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摘要 

以家庭及人生生涯規劃為基礎之理財規劃顧問服務，是近年來逐漸興起之新興金融

服務。然而在實務上，家庭及人生的理財規劃需同時考量各種不同的外在因素，如法律、

節稅等限制，並且也需配合不同之投資行為與風險偏好選擇不同的投資策略與資產配置。

因此一個完美的理財規劃模型，是一個非常複雜的多目標決策問題。傳統上這類問題大

多採用線性規劃的方式，來求得最佳解，然而這類的傳統方法學，並無法即時因應外界

多變的環境來進行動態的調適，而原本根據某個時間點所做的規劃，也無法在長期時間

的考驗下仍然保持最佳化，因此本計畫將利用人工智慧的方法學，建構一個能隨著環境

的變動進行動態調適的理財規劃模型。 

在第一年，發展出展出以自組織類神經網路為基礎之最佳化動態避險比例估算模型。

第二年針對套利策略進行動態知識的發現。最廣泛被使用的套利策略源自於持有成本模

型(Cost of Carry)或經濟學的方法。然而實務上，這些方法在處理日內交易、分線交

易和跨市場套利有其困難。在本研究中，我們提出基於分類元（XCS）的計算智慧。首

先，為了減少資料量，將一分鐘的原始交易資料透過條件過濾成價差關係，接著採用

XCS 知識規則的發現去分析特定領域的知識：在到期日指數期貨的價格將會接近現貨價

貨，有四個重要的相關因素：基差、價差、到期日期、盤中交易時間，這四個因素被認

為是 XCS 建立跨市場套利模式的條件。本研判選擇在台灣期貨交易所(TAIFEX)交易的台

股期貨（TX）和在新加坡交易所(SGX)的摩台指(MSCI)作為跨市場研究的標的來實證研

究驗證的準確性和盈利能力的模型。 

 

關鍵字：交易規則、高頻分析、日內交易、分類元系統 
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Abstract 

The family or life financial planning is a emerging financial service in recent years. 

However, it is not easy to make plan that many factors must be considered, such as tax, law 

and various risk preference. In practice, the financial planning is a complex multi-objective 

decision problem with many restricted condition. Traditionally, linear program and numerical 

optimization skill were used to solve these problems. But the investment environment is 

dynamic and change rapid, that the financial planning should be dynamic adaptive with time. 

We propose a model which is capable with dynamic adaptive and suitable for long time 

financial planning. 

The result of this project in the first year is to develop a optimal dynamic hedge ratio 

estimation model using self-organizing map (SOM). In the Second year is to develop a 

dynamic arbitrage strategy model. The most popular arbitrage strategy is derived from the 

cost of carry model or by using the econometrics approach. However, these approaches have 

difficulty in dealing with intra-day 1-minute trading data and capturing inter-market arbitrage 

opportunity in the real world. In this research, we propose computational intelligence 

approaches based on the extended classifier system (XCS). First, in order to reduce the 

amount of data, the original data streams of intra-day 1-minute trading data are filtered by the 

conditions of variant price spread relation. XCS is then adopted for knowledge rule discovery. 

After analyzing the property with domain-specific knowledge that the price of index futures 

will get close to that of spot products at the time the futures mature, four important factors 

related to bias, price spread, expiry date, and intraday trading timing are considered as the 

conditions of XCS to build the inter-market arbitrage model. The inter-market spread of the 

Taiwan Stock Index Futures (TX) traded at the Taiwan Futures Exchange (TAIFEX) and the 

Morgan Stanley Capital International (MSCI) Taiwan Index Futures traded at the Singapore 

Exchange Limited (SGX) are chosen for an empirical study to verify the accuracy and 

profitability of the model. 

 

Keywords: trading rule; high frequency data; intra-day trading; XCS. 
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1. Introduction 

In futures and options markets, if market imperfection or market inefficiency exists, the 

phenomenon of mispricing can easily occur, creating a price difference between commodities 

or underlying products (price spread), thereby often leading to the rise of arbitrage 

opportunities. This phenomenon is more common amongst emerging markets and markets 

experiencing thinner trading volumes than in mature markets and markets with higher 

transaction volumes (Wang & Hsu, 2006). Depending on different exchange commodities and 

exchange markets, trading in the price spread can generally be divided into two types (Moles 

& Terry, 1997): (1) inter-market (or inter-commodity) spread: two highly related financial 

products that are traded within the same stock exchange, e.g. arbitrage between stocks and 

index futures; or two financial products offered in different exchanges covering the same 

underlying commodity or similar commodities. (2) intra-market (or intra-commodity) spread: 

arbitrage between products with the same underlying commodity but with different expiry 

months, e.g. futures contracts for the same index which mature on different months. In 

general, arbitrage opportunities are rare and difficult to discover, because the calculations are 

too complex, especially with inter-market arbitrage trading, where expiry dates for different 

futures contracts, the immediate foreign exchange calculation, and immediate calculation of 

fair price must all be considered at the same time. 

Regardless of the type of arbitrage, when evaluating an opportunity in arbitrage, 

establishing the fair price of the product and then assessing the magnitude of the price spread 

are the most important research issues worthy of attention. According to previous studies, the 

methodologies for detecting arbitrage opportunities can be classified into three categories: the 

cost of carry model, econometric and behavioral finance, and computational Intelligence 

approach. 

The cost of carry model is the most basic theorem when considering futures arbitrage. 

However, the actual prices in the index futures markets are generally found to be lower than 

the theoretical prices predicted by the cost of carry model (Cornell & French, 1983; 

Figlewski, 1984; Modest & Sundaresan, 1983). This makes the model imperfect in explaining 

and forecasting price movements in stocks and index futures (Klemkosky & Lee, 1991). 

The econometric model considering the arbitrageur behavior can yield a more accurate 

evaluation of the probability of profiting through arbitrage in practice. Some researchers 

investigated the inter-market spread trading based on econometrics, such as the spread of 

West Texas Intermediate (WTI) and Brent Crude (Brent) spread (Dunis et al., 2006; Dunis et 

al., 2008), the price spread between the Singapore Exchange Limited (SGX) Morgan Stanley 

Capital International (MSCI) Taiwan Index and the Taiwan Futures Exchange (TAIFEX) 

Taiwan Stock Index Futures (TX), the price spread between the TAIFEX Taiwan Stock 

Exchange Electronic Sector Index (TE) and the Financial Sector Index (TF) Futures (Luo, 

2002), and the FTSE 100 and the FTSE Mid 250 contract traded on the London International 

Financial Futures and Options Exchange (LIFFE) (Butterworth & Holmes, 2002). However, 

most econometric models use time series as a starting point, using only the daily closing 

prices, and neglects other determining factors and conditions (e.g. time to maturity). Hence, 

there are some limitations in their capacity to evaluate the probability of arbitrage, especially 
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for intra-day trading data and it is difficult to apply these models to develop a trading 

decision support system that is capable of high frequency data processing. 

In processing high-frequency data for intra-day trading, computational intelligence is a 

new approach. The real-time updated transaction data are typical data streams that can be 

processed using temporal data mining skill. A statistical arbitrage trading system for the S&P 

500 Futures Index is proposed based on the flexible least squares (FLS), showing that the 

FLS can be employed as a building block of an algorithmic trading system (Montana et al., 

2009). 

More recently, many trading decision support systems have been developed based on 

computational intelligence techniques. There are two main approaches to developing trading 

decision support system. One is the pricing-based model, which is a non-parameter model for 

financial asset pricing; the other is the rule-based model, which focuses on the profitable 

trading rule discovery. 

When constructing the pricing-based model, the fluctuation of the financial asset price is 

forecast by approximating the functional mapping between the financial asset price and its 

influencing factors. The market price in the next trading period is forecast using historical 

financial time series data and relative factors such as technique analysis indicators or 

economic indicators. 

Fuzzy rule is commonly used for stock price prediction model and can be implemented 

in a real-time trading system. Chang and Liu (2008) proposed a Takagi-Sugeno-Kang 

(TSK)-type fuzzy rule-based system for stock price prediction. Furthermore, this model is 

improved by combining the wavelet transform (Chang & Fan, 2008). Zarandi, Rezaee, 

Turksen, and Neshat (2009) proposed a type-2 fuzzy rule-based expert system model for 

stock price analysis. Although these models can obtain more accurate prediction results than 

the traditional regression model, they only consider the investment trading, and they can 

hardly be applied for arbitrage trading. 

Some arbitrage trading systems have been proposed based on the target price forecasting. 

An index arbitrage model for the Irish market index (ISEQ) and the FTSE 100 index is 

demonstrated using recurrent neural network models combined with the Kalman filter 

(Edelman, 2008). An option arbitrage trading system for American-style call options on the 

British Pound versus the US dollar currency futures is proposed based on a novel pseudo 

self-evolving cerebellar model arithmetic computer (PSECMAC) option-pricing model 

(Teddy et al., 2008). However, these research only demonstrate the detection for daily 

arbitrage trading and do not show capability when applied to practical intra-day arbitrage 

trading 

When constructing the rule-based model, the trading rule is commonly generated by 

identifying the charting patterns. A new template grid, which is a matching technique based 

on pattern recognition, is proposed to detect bull flag technical trading rules (Wang & Chan, 

2007) and buy signals (Wang & Chan, 2009). Li and Kuo (2008) combined the K-chart 

technical analysis, wavelet transform, and self-organizing map network to construct a 

forecasting model and to generate buying and selling signals. 
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More recently, the hybrid models, which combine the price forecasting model and rule 

discovery mechanism, have been proposed in many literature. Tan, Quek, and Yow (2008) 

proposed a novel rough set-based pseudo outer-product (RSPOP) fuzzy neural network 

intelligent stock trading system. They combined the price predictive model and technique 

indicator predictive model to obtain the optimal trading rules. Ghandar, Michalewicz, 

Schmidt, To, and Zurbrugg (2009) used an evolutionary process in trading rules drawn from a 

fuzzy logic rule base. However, no literature has focused on inter-market arbitrage trading. 

In order to develop a profitable and easy to implement system for arbitrage trading, we 

combine expert knowledge and statistical analysis to determine the properly trading timing 

conditions. Moreover, we then use these conditions to filter rapidly the transaction data 

stream and reduce the computational loading for high-frequency data processing. 

Furthermore, the knowledge discovery process is applied to generate the arbitrage trading 

rule using the filtered data. 

XCS is a knowledge discovery process that has already been applied in various related 

studies on financial investment, and it has shown the capacity to process financial time series 

data. These studies also indicate that the XCS model is more profitable compared with the 

random or buy and hold model (Beltrametti et al., 1997; Liao & Chen, 2001; Schulenburg & 

Ross, 2002). Therefore, this study will utilize the classifier system‟s dynamic learning 

function to build a self-learning, self-adaptive inter-market arbitrage model that can be 

applied within a dynamic market. Using the SGX MSCI Taiwan Index Futures and TAIFEX 

TX as the study object, we will assess the effect of actual costs of trading, price spreads, 

different expiry dates, and trading timing, and then design an inter-market arbitrage 

investment decision support system that can be put to practical use. 

The rest of the paper is organized as follows: Part 2 illustrates the inter-market arbitrage 

strategy and method in this study; Part 3 describes the proposed XCS model; Part 4 details 

the experiment design and the results; and lastly, conclusions drawn from the study are 

discussed in Part 5. 
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2. Arbitrage Strategy Analysis 

2.1. Inter-market arbitrage 

When conducting futures index arbitrage, the common method is to calculate the 

theoretical fair price based on the term to maturity and the underlying commodity first and 

then compare it to the actual market price to calculate the extent of mispricing. To assess the 

price spread inter-market, the extent of mispricing must be normalized as follows: 
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where i

tM  is the normalized mispricing at time t, i

tF  is the actual future price, i

tFP  is 

the theoretical fair price of the index futures, and i is the individual futures contractor.  

The mispricing differential between the two related products is used as the inter-market 

price spread. Using the indices nominated for study the SGX MSCI Taiwan Index Futures 

and the TAIFEX Taiwan stock index futures would be as follows: 
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where 
tSM  is the spread mispricing differential, and T

tM  and S

tM  represent the 

normalized mispricing in the TAIFEX Taiwan Stock Index Futures and the SGX MSCI 

Taiwan Index Futures, respectively. 

When 
tSM  reaches a certain extent and becomes greater than the cost of the arbitrage 

transaction ( TC ), that is TCSM t  , then proceeding with the arbitrage trading is worth 

considering. Using Eq. (2) as an example, due to the special characteristic of the index futures 

price converging towards the spot price as the expiry date for the futures contract is 

approaching, where spread was found to be underpriced ( 0tSM ), an arbitrageur would take a 

long position in the TAIFEX Taiwan stock index futures contracts and simultaneously set up 

an opposing short position in the MSCI Taiwan Index Futures contracts. 

In general, the cost of carry model is most commonly applied to calculate the theoretical 

fair price of the index futures using the Eq. below: 
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where i

tI  equates to the price of the underlying stock index at time t, 
ir  refer to the 

risk-free interest rate, 
id  is the dividend yield rate, and 

iT  is the futures contract expiration 

date. 
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To process high frequency inter-minute data in inter-market arbitrage trading, we 

simplified Eq. (3) by replacing i

tFP with i

tI  and then substituting this in Eq. (1) and (2) to 

calculate i

tM  and 
tSM . Although, the expiry date effect in Eq. (3) is neglected, it is still 

considered as an important factor when designing XCS in this study. The modified Equations 

in the study are expressed as follows: 
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2.2. Determining arbitrage trading conditions 

To increase the efficiency of processing high frequency data from inter-minute trading, 

we search for the conditions that can be applied to data filtering, based on the characteristics 

of historical daily trading data, and the magnitude of the probability of successful arbitrage. 

First, we use Eq. (4) to calculate respectively two futures products‟ inter-market trading 

price spread between each futures product‟s price and spot price. We then substitute this into 

Eq. (5) to calculate whether the absolute value obtained is greater than the cost of transactions 

and then proceed with arbitrage trading. 

Therefore, we can conduct classification based on the different combinations of 

scenarios with price spreads correlation to calculate the probability of success of arbitrage, 

using it to discover the most frequent condition for successful arbitrage under various 

correlated price spread combinations. The conditions are listed in Table 1 and illustrated in 

Fig. 1. 

Table 1. Condition classification for statistical arbitrage 

No. 

condition 

T

tM
~

 S

tM
~

 
tMS

~
`

~
 

Trading position 

TX MCSI 

1 > 0 > 0 > 0 Short Long 

2 > 0 > 0 < 0 Short Long 

3 > 0 < 0 > 0 Short Long 

4 < 0 < 0 > 0 Long Short 

5 < 0 < 0 < 0 Long Short 

6 < 0 > 0 < 0 Long Short 
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The probability of successful arbitrage for each condition was then calculated using the 

support value widely used for mining association rules (Han, 2006). 

conditions  theof occurrence of no. total

making-profit of  timesof no. total


 arbitragesuccessfulofyprobabilitupports
         (6) 

Finally, the conditions with high support value would be used for filtering arbitrage 

opportunities. Only the data that matches the condition would be used for the XCS 

knowledge discovery process. 

 

2.3. Trading interval and portfolio management 

When constructing an inter-market arbitrage trading model, we must first set an entry 

interval in arbitrage trading based on the respective expiry dates for the product in each 

market. A the same time, this interval must be similar to the longest holding period for the 

futures, so as to avoid the effects caused by the different portfolio management in practice 

due to any difference in expiry dates, and to avoid the occurrence of closing out or rolling 

over of position at expiry. We set the arbitrage trading interval using the day after the MSCI 

Taiwan Index Futures contract settlement date and the following month‟s last trading day of 

the TX contract as one period. The last exit trading day is the TX contract settlement date. 

The trading interval is illustrated in Fig. 2. 

Furthermore, to calculate the final profit/loss from arbitrage trading, establish the 

relationship between the corresponding prices inter-market, and avoid the assumption of too 

much trading risk via the establishment of stop-loss, profit-cap mechanisms, when the profit 

from trading is greater than the profit-cap threshold, profit-realization will be conducted. 

Conversely, if the loss exceeds the stop-loss threshold, immediate action will also be taken to 

exit and minimize loss. In addition, if during the trading period, neither the stop-loss nor the 

profit-cap trading is triggered, then on the last trading day for the TX contract, exit trading 

will be executed at the spot index price of the last order (at 13:30) and profit/loss will be 

calculated.  

This study assumes relevant trading parameters based on practical experiences, which 

are set out as follows: 

 Price spread ratio (hedge ratio): TX contracts: MSCI Taiwan Index Futures contracts = 

3:4 

 Transactions costs: calculating retail transaction fees and tax, the total cost of trading is 

approximately TWD5,800.  

 Stop-loss & Profit cap: this study utilizes the knowledge acquisition training period, uses 

the loss-making (profit-making) investment trading data as a statistical sample to 

calculate the distribution of dollar value lost (profit), and sets the stop-loss (profit-cap) 
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value to cut loss (profit) at 30% (70%) of the maximum loss (profit). This is illustrated in 

Fig. 3 below.
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3. The XCS-based Model for Arbitrage 

3.1. Extended classifier system 

The classifier system is an adaptive rule-base system consisting of enhanced learning 

mechanisms and the genetic algorithm, which is capable of developing various combinations 

of rules within the system to acquire optimal rules. Therefore, the classifier system can 

categorize external states, accurately yield predictions, and can also adapt to changes in 

external states, thereby generating different predictions under different states to reflect the 

appropriate solution applicable to the dynamic environment. 

The original concept of the classifier system came from Holland (1976), under the term 

Cognitive System (CS). Following, Holland and Reitman (1977) jointly proposed the 

Learning Classifier Systems (LCS). Since then, subsequent research conducted by many 

scholars gradually strengthened the overall operational efficiency and stability of the system. 

An improved version of the learning mechanism was proposed by Wilson (1995, 1998). 

He adjusted the fitness of LCS, changing the original use of expected return as a basis for 

calculating the accuracy of the expected return. He also improved the algorithm for learning. 

The improved model was named Extended Classifier Systems (XCS). 

In XCS, the so-called classifier is composed of many “IF condition/ THEN action” rules 

to represent the corresponding external state. This is represented by the following formula: 

<classifier>：= <condition>/<action>                    (7) 

For the sake of easy application, binary coding is typically used for the condition and the 

action to represent various parameters of the external state. It is also used as a code for the 

following set of instructions: 

<condition>：= {0,1,1#,0,1,….}L                          (8) 

<action>：= {0,1,….,n-1}                                     (9) 

Within these codes, L represents the length of the rules, # represents the unimportant 

characteristics which mean that 0 and 1 can both be matching states, and n represents the 

classified resulting numbers. 

The main structure and application process are represented in Figure 4. The algorithm of 

the XCS model is shown in Figure 5. 

As can be seen, XCS receives information on the external state through detectors, 

coding it into chains of rules that can be processed by the system. These chains of rules are 

called classifiers. These classifiers are then compared to the classifiers identified in the 
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external state‟s information system and population set [P], and those that match the current 

imputed state are selected to create a match set [M]. If no matching classifiers are found in 

the population set, then the cover mechanism is triggered to set up one that contains the set of 

information as that point in time, and action will be randomly generated thereafter. From the 

action of each classifier in the match set, the weighted average of each action is then 

calculated based on the fitness of the classifiers to construct a prediction array [PA] for 

returns. Finally, the appropriate action is determined through the random exploration or 

exploitation method. This action is then used to set up an action set [A]. After determining 

the appropriate action, the system delivers the action to the effector to be sent for execution 

under the given conditions. Depending on the level of correctness resulting from the 

execution, the system will then provide internal reinforcement to the classifiers, and the 

relevant weighting in terms of the strength of each classifier within the action set is thus 

updated. Afterwards, the evolutionary genetic algorithms mechanism is applied within the 

action set, which will then eliminate the relatively weak rules. Therefore, after a period of 

learning, the system can generate the most appropriate action classifier that can adapt to the 

various states created by various changes within a dynamic environment. 

3.2. The proposed xcs-based arbitrage model  

This study uses XCS to establish an inter-market arbitrage model. Fig. 6 represents the 

structure of the arbitrage trading system in this study, which consists of three main 

components: data processing, XCS, and portfolio management. 

First, in order to deal with the huge volume of intra-day 1-minute transaction data, in the 

data pre-processing stage, the arbitrage conditions are determined using the association rule 

mining approach described in Section 2.2. The price spread correlations, i.e. the positive or 

negative sign of S

t

T

t MM
~

,
~  and 

tMS
~

`
~ , are applied to calculate the most frequent item and then to 

filter out high-risk arbitrage opportunities so as to increase the efficiency of the model‟s high 

frequency data operation. 

Second, with the remaining data, the XCS learning algorithm is applied to conduct a 

purification of trading knowledge to find the descriptive factor for the most suitable state for 

arbitrage trading. XCS is a type of self-adjusting learning algorithm. Based on the dynamic 

factors of the state, it can search for conditions with the highest fitness. Therefore, we have 

chosen some of the most commonly observed market trading data to be used as descriptive 

factors for setting up the conditions for arbitrage. These factors are imputed into XCS and 

tied in with calculations of the return in value for arbitrage to facilitate learning of hidden 

knowledge and to seek applicable knowledge and rules for arbitrage trading. 

Finally, in the portfolio management component, we take into account some of the 

demands of trading in practice, such as stop-loss, profit cap, and closing out of positions at 

expiry. Daily settlement for profits in arbitrage trading is conducted and applied to manage 

the arbitrage portfolio, eventually working out the investment decision of buying, holding, or 

selling. 

3.3. Knowledge encoding and discovery by XCS 
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In XCS, the so-called classifier is made up of many „IF condition/ THEN action‟ rules to 

represent the corresponding external state. Usually, for the sake of easy application, binary 

coding is used for the condition and action to represent various parameters of the external 

state. 

Based on Eq.s (4) and (5) described in Section 2.1, we use the price spread and the price 

spread ratio as the conditions descriptive factors of the classifier system. Further, the time of 

trading is also an important factor that will influence the arbitrage profitability. The expiry 

date are considerd as the conditions descriptive factors of the classifier system. The 

performance of arbitrage activities is different within the same trading day and a certain time 

in the day tends to be favored (Taylor, 2007). To take into account inter-day activities, we 

also add in intra-day transaction times as a state descriptive factor. 

These conditions and action of the classifier must go through a process of discretization 

before binary coding can be conducted. Therefore, we use a linear function to conduct 

discretization. Table 2 shows the composition of the classifier in this study. 

Table 2. Composition of the classifier 

Conditions Action 

Bit 1-4 Bit 5-8 Bit 9-12 Bit 13-14 Bit 15 

price spread between 

TX and MSCI ( T

tM
~

) 

price spread ratio of TX 

(
tMS

~
`

~
) 

the term to expiry date 

for TX ( tTi  ) Intra-day trading timing 
Profitable  

(True/ False) 

Examples: 
 0<X<= 3 /16   0 
 3/16<X<= 6 /16 1 

…… 
15/16<X      15 

 

  0 <Y<= 2 /16 0 
 2/16<Y<=6 /16 1 

…… 
30/16<Y     15 

 

 Z = 1     0 
 Z = 2     0 

…… 
 Z = 16    15 

 

 9:00<=T<10:000 
10:00<=T<11:001 

11:00<=T<12:002 
12:00<=T<13:303 

 

True (profit)  0 
False (loss)  1 

 

Moreover, in the process of knowledge discovery, there are some parameters for the 

XCS operation that need to be defined. In this study, the pay-off function used in XCS 

follows the hierarchical structured proposed by Wilson (1998). The three levels set are 

maximum profit (loss), stop-loss (profit cap), and minimum profit (loss). When XCS is in 

operation, the evolution of classifier rules are also generated by the genetic algorithm used 

for setting the relevant parameters according to the best value set as proposed by Wilson 

(1998). 

 

3.4. Evaluation method 

This study follows the prediction of the XCS arbitrage model, using intra-day 1-minute 

trading data to conduct testing. Based on trading time and trading data, predictions are made 

on whether or not inter-market arbitrage trading can be conducted. We measure the accuracy 

of prediction and profitability respectively and use them as indicators to evaluate the model. 

They are defined as follows: 
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1. Accuracy:  

ons transactiof no.

generationprofit  actual of  timesof no.
Accuracy          (10) 

2. Profitability: 

costs) ons(transacti - price) (purchase - price) (sale 

 /



lossprofitTrading           (11) 

 
/

/








nstransactioofnumber

lossprofitTrade

tradeperlossprofitAveragetyrofitabiliP

           (12) 
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4. Empirical Result 

4.1. Data and experiment design 

This study obtains the empirical trading data from the TAIFEX Taiwan Index Futures 

(spot month), the Taiwan Weighted Index, the MSCI Taiwan Index Futures (spot month), the 

MSCI Taiwan Index, and the corresponding underlying index‟s intra-day 1-minute data. The 

foreign exchange rate of TWD/USD is the daily close price. All the transaction data are 

provided by the APEX International Financial Engineering. Empirical analysis is undertaken 

on data obtained within the intervals and selected from January 1, 2001 to December 30, 

2006. Due to the fact that this study uses price spreads as the benchmark, when executing 

strategies, the timing used is mainly the intersection between the spot market‟s and the 

futures market‟s opening times. The intra-day trading period for the sample data collection is 

between 9:00 in the morning and 13:30 in the afternoon. 

The main aim of designing the experiments is to look closely at the XCS model‟s 

applicability in arbitrage and compare it against a random trading strategy. That is, when the 

XCS arbitrage model determines at a certain point in time whether or not to give prediction to 

an arbitrage opportunity, the random model would also generate a random trading signal 

(which corresponds to an action generated from the XCS model). It would also execute 

arbitrage trading according to the random trading signal generated, holding the positions till 

expiry without any allowance for any stop-loss or profit-cap mechanism. 

To further test the effects of different characteristics of the data collected from different 

calendar years in trading and different time intervals in the XCS model, three types of 

training and testing datasets are designed, each undergoing empirical simulation using the 

XCS model and the random model to conduct a total of six types of testing. The experiment 

design and the relevant variants collation are shown is Table 3. 

Table 3. Experiment design 

Testing model 

No. 

dataset 

Time-fra

me 

Training 

period 

Year of 

testing 

(1) XCS   

(2) Random 

DS 1 4 years 2001~2003 2004 

DS 2 5 years 2001~2004 2005 

DS 3 6 years 2001~2005 2006 

 

4.2. Arbitrage conditions for data stream filter 

To reduce the data size, processing and filtering of one minute high frequency data are 

one of the key processes for arbitrage in this study. Meanwhile, the correlation between price 
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spread and successful arbitrage provides a benchmark for the situational description 

classification in our model‟s assessment of arbitrage success. Following the method described 

in Section 2.2 and substituting the daily trading data collected between January 1, 1998 and 

December 30, 2006 into the model, the resulting conditions and their support values are listed 

in Table 4 below. 

From the table, it can be seen that Conditions 3 and 6 yield better arbitrage opportunities. 

Therefore, this study utilizes these two rules as data filtering conditions. Only intra-day 

1-minute data that fit these two conditions will be entered into XCS for knowledge discovery. 

Table 4. Arbitrage conditions determination 

No. 

Condition 

T

tM
~

 S

tM
~

 
tMS

~
`

~
 Support 

1 > 0 > 0 > 0 150/295 (0.51) 

2 > 0 > 0 < 0 60/270 (0.22) 

3 > 0 < 0 > 0 95/157 (0.61)* 

4 < 0 < 0 > 0 60/237 (0.25) 

5 < 0 < 0 < 0 81/203 (0.51) 

6 < 0 > 0 < 0 112/197 (0.57)* 

 

4.3. Knowledge rules analysis 

In this study, we performed a preliminary experiment to illustrate the knowledge 

discovery ability of the XCS model. Simulateously, we simulated the arbitrage trading with 

intra-day 1-minute data to illustrate the trading system. 

In the preliminary expriment, we set the arbitrage condition for filtering the data stream 

as Condition 3 and the dataset for expriment as DS 3. The XCS-based arbitrage model was 

trained and tested according to the intra-day 1-minitue trading data for six years. During 

model training, only 26,471 pieces of 1-minute trading data distributed in 395 trading days 

from year 2001 to year 2005 could fit the condition and pass the data stream filter. After XCS 

training, 227 trading rules were generated from 26,471 pieces of 1-minute trading data, which 

were then used for testing. 

During testing, only 1,108 pieces of 1-minute trading data in the year 2006 could fit the 

condition and pass the data stream filter. Among these, only 359 pieces of data were matched 

with 57 rules, which were generated by XCS. We then excuted the arbitrage transaction. We 

captured the trading situation of one trading day in the testing period to illustrate the 

capability of the XCS model. 
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Figure 7 is the simulated trading situation on 2 Janurary 2006. Small pieces of the 

streaming data during the whole trading day were filtered out as the arbitrage interval. 

Among the 271 pieces of intra-day 1-minute trading data from 9:00 AM to 13:30 PM, only 

46 pieces of data could fit Condition 3, and they were viewed as the arbitrage opportunities. 

Seventeen pieces of 1-minute trading data among the arbitrage opportunities were matched 

with the XCS rules, and the arbitrage transaction was then executed. In Figure 7, we can 

observe that the arbitrage opportunities were distrbuted during the period from market 

opening at 9:00 AM to 10:27 AM. The arbitrage transactions were concentrated between 9:17 

AM and 9:52 AM, lasting about five minutes. The arbitrage opportunities did not occur every 

time. Only a few arbitrage opportunities matched the XCS rules and were suitable to excute 

abitrage transaction. 

In order to understand the meaning of the knowledge rule generated by XCS, the top 

five rules selected by the correctness rate and occurrence times in training and testing are 

listed in Table 5. 

Table 5. Knowledge rules generated by XCS-based arbitrage model 

Rules Training Testing 

No. Condition Cor. rate Occ. times Cor. rate Occ. times 

Top 5 rule of correctness rate in training 

87 10000110101 100 % 41 N. A. 0 

100 00000010111 
100 % 

36 78 % 9 

130 00000000010 100 % 34 0 % 13 

98 00000010100 100 % 25 N. A. 0 

178 10000010001 100 % 21 100 % 3 

Top 5 rule of correctness rate in testing 

200 00000010010 100 % 1 100 % 28 

216 10000000001 100 % 13 100 % 25 

196 00000010000 75 % 4 100 % 25 

201 10000010011 65 % 17 100 % 19 

153 10000111110 100 % 3 100 % 17 

Top 5 rule occurred in training 

46 10000000011 61% 62 100 % 1 

48 00000000110 77 % 47 100 % 6 

87 10000110101 100 % 41 N. A. 0 

27 00000000011 95 % 40 30 % 10 

28 10000101111 97 % 38 N. A. 0 

Top 5 rule occurred in testing 

200 00000010010 100 % 1 100 % 28 

216 10000000001 100 % 13 100 % 25 

196 00000010000 75 % 4 100 % 25 

201 10000010011 65 % 17 100 % 19 

153 10000111110 100 % 3 100 % 17 
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In Table 5, we can observe that the knowledge rules with high correctness rate in 

training seldom occurred during testing; similary, the knowledge rules with high correctness 

rate in testing seldom occurred during training. The highest correctness rate of the knowledge 

rules both in training and testing were 100%. However, the correctness rate of the knowledge 

rules that occurred most frequently during training was less than 100%. Moreover, the 

knowledge rules with the highest correcness rate were consistent with the rules that occurred 

most frequently during testing. 

Based on the above analysis, we conclude that for a certain knowledge rule generated by 

XCS, the correctness rate in training is inconsistent during testing. We also find that the rule 

with the highest correctness rate in training does not work during testing, while the rule with 

the highest correctness rate in testing does not work as well as that during training. However, 

the rules that occurred most frequently and have the highest correctness rate are consistent 

during testing. Applying these rules in trading can help gain profit. 

4.4 Model comparison 

From the two conditions derived in the previous section, Conditions 3 and 6 are used as 

the filtering conditions. The XCS model then undergoes a processes of learning and 

verification, testing the accuracy and profitability of the model. As the XCS model uses the 

genetic algorithm (GA) for selection of the fittest situational factor and has a random 

mutation characteristic, repeated experiments on the same dataset will yield results that are 

inconsistent with the expectations. Repeated experiments yielding inconsistent results can 

also occur in the random trading model. For this reason, the experiment on the same dataset 

should be repeated for 10 trials, and the average and standard deviation of these 10 sets of 

experiment results should be calculated. The results of the experiment under the two 

conditions are collated in Table 6 and Table 7. 

 

Table 6. Model comparison of accuracy 

Model Dataset 
Accuracy (%) 

Min. Max. Ave. Std. 

Condition 3 

XCS 

DS 1 59.28 77.45 69.58 6.79 

DS 2 48.23 53.73 52.13 1.65 

DS 3 74.86 83.25 79.29 3.16 

Rand. 

DS 1 47.15 49.68 48.53 0.86 

DS 2 47.22 49.21 48.55 0.6 

DS 3 45.48 50.63 48.67 1.58 

Condition 6 

XCS 

DS 1 65.78 68.41 66.45 1.05 

DS 2 27.65 34.61 31.87 2.12 

DS 3 66.05 75.87 70.55 3.13 

Rand. 

DS 1 47.02 49.19 48.37 0.73 

DS 2 47.83 49.63 48.68 0.59 

DS 3 48.41 49.42 48.80 0.39 
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Table 7. Model comparison of profitability 

Model Dataset 
Profitability (per trading) 

Min. Max. Ave. Std. 

Condition 3 

XCS 

DS 1 2674 15805 8538 4462 

DS 2 89 1782 889 496 

DS 3 10187 13752 12025 1217 

Rand. 

DS 1 -1241 2281 -38 1048 

DS 2 -288 422 147 272 

DS 3 -3498 11904 1740 4912 

Condition 6 

XCS 

DS 1 8538 10259 9462 639 

DS 2 -7794 -4814 -5906 577 

DS 3 4785 16059 10140 3369 

Rand. 

DS 1 -1525 1756 -137 1013 

DS 2 -842 424 -235 360 

DS 3 -581 845 -17 430 

 

From Table 6, it can be observed that in terms of accuracy, through the inter-market 

arbitrage model‟s constructed random model, there is close accuracy in all the simulated 

trading scenarios. However, the accuracy of the XCS model compared with all the simulated 

trading scenarios is distinct. For the XCS model, apart from the average accuracy of 

Condition 6 not exceeding 50% during the testing period in 2006 (DS 2) and having the 

lowest value of 31.87% amongt all the experiments, its other situational accuracy levels all 

exceed 50% and are superior to the random model (which averaged around 48% in accuracy 

across all situations). Amongt the experiments, Condition 3 generated the maximum average 

accuracy of 79.29% during the testing period in 2006 (DS 3). 

From Table 7, in terms of profitability, regardless of condition and dataset selection, all 

tests of the XCS model – with the exception of Condition 6 in the 2006 (DS 2) testing period 

which results in a negative return and underperformed the random model – has shown far 

greater profitability than the random model.
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5. Conclusion 

In inter-market arbitrage, if two futures products have different expiry dates, then a 

closing out of position will be forced upon the underlying commodity that first reaches expiry, 

exposing other components that are yet to expire due to risks. This will in turn lead to the 

failure of the arbitrage strategy. These risks are difficult to quantify using traditional financial 

engineering. Therefore, this study addressed this issue by proposing a dynamic learning, 

adjustable XCS inter-market arbitrage trading model to reduce risks associated with 

inter-market arbitrage. In addition, this study also proposed a solution for handling large 

volumes of intra-day 1-minute trading data. By using association rules to filter high 

frequency data, inter-market arbitrage opportunities can be immediately identified through 

searching the intra-day one minute trading data. 

This study used nearly six years‟ of intra-day 1-minute trading data to conduct this 

empirical research, measuring the XCS model‟s accuracy and profitability and comparing it 

with the testing results generated by random trading strategies. Results from this research 

show that – compared to the random model – by using factors such as price spread ratio, 

expiry date, and intra-day trading time to build the XCS inter-market arbitrage model, it 

yields sufficient accuracy and profitability and can effectively lower the risks associated with 

inter-market arbitrage.
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計畫成果自評 

融合金融與資訊的創新領域金融工程物理學在此展開學新的一頁，改寫過去

金融資訊的歷史，正式的定義以過去的歷史資料尋找出交易資料間的力道表現，

一如物理學般的表現，當市場受到動力推動時，漲者恆漲，跌者恆跌。透過發表

的成果可以得知，利用資訊技術搜尋這樣的力道是可行且被學者認可。根據此理

論所設計的模型也能應用於實際的金融投資領域上，透過資訊技術建構的模型搜

尋市場的力道與異常行為，並且預測市場接下來可能發生的行為，最終的目標在

於使投資人能夠在投資市場中減少虧損，增加獲利。投資人最害怕的就是資訊的

缺乏，然而金融環境永遠不會有資訊充足的狀況，因此有些人能夠比其他人獲得

更多資訊，進而先行一步制訂策略，造成其他投資人的損失。因此透過歷史資料

學習隱藏在市場資料中的關鍵機會，例如力道的轉移，或者是盤勢的改變行為等

各種市場行為，根據金融工程物理學的模型提供預測資訊，能盡量避免投資決策

制訂錯誤。金融工程物理學不但能將金融市場行為進行解釋，同樣的也能應用在

投資心理行為的解釋，因為此領域強調的在於因果的發現，其後所能應用的範圍

也可拓展至資產組合、避險基金管理等應用面。 

本計畫針對動態的環境進行資產配置與投資操作，實能將金融工程物理學應

用於此，根據整體研究成果而論，動態模型及計算智慧能夠適應環境劇烈的變動，

並制訂符合當時情況的策略，使得投資獲利能夠大幅提昇，在模型的準確率也能

提高許多，不只改善傳統理論的不足之處，更能創新模型。本研究發表於多個期

刊及研討會上(見相關著作)，更證明此一領域具備高度實務及學術價值。 

在本計畫執行期間，所有成果皆展示於金融投資決策教學研究中心，此教學

中心提供國內外學生及學者進行參訪及使用。本中心慕名前來參觀學者非常繁多，

包含 Oklahoma state university、California State University、上海師範大學、北京

大學等校之學者。透過這些多次國際交流經驗也瞭解到本研究領域在世界上是保

持領先，使得各國學者皆爭相參觀，期望能學習到最新的知識。 

本人也曾多次在國內多所大學及中國大陸進行課程教學，並將此知識進行深

度的探討與傳授給學子，課程結束後也獲得學子們的熱烈歡迎，並進而實作了相

當多的應用，使本領域的知識逐漸擴散。 
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