol et al. [11] observed that an L-shape always
tessellates the plane regardless of the L-shape is degener-
ate or not. Many studies of the double-loop network are
based on the L-shape [2,5,11]. One important function of
the L-shape is that we can easily compute the diameter of
its double-loop network by

max{� + h − p − 2, � + h − n − 2}.
Throughout this paper, we will assume that MCR(N; s, w)

satisfies the following three conditions:

s �= w, s + w �= N, and gcd(N, s, w) = 1.

The reason is as follows. If s = w or s + w = N , then
MCR(N; s, w) will contain multiple links between two
nodes, which means a waste of the hardware. On the
other hand, MCR(N; s, w) is strongly connected if and
only if gcd(N, s, w) = 1. Since we will only talk about
strongly connected mixed chordal ring networks, we as-
sume gcd(N, s, w) = 1.

Fig. 3. The pseudo-MDD of a mixed chordal ring network. (a) The MDD of
DL(6;5,2). (b) The pseudo-MDD of MCR(12;1,3).

Note that the double-loop network and the mixed
chordal ring network are different network topologies: the
former is vertex-transitive and the latter may or may not
be vertex-transitive. For example, in MCR(12;3,5), node 0
can reach any node within 4 moves, but it takes 5 moves
for node 1 to reach node 8.

Chen, Hwang and Liu showed that the mixed chordal
ring network MCR(N; s, w) can be embedded into the
double-loop network DL( N

2 ; s−w
2 , s+w

2 ) by combining nodes
2k + 1 and 2k + 1 + w as supernode k∗ for all k = 0,1,

. . . , N/2 − 1 [6]. Note that, unless otherwise specified, s−w
2

means ( s−w
2 ) mod N

2 , s+w
2 means ( s+w

2 ) mod N
2 , all nodes

of a mixed chordal ring network are taken modulo N , and
all nodes of a double-loop network with N/2 nodes are
taken modulo N/2.

Another way to embed the mixed chordal ring network
MCR(N; s, w) into the double-loop network DL( N

2 ; s−w
2 ,

s+w
2 ) is to combine nodes 2k and 2k − w as supernode k∗

for all k = 0,1, . . . , N/2 − 1. See Fig. 1(c) for an example.
Such an embedding results in the same double-loop net-
work DL( N

2 ; s−w
2 , s+w

2 ) as the one used in [6] but is more
natural since node 0 of MCR(N; s, w) is in supernode 0∗
of DL( N

2 ; s−w
2 , s+w

2 ). Thus, throughout this paper, we use
DL( N

2 ; s−w
2 , s+w

2 ) to denote the embedding of combining
nodes 2k and 2k − w as supernode k∗ .

Since we can embed a mixed chordal ring network into
a double-loop network, we can embed a mixed chordal
ring network into the MDD of the corresponding double-
loop network. More precisely, given MCR(N; s, w), we re-
place each node k in the MDD of DL( N

2 ; s−w
2 , s+w

2 ) with
two nodes 2k and 2k − w in such a way that if k is in
cell (i, j), then 2k and 2k − w are in cells (2i, j) and
(2i + 1, j), respectively. We call the resultant diagram the
pseudo-MDD of MCR(N; s, w). See Fig. 3 for an exam-
ple.

The following lemma had been proven in [6] and it
follows from the fact that each move in the MDD of
DL( N

2 ; s−w
2 , s+w

2 ) corresponds to either one or two moves
in MCR(N; s, w) (depending on which node in the super-
node we start from).

Lemma 2.1. (See [6].) Suppose DL( N
2 ; s−w

2 , s+w
2 ) has L-shape(�,

h, p,n), then d(N; s, w) � 2 max{�,h} − 1.

3. Improved bounds on DMCR(N)

This section is devoted to improve upper and lower
bounds on DMCR(N). Given a MCR(N; s, w), let nk denote
the number of additional nodes that node 0 can reach in
k moves. Clearly, n0 = 0, n1 = 2 and n2 = 3. Chen et al. [6]
had proven that



Author's personal copy

760 J.K. Lan et al. / Information Processing Letters 109 (2009) 757–762

nk � nk−1 + 1 for 2 � k � d(N; s, w). (4)

In other words, for k � 2, the number of additional nodes
that node 0 can reach at the kth move increases by at
most 1. We now have the following result.

Theorem 3.1. DMCR(N) � �√2N − 3/2� and this bound is
tight.

Proof. By (4),

N �
d(N;s,w)∑

k=0

(k + 1) = (d(N; s, w) + 2)(d(N; s, w) + 1)

2
.

Therefore, (d(N; s, w))2 + 3d(N; s, w)+ (2 − 2N) � 0. Since
d(N; s, w) is positive, d(N; s, w) � (

√
8N + 1 − 3)/2 >√

2N − 3/2. Since d(N; s, w) is an integer, d(N; s, w) �
�√2N − 3/2�. This bound is tight since d(8;1,3) = 3 �
DMCR(8) � �√2 · 8 − 3/2� = 3. �

We now obtain an upper bound on DMCR(N). The main
idea used in obtaining the upper bound is, for each N , to
choose s and w suitably so that the corresponding double-
loop network DL( N

2 ; s−w
2 , s+w

2 ) has an L-shape(�,h, p,n)

with � and h being as small as possible and to apply
Lemma 2.1.

Define N̂ to be a function of N as follows:

N̂ =
⌈√

N

2

⌉
. (5)

According to the parity of N̂ , define M as follows:

M =
{

N̂ if N̂ is even,

N̂ + 1 if otherwise.
(6)

Lemma 3.2. Suppose N �= 2(4t2 + 2t − 1) for any positive inte-
ger t and let M be defined as in (6). Then the L-shape(�,h, p,n)

of DL( N
2 ;1, M) satisfies � � M and h � M.

Proof. Consider N = ⋃∞
t=0[4t2 + 1,4(t + 1)2]. Then N

2 ∈
[4t2 + 1,4(t + 1)2] for some non-negative integer t . Thus
M = 2t + 2. Consider the L-shape(�,h, p,n) of DL( N

2 ;1, M).
Since

M · 1 ≡ 1 · M

(
mod

N

2

)
,

cell (M,0) and cell (0,1) contain the same node. Since
M > 1, cell (M,0) is outside the L-shape. Consequently,
� � M . Now let N0(t) = [4t2 + 1,4t2 + 2t − 2], N1(t) =
[4t2 + 2t − 1,4t2 + 4t], N2(t) = [4t2 + 4t + 1,4t2 + 6t + 2],
and N3(t) = [4t2 + 6t + 3,4t2 + 8t + 4]. Note that N0(0),
N1(0), and N0(1) are empty. Then N = ⋃∞

t=0(N0(t) ∪
N1(t)∪ N2(t)∪ N3(t)). Suppose N

2 ∈ Nk(t), where 0 � k � 3.
Define N∗

k (t) to be the maximum integer in Nk(t). Clearly,
N∗

k (t) = 4t2 + 2t − 2 + (2t + 2)k. Suppose N
2 = N∗

k (t) − j
for some non-negative integer j. Then 0 � j � 2t − 3 if
k = 0 and 0 � j � 2t + 1 if 1 � k � 3. Again, consider the
L-shape(�,h, p,n) of DL( N

2 ;1, M). Since

j · 1 = N∗
k (t) − N

2

= (
4t2 + 2t − 2 + (2t + 2)k

) − N

2

≡ (2t − 1 + k)(2t + 2)

(
mod

N

2

)

= (2t − 1 + k)M

(
mod

N

2

)
,

cell ( j,0) and cell (0,2t − 1 + k) contain the same node.
Note that j � 2t − 1 + k except when k = 1 and j =
2t + 1, that is, except when N

2 = 4t2 + 2t − 1. Hence
if N �= 2(4t2 + 2t − 1) for any positive integer t , then
cell (0,2t − 1 + k) is outside the L-shape. Consequently,
h � 2t − 1 + k � 2t + 2 = M . �
Lemma 3.3. Suppose N = 2(4t2 + 2t − 1) for some pos-
itive integer t and let M be defined as in (6). Then the
L-shape(�,h, p,n) of DL( N

2 ;2, M − 1) satisfies � � M − 1 and
h � M − 1.

Proof. Since N = 2(4t2 + 2t − 1) for some positive inte-
ger t , we have M = 2t + 2. Consider the L-shape(�,h, p,n)

of DL( N
2 ;2, M − 1). Since

(2t + 1) · 2 ≡ 2 · (2t + 1)

(
mod

N

2

)
,

cell (2t + 1,0) and cell (0,2) contain the same node. Since
t is a positive integer, we have 2t +1 > 2. Thus cell (2t +1,

0) is outside the L-shape. Consequently, � � 2t +1 � M −1.
Similarly, since

(t + 1) · 2 ≡ (2t + 1)(2t + 1)

(
mod

N

2

)
,

cell (t + 1,0) and cell (0,2t + 1) contain the same node.
Clearly, 2t + 1 > t + 1 for t > 0; thus cell (0,2t + 1) is
outside the L-shape. Thus h � 2t + 1 � M − 1. �
Lemma 3.4. Let M be defined as in (6). Then:

1. If N �= 2(4t2 + 2t − 1) for any positive integer t, then
d(N; M + 1, M − 1) � 2M − 1.

2. If N = 2(4t2 + 2t − 1) for some positive integer t, then
d(N; M + 1, M − 3) � 2M − 3.

Proof. Consider the first statement. It is not difficult to
verify that both M + 1 and M − 1 are positive odd integers
and gcd(N, M + 1, M − 1) = 1. Thus MCR(N; M + 1, M − 1)

is a valid mixed chordal ring network. Since we can embed
MCR(N; M + 1, M − 1) into DL( N

2 ;1, M), this statement fol-
lows directly from Lemmas 2.1 and 3.2. The second state-
ment can be proven similarly except that Lemma 3.2 is
replaced with Lemma 3.3. �
Theorem 3.5. Let N̂ be defined as in (5).

1. If N̂ is even, then DMCR(N) � 2�√N/2� − 1.
2. If N̂ is odd and N = 2(4t2 + 2t − 1) for some positive inte-

ger t, then DMCR(N) � 2�√N/2� − 1.



Author's personal copy

J.K. Lan et al. / Information Processing Letters 109 (2009) 757–762 761

Fig. 4. The improved ratio of our upper bound as compared to the previ-
ous upper bound for N = 6,8,10, . . . ,10004 (total 5000 N ’s).

3. If N̂ is odd and N �= 2(4t2 + 2t − 1) for any positive integer
t, then DMCR(N) � 2�√N/2� + 1.

Moreover, these bounds are tight.

Proof. Note that if N = 2(4t2 +2t −1) for some positive in-
teger t , then N̂ is odd. Thus if N̂ is even, then N �= 2(4t2 +
2t − 1) for any positive integer t; consequently, M = N̂ . If
N̂ is odd and N = 2(4t2 + 2t − 1) for some positive inte-
ger t , then M = N̂ + 1. If N̂ is odd and N �= 2(4t2 + 2t − 1)

for any positive integer t , then M = N̂ + 1. Statements 1,
2 and 3 in this theorem now follow from Lemma 3.4. By
the aid of a computer program, we obtain DMCR(20) = 7,
DMCR(38) = 9 and DMCR(12) = 5. Thus the bound in state-
ment 1 is tight since DMCR(20) = 7 and 2�√20/2� − 1 = 7.
The bound in statement 2 is tight since DMCR(38) = 9 and
2�√38/2 � − 1 = 9. Similarly, the bound in statement 3 is
tight since DMCR(12) = 5 and 2�√12/2� − 1 = 5. �
Remark 1. The previous upper bound on DMCR(N) is√

2N + 3 [6]. Since
√

2N + 3 is served as an upper bound,
we replace it with √2N + 3�. The largest upper bound
in Theorem 3.5 is 2�√N/2 � + 1 and it is always no
larger than √2N + 3�. To see how good our upper bound
2�√N/2� + 1 is, we use a computer to obtain results for
N = 6,8,10, . . . ,10004. Among these 5000 N ’s, for 3775
(about 75.50%) out of them, our upper bound 2�√N/2�+1
improves the previous upper bound √2N + 3�; see Fig. 4.

Remark 2. The upper bound 2�√N/2� − 1 in Theorem 3.5
is no larger than the upper bound �√2N� + 1 in Theo-
rem 3.5 and is very close to the lower bound �√2N − 3/2�
in Theorem 3.1. In the following, we show that there ex-
ist infinite number of N ’s such that the upper bound
2�√N/2� − 1 matches the lower bound �√2N − 3/2�; in
other words, we determine the exact value of DMCR(N) for
these N ’s.

Theorem 3.6. Suppose N = 2(4t2 − t + k) for some positive
integers t and k, where 1 � k � t. Then

DMCR(N) = 2�√N/2� − 1.

Moreover, d(N; �√N/2� + 1, �√N/2� − 1) = DMCR(N).

Proof. Suppose N = 2(4t2 − t + k) for some positive inte-
ger t and k, where 1 � k � t . Then 2(4t2 − 4t + 1) < N � 2 ·
4t2; therefore, M = N̂ = �√N/2� = 2t . By Lemma 3.4 and

Theorem 3.5, DMCR(N) � d(N; �√N/2� + 1, �√N/2� − 1) �
2�√N/2� − 1. Since 2(4t2 − t + 1

4 ) < N � 2(4t2 + t + 1
4 ),

we have DMCR(N) � �√2N − 3/2� = 4t − 1 = 2�√N/2�− 1.

We now have this theorem. �
The N ’s that satisfy Theorem 3.6 are: 8, 30, 32, 68, 70,

72, 122, . . . , and so on. For N = 6,8,10, . . . ,10004 (total
5000 N ’s), about 12.60% out of them satisfy Theorem 3.6
and their optimal diameter can be determined by Theo-
rem 3.6.

4. Strongly connectivity of MCR(N; s, w)

We first indicate the problem in the proof of Theo-
rem 1.3 in [6]. To obtain DMCR(38), Chen et al. [6] will use
MCR(38;7,5) and embed MCR(38;7,5) into DL(19;1,6).
The L-shape of DL(19;1,6) has � = 5 and h = 7, which has
h > N ′ = 6 and violates

� � N ′ and h = N ′ (7)

needed in the proof of DMCR(38) �
√

2N + 3. In fact, we
can construct infinite many N ’s that violates (7); see [6]
for more details.

In Section 2, we have shown how to embed the
mixed chordal ring network MCR(N; s, w) into the double-
loop network DL( N

2 ; s−w
2 , s+w

2 ). However, this embedding
sometimes fails. Take MCR(10;1,5) as an example; its cor-
responding double-loop network is DL( 10

2 ; 1−5
2 , 1+5

2 ), i.e.,
DL(5;3,3), which is clearly not a valid double-loop net-
work, yet MCR(10;1,5) is a valid mixed chordal ring net-
work. In general, MCR(2(2k + 1);1,2k + 1) is embedded
into DL(2k + 1;k + 1,k + 1) but DL(2k + 1;k + 1,k + 1)

is not a valid double-loop network. The idea used in [6] to
prove Theorem 1.4 is to show that MCR(N; s, w) is strongly
2-connected if and only if the corresponding double-loop
network DL( N

2 ; s−w
2 , s+w

2 ) is strongly 2-connected. We
now correct the proof.

Lemma 4.1. For MCR(N; s, w),

1. if w �= N
2 , then DL( N

2 ; s−w
2 , s+w

2 ) is a double-loop net-
work;

2. if w = N
2 , then DL( N

2 ; s−w
2 , s+w

2 ) is not a double-loop net-

work and MCR(N; s, N
2 ) is itself the double-loop network

DL(N; s, N
2 ).

Proof. DL( N
2 ; s−w

2 , s+w
2 ) is not a valid double-loop net-

work whenever s−w
2 ≡ 0 (mod N

2 ) or s+w
2 ≡ 0 (mod N

2 )

or s−w
2 ≡ s+w

2 (mod N
2 ) or gcd( N

2 , s−w
2 , s+w

2 ) �= 1. Since
we assume s �= w and s + w �= N , it is impossible that
s−w

2 ≡ 0 (mod N
2 ) or s+w

2 ≡ 0 (mod N
2 ). Also, s−w

2 ≡
s+w

2 (mod N
2 ) if and only if w = N

2 . In addition, we have
assumed gcd(N, s, w) = 1; therefore gcd( N

2 , s−w
2 , s+w

2 ) = 1.
Thus we have the first if-statement. When w = N

2 , N
2 ≡

− N
2 (mod N) occurs and the chordal-links of MCR(N; s, w)

become:

i →
(

i + N

2

)
mod N, i = 0,1, . . . , N − 1.



Author's personal copy

762 J.K. Lan et al. / Information Processing Letters 109 (2009) 757–762

Thus MCR(N; s, N
2 ) is itself the double-loop network

DL(N; s, N
2 ) and we have the second if-statement. �

Lemma 4.1 shows that DL( N
2 ; s−w

2 , s+w
2 ) is a valid em-

bedding if and only if w �= N
2 . It was proven in [6] that

Lemma 4.2. MCR(N; s, w) is strongly connected if and only if
gcd(N, s, w) = 1.

Now we give correct proof of Theorem 1.4.

Proof of Theorem 1.4. Necessity. This follows directly from
Lemma 4.2.

Sufficiency. There are two cases.
Case 1: w �= N

2 . Then by Lemma 4.1, DL( N
2 ; s−w

2 , s+w
2 )

is a double-loop network. Since w �= N
2 , s−w

2 �= s+w
2 . Since

gcd(N, s, w) = 1, gcd( N
2 , s−w

2 , s+w
2 ) = 1. Thus by Theo-

rem 1.1, DL( N
2 ; s−w

2 , s+w
2 ) is strongly 2-connected. Since

the two nodes in each super-node can reach each other
through the chordal-links between them, MCR(N; s, w) is
strongly 2-connected.

Case 2: w = N
2 . By Lemma 4.1, MCR(N; s, w) is itself

the double-loop network DL(N; s, w). Thus by Theorem 1.1
and by the assumption that gcd(N, s, w) = 1, MCR(N; s, w)

is strongly 2-connected. �
5. Concluding remarks

In [6], Chen et al. proposed a new network topol-
ogy called the mixed chordal ring network and discussed
its combinatorial properties. They obtained the surprising
result that the mixed chordal ring network is compara-
ble in hardware to the well-known double-loop network
and yet can achieve a better diameter than the double-
loop network. In this paper, we have improved the upper
and lower bounds on DMCR(N) (i.e., the optimal diame-
ter of mixed chordal ring networks) as 2�√N/2� + 1 and
�√2N − 3/2�, respectively. We have also corrected some
deficient contexts in [6].

For the double-loop network, determining the exact
value of DDL(N) is a hard problem and even determining
DDL(N) = minb{dDL(N;1,b)}, where dDL(N;1,b) is the di-

ameter of DL(N;1,b), is a hard problem, too [4]. By (1), (2)
and (3), the gap between the upper and the lower bounds
on DDL(N) increases by a factor of (3N)1/4 and it seems
that there is no closed form for DDL(N). For the mixed
chordal ring network, we have successfully narrowed the
gap between the upper and the lower bounds on DMCR(N)

as 2 �√N/2� + 1 and �√2N − 3/2 �. It has a great proba-
bility to determine DMCR(N) and therefore solve this opti-
mization problem in the near future.

References

[1] F. Aguiló, M.A. Fiol, An efficient algorithm to find optimal double loop
networks, Discrete Math. 138 (1995) 15–29.

[2] F. Aguiló, E. Simo, M. Zaragoza, Optimal double-loop networks with
non-unit steps, Electron. J. Combin. 10 (1) (2003).

[3] B. Arden, H. Lee, Analysis of chordal ring network, IEEE Trans. Com-
put. 30 (4) (1981) 291–295.

[4] J.C. Bermond, F. Comellas, D.F. Hsu, Distributed loop computer-
networks – a survey, J. Parallel Distrib. Comput. 24 (1) (1995) 2–10.

[5] C. Chen, J.K. Lan, W.-S. Tang, An efficient algorithm to find a
double-loop network that realizes a given L-shape, Theoret. Comput.
Sci. 359 (1–3) (2006) 69–76.

[6] S.K. Chen, F.K. Hwang, Y.C. Liu, Some combinatorial properties of
mixed chordal rings, J. Interconnection Networks 1 (2003) 3–16.

[7] Y. Cheng, F.K. Hwang, Diameters of weighted double loop networks,
J. Algorithms 9 (1988) 401–410.

[8] C.Y. Chou, D.J. Guan, K.L. Wang, A dynamic fault-tolerant mes-
sage routing algorithm for double-loop networks, Inform. Process.
Lett. 70 (6) (1999) 259–264.

[9] E.A. Doorn, Connectivity of circulant digraphs, J. Graph Theory 10 (1)
(1986) 9–14.

[10] P. Esqué, F. Aguiló, M.A. Fiol, Double commutative-step digraphs with
minimum diameters, Discrete Math. 114 (1993) 147–157.

[11] M.A. Fiol, J.L.A. Yebra, I. Alegre, M. Valero, A discrete optimization
problem in local networks and data alignment, IEEE Trans. Com-
put. C-36 (6) (1987) 702–713.

[12] D.J. Guan, An optimal message routing algorithm for double-loop
networks, Inform. Process. Lett. 65 (5) (1998) 255–260.

[13] F. Hwang, Y. Xu, Double loop networks with minimum delay, Discrete
Math. 66 (1–2) (1987) 109–118.

[14] F.K. Hwang, A complementary survey on double-loop networks, The-
oret. Comput. Sci. 263 (1–2) (2001) 211–229.

[15] F.K. Hwang, P.E. Wright, Survival reliability of some double-loop net-
works and chordal rings, IEEE Trans. Comput. 44 (12) (1995) 1468–
1471.

[16] O.J. Rödseth, Weighted multi-connected loop networks, Discrete
Math. 148 (1996) 161–173.

[17] C.K. Wong, D. Coppersmith, A combinatorial problem related to mul-
timodule memory organizations, J. ACM 21 (3) (1974) 392–402.



Theoretical Computer Science 411 (2010) 1669–1684

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

All-to-all personalized exchange in generalized
shuffle-exchange networksI

Well Y. Chou, Chiuyuan Chen ∗
Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan

a r t i c l e i n f o

Article history:
Received 8 May 2009
Accepted 25 October 2009
Communicated by D.-Z. Du

Keywords:
Multistage interconnection networks
Shuffle-exchange networks
Omega network
Parallel and distributed computing
All-to-all communication
All-to-all personalized exchange

a b s t r a c t

An all-to-all communication algorithm is said to be optimal if it has the smallest
communication delay. Previous all-to-all personalized exchange algorithms are mainly
for hypercube, mesh, and torus. In Yang and Wang (2000) [13], Yang and Wang proved
that a multistage interconnection network (MIN) is a better choice for implementing all-
to-all personalized exchange and they proposed optimal all-to-all personalized exchange
algorithms for MINs. In Massini (2003) [9], Massini proposed a new optimal algorithm for
MINs, which is independent of the network topology. Do notice that the algorithms in [9]
and [13] work only forMINswith the unique path property (meaning that there is a unique
path between each pair of source and destination) and satisfying N = 2n, in which N is the
number of processors, 2 means all the switches are of size 2 × 2, and n is the number
of stages. In Padmanabhan (1991) [10], Padmanabhan proposed the generalized shuffle-
exchangenetwork (GSEN),which is a generalization of the shuffle-exchangenetwork. Since
a GSEN does not have the unique path property, the algorithms in [9] and [13] cannot be
used. The purpose of this paper is to consider the all-to-all personalized exchange problem
in GSENs. An optimal algorithm and several bounds will be proposed.

© 2010 Published by Elsevier B.V.

1. Introduction

Processors in a parallel and distributed processing system often need to communicate with other processors. The
communication among these processors could be one-to-one, one-to-many, or all-to-all. All-to-all communication can be
further classified into all-to-all broadcast and all-to-all personalized exchange. In all-to-all broadcast, each processor sends
the samemessage to all other processors; while in all-to-all personalized exchange, each processor sends a specific message
to every other processor. All-to-all personalized exchange occurs in many important applications (for example, matrix
transposition and fast Fourier transform (FFT)) in parallel and distributed computing. The all-to-all personalized exchange
problem has been extensively studied for hypercubes, meshes, and tori; see [9,13] for details. Although the algorithm for
a hypercube achieves optimal time complexity, a hypercube suffers from unbounded node degrees and therefore has poor
scalability; on the other hand, although a mesh or torus has a constant node degree and better scalability, its algorithm has
a higher time complexity. In [13], Yang and Wang had proven that a multistage interconnection network (MIN) is a better
choice for implementing all-to-all personalized exchange due to its shorter communication delay and better scalability.
Given N processors P0, P1, . . . , PN−1, an N × N MIN can be used in communication among these processors as shown in

Figs. 1 and 2, where N × N means this MIN has N inputs and N outputs. A column in a MIN is called a stage and the nodes
stages of a MIN are called switches (or switching elements or crossbars). Throughout this paper, N denotes the number of

I This research was partially supported by the National Science Council of the Republic of China under grant NSC97-2628-M-009-006-MY3.
∗ Corresponding author. Tel.: +886 3 5731767.
E-mail addresses:well.am94g@nctu.edu.tw (W.Y. Chou), cychen@mail.nctu.edu.tw, cychen@cc.nctu.edu.tw (C. Chen).

0304-3975/$ – see front matter© 2010 Published by Elsevier B.V.
doi:10.1016/j.tcs.2009.10.026

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:well.am94g@nctu.edu.tw
mailto:cychen@mail.nctu.edu.tw
mailto:cychen@cc.nctu.edu.tw
http://dx.doi.org/10.1016/j.tcs.2009.10.026


1670 W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669–1684

Fig. 1. Communications among processors using a MIN.

Fig. 2. A 10× 10 MIN which is also a 10× 10 GSEN.

a b
Fig. 3. (a) A 2× 2 switch and its subports. (b) The two possible states of a 2× 2 switch.

inputs (outputs) and n denotes the number of stages. Also, all the switches in a MIN are assumed to be of size 2×2. It is well
known that a 2 × 2 switch has only two possible states: straight and cross, as shown in Fig. 3. A shuffle-exchange network
(SEN) is also called an omega network (see [7]) and has been proposed as a popular architecture for MINs; see [3,6,10,12].
Since a SEN must satisfy N = 2n, in [10], Padmanabhan generalized it to allow N 6= 2n. More precisely, let N be an even
integer. AnN×N generalized shuffle-exchange network (GSEN) is a dlog2 Ne-stageN×N MIN such that each stage consists of
the perfect shuffle onN terminals followed byN/2 switches. TheN terminals in anN×N GSEN are numbered 0, 1, . . . ,N−1
and the perfect shuffle operation on theN terminals is the permutationπ defined byπ(i) = (2 · i+

⌊ 2·i
N

⌋
)modN, 0 ≤ i < N.

See Fig. 2 for an example. In [1,2], bidirectional GSENs are considered.
In the remaining discussion, unless otherwise specified, aMINmeans anN×N MIN and a GSENmeans anN×N GSEN. Do

notice that we will follow the convention used in [1,2,10] that a GSEN has exactly dlog2 Ne stages; dlog2 Ne is the minimum
number of stages to ensure that each input can get to each output. Based on this convention and for convenience, we will
define

n = dlog2 Ne.

Clearly, for a GSEN, its N satisfies 2n−1 < N ≤ 2n.
In this paper, an all-to-all communication algorithm is said to be optimal if it has the smallest communication delay. Now

we review previous results. Yang and Wang [13] first considered the all-to-all personalized exchange problem for MINs. In
particular, they proposed optimal all-to-all personalized exchange algorithms for a class of unique path, self-routable MINs;
for example, baseline, omega, banyan networks, and the reverse networks of these networks. Note that a MIN is unique path
if there is a unique path between each pair of source and destination and self-routable if the routing decision at a switch
depends only on the addresses of the source and the destination. The algorithms in [13] can use the stage control technique
(see [11]), which is a commonly used technique to reduce the cost of the network setting for all-to-all personalized exchange
communication. Stage control means that the states of all the switches of a stage have to be identical. With stage control,
a single control bit (0 for straight and 1 for cross), or in other words, one electronic driver circuit, can be used to control
all the switches of a stage. Thus the number of expensive electronic driver circuits needed is significantly lower than that



W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669–1684 1671

of individual switch control. It was pointed out by Massini in [9] that the algorithms in [13] depend on network topologies
and require pre-computation and memory allocation for Latin squares. In the same paper, Massini proposed a new optimal
algorithm, which is independent on the network topology and does not require pre-computation or memory allocation for
a Latin square. In [8], Liu et al. further generalized Massini’s algorithm to MINs with d× d switches. See also [14].
WhenN 6= 2n, it is possible to implement anN×N GSEN by using a 2n×2n SEN (recall that 2n−1 < N ≤ 2n). For example,

it is possible to implement a 514× 514 GSEN by using a 1024× 1024 SEN. A 514× 514 GSEN uses 2570 switches while its
corresponding 1024× 1024 SEN uses 5120 switches; the former saves about 50% switches than the latter. To compare the
hardware costs of a GSEN and a SEN, we calculate the numbers of switches used by an N×N GSEN and by its corresponding
2n × 2n SEN for N = 4, 6, 8, . . . , 10002. Among these 5000 N ’s,

• for 4175 (about 84%) out of them, a GSEN saves at least 10% switches than its corresponding SEN;
• for 3356 (about 67%) out of them, a GSEN saves at least 20% switches than its corresponding SEN;
• for 2537 (about 51%) out of them, a GSEN saves at least 30% switches than its corresponding SEN;
• for 1632 (about 33%) out of them, a GSEN saves at least 40% switches than its corresponding SEN.

Therefore a GSEN outperforms a SEN in hardware cost.
Do notice that although the algorithms in [9] and [13] are optimal, they work only for MINs that have the unique path

property and satisfy N = 2n. Since a GSEN is not a unique path MIN, the algorithms in [9] and [13] cannot be used. To our
knowledge, no one has studied the all-to-all personalized exchange problem for MINs which do not have the unique path
property and do not satisfy N = 2n. The purpose of this paper is to consider the all-to-all personalized exchange problem
for GSENs. In particular, we propose an optimal all-to-all personalized exchange algorithm for GSENs. This algorithmworks
for all N with N ≡ 2 (mod 4). Let R(N) and Rsc(N) denote the minimum number of network configurations (defined in
the next section) required to fulfill an all-to-all communication in a GSEN when the stage control technique is not assumed
and assumed, respectively. Do notice that R(N) and Rsc(N) are closely related to the smallest communication delay. In
particular, for a GSEN, the smallest communication delay of any all-to-all communication algorithm is θ(R(N) + log2 N)
and θ(Rsc(N)+ log2 N)when the stage control technique is not assumed and assumed, respectively. The optimal algorithms
in [9] and [13] imply thatR(2n) = Rsc(2n) = 2n. In this paper, we will prove that, for 2n−1 < N ≤ 2n, the followings hold:

• N ≤ R(N) ≤ Rsc(N) ≤ 2n;
• Rsc(N) = 2n;
• R(N) = N if N ≡ 2 (mod 4);
• R(N) = 2n if k ≥ 2, N ≡ 0 (mod 2k), N 6≡ 0 (mod 2k+1), and 2n−1 + 2n−k ≤ N ≤ 2n;
• R(20) = 24.

This paper is organized as follows: In Section 2, we give some preliminaries. In Section 3, we prove N ≤ R(N) ≤
Rsc(N) = 2n. In Section 4,we propose an optimal all-to-all personalized exchange algorithm for GSENswithN ≡ 2 (mod 4)
and prove that R(N) = N if N ≡ 2 (mod 4). In Section 5, we focus on GSENs with N ≡ 0 (mod 4) and obtain several
bounds. Some discussions and concluding remarks are given in the final section.

2. Preliminaries

In a GSEN, the switches are aligned in n stages: stage 0, stage 1, . . . , stage n−1, with each stage consists of N/2 switches.
The network configuration of a GSEN is defined by the states of its switches. Since a GSEN has (N/2)×n switches, its network
configuration can be represented by an (N/2) × n matrix in which each entry is defined by the state of its corresponding
switch. For example, the network configuration of the GSEN in Fig. 4(a) is shown in Fig. 4(b).
A permutation of a MIN is one-to-one mapping between the inputs and outputs. For a MIN, if there is a permutation that

maps input i to output p(i), where p(i) ∈ {0, 1, . . . ,N − 1} for i = 0, 1, . . . ,N − 1, then we will use(
0 1 · · · N − 1
p(0) p(1) · · · p(N − 1)

)
or simply

p(0) p(1) · · · p(N − 1)

to denote the permutation. Given the network configuration of a MIN, a permutation between the inputs and outputs can
be obtained. For example, the network configuration shown in Fig. 4(a) maps input 0 to output 9, input 1 to output 7, input
2 to output 5, . . . , and input 9 to output 0; thus this network configuration obtains the permutation 9 7 5 3 8 1 6 4 2 0.
The following conventions are used in the remaining part of this paper. Terminal i (j) is assumed on the left-hand (right-

hand) side of the network and therefore is an input (output) processor. An (i, j)-request denotes a request for sending a
message from i to j. An (i, j)-path denotes a path between i and j. Obviously, an (i, j)-request can be fulfilled by an (i, j)-path.
Consider an (i, j)-request and an (i, j)-path and see Fig. 5 for an illustration. An (i, j)-path P can be described by a sequence

of labels that label the successive links on this path; a number whose binary representation corresponds to such a sequence
is called a control tag or tag or path descriptor [1,2,4,10]. A control tag can be used as a header for routing a message: each
successive switch uses the first element in the binary representation of the control tag to route the message, and then



1672 W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669–1684

a b
Fig. 4. (a) A 10× 10 GSEN in which stage control is used. (b) The network configuration of the GSEN in (a).

Fig. 5. An (i, j)-path P and the subports on P .

discards it. Take Fig. 4(a) for an example. Then i = 2 can get to j = 5 by using 13 = (1101)2, which means that the (2, 5)-
request can be fulfilled by the path via subport 1 at stage 0, subport 1 at stage 1, subport 0 at stage 2, and subport 1 at
stage 3. A routing algorithm is called tag-based if it uses a control tag to route a message. Most of the routing algorithms for
MINs are tag-based, including those for GSENs. The routing algorithms proposed in this paper are also tag-based. Therefore,
whenever a message is sent out, a control tag will be equipped with it.
Again, see Fig. 5. When a message is sent from i to j along P , the message enters a switch at stage n−1−` via subport b`

and leaves the switch via subport f`. On the other hand, when a message is sent from j to i along P , then the message enters
a switch at stage n−1−` via subport f` and leaves the switch via subport b`. The control tag

F = fn−12n−1 + fn−22n−2 + · · · + f020

is called a forward control tag for i to get to j. Most researchers simply called a forward control tag a control tag; here we
add the word ‘‘forward’’ to specify that this control tag is used for sending a message in the forward direction, i.e., from the
left-hand side of the GSEN to the right-hand side. Now let

B = bn−12n−1 + bn−22n−2 + · · · + b020.

B is called a backward control tag and it is used for sending a message in the backward direction (from j to i). Clearly,
0 ≤ F < 2n and 0 ≤ B < 2n.
Suppose F is given. In this paper, P(i, F) denotes the path started from i and using the forward control tag F . Also, B(i, F)

denotes the backward control tag obtained from the path P(i, F). Let

BF = {B(i, F) | i = 0, 1, . . . ,N − 1}.

In the remaining discussion,⊕ denotes the bitwise XOR operation. As a reference,

0⊕ 0 = 0, 0⊕ 1 = 1, 1⊕ 0 = 1, 1⊕ 1 = 0.

If U = (un−1 un−2 · · · u0)2 and V = (vn−1 vn−2 · · · v0)2, then we define

U ⊕ V = (un−1 ⊕ vn−1 un−2 ⊕ vn−2 · · · u0 ⊕ v0)2.

3. The proof of N ≤ R(N) ≤ Rsc(N) = 2n

The purpose of this section is to prove that N ≤ R(N) ≤ Rsc(N) = 2n. We first prove two lemmas.

Lemma 3.1. N ≤ R(N) ≤ Rsc(N) ≤ 2n.

Proof. Given a network configuration, a permutation can be obtained. Thus a network configuration can be used to send N
(personalized) messages simultaneously. The inequality N ≤ R(N) thus follows from that fact that N2 messages have to be
sent to fulfill all-to-all personalized exchange and each network configuration can send only N messages. The inequality
R(N) ≤ Rsc(N) is obvious. The inequality Rsc(N) ≤ 2n follows from the fact that a GSEN has at most 2n network
configurations when the stage control technique is assumed. �



W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669–1684 1673

Fig. 6. Unique paths and multipaths.

In this paper, we call the process of transmitting all the messages to their next stage(s) a round. Thus in an n-stage MIN,
it takes n rounds for a message to arrive its destination. In [13], Yang and Wang proved that the communication delay of
all-to-all personalized exchange in a (log2 N)-stageMIN isΩ(N+log2 N). This is due to the fact that each of theN processors
(say, processor j) has to receive N messages and it takes log2 N rounds for the first message to arrive j and N − 1 rounds for
the remaining N − 1 messages to arrive j. By similar arguments, we have the following lemma and its proof is omitted.

Lemma 3.2. The communication delay of all-to-all communication in a GSEN isΩ(N + n), or equivalently,Ω(N + log2 N).

Do notice that although Ω(N + n) = Ω(N), we will still write Ω(N + n) instead of Ω(N) to emphasize that it takes n
rounds for the first message to arrive its destination. In [5], Lan et al. considered GSENswith switches of size d×d. By setting
d = 2, the following lemma can be obtained.

Lemma 3.3 ([5]). Given i and F , the destination j of the path P(i, F) is determined by

j = (i · 2n + F) mod N.

Moreover, the backward control tag B of the path P(i, F) is given by

B =
⌊
i · 2n + F
N

⌋
.

When the stage control technique is assumed, the network configuration of a GSEN can be represented by a number
as follows. Let c` denote the state, 0 for straight and 1 for cross, of all the switches at stage n−1−`. Then the network
configuration of the GSEN can be represented by the number

C = cn−12n−1 + cn−22n−2 + · · · + c020

or by the binary number (cn−1 cn−2 · · · c0)2. For example, the network configuration of the GSEN in Fig. 4(a) can be
represented by 9 or by (1001)2. Clearly, 0 ≤ C < 2n. Now we give the relation between F (a forward control tag), B
(its corresponding backward control tag) and C (the network configuration) .

Lemma 3.4. When the stage control technique is assumed, F and B together uniquely determine the network configuration C and

C = B⊕ F .

Proof. Consider stage n−1−`. Since the stage control technique is assumed, all switches in stage n−1−` are of the same
state. Let C = cn−12n−1 + cn−22n−2 + · · · + c020 be the network configuration and see Fig. 5. At stage n−1−`, a message
enters subport b` and leaves subport f`. If b` = f`, then the state of the switch is straight; hence c` = 0 = b`⊕ f`. If b` differs
from f` (in this case, (b`, f`) is (0, 1) or (1, 0)), then the state of the switch is cross; hence c` = 1 = b`⊕ f`. From the above,
C = B⊕ F . �

We call a path a unique path if it is the unique path between its source and destination. The following lemma is important.

Lemma 3.5. For all 0 ≤ i < N, path P(i, F) is a unique path if and only if 2n − N ≤ F < N; in particular, P(i, 2n−1) and
P(i, 2n−1 + 1) are unique paths. (See Fig. 6 for illustration.)

Proof. Let i and j be the source and destination of amessage. Suppose there are two distinct paths P(i, F1), P(i, F2) from i to j.
Then, by Lemma 3.3, the difference between F1 and F2 isN . Without loss of generality, assume that F2−F1 = N . Since F1 ≥ 0,
F2 ≥ N must hold. Since F2 < 2n, it follows that F1 < 2n − N . Thus P(i, F) is a unique path if and only if 2n − N ≤ F < N .
Since 2n−N ≤ 2n−1 < N , P(i, 2n−1) is a unique path. Since 2n−N ≤ 2n−1+ 1 < N , P(i, 2n−1+ 1) is also a unique path. �

Lemma 3.6. B2n−1 = B2n−1+1.

Proof. Let 0 ≤ i < N . Let bn−1fn−1bn−2fn−2 · · · b0f0 be the sequence of subports passed bypath P(i, 2n−1); see Fig. 5. Similarly,
let b′n−1f

′

n−1b
′

n−2f
′

n−2 · · · b
′

0f
′

0 be the sequence of subports passed by path P(i, 2
n−1
+ 1). Since the binary representations of

2n−1 and 2n−1 + 1 differ only at their rightmost bits, bn−1fn−1bn−2fn−2 · · · b0f0 and b′n−1f
′

n−1b
′

n−2f
′

n−2 · · · b
′

0f
′

0 are identical
except that f0 6= f ′0 . Hence B(i, 2

n−1) = bn−1bn−2 · · · b0 = b′n−1b
′

n−2 · · · b
′

0 = B(i, 2
n−1
+ 1). Since B2n−1 = {B(i, 2

n−1) | i =
0, 1, . . . ,N − 1} andB2n−1+1 = {B(i, 2

n−1
+ 1) | i = 0, 1, . . . ,N − 1}, we have this lemma. �



1674 W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669–1684

Fig. 7. Applying alternating stage control on a 10× 10 GSEN; the shown network configuration is A = 9 = (1001)2 .

For convenience, if a number is in {0, 1, 2, . . . , 2n − 1} but not in BF , then we call it a hole of BF . The following lemma
shows that the elements ofBF are distributed very uniformly in {0, 1, 2, . . . , 2n − 1}.

Lemma 3.7. For all F ∈ {0, 1, 2, . . . , 2n − 1},BF has no two consecutive holes.

Proof. We will prove this lemma by showing that B(0, F) ≤ 1, B(N − 1, F) ≥ 2n − 2, and

B(i− 1, F)+ 1 ≤ B(i, F) ≤ B(i− 1, F)+ 2 for i = 1, 2, . . . ,N − 1.

Recall that 2n−1 < N ≤ 2n and 0 ≤ F < 2n. By Lemma 3.3, B(0, F) =
⌊ F
N

⌋
≤ 1. Also, B(N − 1, F) =

⌊
(N−1)·2n+F

N

⌋
≥⌊

(N−1)·2n

N

⌋
≥ 2n − 2. Finally, consider i, where 1 ≤ i ≤ N − 1. By Lemma 3.3, B(i − 1, F) + 1 =

⌊
(i−1)·2n+F

N

⌋
+ 1 =⌊

i·2n+F
N −

2n
N

⌋
+ 1 ≤

⌊
i·2n+F
N

⌋
= B(i, F) =

⌊
(i−1)·2n+F

N +
2n
N

⌋
≤

⌊
(i−1)·2n+F

N

⌋
+ 2 = B(i− 1, F)+ 2. �

Now we are ready to prove the main result of this section.

Theorem 3.8. N ≤ R(N) ≤ Rsc(N) = 2n.

Proof. By Lemma 3.1, it suffices to prove thatRsc(N) ≥ 2n. When the stage control technique is assumed, there are only 2n
possible network configurations: 0, 1, . . . , 2n − 1. Thus to prove thatRsc(N) ≥ 2n, it suffices to prove that each of the 2n
possible network configurations is required for every processor to receive N messages.
When the stage control technique is assumed, the network configuration C can be determined by an arbitrary path P set

up by C . Moreover, if F and B are the forward and backward control tags used by P , then Lemma 3.4 tells us that C = B⊕ F .
In the following, we will prove that for each C in {0, 1, . . . , 2n− 1}, at least one of the paths set up by C is a unique path and
therefore C must be used in all-to-all personalized exchange. Suppose to the contrary there is a Ĉ in {0, 1, . . . , 2n− 1} such
that none of the paths set up by Ĉ is a unique path. Then consider 2n−1 ⊕ Ĉ and let B̂ = 2n−1 ⊕ Ĉ; consider (2n−1 + 1)⊕ Ĉ
and let B̂′ = (2n−1+1)⊕ Ĉ . We claim that B̂ 6∈ B2n−1 and B̂′ 6∈ B2n−1+1. Suppose this clam is not true. Then either B̂ ∈ B2n−1

or B̂′ ∈ B2n−1+1 or both. Suppose B̂ ∈ B2n−1 . Since Ĉ = B̂⊕2
n−1, by Lemma 3.5, Ĉ conducts a unique path, which contradicts

with the assumption that none of the paths set up by Ĉ is a unique path. The case that B̂′ ∈ B2n−1+1 can be proven similarly.
Now we have the claim that B̂ 6∈ B2n−1 and B̂′ 6∈ B2n−1+1. By Lemma 3.6, B2n−1 =B2n−1+1. Thus B̂′ 6∈ B2n−1 . Since B̂ and B̂′
differ by 1, they are two consecutive holes inB2n−1 ; this contradicts with Lemma 3.7. Thus for each C in {0, 1, . . . , 2

n
− 1},

at least one of the paths set up by C is a unique path and therefore C must be used in all-to-all personalized exchange. So
Rsc(N) ≥ 2n. �

4. All-to-all personalized exchange of GSENs with N ≡ 2 (mod 4)

Throughout this section, unless other specified, subports 0 and 1 are the subports 0 and 1 on the right-hand side of a
switch. We will propose an optimal all-to-all personalized exchange algorithm for GSENs with N ≡ 2 (mod 4) and prove
that N = R(N) < Rsc(N) = 2n if N ≡ 2 (mod 4). We first introduce a variation of the stage control technique and we call
it alternating stage control, meaning that the states of the switches of a stage alternate between straight and cross. See Fig. 7
for an illustration.
When alternating stage control is used, the network configuration of a GSEN can be represented by a number as follows.

Let a` denote the states of the switches at stage n−1−` such that

• a` = 0 means the states are 0, 1, 0, 1, and so on;
• a` = 1 means the states are 1, 0, 1, 0, and so on.



W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669–1684 1675

a b c d e

Fig. 8. (a) and (b): a stage in a 10×10 GSENwhen a` = 0. (c) and (d): a stage in a 10×10 GSENwhen a` = 1. (e) An illustration for the proof of Property (∗).

The network configuration of the GSEN can be represented by the number

A = an−12n−1 + an−22n−2 + · · · + a020

or (an−1 an−2 . . . a1 a0)2 in the binary form. Clearly, 0 ≤ A < 2n.We will call A an alternating configuration. When N ≡ 2
(mod 4) and alternating stage control is used, the N input terminals and N output terminals of stage n−1−` have the
following property.

Property (∗) (see Fig. 8 (a)–(d) for an illustration).

1. If a` = 0, then Even
0
−→ Even, Odd

1
−→ Odd. That is, every even-numbered input terminal is connected to an even-

numbered output terminal via subport 0, and every odd-numbered input terminal is connected to an odd-numbered output
terminal via subport 1.

2. If a` = 1, then Even
1
−→ Odd, Odd

0
−→ Even. That is, every even-numbered input terminal is connected to an odd-numbered

output terminal via subport 1, and every odd-numbered input terminal is connected to an even-numbered output terminal via
subport 0.

Proof. Consider an arbitrary stage of a GSEN and an arbitrary switch y of this stage; see Fig. 8(e) for an illustration. Suppose
input terminals x0 and x1 are connected to subports 0 and 1 of switch y, respectively. By the definition of a GSEN, x0 = y and
x1 = y+ N

2 hold. Note that
N
2 is an odd number since N ≡ 2 (mod 4). Since

N
2 is odd, one of x0 and x1 is even and the other

one is odd. Now consider the output terminals z0 and z1 of switch y. Then z0 is even and z1 is odd.
Suppose a` = 0 and y is even. Then x0 is even (by the fact that x0 = y) and x0 is connected to z0 (due to the setting of a`).

Thus every even-numbered input terminal is connected to an even-numbered output terminal via subport 0. Now suppose
a` = 0 and y is odd. Then x0 is odd (by the fact that x0 = y) and x0 is connected to z1 (due to the setting of a`). Thus every
odd-numbered input terminal is connected to an odd-numbered output terminal via subport 1. The case of a` = 1 can be
proven similarly. �

Do notice that Property (∗) holds only when N ≡ 2 (mod 4) holds. Now we give other properties of alternating stage
control.

Lemma 4.1. Suppose N ≡ 2 (mod 4) and alternating stage control is used. Then the following statements hold:
1. The forward control tags of even-numbered inputs are identical.
2. The forward control tags of odd-numbered inputs are identical.

Proof. Let A = (an−1 an−2 · · · a0)2 be the alternating configuration used. By Property (∗), all the messages sent out from
inputs 0, 2, 4, . . . , N − 2 are via subports 0 of switches at stage n−1−` if a` = 0 and via subports 1 of switches at stage
n−1−` if a` = 1. Thus statement 1 holds. By Property (∗), all the messages sent out from inputs 1, 3, 5, . . . , N − 1 are via
subports 1 of switches at stage n−1−` if a` = 0 and via subports 0 of switches at stage n−1−` if a` = 1. Thus we have
statement 2. �

Theorem 4.2. Suppose N ≡ 2 (mod 4) and alternating stage control is used. Let A be a given alternating configuration, F be the
forward control tag of any even-numbered input, and F be the forward control tag of any odd-numbered input. Then:
(i) F ⊕ F = (11 · · · 1)2;
(ii) A = F ⊕

⌊ F
2

⌋
;

(iii) F = A⊕
⌊ A
2

⌋
⊕

⌊
A
22

⌋
⊕ · · · ⊕

⌊
A
2n−1

⌋
.



1676 W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669–1684

Proof. First consider (i). Let F = (fn−1 fn−2 · · · f0)2 and A = (an−1 an−2 · · · a0)2. By Property (∗), if messages from even-
numbered inputs are via subport f` at stage n−1−`, then messages from inputs odd are via subport 1−f` at stage n−1−`,
(` = n− 1, n− 2, . . . , 0). Thus F ⊕ F = (11 · · · 1)2. Now consider (ii). Clearly, an−1 = fn−1. For ` = n− 2, n− 3, . . . , 0, by
Property (∗), we have:

• If a` = 0, then f` = 0 whenever f`+1 = 0 and f` = 1 whenever f`+1 = 1.
• If a` = 1, then f` = 0 whenever f`+1 = 1 and f` = 1 whenever f`+1 = 0.

Thus a` = f` ⊕ f`+1 for ` = n− 2, n− 3, . . . , 0. Therefore

A = (an−1 an−2 . . . a1 a0)2 = (fn−1 fn−2⊕fn−1 fn−3⊕fn−2 . . . f0⊕f1)2
= (fn−1⊕0 fn−2⊕fn−1 fn−3⊕fn−2 . . . f0⊕f1)2

= (fn−1 fn−2 fn−3 . . . f0)2⊕(0 fn−1 fn−2 . . . f1)2 = F ⊕
⌊
F
2

⌋
.

Finally, consider (iii). Then f` = a`⊕a`+1⊕· · ·⊕an−1 for ` = n−2, n−3, . . . , 0. Thus F = A⊕
⌊ A
2

⌋
⊕

⌊
A
22

⌋
⊕· · ·⊕

⌊
A
2n−1

⌋
. �

Theorem 4.2(ii) gives a one-to-one correspondence between A and F ; for convenience, let AF denote the alternating
configuration corresponding to F . When F = k,

Ak = k⊕
⌊
k
2

⌋
.

Lemma 4.3. If N ≡ 2 (mod 4) and the given GSEN is set by alternating configuration Ak, then the forward control tags of
even-numbered inputs are k and the forward control tags of odd-numbered inputs are 2n − 1− k.
Proof. This lemma follows from Lemma 4.1, Ak = k⊕

⌊ k
2

⌋
, and Theorem 4.2(i). �

Now we prove a theorem, which is the foundation of our algorithms.
Theorem 4.4. Suppose N ≡ 2 (mod 4). Then the N alternating configurations A0, A1, . . . , AN−1 ensure that every input i can
get to every output j; in other words, A0, A1, . . . , AN−1 can fulfill an all-to-all communication in a GSEN.
Proof. Let i be an arbitrary input. For k = 0, 1, . . . ,N−1, let jk be the destination of iwhen the network configuration is set
according to Ak. First consider the case that i is even. By Lemmas 3.3 and 4.3, jk = (i · 2n+ k) mod N . Since A0, A1, . . . , AN−1
ensure that k varies from 0 to N − 1 and jk = (i · 2n + k) mod N , it follows that i can get to every output. Now consider the
case that i is odd. By Lemmas 3.3 and 4.3, jk = (i · 2n+ 2n− 1− k) mod N . Since A0, A1, . . . , AN−1 ensure that k varies from
0 to N − 1 and jk = (i · 2n + 2n − 1− k) mod N , it follows that i can get to every output. �

For example, the 10 alternating configurations A0 = 0, A1 = 1, A2 = 3, A3 = 2, A4 = 6, A5 = 7, A6 = 5, A7 = 4, A8 =
12, A9 = 13 can fulfill an all-to-all communication in a 10 × 10 GSEN. Note that A0, A1, . . . , AN−1 are not the only way to
fulfill an all-to-all communication in a GSEN. In fact, any N consecutive integers in 0, 1, . . . , 2n − 1 can fulfill an all-to-all
communication.
The purpose of this paper is to propose an optimal all-to-all personalized exchange algorithm for GSENs. However, since

there is no all-to-all broadcast algorithm for GSENs, we will also propose one. Therefore, in the following, three algorithms
will be proposed. The first algorithm fulfills all-to-all broadcast in GSENs. The second algorithm gives a preprocessing of the
third algorithm. And the third algorithm fulfills all-to-all personalized exchange in GSENs.

Algorithm 1 : an algorithm to fulfill all-to-all broadcast in a GSEN with N ≡ 2 (mod 4)
1: for each processor i (0 ≤ i < N) do in parallel
2: Processor i prepares a broadcast message;
3: for k = 0 to N − 1 do in sequential
4: Equip the broadcast message of processor iwith the forward control tag k if i is even and 2n − 1− k if i is odd;
5: Transmit the message;
6: endfor
7: endfor

The correctness of Algorithm 1 follows from Lemma 4.3 and Theorem 4.4. The communication delay of Algorithm 1 is
O(N + n) since each of the N processors can receive its first message in n rounds and receive the remaining N − 1 messages
in N − 1 rounds. By Lemma 3.2, Algorithm 1 is optimal.
All-to-all personalized exchange is muchmore complicated than all-to-all broadcast. In all-to-all personalized exchange,

a source has to prepare a personalized message for each of its N destinations. Therefore, before a message is sent out, the
source of the message has to know which output will be its current destination so that a personalized message can be
prepared. Algorithm 2 is designed to overcome this difficulty. This algorithm constructs a matrix called destination matrix
D = (di,k) so that di,k = j if and only if the message sent out from processor i at round k arrives processor j.
The following theorem proves the correctness and gives the time complexity of Algorithm 2.



W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669–1684 1677

Algorithm 2 : an algorithm to construct the destination matrix D = (di,k) for a GSEN with N ≡ 2 (mod 4)
1: n← dlog2 Ne;
2: power ← 2n;
3: for each processor i (0 ≤ i < N) do in sequential
4: if i is even then m← (i · power) mod N; else m← ((i+ 1) · power − 1) mod N; endif
5: for k = 0 to N − 1 do in sequential
6: if i is even then di,k ← (m+ k) mod N; else di,k ← (m− k) mod N; endif
7: endfor
8: endfor

Theorem 4.5. Algorithm 2 constructs a matrix D = (di,k) so that di,k = j if and only if the message sent out from processor i at
round k arrives processor j. Moreover, it takes O(N2) time.

Proof. To prove the correctness of Algorithm 2, it suffices to show that themessage sent out from processor i at round k (see
Algorithm 3 for round k) arrives processor (m + k) mod N if i is even and arrive processor (m − k) mod N if i is odd. Note
that in Algorithm 3, we will use A0, A1, . . . , AN−1 to fulfill all-to-all personalized exchange. By Lemma 4.3, Ak contributes an
even-numbered processor i the forward control tag k and it contributes an odd-numbered processor i the forward control
tag 2n − 1− k. Suppose i is even. Then at round k, the message sent out from processor iwill be equipped with the forward
control tag k; by Lemma 3.3, the destination is

j = (i · 2n + k) mod N = (i · power+ k) mod N = (m+ k) mod N.

Now suppose i is odd. By Lemma 4.3, the message sent out from processor i will be equipped with the forward control tag
2n − 1− k; by Lemma 3.3, the destination is

j = (i · 2n + 2n − 1− k) mod N = ((i+ 1) · power− 1− k) mod N = (m− k) mod N.

It is not difficult to see that Algorithm 2 takes O(N2) time. We have this theorem. �

Consider the GSEN in Fig. 2 for an example of Algorithm 2. Then the matrix D constructed is:

D =



0 1 2 3 4 5 6 7 8 9
1 0 9 8 7 6 5 4 3 2
2 3 4 5 6 7 8 9 0 1
3 2 1 0 9 8 7 6 5 4
4 5 6 7 8 9 0 1 2 3
5 4 3 2 1 0 9 8 7 6
6 7 8 9 0 1 2 3 4 5
7 6 5 4 3 2 1 0 9 8
8 9 0 1 2 3 4 5 6 7
9 8 7 6 5 4 3 2 1 0


.

Note that the matrix D needs to be constructed only once and therefore can be viewed as one of the system parameters.
Thus the time complexity of Algorithm 2 is not included in the communication delay. Now we are ready to propose our
all-to-all personalized exchange algorithm; see Algorithm 3.

Algorithm 3 : an algorithm to fulfill all-to-all personalized exchange in a GSEN with N ≡ 2 (mod 4)
1: for each processor i (0 ≤ i < N) do in parallel
2: for k = 0 to N − 1 do in sequential //comment: round k
3: Processor i prepares a personalized message for processor di,k;
4: Equip the personalized message with the forward control tag k if i is even and 2n − 1− k if i is odd;
5: Transmit the message;
6: endfor
7: endfor

The following theorem proves the correctness and gives the time complexity of Algorithm 3.

Theorem 4.6. Algorithm 3 fulfills all-to-all personalized exchange in a GSEN with N ≡ 2 (mod 4). Moreover, it takes O(N + n)
time.

Proof. Algorithm 3 prepares a personalized message according to the matrix D, which is constructed by Algorithm 2. Thus,
by Theorems 4.4 and 4.5, Algorithm3 fulfills all-to-all personalized exchange for GSENswithN ≡ 2 (mod 4). This algorithm
takes O(N + n) time since each of the N processors can receive its first personalized message in n rounds and receive the
remaining N − 1 personalized messages in N − 1 rounds. �



1678 W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669–1684

Fig. 9. An example of Algorithm 3.

By Lemma 3.2 and Theorem 4.6, we have the following corollary.

Corollary 4.7. Algorithm 3 is optimal.

Fig. 9 shows how Algorithm 3 fulfills all-to-all personalized exchange for the GSEN in Fig. 2. Take round 2 in Fig. 9
for an example. The 0-1 bits 0011 above stages 0, 1, 2, 3 denote the alternating configuration for round 2, which is
(0011)2 = 3 = A2. The numbers on the left-hand side denote the destinations of personalized messages. Thus, at round 2,
processor 0 sends a personalizedmessage to processor 2, processor 1 sends a personalizedmessage to processor 9, processor
2 sends a personalizedmessage to processor 4, . . . , and processor 9 sends a personalizedmessage to processor 7. Recall that
A0 = 0, A1 = 1, A2 = 3, A3 = 2, A4 = 6, A5 = 7, A6 = 5, A7 = 4, A8 = 12, A9 = 13 can fulfill an all-to-all communication
in a 10× 10 GSEN. The 10 alternating configurations and the destinations of the messages are shown on the left-hand side
of the GSEN for rounds 0, 1, . . . , 9 in Fig. 9.
Note that it is possible to combine Algorithms 2 and 3 and to avoid the construction of matrix D. See Algorithm 4 below.

Now we end this section by proving the following theorem.

Theorem 4.8. N = R(N) < Rsc(N) = 2n if N ≡ 2 (mod 4).

Proof. Since Algorithm 3 can fulfill all-to-all personalized exchange by using N network configurations, namely,
A0, A1, . . . , AN−1, we have R(N) ≤ N . By Theorem 3.8 and by the fact that R(N) ≤ N for N ≡ 2 (mod 4), we have
this theorem. �



W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669–1684 1679

Algorithm 4 : yet another algorithm to fulfill all-to-all personalized exchange in a GSEN with N ≡ 2 (mod 4)
1: for each processor i (0 ≤ i < N) do in parallel
2: n← dlog2 Ne;
3: power ← 2n;
4: if i is even then m← (i · power) mod N; else m← ((i+ 1) · power − 1) mod N; endif
5: for k = 0 to N − 1 do in sequential //comment: round k
6: if i is even then j← (m+ k) mod N; else j← (m− k) mod N; endif
7: Processor i prepares a personalized message for processor j;
8: Equip the personalized message with the forward control tag k if i is even and 2n − 1− k if i is odd;
9: Transmit the message;
10: endfor
11: endfor

Fig. 10. A 12× 12 GSEN, switches s0 and s1 , terminals t0 and t1 , andQ = {Q0,Q1,Q2}.

5. The value of R(N) when N ≡ 0 (mod 4)

The purpose of this section is to obtain R(N) for all N ≡ 0 (mod 4). Recall that each stage of a GSEN consists of the
perfect shuffle on N terminals followed by N/2 switches, the N terminals are numbered 0, 1, . . . , N − 1, and the perfect
shuffle operation on the N terminals is the permutation π defined by π(i) = (2 · i +

⌊ 2·i
N

⌋
) mod N, 0 ≤ i < N.We first

have a lemma.

Lemma 5.1. Suppose k ≥ 2, N ≡ 0 (mod 2k), and N 6≡ 0 (mod 2k+1). Let i be an arbitrary input of a given N × N GSEN. If
the forward control tag F = fn−12n−1 + fn−22n−2 + · · · + f020 used by i starts with fn−1 = 0 and fn−t = 1 (for t = 2, 3, . . . , k),
then the terminal reached by i immediately after stage k−1 is (i2k + 2k−1 − 1) mod N.

Proof. Each stage of a GSEN has N/2 switches; we suppose these N/2 switches are labeled 0, 1, . . . ,N/2− 1. Consider the
path P(i, F) and the switches and terminals on the path. Let s` be the label of the switch at stage ` reached by P(i, F). Let
t` be the terminal immediately after stages ` that is reached by P(i, F). See Fig. 10 for an illustration of the N = 12 and
k = 2 case. By the perfect shuffle operation, s0 = i mod N/2. Since fn−1 = 0, we have t0 = 2s0 = (2i) mod N. Again, by the
perfect shuffle operation, s1 = t0 mod N/2 = (2i) mod N/2. Since fn−2 = 1, we have t1 = 2s1 + 1 = (4i + 1) mod N =
(i22 + 21 − 1) mod N. In general, we assume ` ≥ 1. Then we have s` = t`−1 mod N/2 and t` = 2s` + fn−1−`. Continuing in
this way, we have

tk−1 = (i2k + fn−12k−1 + · · · + fn−k20) mod N = (i2k + 2k−2 + · · · + 20) mod N = (i2k + 2k−1 − 1) mod N.

Hence this lemma holds. �

For r = 0, 1, . . . , N
2k
− 1, let Qr denote the terminal r2k + 2k−1 − 1 immediately after stage k−1 and see Fig. 10 for an

illustration of the N = 12 and k = 2 case. LetQ = {Qr | r = 0, 1, . . . , N2k − 1}. We say a routing path passes throughQ if it
passes through one of the terminals inQ.

Lemma 5.2. Suppose k ≥ 2, N ≡ 0 (mod 2k), N 6≡ 0 (mod 2k+1), and consider an N×N GSEN. A routing path passes through
Q if and only if the forward control tag F = fn−12n−1+ fn−22n−2+· · ·+ f020 used by this path starts with fn−1 = 0 and fn−t = 1
(for t = 2, 3, . . . , k).



1680 W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669–1684

Proof. Assume that the given routing path is from input i. Then this routing path is the path P(i, F).
(Necessity) First suppose P(i, F) passes through the terminal Qr inQ. Then by the perfect shuffle operation, we have

(i2k + fn−12k−1 + · · · + fn−k) mod N = r2k + 2k−1 − 1.

Since 2k|N , we can take modulo 2k for both sides of the above equation and obtain

(i2k + fn−12k−1 + · · · + fn−k mod N) mod 2k = (r2k + 2k−1 − 1) mod 2k = 2k−1 − 1,

which implies fn−12k−1 + fn−22k−2 + · · · + fn−k = 2k−1 − 1, i.e., fn−1 = 0 and fn−t = 1 (for t = 2, 3, . . . , k).
(Sufficiency) Suppose the forward control tag F starts with fn−1 = 0 and fn−t = 1 (for t = 2, 3, . . . , k). Then by

Lemma 5.1, the terminal reached by i immediately after stage k−1 will be (i2k + 2k−1 − 1) mod N , which is Qi mod N
2k
.

Therefore P(i, F) passes throughQ. �

Recall that 2n−1 < N ≤ 2n. The following lemma requires N to satisfy 2n−1 + 2n−k ≤ N ≤ 2n.

Lemma 5.3. Suppose k ≥ 2, N ≡ 0 (mod 2k), N 6≡ 0 (mod 2k+1), and consider an N × N GSEN. If 2n−1 + 2n−k ≤ N ≤ 2n
and the forward control tag F = fn−12n−1 + fn−22n−2 + · · · + f020 used by a path starts with fn−1 = 0 and fn−t = 1 (for
t = 2, 3, . . . , k), then this path is a unique path.

Proof. Note that if F starts with fn−1 = 0 and fn−t = 1 (for t = 2, 3, . . . , k), then 2n−1 − 2n−k ≤ F < 2n−1. Assume that the
given routing path is from input i. Then this routing path is the path P(i, F). By Lemma 3.5, P(i, F) is a unique path if and
only if 2n − N ≤ F < N . Since

2n − N ≤ 2n − 2n−1 − 2n−k = 2n−1 − 2n−k ≤ F < 2n−1 < N,

P(i, F) is a unique path for each 2n−1 − 2n−k ≤ F < 2n−1. Hence this lemma holds. �

Now we are ready to propose our result forR(N)with N ≡ 0 (mod 4).

Theorem 5.4. R(N) = Rsc(N) = 2n if k ≥ 2, N ≡ 0 (mod 2k), N 6≡ 0 (mod 2k+1), and 2n−1 + 2n−k ≤ N ≤ 2n.

Proof. Assume k ≥ 2, N ≡ 0 (mod 2k), N 6≡ 0 (mod 2k+1), and 2n−1 + 2n−k ≤ N ≤ 2n. By Theorem 3.8, it suffices
to prove that R(N) ≥ 2n. In any all-to-all communication of a GSEN, a total of N2 routing paths have to be established.
Let i be an arbitrary input and let F = fn−12n−1 + fn−22n−2 + · · · + f020 be an arbitrary forward control tag such that F
starts with fn−1 = 0 and fn−t = 1 (for t = 2, 3, . . . , k). Since F starts with fn−1 = 0 and fn−t = 1 (for t = 2, 3, . . . , k),
we have 2n−1 − 2n−k ≤ F < 2n−1 and there are a total of 2n−k such F ’s. By Lemma 5.3, P(i, F) is a unique path. Since
2n−1 − 2n−k ≤ F < 2n−1, the number of such unique paths P(i, F) is N · 2n−k. LetU denote the set of these N · 2n−k unique
paths. Then, in any all-to-all communication, all of the paths in U must appear. By Lemma 5.2, all of the paths in U will
pass throughQ. Recall that given a network configuration, a permutation between the inputs and outputs can be obtained.
Therefore, given a network configuration, N routing paths can be established. By Lemma 5.1, any network configuration can
establish only N/2k routing paths inU. ThereforeR(N) ≥ N·2n−k

N/2k
= 2n. �

By Theorem 5.4, R(12) = 16, R(24) = 32, R(28) = 32, R(40) = 64, R(80) = 128, and R(144) = 256. The first
R(N) that cannot be determined by Theorems 4.8 and 5.4 is R(20); we will determine it after introducing a variation of
the alternating stage control technique; we call it doubly alternating stage control, meaning that the states of the switches of
a stage alternate between two straight states and two cross states. The network configuration obtained by doubly alternating
stage control is called a doubly alternating configuration and it can be represented by the number

A′ = a′n−12
n−1
+ a′n−22

n−2
+ · · · + a′02

0

as follows. Let a′` denote the states of the switches at stage n−1−` such that

• a′` = 0 means the states are 0, 0, 1, 1, 0, 0, 1, 1, and so on.
• a′` = 1 means the states are 1, 1, 0, 0, 1, 1, 0, 0, and so on.

Obviously, 0 ≤ A′ < 2n. Now we are ready to determineR(20).

Theorem 5.5. R(20) = 24.

Proof. We first prove that R(20) ≥ 24. In any all-to-all communication of a 20 × 20 GSEN, a total of 202 = 400 routing
paths have to be established. To proveR(20) ≥ 24, we claim that 400 routing paths are not sufficient to fulfill an all-to-all
communication in a 20 × 20 GSEN and at least 400 + 80 = 480 routing paths have to be established in order to fulfill an
all-to-all communication. If this claim is true, then since a network configuration can establish only 20 routing paths, we
haveR(20) ≥ 480

20 = 24. Now we prove this claim.
Let i be an arbitrary input and let F = fn−12n−1 + fn−22n−2 + · · · + f020 be an arbitrary forward control tag. By

Lemma 3.5, P(i, F) is a unique path if and only if 12 ≤ F ≤ 19. Hence each input i contributes 8 unique paths P(i, 12),
P(i, 13), . . . , P(i, 19). Thus there are a total of 160 unique paths; we illustrate all of these 160 unique paths in Fig. 11. In
this proof, states of switches at stage 2 play an important role. Denote the 10 switches at stage 2 by S0, S1, . . . , S9. Now we



W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669–1684 1681

Fig. 11. The 160 unique paths in a 20× 20 GSEN; each input i contributes 8 unique paths.

define types 00, 01, 10, and 11, according to the connection inside a switch at stage 2 as follows. A path is said to be of type
xy, where x,y ∈ {0,1}, if the connection inside the switch (passed by the path) at stage 2 is from subport x to subport y. The
following two facts can be observed from Fig. 11.
Fact 1: All of the unique paths passing through S0, S4, and S8 are of type 10, through S1, S5, and S9 are of type 01, through S2
and S6 are of type 00, and through S3 and S7 are of type 11. (See Fig. 12(a).)
Fact 2: Each switch at stage 2 has exactly 16 unique paths passing through it. More precisely, letUi denote the set of all 16
unique paths passing through Si. Then

U0 = {P(i, F) | i = 2, 7, 12, 17 and F = 16, 17, 18, 19}, U1 = {P(i, F) | i = 0, 5, 10, 15 and F = 12, 13, 14, 15},
U2 = {P(i, F) | i = 0, 5, 10, 15 and F = 16, 17, 18, 19}, U3 = {P(i, F) | i = 3, 8, 13, 18 and F = 12, 13, 14, 15},
U4 = {P(i, F) | i = 3, 8, 13, 18 and F = 16, 17, 18, 19}, U5 = {P(i, F) | i = 1, 6, 11, 16 and F = 12, 13, 14, 15},
U6 = {P(i, F) | i = 1, 6, 11, 16 and F = 16, 17, 18, 19}, U7 = {P(i, F) | i = 4, 9, 14, 19 and F = 12, 13, 14, 15},
U8 = {P(i, F) | i = 4, 9, 14, 19 and F = 16, 17, 18, 19}, U9 = {P(i, F) | i = 2, 7, 12, 17 and F = 12, 13, 14, 15}.

By Fact 1, in a network configuration, switch S0 has to be set to cross to let a unique path inU0 passing through it. LetN0
denote the set of paths of passing through S0 which are of type 01; see Fig. 12(b). Also by Fact 1, in a network configuration,
switch S3 has to be set to straight to let a unique path in U3 passing through it. Let N3 denote the set of paths passing
through S3 which are of type 00; see Fig. 12(c). Let I × J-requests denote the set of all (i, j)-requests with i ∈ I and j ∈ J . It



1682 W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669–1684

a b c

Fig. 12. (a) The setting of switches at stage 2when unique paths pass through them. (b) The set of paths inN0 . These paths fulfill {0, 5, 10, 15}×{4, 5, 6, 7}-
requests. (c) The set of paths inN3 . These paths also fulfill {0, 5, 10, 15} × {4, 5, 6, 7}-requests.

can be observed from Fig. 12(b)(c) thatN0 andN3 both fulfill {0, 5, 10, 15}×{4, 5, 6, 7}-requests. Thus when the 32 unique
paths inU0 ∪U3 are fulfilled, the 32 paths in N0 ∪ N3 are also established; however, N0 ∪ N3 fulfills at most 16 routing
requests and at least 16 routing requests are repeated. The same situation also occurs when the 32 unique paths inU1∪U8,
inU2∪U5, inU4∪U7, and inU6∪U9 are established. From the above, a total of 16 ·5 = 80 routing requests are repeated.
Hence to fulfill an all-to-all communication in a 20×20 GSEN, at least 400+80 = 480 routing requests have to be fulfilled,
i.e., 480 routing paths have to be established.
Nowwe proveR(20) ≤ 24 by showing that an all-to-all communication in a 20×20 GSEN can be fulfilled in 24 network

configuration. A 20×20GSENhas 32 doubly alternating configurations. Consider these 32 doubly alternating configurations.
It is not difficult to check that A′ = 0 and A′ = 17 obtain the same permutation and hence only one of them is needed in an
all-to-all communication. Each of the following pairs of doubly alternating configurations also obtain the same permutation
and hence only one in each pair is needed in an all-to-all communication: A′ = 1 and A′ = 16, A′ = 2 and A′ = 19, A′ = 3
and A′ = 18, A′ = 8 and A′ = 25, A′ = 9 and A′ = 24, A′ = 10 and A′ = 27, and A′ = 11 and A′ = 26. By removing
one doubly alternating configuration from each of the above eight pairs, we have a setA′ containing 24 doubly alternating
configurations; in particular, we can choose A′ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29,
30, 31}. In Fig. 13, we show all the permutations obtained by applying the network configurations inA′. It is not difficult to
see thatA′ fulfills an all-to-all communication in a 20× 20 GSEN. HenceR(20) ≤ 24. �

6. Concluding remarks

The shuffle-exchange network has been proposed as a popular architecture for MINs. The generalized shuffle-exchange
networks (GSEN) is a generalization of the shuffle-exchange network. We follow the convention used in [1,2,10] that an
N × N GSEN has exactly dlog2 Ne stages. Based on this convention, we define n = dlog2 Ne and we have 2n−1 < N ≤ 2n.
In this paper we consider the all-to-all personalized exchange problem in GSENs. Since a GSEN does not have the unique

path property, previous algorithms [9,13] cannot be used. To our knowledge, no one has studied all-to-all personalized
exchange in MINs which do not have the unique path property and do not satisfy N = 2n. An optimal algorithm and
several bounds onR(N) andRsc(N) have been proposed in this paper; recall thatR(N) is theminimumnumber of network
configurations required to fulfill all-to-all communication in anN×N GSEN andRsc(N) is theminimumnumber of network
configurations required to fulfill all-to-all communication in an N × N GSEN when the stage control technique is assumed.
In Theorem 3.8, we have proven N ≤ R(N) ≤ Rsc(N) = 2n. In Theorem 4.8, we have proven N = R(N) < Rsc(N) =
2n if N ≡ 2 (mod 4). In Theorem 5.4, we have provenR(N) = Rsc(N) = 2n if k ≥ 2,N ≡ 0 (mod 2k),N 6≡ 0 (mod 2k+1),
and 2n−1 + 2n−k ≤ N ≤ 2n. In Theorem 5.5, we have provenR(20) = 24.
Before closing this paper, we list R(N) and Rsc(N) for N = 4, 6, . . . , 128 in Fig. 14. We conjecture that when N ≡ 4

(mod 8), the best way to reduce the number of network configurations used in an all-to-all communication in a GSEN is
to use doubly alternating stage control. One can examineR(36) ≤ 40 andR(44) ≤ 48 by the aid of a computer. We also
conjecture that when N ≡ 8 (mod 16), the best way to reduce the number of network configurations used in an all-to-
all communication in a GSEN is to use quadruply alternating stage control, meaning that the states of the switches of a stage
alternate between four straight states and four cross states. The network configuration obtained by quadruply alternating stage
control is called a quadruply alternating configuration and it can be represented by the number

A′′ = a′′n−12
n−1
+ a′′n−22

n−2
+ · · · + a′′02

0

as follows. Let a′′` denote the states of the switches at stage n−1−` such that

• a′′` = 0 means the states are 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, and so on.
• a′′` = 1 means the states are 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, and so on.

Obviously, 0 ≤ A′′ < 2n.



W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669–1684 1683

Fig. 13. Fulfill an all-to-all communication in a 20 × 20 GSEN by using the 24 network configurations in A′ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 20, 21, 22, 23, 28, 29, 30, 31}. The destinations of the messages for each network configuration are shown on the left-hand side of the GSEN.

LetA′ denote a set of doubly alternating configurations and letA′′ denote a set of quadruply alternating configurations.
The following results are obtained by the aid of a computer.

• R(36) ≤ 40; by usingA′ = {0 ∼ 3, 8 ∼ 19, 24 ∼ 35, 40 ∼ 43, 48 ∼ 51, 56 ∼ 59}.
• R(44) ≤ 48; by usingA′ = {0 ∼ 3, 8 ∼ 19, 24 ∼ 35, 40 ∼ 51, 56 ∼ 63}.
• R(68) ≤ 72; by usingA′ = {0 ∼ 11, 16 ∼ 43, 48 ∼ 63, 68 ∼ 71, 80 ∼ 83, 100 ∼ 104, 112 ∼ 115}.
• R(72) ≤ 96; by usingA′′ = {0 ∼ 63, 72 ∼ 79, 88 ∼ 95, 104 ∼ 111, 120 ∼ 127}.
• R(76) ≤ 88; by usingA′ = {0 ∼ 7, 12 ∼ 39, 44 ∼ 67, 80 ∼ 91, 96 ∼ 99, 112 ∼ 123}.
• R(84) ≤ 96; by usingA′ = {0 ∼ 11, 16 ∼ 43, 48 ∼ 63, 68 ∼ 71, 80 ∼ 95, 100 ∼ 103, 112 ∼ 127}.
• R(92) ≤ 112; by usingA′ = {0 ∼ 7, 12 ∼ 39, 44 ∼ 71, 76 ∼ 103, 108 ∼ 127}.



1684 W.Y. Chou, C. Chen / Theoretical Computer Science 411 (2010) 1669–1684

Fig. 14. Known results ofR(N) andRsc(N) for N = 4, 6, . . . , 128.

Although we know that R(36) ≤ 40, we are unable to prove that R(36) ≥ 40. Several open problems can be found in
Fig. 14. In particular, we conjectureR(36) = 40,R(44) = 48. DeterminingR(N) for all N such that N ≡ 0 (mod 4) is still
an open problem.

References

[1] Z. Chen, Z. Liu, Z. Qiu, Bidirectional shuffle-exchange network and tag-based routing algorithm, IEEE Commun. Lett. 7 (3) (2003) 121–123.
[2] C. Chen, J.K. Lou, An efficient tag-based routing algorithm for the backward network of a bidirectional general shuffle-exchange network, IEEE
Commun. Lett. 10 (4) (2006) 296–298.

[3] M. Gerla, E. Leonardi, F. Neri, P. Palnati, Routing in the bidirectional shufflenet, IEEE/ACM Trans. Netw. 9 (1) (2001) 91–103.
[4] C.P. Kuruskal, A unified theory of interconnection network structure, Theoret. Comput. Sci. 48 (1986) 75–94.
[5] J.K. Lan, W.Y. Chou, C. Chen, Efficient routing algorithms for the bidirectional general shuffle-exchange network, Discrete Math. Algorithms Appl. 1
(2) (2009) 267–281.

[6] D.H. Lawrie, Access and alignment of data in an array processor, IEEE Trans. Comput. C- 24 (12) (1975) 1145–1155.
[7] S.C. Liew, On the stability if shuffle-exchange and bidirectional shuffle-exchange deflection networkA, IEEE/ACM Trans. Netw. 5 (1) (1997) 87–94.
[8] V.W. Liu, C. Chen, R.B. Chen, Optimal all-to-all personalized exchange in d-nary banyan multistage interconnection networks, J. Comb. Optim. 14
(2007) 131–142.

[9] A. Massini, All-to-all personalized communication on multistage interconnection networks, Discrete Appl. Math. 128 (2) (2003) 435–446.
[10] K. Padmanabhan, Design and analysis of even-sized binary shuffle-exchange networks for multiprocessors, IEEE Trans. Parallel Distrib. Syst. 2 (4)

(1991) 385–397.
[11] C. Qiao, L. Zhou, Scheduling switch disjoint connections in stage-controlled photonic banyans, IEEE Trans. Commun. 47 (1) (1999) 139–148.
[12] R. Ramaswami, Multi-wavelength lightwave networks for computer communication, IEEE Commun. Mag. 31 (2) (1993) 78–88.
[13] Y. Yang, J. Wang, Optimal all-to-all personalized exchange in self-routable multistage networks, IEEE Trans. Parallel Distrib. Syst. 11 (3) (2000)

261–274.
[14] Y. Yang, J. Wang, Optimal all-to-all personalized exchange in a class of optical multistage networks, IEEE Trans. Parallel Distrib. Syst. 12 (9) (2001)

567–582.



This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Theoretical Computer Science 412 (2011) 2237–2252

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Constructing independent spanning trees for locally twisted cubes✩

Yi-Jiun Liu, James K. Lan, Well Y. Chou, Chiuyuan Chen ∗
Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan

a r t i c l e i n f o

Article history:
Received 11 December 2009
Accepted 27 December 2010
Communicated by D.-Z. Du

Keywords:
Independent spanning trees
Data broadcasting
Design and analysis of algorithms
Locally twisted cubes
Hypercubes
Hypercube variants
Parallel algorithm

a b s t r a c t

The independent spanning trees (ISTs) problem attempts to construct a set of pairwise
independent spanning trees and it has numerous applications in networks such as data
broadcasting, scattering and reliable communication protocols. The well-known ISTs
conjecture, Vertex/Edge Conjecture, states that any n-connected/n-edge-connected graph
has n vertex-ISTs/edge-ISTs rooted at an arbitrary vertex r . It has been shown that the
Vertex Conjecture implies the Edge Conjecture. In this paper, we consider the independent
spanning trees problem on the n-dimensional locally twisted cube LTQn. The very recent
algorithmproposed byHsieh and Tu (2009) [12] is designed to construct n edge-ISTs rooted
at vertex 0 for LTQn. However, we find out that LTQn is not vertex-transitive when n ≥ 4;
therefore Hsieh and Tu’s result does not solve the Edge Conjecture for LTQn. In this paper,
we propose an algorithm for constructing n vertex-ISTs for LTQn; consequently, we confirm
the Vertex Conjecture (and hence also the Edge Conjecture) for LTQn.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Two spanning trees in a graph G are said to be vertex/edge independent if they are rooted at the same vertex r and for
each vertex v of G, v ≠ r , the paths from r to v in two trees are vertex/edge disjoint except the two end vertices. A set of
spanning trees of G are said to be vertex/edge independent if they are pairwise vertex/edge independent. The vertex/edge
independent spanning trees (ISTs) problem attempts to construct a set of pairwise vertex/edge independent spanning trees
and it has has applications such as data broadcasting, scattering and reliable communication protocols. For example, a rooted
spanning tree in the underlying graph of a network can be viewed as a broadcasting scheme for data communication and
fault-tolerance can be achieved by sending n copies of the message along the n independent spanning trees rooted at the
source node [1]. For other applications, see [3] for the multi-node broadcasting problem, [21] for one-to-all broadcasting,
and [2] for n-channel graphs, reliable broadcasting and secure message distribution.

The independent spanning trees problem has been widely studied in the last two decades. Two well-known conjectures
on this problem are raised by Zehavi and Itai [27]: (refer to [4] or [23] for graph terminologies)

Conjecture 1.1 (Vertex Conjecture). Any n-connected graph has n vertex-ISTs rooted at an arbitrary vertex r.

Conjecture 1.2 (Edge Conjecture). Any n-edge-connected graph has n edge-ISTs rooted at an arbitrary vertex r.

Zehavi and Itai [27] also raised the question: It would be interesting to show that either the Vertex Conjecture implies the
Edge Conjecture, or vice versa. Later, Khuller and Schieber [16] successfully proved that the Vertex Conjecture implies the
Edge Conjecture, i.e., if any n-connected graph has n vertex-ISTs, then any n-edge-connected graph has n edge-ISTs. Khuller

✩ This research was partially supported by the National Science Council of the Republic of China under the grants grant NSC97-2628-M-009-006-MY3.
∗ Corresponding author. Tel.: +886 3 5731767.

E-mail addresses: cychen@mail.nctu.edu.tw, cychen@cc.nctu.edu.tw (C. Chen).

0304-3975/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2010.12.061



Author's personal copy

2238 Y.-J. Liu et al. / Theoretical Computer Science 412 (2011) 2237–2252

Table 1
The connectivity, edge-connectivity and diameters of Qn and its
variants.
Topology κ(G) λ(G) Diameter

Qn n n n

LTQn n n ⌈(n+ 1)/2⌉ if n < 5
⌈(n+ 3)/2⌉ if n ≥ 5

TQn n n ⌈(n+ 1)/2⌉

MQn n n ⌈(n+ 2)/2⌉ in 0-MQn for n ≥ 4
⌈(n+ 1)/2⌉ in 1-MQn for n ≥ 1

and Schieber’s proof also works for the directed graphs. For the directed case, Edmonds [7] solved the Edge Conjecture.
Khuller and Schieber [16] pointed out that the Vertex Conjecture for directed graphs is the strongest conjecture since it
implies all the other conjectures.

The vertex and the edge conjectures have been confirmed only for n ≤ 4. In particular, in [15], Itai and Rodeh proposed a
linear-time algorithm for constructing two edge-ISTs for a 2-edge-connected graph; they also solved the Vertex Conjecture
for n = 2. In [27], Zehavi and Itai solved the Vertex Conjecture for n = 3, but they did not proposed an algorithm for
constructing three vertex-ISTs. In [6], Cheriyan and Maheshwari proposed an O(|V (G)|2)-time algorithm for constructing
three vertex-ISTs in a 3-connected graph. In [5], Curran et al. proposed an O(|V (G)|3)-time algorithm for constructing four
vertex-ISTs in a 4-connected graph. When n ≥ 5, both the vertex and the edge conjectures are still open. It has been
proven that the Vertex/Edge Conjecture holds for several restricted classes of graphs or digraphs, such as planar graphs
[9,10,17,18], maximal planar graphs [19], product graphs [20], chordal rings [14,24], de Bruijn and Kautz digraphs [8,11],
and hypercubes [22,26]. Note that the development of algorithms for constructing vertex-ISTs tends toward pursuing
two research goals: One is to design efficient construction schemes (for example, [14,17,19,24] proposed linear-time
algorithms) and the other is to reduce the heights of vertex-ISTs (for example, [11,22,24] proposed the idea of height
improvements).

The hypercube (Qn) is one of the most popular interconnection network topologies due to its simple structure and ease
of implementation. Several commercial machines with hypercube topology have been built and a huge amount of research
work, both theoretical and practical, has been done on various aspects of the hypercube. However, it has been shown that
the hypercube does not achieve the smallest possible diameter for its resources. Therefore, many variants of the hypercube
have been proposed. The most well-known variants are locally twisted cubes (LTQn), twisted cubes (TQn), crossed cubes
(CQn) andMöbius cubes (MQn). A concise comparison including the connectivity, edge-connectivity and diameters of Qn and
its variants is shown in Table 1. Clearly, one advantage of LTQn over Qn is that the diameter of LTQn is only about half of that
of Qn.

Before going further, we now briefly review results of the vertex-ISTs problem for Qn. It is well known that Qn is n-
connected. Since Qn is a product graph, the algorithm proposed by Obokata et al. [20] can be used to construct n vertex-ISTs
for Qn. As to the construction of the height-reduced vertex-ISTs on Qn, Tang et al. [22] modified the algorithm in [20] and
proposed an O(n2n)-time algorithm for constructing an optimal set (in the sense of smallest average path lengths) of n
vertex-ISTs for Qn. It was pointed out by Yang et al. [26] that the algorithms in [20,22] are designed by a recursive fashion
and such a construction forbids the possibility that the algorithm could be parallelized; Yang et al. [26] therefore proposed
a parallel construction for an optimal set of n vertex-ISTs for Qn.

The purpose of this paper is to confirm the Vertex Conjecture for the n-dimensional locally twisted cube LTQn. The very
recent algorithm proposed by Hsieh and Tu [12] is designed to construct n edge-ISTs rooted at vertex 0 for LTQn. However,
we find out that LTQn is not vertex-transitive whenever n ≥ 4 (see Section 2). Therefore, Hsieh and Tu did not solve the
Edge Conjecture for LTQn. In this paper, we will propose an algorithm for constructing n vertex-ISTs rooted at an arbitrary
vertex of LTQn. Therefore, we will confirm the Vertex Conjecture for LTQn. Since vertex-ISTs are edge-ISTs, we also confirm
the Edge Conjecture for LTQn.

In the remaining discussion, we will simply use ISTs to denote vertex-ISTs unless otherwise specified. This paper is
organized as follows. In Section 2, we give definitions and notations used in the paper. In Section 3, we present an algorithm
to construct n ISTs rooted at an arbitrary vertex of LTQn. In Section 4, we prove the correctness of our algorithm. Concluding
remarks are given in the last section.

2. Preliminaries

All graphs in this paper are simple undirected graphs. Let G be a graph with vertex set V (G) and the edge set E(G). Let
x, y ∈ V (G). A path from x to y is denoted as x, y-path. The distance between two vertices x and y, denoted by d(x, y), is
the length of a shortest x, y-path. Two x, y-paths P and Q are edge-disjoint if E(P) ∩ E(Q ) = ∅. Two x, y-paths P and Q are
internally vertex-disjoint if V (P) ∩ V (Q ) = {x, y}. A subgraph T of G is a spanning tree if T is a tree and V (T ) = V (G). Two
spanning trees T and T ′ of G are vertex-independent/edge-independent if T and T ′ are rooted at the same vertex, say r , and



Author's personal copy

Y.-J. Liu et al. / Theoretical Computer Science 412 (2011) 2237–2252 2239

a b

Fig. 1. (a) LTQ3 . (b) A symmetric drawing of LTQ3 .

Fig. 2. LTQ4 and its perfect matchings {M0,M1,M2,M3}.

for each v ∈ V (G), v ≠ r , the r, v-path in T and the r, v-path in T ′ are (internally) vertex-disjoint/edge-disjoint. A set of
spanning trees of G are vertex-independent/edge-independent if they are pairwise vertex-independent/edge-independent.

2.1. The locally twisted cube

The n-dimensional locally twisted cube LTQn (n ≥ 2), proposed first by Yang et al. [25], has 2n vertices. Each vertex is an
n-string on {0, 1}, i.e., a binary string of length n. The LTQn is defined recursively as follows.

Definition 1 ([25]). 1. LTQ2 is the graph consisting of four vertices labeled with 00, 01, 10, and 11, respectively, and
connected by the four edges (00, 01) (00, 10), (01, 11), and (10, 11).

2. LTQn (n ≥ 3) is built from two disjoint copies of LTQn−1’s as follows: Let 0LTQn−1 (respectively, 1LTQn−1) denote the
graph obtained by prefixing the label of each vertex in one copy of LTQn−1 with 0 (respectively, 1). Connect each vertex
0xn−2xn−3 . . . x0 of 0LTQn−1 to the vertex 1(xn−2⊕ x0)xn−3 . . . x0 of 1LTQn−1 with an edge, where ‘‘⊕’’ represents the XOR
operation, or equivalently, the modulo 2 addition.

Figs. 1 and 2 illustrate LTQ3 and LTQ4, respectively. Yang et al. [25] also mentioned that the locally twisted cube can be
equivalently defined by the following non-recursive fashion.

Definition 2 ([25]). Let x = xn−1xn−2 . . . x0 and y = yn−1yn−2 . . . y0 be two vertices of LTQn (n ≥ 2). Then vertices x and y
are adjacent if and only if one of the following conditions are satisfied.

1. There is an integer 2 ≤ k ≤ n− 1 such that
(a) xk = ȳk (ȳk is the complement of yk in {0, 1})
(b) xk−1 = yk−1 ⊕ x0
(c) all the remaining bits of x and y are identical.

2. There is an integer 0 ≤ k ≤ 1 such that x and y only differ in the kth bit.

From Definition 2, LTQn is obviously an n-regular graph, and the labels of any two adjacent vertices of LTQn differ in at
most two consecutive bits. Note that in the remaining part of this paper, the label of a vertex in LTQn is presented in binary
representation and decimal representation interchangeably when there is no ambiguity.



Author's personal copy

2240 Y.-J. Liu et al. / Theoretical Computer Science 412 (2011) 2237–2252

Fig. 3. The in-vertex-transitivity of LTQ4 .

2.2. The neighbor information and the perfect matchings of the locally twisted cube

From Definition 2, the n neighbors of an arbitrary vertex x = xn−1xn−2 . . . x0 of LTQn is given by

f0(x) = xn−1xn−2xn−3 . . . x2x1x0,
f1(x) = xn−1xn−2xn−3 . . . x2x1x0,
f2(x) = xn−1xn−2xn−3 . . . x2 (x1 ⊕ x0) x0,
... =

...

fn−2(x) = xn−1xn−2 (xn−3 ⊕ x0)xn−4 . . . x1x0,
fn−1(x) = xn−1 (xn−2 ⊕ x0) xn−3 . . . x2x1x0,

(1)

where fk(x), 0 ≤ k ≤ n− 1, is called the kth dimensional neighbor of x; see also Lemma 4 in [13]. By (1), the n neighbors of
vertices 0 and 1 can be determined as follows.

Lemma 2.1. The n neighbors of vertex 0 in LTQn is given by

fk(0) = 2k,

for k = 0, 1, . . . , n− 1. The n neighbors of vertex 1 in LTQn is given by

fk(1) =


0 if k = 0,
3 if k = 1,
2k
+ 2k−1

+ 1 if 2 ≤ k ≤ n− 1.

Given a graph G = (V , E), amatching M of G is a set of pairwise non-adjacent edges of G. A perfect matching is a matching
that saturates all the vertices; in other words, every vertex in the graph is incident to exactly one edge in thematching. From
Eq. (1), for all vertices x of LTQn and for all 0 ≤ k ≤ n− 1, we have

fk(fk(x)) = x. (2)

Therefore, for a fixed k, the set of edges connecting a vertex and its k-th dimensional neighbor forms a perfect matching of
LTQn. More precisely,

Mk = {(x, fk(x) | x ∈ V (LTQn)}

is a perfect matching of LTQn. See Fig. 2 for an illustration.

2.3. The even–odd-vertex-transitivity of the locally twisted cube

A graph is vertex-transitive if for every pair of vertices u and v, there is an automorphism that maps u to v. Intuitively,
a vertex-transitive network looks the same from every node. The vertex-transitive property is advantageous to the design
and simulation of some algorithms. It is not difficult to see that LTQ2 and LTQ3 are vertex-transitive; see Fig. 1. However, in
the following, we will show that LTQn is not vertex-transitive when n ≥ 4.

Theorem 2.2. The locally twisted cube LTQn is not vertex-transitive for n ≥ 4.

Proof. For n = 4, let Nk(r) denote the set Nk(r) = {x ∈ V (LTQn) | d(x, r) = k}. Consider the set Ω(r) = {x ∈ N2(r) |
N1(x) ∩ N1(r) = 1 and N1(x) ∩ N3(r) = 1}. ThenΩ(0) = {7}, butΩ(1) = {6, 12}; see Fig. 3 for an illustration. Therefore
LTQ4 is not vertex-transitive.

Now consider LTQn with n ≥ 5. It is well-known that vertices 0 and 2n
− 2 are at the farthest distance of LTQn and

d(2n
− 2, 0) =

 n+3
2


. In the following, we prove that LTQn is not vertex-transitive by showing the following claim.



Author's personal copy

Y.-J. Liu et al. / Theoretical Computer Science 412 (2011) 2237–2252 2241

Claim 2.3. For an arbitrary vertex x ∈ V (LTQn), n ≥ 5, the distance d(x, 1) ≤
 n+1

2


.

Proof of Claim 2.3. Before showing the claim, some notations are introduced first. Let x = xn−1xn−2 . . . x0. Scanning the
bits of x from xn−1 to x1 (notice that we ignore the bit x0). Suppose there are a total of m bits equal to 1 and a total of k
disjoint pairs of consecutive bits equal to ‘‘11’’, we denoted it by ‘‘11’’-bits. A bit xi, 1 ≤ i ≤ n−1, is said to be isolated if after
removing the k disjoint pairs of ‘‘11’’-bits of x, we have xi = 1. For example, consider x = 111011 in LTQ6. Thenm = 4, k = 1
and x1, x3 are isolated. Clearly, 0 ≤ k ≤

m
2


holds.

It should be noticed that ifm <
 n−1

2


, then there exists a trivial path from x to 1: (i) If x0 = 0, then corrects all xi = 1 bits,

1 ≤ i ≤ n−1, to 0, and then corrects x0 to 1; (ii) If x0 = 1, then corrects x0 to 0. Then corrects all xi = 1 bits, 1 ≤ i ≤ n−1, to
0, and then correct x0 to 1. Clearly, both paths have length at mostm+ 2 ≤

 n+1
2


. In the following, we assumem ≥

 n−1
2


.

Therefore,

m−

n− 1
2


≤ k ≤

m
2


holds. There are two cases.

Case 1: x0 = 0. A path from x to 1 can be found as follows: Step 1: Remove all the isolated bits of x. Step 2: Correct x0 to
1. Step 3: Match all ‘‘11’’-bits. Clearly, Steps 1, 2 and 3 takem− 2k, 1 and k steps, respectively. The total number of steps is

m− k+ 1 ≤ m−

m−


n− 1
2


+ 1 =


n+ 1
2


.

For example, consider x = 11101010 in LTQ8. We have m = 5, k = 1 and x1, x3, x5 are isolated bits. A path from x to 1 is

built as follows: 11101010
Step 1
−→ 11001010

Step 1
−→ 11000010

Step 1
−→ 11000000

Step 2
−→ 11000001

Step 3
−→ 00000001.

Case 2: x0 = 1. We further divide this case into two subcases:
Subcase 2.1:m+ 1−

 n−1
2


≤ k ≤

m
2


. Then a path from x to 1 can be found as follows: Step 1: Correct x0 to 0. Step 2:

Remove all the isolated bits of x. Step 3: Correct x0 to 1. Step 4: Match all ‘‘11’’-bits. Clearly, Steps 1, 2, 3 and 4 take 1,m−2k,
1 and k steps, respectively. Thus the total number of steps is

m− k+ 2 ≤

n+ 1
2


.

For example, consider x = 11011011 in LTQ8. We have m = 5, k = 2 and x1 is a isolated bit. A path from x to 1 is built as

follows: 11011011
Step 1
−→ 11011010

Step 2
−→ 11011000

Step 3
−→ 11011001

Step 4
−→ 00011001

Step 4
−→ 00000001.

Subcase 2.2: k = m −
 n−1

2


. In this case, all bits xn−1, xn−3, . . . , x1 must equal to 1 if n is even; either all bits

xn−2, xn−3, . . . , x1 or all bits xn−1, xn−3, . . . , x2 must equal to 1 if n is odd. Thus a path from x to 1 can be found by bitwise
correcting the bits to 0 (by scanning the bits from xn−1 to x1). Since it takes one step to correct an isolated bit and one step
to correct a ‘‘11’’-bits, the total step is

(m− 2k)+ k =

n− 1
2


.

For example, consider x = 10111011 in LTQ8. We havem = 5, k = 1. A path from x to 1 is built as follows: 10111011
isolated
−→

01111011
‘‘11’’-bits
−→ 00011011

‘‘11’’-bits
−→ 00000011

isolated
−→ 00000001. �

From the above discussion, we have d(x, 1) ≤
 n+1

2


. As a result, LTQn is not vertex-transitive for n ≥ 4. �

Although LTQn fails to be vertex-transitive for n ≥ 4, it does satisfy the even–odd-vertex-transitive property: for every pair
of vertices x = xn−1xn−2 . . . x0, y = yn−1yn−2 . . . y0 with the same parity, i.e., x0 = y0, there is an automorphismψ that maps
x to y. In other words, in LTQn, all even-numbered vertices are symmetric and all odd-numbered vertices are symmetric. By
using this property, we may pay our attention of constructing ISTs to use vertex 0 and vertex 1 as the common root without
loss of generality.

Theorem 2.4. The locally twisted cube LTQn satisfies the even–odd-vertex-transitive property.

Proof. It suffices to prove that there exists an automorphism which maps v (≠0) to 0 (resp., v (≠1) to 1), whenever v is
an even-numbered (resp., odd-numbered) vertex. For two n-bits binary strings x and y, let x ⊕ y denote the bitwise XOR
(modulo 2) of x and y. Let v = vn−1vn−2 . . . v0 ∈ V (LTQn).

Suppose v is an even-numbered vertex. For x = xn−1xn−2 . . . x0 ∈ V (LTQn), define a function ψ0 as follows:

ψ0(x) = v ⊕ x.

It is not difficult to see that ψ0 is a bijection from V (LTQn) to V (LTQn). Now we verify that ψ0 preserves the adjacency.
Consider any edge (x, fk(x)) ∈ E(LTQn). Since v0 = 0, we have

ψ0(x) = (vn−1⊕xn−1) (vn−2⊕xn−2) . . . (vk+1⊕xk+1) (vk⊕xk) (vk−1⊕xk−1) . . . (v1⊕x1) x0.



Author's personal copy

2242 Y.-J. Liu et al. / Theoretical Computer Science 412 (2011) 2237–2252

Algorithm 1 Construct_IST

Input: All vertices of LTQn and root r .
Output: n ISTs T0, T1, . . . , Tn−1 rooted at r .
1: for i = 0 to n− 1 do in parallel ◃ construct Ti simultaneously
2: child_of _the_root ← fi(r)
3: V (Ti)← {child_of _the_root}
4: for t = 1 to n do ◃ outer for-loop
5: S ← ∅;
6: for each vertex v ∈ V (Ti) do ◃ inner for-loop
7: u← f(i+t) mod n(v)
8: E(Ti)← E(Ti) ∪ {(v, u)} ◃ set the parent of vertex u as v in Ti
9: S ← S ∪ {u}

10: end for
11: V (Ti)← V (Ti) ∪ S
12: end for
13: end for

Also,

ψ0(fk(x)) =


(vn−1⊕xn−1) (vn−2⊕xn−2) . . . (v1⊕u1) x0 if k = 0,
(vn−1⊕xn−1) (vn−2⊕xn−2) . . . (v2⊕u2) (v1⊕x1) x0 if k = 1,

and for 2 ≤ k ≤ n− 1,

ψ0(fk(x)) = (vn−1⊕xn−1) (vn−2⊕xn−2) . . . (vk+1⊕xk+1) (vk⊕xk) (vk−1⊕xk−1⊕x0) (vk−2⊕xk−2) . . . (v1⊕x1) x0.

Since vk ⊕ xk = vk ⊕ xk no matter vk = xk or vk ≠ xk, we have

ψ0(fk(x)) = fk(ψ0(x))

and hence (ψ0(x), ψ0(fk(x))) ∈ E(LTQn).
Similar arguments can be applied to the case of v being an odd-numbered vertex, except that the bijection function from

V (LTQn) to V (LTQn) is replaced by

ψ1(x) = v ⊕ x⊕ 1. �

3. The algorithm

Wenowpresent an algorithm, called Construct_IST, for constructing n ISTs T0, T1, . . . , Tn−1 rooted at an arbitrary vertex
r for the locally twisted cube LTQn in Algorithm 1. For convenience, call the for-loop in lines 4–12 of this algorithm the ‘‘outer
for-loop’’ and call the for-loop in lines 6–10 the ‘‘inner for-loop’’. This algorithm constructs T0, T1, . . . , Tn−1 simultaneously
and it works as follows. Since LTQn is n-regular, the n neighbors of the root r must be the unique child of the root r in
T0, T1, . . . , Tn−1, respectively. In this algorithm, the unique child of the root r in Ti is set as fi(r). Thus, initially V (Ti) = {fi(r)}.
At the tth iteration of the outer for-loop, each vertex v in V (Ti) is connected to a new vertex u = f(i+t) mod n(v) by using the
edges in perfect matchingM(i+t) mod n, and the edge (v, u) is added to Ti (i.e., the parent of u is set as v in Ti). After n iterations
of the outer for-loop, Ti is constructed.

Example 1. We now demonstrate how Algorithm Construct_IST constructs T2 rooted at vertex 1 in LTQ4. In line 2 of the
algorithm, the unique child of the root 1 is set as f2(1) = 7. Thus V (T2) = {7}. Now consider the outer for-loop. For t = 1,
each vertex in V (T2) is connected to a new vertex by using the edges inM3; thus the edge (7, 11) is added to T2; so S becomes
{11} and V (T2) becomes {7, 11}. For t = 2, each vertex in V (T2) is connected to a new vertex by using the edges inM0; thus
the edges (7, 6) and (11, 10) are added to T2; so S becomes {6, 10} and V (T2) becomes {7, 11, 6, 10}. For t = 3, each vertex
in V (T2) is connected to a new vertex by using the edges inM1; thus the edges (7, 5), (11, 9), (6, 4) and (10, 8) are added to
T2; so S becomes {5, 9, 4, 8} and V (T2) becomes {7, 11, 6, 10, 5, 9, 4, 8}. Finally, for t = 4, each vertex in V (T2) is connected
to a new vertex by using the edges inM2; thus the edges (7, 1), (11, 13), (6, 2), (10, 14), (5, 3), (9, 15), (4, 0) and (8, 12) are
added to T2; so S becomes {1, 13, 2, 14, 3, 15, 0, 12} and V (T2) becomes {7, 11, 6, 10, 5, 9, 4, 8, 1, 13, 2, 14, 3, 15, 0, 12}.
See Fig. 4 for an illustration.

4. Correctness

The purpose of this section is to prove that T0, T1, . . . , Tn−1 generated by Algorithm Construct_IST are n ISTs rooted at an
arbitrary vertex r for LTQn. To this end, some notations are first introduced in Section 4.1. We show that T0, T1, . . . , Tn−1 are
n spanning trees of LTQn in Section 4.2. The vertex-independency of T0, T1, . . . , Tn−1 is shown in Section 4.3.



Author's personal copy

Y.-J. Liu et al. / Theoretical Computer Science 412 (2011) 2237–2252 2243

Fig. 4. Four ISTs rooted at vertex 1 in LTQ4 constructed by Algorithm Construct_IST.

4.1. The notations

Definition 3. For V ′ ⊆ V (LTQn), define fi(V ′) to be
fi(V ′) = {fi(v) | v ∈ V ′}.

Definition 4. For a fixed integer i, 0 ≤ i ≤ n− 1, define On
i to be the ordered set

On
i = {i, (i− 1) mod n, (i− 2) mod n, . . . , (i− n+ 1) mod n}.

Notice that On
i can be obtained by arranging 0, 1, . . . , n − 1 around a circle, starting from the number i and picking up

these n numbers counterclockwise. For example, O4
0 = {0, 3, 2, 1}, O

4
1 = {1, 0, 3, 2} and O4

3 = {3, 2, 1, 0}.
Definition 5. The Hamming distance between two vertices x, y ∈ V (LTQn), denoted by Ham(x, y), is the number of positions
at which the corresponding symbols are different. More precisely, Ham(x, y) = |{i | xi ≠ yi, 0 ≤ i ≤ n− 1}|. For two fixed
vertices x, y ∈ V (LTQn), suppose Ham(x, y) = m. Define Hi(x, y) to be an ordered set consisting of the indices of the m
different bits, listed according to the order given by On

i .
Definition 6. For two fixed vertices x, y ∈ V (LTQn), suppose Hi(x, y) = {cm−1, cm−2, . . . , c0}withm ≥ 2 and Hi(x, y) ≠ On

i .
We say that j is between cu and cu−1 for some 0 ≤ u ≤ m − 1 with respect to On

i if j ∉ Hi(x, y) and when 0, 1, . . . , n − 1 are
arranged on a circle, the location of j on the circle is between cu and cu−1.

For example, consider LTQ4. Suppose v = 12. Then H0(v, 0) = {3, 2}, H1(v, 3) = {1, 0, 3, 2}, H2(v, 7) = {1, 0, 3} and
H3(v, 13) = {0}. Since 1 ∉ H0(v, 0), 1 is between cu = 3, cu−1 = 2; 0 ∉ H0(v, 0), 0 is between cu = 2, cu−1 = 3.
Definition 7. For two vertices x, y ∈ V (LTQn), define Πi(x, y) to be the ordered set consisting of all the indices of perfect
matchings used in the x, y-path in Ti, 0 ≤ i ≤ n− 1, listed according to the order from x to y.

For example, consider T2 rooted at vertex 1 of LTQ4 in Fig. 4. Suppose v = 12. Then Π2(v, 7) = {2, 1, 0, 3}. Moreover,
the path from v to 7 is

1100
M2
−→ 1000

M1
−→ 1010

M0
−→ 1011

M3
−→ 0111.

Definition 8. Define I(a, b), where a ≥ b, to be the sequence such that

I(a, b) =


a, a− 1, . . . , b+ 1 if a > b,
a if a = b.



Author's personal copy

2244 Y.-J. Liu et al. / Theoretical Computer Science 412 (2011) 2237–2252

4.2. The spanning trees

Throughout this subsection, let T0, T1, . . . , Tn−1 be the output of Algorithm Construct_IST. The purpose of this subsection
is to prove that T0, T1, . . . , Tn−1 are n spanning trees rooted at r . By Theorem 2.4, we assume r = 0 and r = 1 as the common
roots without loss of generality. To prove that Ti, 0 ≤ i ≤ n− 1, is a spanning tree rooted at r , we prove the following loop
invariant:

Loop invariant: At the start of the tth iteration of the outer for-loop, Ti is connected, |V (Ti)| = 2t−1 and
|E(Ti)| = |V (Ti)| − 1.

The loop invariant is trivial true prior to the first loop iteration since in line 3, AlgorithmConstruct_IST setsV (Ti) = {fi(r)}.
Hence Ti is connected, |V (Ti)| = 20 and |E(Ti)| = |V (Ti)| − 1. We now prove that if the loop invariant is true before
the tth iteration of the outer for-loop, then it remains true before the next iteration. Algorithm Construct_IST first resets
S to be empty in line 5. For each vertex v in V (Ti), Algorithm Construct_IST adds the edge (v, u) to Ti in line 8, where
u = f(i+t) mod n(v), by using the edges in M(i+t) mod n, and adds u to S in line 9. Since each newly generated edge is incident
to a vertex in V (Ti), Ti remains to be connected. Now we claim that

Claim 4.1. V (Ti) ∩ S = ∅.

If Claim 4.1 is true, then at the end of the inner for-loop, the newly generated edges between V (Ti) and S clearly form a
matching that saturates V (Ti) and S. Thus |V (Ti)| = |S|. Consequently, after the tth iteration of the outer for-loop, Ti is
connected, |V (Ti)| = 2t−1

+ 2t−1
= 2t and |E(Ti)| = 2t−1

− 1 + 2t−1
= 2t

− 1 = |V (Ti)| − 1. When the outer for-loop
terminates, t = n + 1. Therefore, Ti is connected, |V (Ti)| = 2n and |E(Ti)| = |V (Ti)| − 1. Also, at the end of the (t = n)th
iteration of the outer for-loop, Algorithm Construct_IST adds the edge (r, fi(r)) to Ti. Therefore Ti is a spanning tree rooted
at r of LTQn. In the following, we prove that Claim 4.1 is true for r = 0 and r = 1. We first consider the case of r = 0.

Lemma 4.2. Claim 4.1 is true for r = 0.

Proof. Consider the tth iteration of the outer for-loop. Set k = (i + t) mod n for easy writing. Let v ∈ V (Ti) and u ∈ S. If
t ∈ {1, 2, . . . , n− 1}, then (vk, uk) = (0, 1). If t = n, then we have (vi, ui) = (1, 0). Therefore V (Ti) ∩ S = ∅. �

Lemma 4.3. Claim 4.1 is true for r = 1.

Proof. Consider Ti, 0 ≤ i ≤ n− 1. Set k = (i+ t) mod n for easy writing. Let v ∈ V (Ti) and u ∈ S.
Case 1: i = 0. If t ∈ {1, 2, . . . , n− 1}, then (vk, uk) = (0, 1). If t = n, then (vi, ui) = (1, 0). Therefore V (Ti) ∩ S = ∅.
Case 2: i = n − 1. If t ∈ {1, 2, . . . , n − 2}, then (vk, uk) = (0, 1). If t = n − 1, then we have (vn−2, un−2) = (1, 0). If

t = n, then we have (vi, ui) = (1, 0). Therefore V (Ti) ∩ S = ∅.
Case 3: i ∈ {1, 2, . . . , n− 2}. We further divide this case into two subcases.

Subcase 3.1: t ∈ {1, 2, . . . , n− 2}. The proof of this case is the same as Case 2.
Subcase 3.2: t = n. By the loop invariant, Ti induces a tree before the tth iteration of the outer for-loop. Partition V (Ti) into
V0 and V1 as follows:

V0 = {all the vertices in the subtree rooted at fi+1(fi(1))} and V1 = V (Ti) \ V0.

See Fig. 5 for an illustration.
By (1) and by Lemma 4.6, we have: (i) the ith bit of all the vertices in V0 is 0 and hence the ith bit of all the vertices in fi(V0)
is 1, and (ii) the ith bit of all the vertices in V1 is 1 and hence the ith bit of all the vertices in fi(V1) is 0. Notice that

S = fi(V0) ∪ fi(V1).

Therefore, to prove Claim 4.1, it suffices to prove that

V0 ∩ fi(V1) = ∅ and V1 ∩ fi(V0) = ∅. (3)

If i = n − 2, then the (n − 1)-bit of all the vertices in V0 and fn−2(V0) is 1; however, the (n − 1)-bit of all the vertices in
V1 and fn−2(V1) is 0. Thus when i = n − 2, V0 ∩ fn−2(V1) = ∅ and V1 ∩ fn−2(V0) = ∅. Now suppose i ∈ {1, 2, . . . , n − 3}.
Partition V0 into V0,0 and V0,1 such that

V0,0 = {all the vertices in the subtree rooted at fi+2(fi+1(fi(1)))} and V0,1 = V0 \ V0,0.

Partition V1 into V1,0 and V1,1 such that

V1,0 = {all the vertices in the subtree rooted at fi+2(fi(1))} and V1,1 = V1 \ V1,0.

By (1) and Lemma 4.6, the pair of the (i + 1)th and the ith bit of all the vertices in V0,0 and fi(V1,1) is (0, 0); in fi(V0,0) and
V1,1 is (0, 1); in V0,1 and fi(V1,0) is (1, 0) and in fi(V0,1) and V1,0 is (1, 1). Thus to prove (3), it suffices to prove that

V0,0 ∩ fi(V1,1) = ∅, V1,1 ∩ fi(V0,0) = ∅, V1,0 ∩ fi(V0,1) = ∅ and V0,1 ∩ fi(V1,0) = ∅. (4)

For v = vn−1, vn−1, . . . , v0 ∈ V (LTQn)with v ≠ 0, let q be the largest index of v such that vq = 1. If v = 0, then let q = −1.
By (1) and Lemma 4.6, we have Table 2.



Author's personal copy

Y.-J. Liu et al. / Theoretical Computer Science 412 (2011) 2237–2252 2245

Fig. 5. An illustration for the proof of Lemma 4.3.

Table 2
The value of q for every vertex in the given set.
V0,0 ∪ fi(V0,0) V1,1 ∪ fi(V1,1) V1,0 ∪ fi(V1,0) V0,1 ∪ fi(V0,1)

q ≥ i+ 2 q ≤ i+ 1 or q ≥ i+ 3 q ≥ i+ 3 q = i+ 1 or q ≥ i+ 3

We first prove that V0,0 ∩ fi(V1,1) = ∅ and V1,1 ∩ fi(V0,0) = ∅. By Table 2, each vertex in V1,1 ∩ fi(V1,1) with q ≤ i + 1
does not belong to V0,0 ∪ fi(V0,0) since every vertex in V0,0 ∪ fi(V0,0) has q ≥ i + 2. Also, each vertex in V0,0 ∪ fi(V0,0) with
q = i+ 2 does not belong to V1,1 ∩ fi(V1,1) since each vertex in V1,1 ∩ fi(V1,1) has q ≠ i+ 2. Thus, we may focus on vertices
with q = i + 3 or q > i + 3. Note that each vertex in V0,0 ∪ fi(V0,0) with q = i + 3 has its (i + 2)th bit to be 0; however,
from Table 2, we know that each vertex in fi(V1,1)∪ V1,1 with q ≥ i+ 3 has its (i+ 2)th bit to be 1. Therefore, each vertex in
V0,0 ∪ fi(V0,0) with q = i+ 3 does not belong to V1,1 ∪ fi(V1,1). It remains to consider the vertices with q > i+ 3. For each
x ∈ V0,0 ∪ fi(V0,0), the bit string of x formed by xq to xi+2 is in

L0 = { 1

q−i−2 0’s  
00 · · · 0  

q−i−1 bits

, 1

q−i−4 0’s  
00 · · · 0 11  
q−i−1 bits

, 1

q−i−5 0’s  
00 · · · 0 101  
q−i−1 bits

, 1

q−i−6 0’s  
00 · · · 0 1001  

q−i−1 bits

, . . . , 101

q−i−5 0’s  
00 · · · 0 1  

q−i−1 bits

, 11

q−i−4 0’s  
00 · · · 0 1  

q−i−1 bits

}.

However, for each y ∈ V1,1 ∪ fi(V1,1), the bit string of y formed by yq to yi+2 is in

L1 = { 1

q−i−3 0’s  
00 · · · 0 1  
q−i−1 bits

, 1

q−i−4 0’s  
00 · · · 0 10  
q−i−1 bits

, 1

q−i−5 0’s  
00 · · · 0 100  
q−i−1 bits

, 1

q−i−6 0’s  
00 · · · 0 1000  

q−i−1 bits

, . . . , 101

q−i−4 0’s  
00 · · · 0  

q−i−1 bits

, 11

q−i−3 0’s  
00 · · · 0  

q−i−1 bits

}.

It is not difficult to check that L0 ∩ L1 = ∅. Hence we have V0,0 ∩ fi(V1,1) = ∅ and V1,1 ∩ fi(V0,0) = ∅.
Similar arguments can show that V0,1 ∩ fi(V1,0) = ∅ and V1,0 ∩ fi(V0,1) = ∅, except that V0,0 ∪ fi(V0,0) is replaced by

V1,0 ∪ fi(V1,0) and V1,1 ∪ fi(V1,1) is replaced by V0,1 ∪ fi(V0,1). From the above discussion, we have (4) and hence have (3).
Therefore V (Ti) ∩ S = ∅. �

By Theorem 2.4 and Lemmas 4.2 and 4.3, we have the following result.

Lemma 4.4. T0, T1, . . . , Tn−1 are n spanning trees rooted at r for LTQn.

4.3. The vertex-independency of the n spanning trees

In this subsection, we show that T0, T1, . . . , Tn−1 generated by Algorithm Construct_IST are vertex-independent trees
rooted at an arbitrary vertex r for LTQn. By Theorem 2.4, without loss of generality, we may assume r = 0 and r = 1 as the
common roots. To this end, we need to show that for any i, j with 0 ≤ i < j ≤ n − 1 and for each v(≠r) ∈ V (LTQn), the
r, v-path in Ti and the r, v-path in Tj are internally vertex-disjoint. Recall that the child of the root in Ti and Tj are fi(r) and
fj(r), respectively. In the following, we further assume v ∉ {r, fi(r), fj(r)} since if v ∈ {r, fi(r), fj(r)}, then the r, v-path in Ti
and the r, v-path in Tj are clearly internally vertex-disjoint. Let parenti(v) (resp., parentj(v)) be the parent of vertex v in Ti



Author's personal copy

2246 Y.-J. Liu et al. / Theoretical Computer Science 412 (2011) 2237–2252

(resp., Tj). Let P1 (resp., P2) be the parenti(v), fi(r)-path (resp., parentj(v), fj(r)-path) in Ti (resp., Tj). Since fi(r) ≠ fj(r), the
r, v-path in Ti and the r, v-path in Tj are internally vertex-disjoint if and only if V (P1) ∩ V (P2) = ∅. We prove Ti and Tj are
vertex-independent by showing the following claim:

Claim 4.5. V (P1) ∩ V (P2) = ∅.

Before proving Claim 4.5, we need a lemma.

Lemma 4.6. Ti, 0 ≤ i ≤ n− 1, constructed by Algorithm Construct_IST has the property that for each v ∈ V (LTQn) \ {r, fi(r)},
the path from v to fi(r) in Ti uses each perfect matching in {M0,M1, . . . ,Mn−1} at most once.

Proof. It follows from the fact that f(i+t) mod n used in the for-loop between the inner for-loop are distinct when the outer
for-loop iterates from t = 1 to t = n. �

We first consider the case of r = 0.

Lemma 4.7. T0, T1, . . . , Tn−1 are n vertex-independent trees rooted at r = 0 for LTQn.

Proof. To prove Claim 4.5, we first describe the path from v to the child of the root in Ti when r = 0. For any v ∈
V (Ti) \ {0, fi(0)}, the v, fi(0)-path in Ti can be determined by Πi(v, fi(0)). In addition, Πi(v, fi(0)) can be determined by
Hi(v, fi(0)) as follows. Suppose v = vn−1vn−2 . . . v0 and Hi(v, fi(0)) = {cm−1, cm−2, . . . , c0}. If v0 = 0, thenΠi(v, fi(0)) can
be determined by

Πi(v, fi(0)) =


Hi(v, fi(0)) if i ≠ 0,
{cm−1 = 0, I(cm−2, cm−3), . . . , I(c3, c2), I(c1, c0)} if i = 0 andm− 1 is even,
{cm−1 = 0, I(cm−2, cm−3), . . . , I(c2, c1), I(c0, 0)} if i = 0 andm− 1 is odd.

(5)

If v0 = 1 and i ≠ 0, then Hi(v, fi(0))must contain 0; in this case, we assume ce = 0 for some e. Thus if v0 = 1,Πi(v, fi(0))
can be determined by

Πi(v, fi(0))=


{I(cm−1,cm−2), I(cm−3,cm−4), . . . , I(c1, c0)} if i=0 andm is even,
{I(cm−1,cm−2), I(cm−3,cm−4), . . . , I(c2, c1), I(c0, 0)} if i=0 andm is odd,
{I(cm−1,cm−2),I(cm−3,cm−4), . . . ,I(ce+2, ce+1), ce, ce−1, . . . , c0} if i≠0 andm−e is odd,
{I(cm−1,cm−2), I(cm−3,cm−4), . . . , I(ce+1, 0), ce, ce−1, . . . , c0} if i≠0 andm−e is even.

(6)

Now we show that Claim 4.5 is true for r = 0. Suppose not, then there exists a vertex a (≠v) ∈ V (P1) ∩ V (P2). Suppose

Hi(v, fi(0)) = Hi(v, 2i) = {cm−1, cm−2, . . . , c0}. (7)

There are four cases.

Case 1: vi = 1 and vj = 1. Then there must exist u such that cu = j. Thus

Hj(v, fj(0)) = Hj(v, 2j) = {cu−1, cu−2, . . . , c0, i, cm−1, cm−2, . . . , cu+1}. (8)

By (5)–(7), cm−1 is the first element inΠi(v, 2i). Let x ∈ V (P1). Then the (cm−1)th bit of x is vcm−1 only when (i) (cm−1+ 1) ∈
Πi(v, 2i), and (ii) cm−1 + 1 ≥ 2, and (iii) there exists q = qn−1qn−2 . . . q0 ∈ V (P1) such that x = fcm−1+1(q) and q0 = 1. We
now prove that (i)–(iii) will not occur simultaneously; hence for all x ∈ V (P1), the (cm−1)th bit of x is vcm−1 . If |Hi(v, 2i)| = 1,
then (i) cannot occur. Suppose |Hi(v, 2i)| ≥ 2 and both (i) and (iii) occur; that is, there exists q = qn−1qn−2 . . . q0 ∈ V (P1)
such that x = fcm−1+1(q) and q0 = 1. By (7), cm−1 + 1 is the last element in Πi(v, 2i). Since q0 = 1, I(c0, 0) ⊆ Πi(v, 2i).
By Lemma 4.6 and by the fact that I(c0, 0) = {c0, c0 − 1, . . . , 1}, we have cm−1 + 1 = 1; thus (ii) does not occur and
consequently the (cm−1)th bit of all the vertices in V (P1) is vcm−1 . Since vi = 1, the ith bit of all the vertices in V (P1) is 1.
By (5) and (6) and (8), the (cm−1)th bit of those vertices in V (P2) with the ith bit being 1 is vcm−1 . Thus no such a exists and
Claim 4.5 is true.

Case 2: vi = 0 and vj = 0. Then cm−1 = i. If |Hi(v, 2i)| = 1, thenHi(v, 2i) = {i}, which implies that v = 0; this contradicts
to the assumption that v ≠ 0. Thus |Hi(v, 2i)| ≥ 2 and there must exist u such that j is between cu and cu−1 with respect to
On
i . Thus

Hj(v, 2j) =


{j, cm−2, cm−3, . . . , cu+1, cu=0} if j = i+ 1,
{j, cu−1, cu−2, . . . , c0, cm−2, cm−3, . . . , cu+1} if otherwise.

(9)

By (5)–(7), the ith bit of all vertices in V (P1) is 1. By (5) and (6) and (9), the jth bit of all the vertices in V (P2) is 1. The ith
bit and the jth bit of a are both 1. If I(cu, cu−1) * Πi(v, 2i), each vertex in V (P1) has its jth bit to be 0. If (i) j ≠ i + 1 and
I(c0, cm−2) * Πj(v, 2j), or if (ii) j = i+ 1 and v0 ≠ 1, then each vertex in V (P2) has its ith bit to be 0. Thus the existence of
a implies that I(cu, cu−1) ⊆ Πi(v, 2i) and I(c0, cm−2) ⊆ Πj(v, 2j). Note that I(cu, cu−1) ⊆ Πi(v, 2i) implies that i = 0 and



Author's personal copy

Y.-J. Liu et al. / Theoretical Computer Science 412 (2011) 2237–2252 2247

hence v0 = 0 (since case 2 requires vi = 0). However, I(c0, cm−2) ⊆ Πj(v, 2j) implies v0 = 1, which contradicts to v0 = 0.
Thus no such a exists and Claim 4.5 is true.

Case 3: vi = 0 and vj = 1. Then cm−1 = i and there must exist u such that cu = j. If |Hi(v, 2i)| = 1, then Hj(v, 2i) = ∅.
This implies that v = 2j, which contradicts to the assumption that v ≠ 2j. Thus

Hj(v, 2j) = {cu−1, cu−2, . . . , c0, cm−2, cm−3, . . . , cu+1}. (10)

By (5)–(7), the ith bit of all vertices in V (P1) is 1. The ith bit of a is 1. If I(c0, cm−2) * Πj(v, 2j), each vertex in V (P2)
has its ith bit to be 0. Thus the existence of a implies that I(c0, cm−2) ⊆ Πj(v, 2j), which further implies v0 = 1. Since
I(c0, cm−2) ⊆ Πj(v, 2j), V (P2) has only one vertex x = xn−1xn−2 . . . x0 such that xi = 1 and x = fi+1(q) for some q ∈
V (P2). The existence of a implies that x = a. Since v0 = 1, Πi(v, 2i) starts with I(i, cm−2), i.e., Πi(v, 2i) is of the form
{I(i, cm−2), . . .}. By (6), cm−3 is the first element after I(i, cm−2) in Πi(v, 2i). Recall that Πi(v, 2i) is an ordered set of all
the indices of perfecting matchings used in the v, 2i-path in Ti listed according to the order from v to 2i. Thus the first
vertex in V (P1) can be obtained by applying the first perfect matching obtained from the first element in Πi(v, 2i) to v,
the second vertex in V (P1) can be obtained by applying the second perfect matching obtained from the second element in
Πi(v, 2i) to the first vertex in V (P1), and so on. Thus we can partition V (P1) into V1,1 and V1,2 such that V1,1 consists of those
vertices in V (P1) before fcm−3 is applied and V1,2 = V (P1)− V1,1. Let y = yn−1yn−2 . . . y0 be an arbitrary vertex in V1,1. Then
Ham(yiyi−1 . . . ycm−2 , vivi−1 . . . vcm−2) = 2. However, Ham(xixi−1 . . . xcm−2 , vivi−1 . . . vcm−2) = 0. Thus x ∉ V1,1. On the other
hand, xcm−3 = vcm−3 but the (cm−3)th bit of all the vertices in V1,2 is vcm−3 ; thus x ∉ V1,2. Since x ∉ V1,1 and x ∉ V1,2, we have
x ∉ V (P1). Since x = a, it follows that a ∉ V (P1). Thus no such a exists and Claim 4.5 is true.

Case 4: vi = 1 and vj = 0. Then there must exist u such that j is between cu and cu−1 with respect to On
i . Thus

Hj(v,2j) =


{j, i, cm−1, cm−2, . . . , cu=0} if i is between c0 and cm−1 with respect to On

i ,

{j, cu−1, cu−2, . . . , c0, i, cm−1, cm−2, . . . , cu} if otherwise.
(11)

By (5), (6) and (11), the jth bit of all vertices in V (P2) is 1. Since vi = 1, the ith bit of all the vertices in V (P1) is 1. The ith bit
and the jth bit of a are both 1. By (11), we have two subcases.

Subcase 4.1: i is between c0 and cm−1 with respect to On
i . Then V (P2) has only one vertex fj(v) with its ith bit and jth bit

both being 1. By (5)–(7), cm−1 is the first element inΠi(v, 2i). Thus the (cm−1)th bit of those vertices in V (P1)with the jth bit
being 1 is vcm−1 . However, by (5), (6) and (11), the (cm−1)th bit of fj(v) is vcm−1 . Thus no such a exists and Claim 4.5 is true.

Subcase 4.2: i is not between c0 and cm−1 with respect to On
i . By (5), (6) and (11), the ith bit of all the vertices in V (P1)

is 1. If |Hi(v, 2i)| = 1, then Hi(v, 2i) = {c0}; since vj = 0, we have c0 ≠ j, which implies that each vertex in V (P1)
has its jth bit to be 0 and consequently no such a exists and Claim 4.5 is true. Now suppose |Hi(v, 2i)| ≥ 2. Then when
I(cu, cu−1) * Πi(v, 2i), each vertex in V (P1) has its jth bit to be 0. Thus the existence of a implies that I(cu, cu−1) ⊆ Πi(v, 2i).
Since I(cu, cu−1) ⊆ Πi(v, 2i), V (P1) has only one vertex x = xn−1xn−2 . . . x0 such that xj = 1 and x = fj+1(q) for some
q ∈ V (P1). The existence of a implies that x = a. By (5), (6) and (11), the (cm−1)th bit of those vertices in V (P2) with the
ith bit being 1 is vcm−1 . However, the xcm−1 = vcm−1 . So if x ∈ V (P1), then x ∉ V (P2). Thus no such a exists and Claim 4.5 is
true. �

From the above discussion, Claim 4.5 is true and therefore T0, T1, . . . , Tn−1 are vertex-independent rooted at r = 0 of
LTQn. �

Now we consider the case of r = 1.

Lemma 4.8. T0, T1, . . . , Tn−1 are n vertex-independent trees rooted at r = 1 for LTQn.

Proof. To prove Claim 4.5, we first describe the path from v to the child of the root in Ti when r = 1. For any v ∈ V (Ti) \
{1, fi(1)}, the v, fi(1)-path in Ti can be determined by Πi(v, fi(1)). Furthermore, Πi(v, fi(1)) can be determined by the
ordered set Hi(v, fi(1)) as follows. Suppose v = vn−1vn−2 . . . v0 and Hi(v, fi(1)) = {cm−1, cm−2, . . . , c0}. Let ce−1 be the
first (from bit cm−1 to c0) member in Hi(v, fi(1)) that is larger than i. If i = 0,Πi(v, fi(1)) can be determined by

Π0(v, f0(1)) = H0(v, f0(1)). (12)

If i ≠ 0 and v0 = 0, we have ce = 0 for some e. ThusΠi(v, fi(1)) can be determined by

Πi(v, fi(1))=


{cm−1, cm−2, . . . , ce, I(ce−1,ce−2), I(ce−3,ce−4), . . . , I(c1, c0)} if e is even,
{cm−2, cm−3, . . . , ce, I(ce−1,ce−2), I(ce−3,ce−4), . . . , I(c0, i)} if e is odd and cm−1= i,
{i, cm−1, cm−2, . . . , ce, I(ce−1,ce−2), I(ce−3,ce−4), . . . , I(c0, i)} if e is odd and cm−1 ≠ i.

(13)



Author's personal copy

2248 Y.-J. Liu et al. / Theoretical Computer Science 412 (2011) 2237–2252

When i ≠ 0 and v0 = 1, in order to obtainΠi(v, fi(1)) from Hi(v, fi(1)), the following notations are introduced. Define H1
i

to be the sequence

H1
i =


cm−1, cm−2, . . . , ce if |H2

i | is even,
i, cm−1, cm−2, . . . , ce if |H2

i | is odd and cm−1 ≠ i
cm−2, cm−3, . . . , ce if |H2

i | is odd and cm−1 = i,

and define H2
i to be the sequence

H2
i = ce−1, ce−2, . . . , c0.

Define ζi(v, fi(1)) to be the sequence

ζi(v, fi(1)) =


H1

i ,H
2
i if |H1

i | is even and |H2
i | is even,

H1
i ,H

2
i , i if |H1

i | is even and |H2
i | is odd,

H1
i , 0,H

2
i if |H1

i | is odd and |H2
i | is even,

H1
i , 0,H

2
i , i if |H1

i | is odd and |H2
i | is odd.

(14)

Suppose

ζi(v, fi(1)) = ςu, ςu−1, . . . , ς0.

Thus if i ≠ 0 and v0 = 1,Πi(v, fi(1)) can be determined by

Πi(v, fi(1)) = {I(ςu, ςu−1), I(ςu−2, ςu−3), . . . , I(ς1, ς0), }. (15)

Now we show that Claim 4.5 is true for r = 1. Suppose not, then there exists a vertex a (≠v) ∈ V (P1) ∩ V (P2). Suppose

Hi(v, fi(1)) = {cm−1, cm−2, . . . , c0}. (16)

There are four cases.

Case 1: 0 = i < j ≤ n − 1. The proof of this case is divided into two parts, depending on v0 = 1 or v0 = 0. Suppose
v0 = 1. Then 0 ∉ Hj(v, fj(1)). Thus the 0th bit of all the vertices in V (P2) is 1. By (12) and (16), 0 is the first element in
H0(v, f0(1)); this implies that the 0th bit of all the vertices in V (P1) is 0. Thus no such a exists. In the following, we assume
v0 = 0. Then 0 ∉ H0(v, f0(1)). The 0th bit of all the vertices in V (P1) is 0; this implies that the 0th bit of a is 0. There are two
possibilities: j = 1 or j > 1.

Subcase 1.1: j = 1. Note that either 1 ∈ Π1(v, f1(1)) or 1 ∉ Π1(v, f1(1)). If 1 ∉ Π1(v, f1(1)), then 0 is the first element
inΠ1(v, f1(1)). This implies that the 0th bit of all the vertices in V (P2) is 1. Thus no such a exists. If 1 ∈ Π1(v, f1(1)), then
1 and 0 are the first element and the second element in Π1(v, f1(1)), respectively. Thus the 0th bit of all the vertices in
V (P2) \ {f1(v)} is 1. The existence of a implies that f1(v) = a.

If v1 = 0, then 1 ∉ H0(v, f0(1)). This implies that the 1st bit of all the vertices in V (P1) is 0. However, it is obvious that the
1st bit of f1(v) is 1. Therefore f1(v) ∉ V (P1). Thus no such a exists. Now suppose v1 = 1. Since 1 ∈ Π1(v, f1(1)), there must
exist some k > 1 such that vk = 1; this implies that cm−1 > 1. By (12) and (16), the (cm−1)th bit of all the vertices in V (P1)
is vcm−1 . However, the (cm−1)th bit of f1(v) is vcm−1 . Therefore f1(v) ∉ V (P1). Thus no such a exists and V (P1) ∩ V (P2) = ∅.

Subcase 1.2: j > 1. By (12), (13) and (16),we have: cm−1 is the first element inHi(v, fi(1)), cm−1 ∈ Hj(v, fj(1)), 0 ∈ Hj(v, fj(1)),
and cm−1 appears after 0 in the ordered set Hj(v, fj(1)). Thus the (cm−1)th bit of all the vertices in V (P1) is vcm−1 . However,
the (cm−1)th bit of those vertices with the 0th bit being 0 in V (P2) is vcm−1 . Thus no such a exists.

From the above discussion, Claim 4.5 is true for Case 1.

Case 2: 1 = i < j ≤ n− 1. The proof of this case is divided into two parts, depending on v0 = 0 or v0 = 1.

Subcase 2.1: v0 = 0. Then it is not difficult to see (by comparing the jth and the 0th bits of fj(v) and all the vertices in V (P1))
that fj(v) ∉ V (P1). Thus a can not be fj(v). It remains to consider those vertices in V (P2)\ fj(v). The remaining proof is further
divided into two parts, depending on vj−1 = 0 or vj−1 = 1.

Subcase 2.1.1: vj−1 = 0. Since v0 = 0 and vj−1 = 0, j− 1 ∈ Πj(v, fj(v)). Since v0 = 0 and j− 1 ∈ Πj(v, fj(v)), the (j− 1)th
bit of all the vertices in V (P2) \ fj(v) is 1. However, the (j− 1)th bit of all the vertices in V (P1) is 0. Thus no such a exists and
Claim 4.5 is true.

Subcase 2.1.2: vj−1 = 1. We claim that: the bits from vj−2 to v2 are all 0, i.e., vj−2 = vj−3 = · · · = v2 = 0. Suppose this claim
is not true and let k be the largest number between j− 2 and 2 (inclusive) such that vk = 1. By (13) and (16), the (j− 1)th
and the kth bits of all the vertices in V (P2)\ fj(v) is 1 and 0, respectively. However, the (j−1)th bit of those vertices in V (P1)
with kth bit being 0 is 0. Thus vj−2 = vj−3 = · · · = v2 = 0. So the 1st bit of all the vertices in V (P1) is 1 and the 1st bit of all
the vertices in V (P2) \ fj(v) is 0. Thus no such a exists and Claim 4.5 is true.



Author's personal copy

Y.-J. Liu et al. / Theoretical Computer Science 412 (2011) 2237–2252 2249

Subcase 2.2: v0 = 1. The proof of this part is further divided into six parts as follows.

Subcase 2.2.1: j = 2, v1 = 1 and v2 = 1. Since v0 = 1 and v1 = 1 and v2 = 1,

Hj(v, fj(1)) = (cm−1, cm−2, . . . , c1).

Suppose m is even. Then by (14) and (15),

Πi(v, fi(1))={I(cm−1, cm−2), . . . , I(c1, c0=2)}

and

Πj(v, fj(1))={I(2, 0), I(cm−1, cm−2), . . . , I(c1, 2)}.

Thus, the 2nd bit of all the vertices in V (P1) are 1. However, the 2nd bit of all the vertices in V (P2) are 0. Thus no such a
exists. Supposem is odd. Then by (14) and (15),

Πi(v, fi(1)) = {1, I(cm−1, cm−2), . . . , I(c0, 1)}

and

Πj(v, fj(1)) = {I(cm−1, cm−2), . . . , I(c2, c1)}.

Hence the 1st bit of all the vertices in V (P1) is 0. However, the 1st bit of all the vertices in V (P2) is 1. Thus no such a exists.

Subcase 2.2.2: j = 2, v1 = 0 and v2 = 1. Since v0 = 1 and v1 = 0 and v2 = 1, we have cm−1 = 1, c0 = 2 and

Hj(v, fj(1)) = {cm−1, cm−2, . . . , c1}.

Suppose m− 1 is odd. Then by (14) and (15),

Πi(v, fi(1)) = {I(cm−2, cm−3), . . . , I(c0, 1)}

and

Πj(v, fj(1)) = {1, I(cm−2, cm−3), . . . , I(c2, c1)}.

Thus, the 1st bit of all vertices in V (P1) are 0. However, the 1st bit of all vertices in V (P2) is 1. Thus no such a exists. Suppose
m− 1 is even. Then by (14) and (15),

Πi(v, fi(1)) = {1, I(cm−2, cm−3), . . . , I(c1, c0)}

and

Πj(v, fj(1)) = {2, I(cm−2, cm−3), . . . , I(c1, 2)}.

Thus, the 2nd bit of all vertices in V (P1) are 1. However, the 2nd bit of all vertices in V (P2) is 0. Thus no such a exists.

Subcase 2.2.3: j = 2, v1 = 1 and v2 = 0 (resp., v1 = 0 and v2 = 0). Then

Hj(v, fj(1)) = {2, cm−1, cm−2, . . . , c0}.

Suppose m (resp., m − 1) is even. Then by (14) and (15), the 2nd bit of all vertices in V (P1) is 0. However, the 2nd bit of all
vertices in V (P2) is 1. Supposem (resp.,m−1) is odd. Then by (14) and (15), the 1st bit of all vertices in V (P1) is 0. However,
the 1st bit of all vertices in V (P2) is 1. Thus no such a exists.

Subcase 2.2.4: j ≠ 2 and vj−1 = 0. Then the (j − 1)th bit of all the vertices in V (P1) are 0. However, the (j − 1)th bit of all
the vertices in V (P2) are 1. Thus no such a exists.

Subcase 2.2.5: j ≠ 2, vj−1 = 1 and at least one of the bits in vj−2vj−3 . . . v2 is 1. Then there exists q such that vq = 1 and q is
the largest number between j− 2 and 2 (inclusive).

Subcase 2.2.5.1: Suppose I(j, q) * Πj(v, fj(1)). Then the qth and the (j − 1)th bit of all the vertices in V (P2) are 0 and 1,
respectively; however, the (j− 1)th bit of those vertices in V (P1)with the qth bit being 0 is 0. Thus no such a exists.

Subcase 2.2.5.2: Suppose I(j, q) ⊆ Πj(v, fj(1)). Then we partition V (P2) into V2,1 and V2,2 such that

V2,1 = {all the vertices in V (P2) before the perfect matchingMq is applied} and V2,2 = V (P2) \ V2,1.

Consider the vertices in V2,1. Suppose vj = 0. Since j ∈ I(j, q), we can compare the jth bit of all vertices in V (P1) and in V2,1

to see that no such a exists. Suppose vj = 1. Then the number of bits in vn−1vn−2 . . . vj+1 that are 1 is odd, i.e., |H2
j | is odd.

This implies that cm−1 ≠ j. Since cm−1 ≠ j, by comparing the cm−1th bit of all the vertices in V (P1) and in V2,1, we know
that V (P1) ∩ V2,1 = ∅. Consider the vertices in V2,2. Then the qth and the (j− 1)th bit of all the vertices in V2,2 are 0 and 1,
respectively. However, the (j−1)th bit of those vertices in V (P1)with the qth bit being 0 is 0. Hence V (P1)∩V2,2 = ∅. Since
V (P1) ∩ V2,1 = ∅ and V (P1) ∩ V2,2 = ∅, no such a exists.



Author's personal copy

2250 Y.-J. Liu et al. / Theoretical Computer Science 412 (2011) 2237–2252

Subcase 2.2.6: j ≠ 2, vj−1 = 1 and all the bits in vj−2vj−3 . . . v2 are 0 (i.e., vj−2 = vj−3 = · · · = v2 = 0). For convenience, let
t(w1, w2) denote the number of bits in vw1vw1−1 . . . vw2 that are 1. There are three possibilities.

Subcase 2.2.6.1: Suppose t(n − 1, i + 1) is even. Then t(n − 1, j) is odd. Thus the ith bit of all the vertices in V (P2) is 0.
However, the ith bit of all the vertices in V (P1) is 1. Thus no such a exists.

Subcase 2.2.6.2: Suppose t(n− 1, i+ 1) is odd and vj = 0. Then t(n− 1, j+ 1) is even. Thus the jth bit of all the vertices in
V (P2) is 1. However, the jth bit of all the vertices in V (P1) is 0. Thus no such a exists.

Subcase 2.2.6.3: Suppose t(n− 1, i+ 1) is odd and vj = 1. Then t(n− 1, j+ 1) is odd. Thus the ith bit of all the vertices in
V (P1) is 0 and the jth bit of all the vertices in V (P2) is 0. Then the. ith and the jth bit of a are 0. By (15), the (j− 1)th bit of all
the vertices in V (P2)with the ith and the jth bit be 0 is 1. However, only the vertex 2j−1

+ 1 in V (P1)with the (j− 1)th bit is
1, and the ith and the jth bit are 0. The existence of a implies a = 2j−1

+ 1. Since t(n− 1, j+ 1) is odd, there exists vk = 1,
where k > j. Then it is easy to find that a ∉ V (P2) by comparing the kthBthe jth and the ith bit of a and all vertices in V (P2).
Thus no such a exists.

From the above discussion, Claim 4.5 is true for Case 2.

Case 3: 3 ≤ i+ 1 = j ≤ n− 1. By (12)–(16), we have the following results. Suppose t(n− 1, i+ 1) is odd. Then the ith bit
of all vertices in V (P1) is 0 and j ∉ Πj(v, fj(1)); however, the ith bit of all the vertices in V (P2) is 1. Suppose t(n− 1, i+ 1) is
even and vj = 0. Then the jth bit of all the vertices in V (P2) is 1; however, the jth bit of all the vertices in V (P1) is 0. Suppose
t(n − 1, i + 1) is even and vj = 1. Then the jth bit of all the vertices in V (P2) is 0; however, the jth bit of all the vertices in
V (P1) is 1. Thus no such a exists and Claim 4.5 is true.

Case 4: 3 ≤ i+ 1 < j ≤ n− 1. We divide the proof into three parts, depending on the values of vj−1 and vi−1.

Subcase 4.1: vj−1 = 0. Then if j ∈ Πi(v, fi(1)), then V (P1) has only one vertex (say, vertex x) with its (j− 1)th bit being 1. By
comparing from the jth to the (i− 1)th bits of xwith the jth to the (i− 1)th bits of each vertex in V (P2), we have x ∉ V (P2).
If j ∈ Πj(v, fj(1)), then fj(v) is the unique vertex in V (P2) with its (j − 1)th bit being 0. By comparing from the jth to the
(i− 1)th bits of fj(v)with the jth to the (i− 1)th bits of each vertex in V (P1), we have fj(v) ∉ V (P1). Then by (12)–(16), the
(j − 1)th bit of all the vertices in V (P1) \ {x} is 0; however, the (j − 1)th bit of all the vertices in V (P2) \ fj(v) is 1. Thus no
such a exists.

Subcase 4.2: vi−1 = 0. Then we can use similar arguments to prove that no such a exists.

Subcase 4.3: vi−1 = 1 and vj−1 = 1. By (12)–(15), we have following the results. When i ∈ Hi(v, fi(1)) and v0 = 1, V (P1)
has only one vertex fi(v) with the (i − 1)th bit being 0. It is easy to find fi(v) ∉ V (P2) by comparing those bits from the
(j− 1)th to the (i− 1)th of fi(v)with each vertex in V (P2). And since the (i− 1)th bit of all the vertices in V (P1) \ fi(v) is 1,
the existence of a implies that the (i− 1)th bit of a must be 1.

Partition V (P2) into two V2,1 and V2,2 such that

V2,1 = {all the vertices in V (P2) before the perfect matchingMi is applied} and V2,2 = V (P2) \ V2,1.

Thus the (i− 1)th bit of all the vertices in V2,1 is 1, and if a exists, then a ∈ V2,1. We now claim that:

Claim 4.9. If a exists, then vj−2 = vj−3 = · · · = vi+1 = 0.

Proof of Claim 4.9. Suppose this claim is not true. Then let q be the largest index between j − 2 and i + 1 (inclusive) such
that vq = 1. Let y = yn−1yn−2 . . . y0 be an arbitrary vertex in V2,1 \ {fj(v)}. Note that fj(v) ∈ V2,1 only when j ∈ Πj(v, fj(1)).
Also note that q ∈ Πj(v, fj(1)). Moreover, if j ∈ Hj(v, fj(1)), then q is the first element after j in Hj(v, fj(1)); if j ∉ Hj(v, fj(1)),
then q is the first element in Hj(v, fj(1)). Since q exists, by (13)–(15), the bits yj−2yj−3 . . . yi+1 will be different from the bits
vj−2vj−3 . . . vi+1. However, let x = xn−1xn−2 . . . x0 be an arbitrary vertex in V (P1). Then the bits xj−2xj−3 . . . xi+1 are identical
to the bits vj−2vj−3 . . . vi+1. Thus every vertex in V2,1 \ {fj(v)} is not in V (P1). Although fj(v) ∈ V2,1, fj(v) is not in V (P1) (this
can be observed by comparing the jth bit and from the (j− 2)th to the (i+ 1)th bits of all the vertices in V (P1)with jth bit
and the bits from the (j − 2)th to the (i + 1)th bits of fj(v)). Thus V (P1) ∩ V2,1 = ∅. Since if a exists, then a ∈ V2,1. Thus a
does not exists and we have this claim. �

By Claim 4.9, in the remaining proof, we assume vi−1 = 1, vj−1 = 1 and vj−2 = vj−3 = · · · = vi+1 = 0. For convenience, let
t denote the number of bits in vn−1vn−2 . . . vj+1 that are 1. We further divided the proof into four subcases.

Subcase 4.3.1: vi = 1 and vj = 1. Suppose t is even. Then the first member inΠj(v, fj(1)) is i. However, i ∉ Πi(v, fi(1)). Thus
no such a exists and V (P1) ∩ V (P2) = ∅. Suppose t is odd. Then j ∈ Πj(v, fj(1)) and I(j − 1, i) ⊂ Πi(v, fi(1)). Thus the jth
bit of all the vertices in V (P2) is 0. Partition V (P1) into V1,1 and V1,2 such that

V1,1 = {all the vertices in V (P1) before the perfect matchingM(j+1) mod n is applied} and V1,2 = V (P1) \ V1,1.

Thus the jth bit of all vertices in V1,1 is 1 and the jth bit of all vertices in V1,2 is 0. By the fact that the jth bit of all the vertices
in V (P2) is 0, to prove V (P1) ∩ V (P2) = ∅, it suffices to prove V1,2 ∩ V (P2) = ∅. If v0 = 1, then the (j − 1)th bit of all the
vertices in V (P2) \ fj(v) is 1; however, the (j− 1)th bit of all the vertices in V1,2 is 0. Since the ith bit of is 1, but the ith bit of



Author's personal copy

Y.-J. Liu et al. / Theoretical Computer Science 412 (2011) 2237–2252 2251

all the vertices in V1,2 is 0, fj(v) ∉ V1,2. If v0 = 0, then the (j− 1)th bit of all the vertices in V (P2) is 1, and the (j− 1)th bit
of all the vertices in V1,2 \ {z = 2j−1

+ 2i−1
+ 1} is 0. Since t is odd, there exists vk = 1 for some k > j. Thus z ∉ V (P2) by

comparing the kth bit of them. Therefore, no such a exists in this case.
Subcase 4.3.2: vi = 0 and vj = 0. Suppose t is even. Then the jth bit of all the vertices in V (P2) is 1. However, the jth bit of all
the vertices in V (P1) is 0. Suppose t is odd. Then the number of bits in vn−1vn−2 . . . vi+1 that are 1 is even; this implies that
i is the first member inΠi(v, fi(1)). Thus the ith bit of all the vertices in V (P2) is 0. However, the ith bit of all the vertices in
V (P1) is 1. Thus no such a exists.

Subcase 4.3.3: vi = 0 and vj = 1. Suppose t is even. Then the first member in Πj(v, fj(1)) is i − 1 and the first member in
Πi(v, fi(1)) is i. So the ith bit of all the vertices in V (P2) is 0; however, the ith bit of all the vertices in V (P1) is 1. Suppose
t is odd. Define q to be the index of the leftmost nonzero bit of v. Then q > j. Thus the (i − 1)th bit of all the vertices in
V (P2) \ {fj(v)} is 0; however, the (i − 1)th bit of all the vertices in V (P1) is 1. By comparing the jth and the qth bits of fj(v)
with the jth and the qth bits of every vertex in V (P1), we have fj(v) ∉ V (P1). Thus no such a exists.

Subcase 4.3.4: vi = 1 and vj = 0. If the number of those bits from vn−1 to vj+1 being 1 is even, then the jth bit of all the vertices
in V (P2) is 1; however the jth bit of all the vertices in V (P1) is 0. If the number of those bits from vn−1 to vj+1 being 1 is odd,
then the number of bits in vn−1vn−2 . . . vi+1 that are 1 is even. Thus i is the first member ofΠj(v, fj(1)); but i ∉ Πi(v, fj(1)),
which implies that the ith bit of all the vertices in V (P2) is 0 but the ith bit of all the vertices in V (P1) is 1. So Claim 4.5 is
true for this case.

As a result, Claim 4.5 is true for Case 4. From the above discussion, Claim 4.5 is true for all the cases, and therefore
T0, T1, . . . , Tn−1 are vertex-independent rooted at r = 0 of LTQn. �

By Theorem 2.4 and Lemmas 4.7 and 4.8, we have the following result.

Theorem 4.10. T0, T1, . . . , Tn−1 are n vertex-ISTs rooted at r for LTQn.

5. Concluding remarks

The independent spanning trees (ISTs) problem attempts to construct a set of pairwise independent spanning trees and
it has numerous applications in networks such as data broadcasting, scattering and reliable communication protocols. The
well-known ISTs conjecture, Vertex/Edge Conjecture, states that any n-connected/n-edge-connected graph has n vertex-
ISTs/edge-ISTs rooted at an arbitrary vertex r . Both the Vertex and Edge Conjectures are still open on general graphs for
n ≥ 5.

In this paper, we consider the ISTs problem on the n-dimensional locally twisted cube LTQn. The very recent algorithm
proposed by Hsieh and Tu [12] is designed to construct n edge-ISTs rooted at vertex 0 for LTQn. However, we find that LTQn
is not vertex-transitive when n ≥ 4 and therefore Hsieh and Tu’s result does not solve the Edge Conjecture for LTQn. In this
paper, we present an algorithm to construct n vertex-independent spanning trees rooted at an arbitrary vertex for LTQn. To
the best of our knowledge, this is the first result to confirm the Vertex Conjecture for the locally twisted cubes. In addition,
it is also interesting to confirm whether the Vertex Conjecture is true for other hypercube variants.

References

[1] F. Bao, Y. Funyu, Y. Hamada, Y. Igarashi, Reliable broadcasting and secure distributing in channel networks, IEICE Transactions on Fundamentals of
Electronics Communications and Computer Sciences E81A (1998) 796–806.

[2] F. Bao, Y. Igarashi, S.R. Ohring, Reliable broadcasting in product networks, Graph-theoretic Concepts in Computer Science 1517 (1998) 310–323.
[3] Y.S. Chen, C.Y. Chiang, C.Y. Chen, Multi-node broadcasting in all-ported 3-D wormhole-routed torus using an aggregation-then-distribution strategy,

Journal of System Architecture 50 (2004) 575–589.
[4] G. Chartrand, L. Lensniak, Graph and Digraphs, Wadsworth, Monterey, CA, 1981.
[5] S. Curran, O. Lee, X. Yu, Finding four independent trees, SIAM Journal on Computing 35 (2006) 1023–1058.
[6] J. Cheriyan, S.N. Maheshwari, Finding nonseparating induced cycles and independent spanning trees in 3-connected graphs, Journal of Algorithms 9

(1988) 507–537.
[7] J. Edmonds, Edge-disjoint branchings, in: R. Rustin (Ed.), Combinatorial Algorithms, in: Courant Inst. Sci. Symp., vol. 9, Algorithmics Press, New York,

1973, pp. 91–96.
[8] Z. Ge, S.L. Hakimi, Disjoint rooted spanning trees with small depths in de Bruijn and Kautz graphs, SIAM Journal on Computing 26 (1997) 79–92.
[9] A. Huck, Independent trees in planar graphs, Graphs and Combinatorics 5 (1999) 29–77.

[10] A. Huck, Independent trees in graphs, Graphs and Combinatorics 10 (1994) 29–45.
[11] T. Hasunuma, H. Nagamochi, Independent spanning trees with small depths in iterated line digraphs, Discrete Applied Mathematics 110 (2001)

189–211.
[12] S.Y. Hsieh, C.J. Tu, Constructing edge-disjoint spanning trees in locally twisted cubes, Theoretical Computer Science 410 (2009) 8–10.
[13] K.S. Hu, S.S. Yeoh, C.Y. Chen, L.H. Hsu, Node-pancyclicity and edge-pancyclicity of hypercube variants, Information Processing Letters 102 (1) (2007)

1–7.
[14] Y. Iwasaki, Y. Kajiwara, K. Obokata, Y. Igarashi, Independent spanning trees of chordal rings, Information Processing Letters 69 (1999) 155–160.
[15] A. Itai, M. Rodeh, The multi-tree approach to reliability in distributed networks, Information and Computation 79 (1988) 43–59.
[16] S. Khuller, B. Schieber, On independent spanning-trees, Information Processing Letters 42 (1992) 321–323.
[17] K. Miura, D. Takahashi, S. Nakano, T. Nishizeki, A linear-time algorithm to find four independent spanning trees in four-connected planar graphs,

International Journal of Foundations of Computer Science 10 (1999) 195–210.
[18] K. Miura, D. Takahashi, S. Nakano, T. Nishizeki, A linear-time algorithm to find four independent spanning trees in four-connected planar graphs,

Discrete Applied Mathematics 83 (1998) 3–20.



Author's personal copy

2252 Y.-J. Liu et al. / Theoretical Computer Science 412 (2011) 2237–2252

[19] S. Nagai, S. Nakano, A linear-time algorithm to find independent spanning trees in maximal planar graphs, IEICE Transactions on Fundamentals of
Electronics Communications and Computer Sciences E84A (2001) 1102–1109. Also appears in: Proceedings of 26th Workshop on Graph-Theoretic
Concepts in Computer Science, WG 2000, in: LNCS 1928, Springer, 2000, pp. 290–301.

[20] K. Obokata, Y. Iwasaki, F. Bao, Y. Igarashi, Independent spanning trees of product graphs, Lecture Notes in Computer Science 197 (1996) 338–351. See
also: K. Obokata, Y. Iwasaki, F. Bao, Y. Igarashi, Independent spanning trees of product graphs and their construction, in: IEICE Trans. Fundamentals
of Electronics,Communications and Computer Sciences, E79-A, pp. 1894–1903, 1996.

[21] Y.C. Tseng, S.Y. Wang, C.W. Ho, Efficient broadcasting in wormhole-routed multicomputers: a network-partitioning approach, IEEE Transaction on
Parallel and Distributed Systems 10 (1999) 44–61.

[22] S.M. Tang, Y.L.Wang, Y.H. Leu, Optimal independent spanning trees on hypercubes, Journal of Information Science and Engineering 20 (2004) 143–155.
[23] D.B. West, Introduction to Graph Theory, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 2001.
[24] J.S. Yang, J.M. Chang, S.M. Tang, Y.L. Wang, Reducing the height of independent spanning trees in chordal rings, IEEE Transactions on Parallel and

Distributed Systems 18 (2007) 644–657.
[25] X. Yang, D.J. Evans, G.M. Megson, The locally twisted cubes, International Journal of Computer Mathematics 82 (2005) 401–413.
[26] J.S. Yang, S.M. Tang, J.M. Chang, Y.L. Wang, Parallel construction of optimal independent spanning trees on hypercubes, Parallel Computing 33 (2007)

73–79.
[27] A. Zwhavi, A. Itai, Three tree-paths, Journal of Graph Theory 13 (1989) 175–188.


	nscrpt_100
	2009_DMAA_BGSEN_Routing
	2009IPL
	2010TCS
	All-to-all personalized exchange in generalized shuffle-exchange networks
	Introduction
	Preliminaries
	The proof of N R(N) Rsc(N) = 2n
	All-to-all personalized exchange of GSENs with Nequiv 28mu(mod6mu4)
	The value of R(N) when Nequiv 08mu(mod6mu4)
	Concluding remarks
	References


	2011TCS



