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Abstract

The family or life financial planning is a emerging financial service in recent years.
However, it is not easy to make plan that many factors must be considered, such as tax, law
and various risk preference. In practice, the financial planning is a complex multi-objective
decision problem with many restricted condition. Traditionally, linear program and numerical
optimization skill were used to solve these problems. But the investment environment is
dynamic and change rapid, that the financial planning should be dynamic adaptive with time.
We propose a model which is capable with dynamic adaptive and suitable for long time
financial planning.

The result of this project in the first year is to develop a optimal dynamic hedge ratio
estimation model using self-organizing map (SOM). In the Second year is to develop a
dynamic arbitrage strategy model. The most popular arbitrage strategy is derived from the
cost of carry model or by using the econometrics approach. However, these approaches have
difficulty in dealing with intra-day 1-minute trading data and capturing inter-market arbitrage
opportunity in the real world. In this research, we propose computational intelligence
approaches based on the extended classifier system (XCS). First, in order to reduce the
amount of data, the original data streams of intra-day 1-minute trading data are filtered by the
conditions of variant price spread relation. XCS is then adopted for knowledge rule discovery.
After analyzing the property with domain-specific knowledge that the price of index futures
will get close to that of spot products at the time the futures mature, four important factors
related to bias, price spread, expiry date, and intraday trading timing are considered as the
conditions of XCS to build the inter-market arbitrage model. The inter-market spread of the
Taiwan Stock Index Futures (TX) traded at the Taiwan Futures Exchange (TAIFEX) and the
Morgan Stanley Capital International (MSCI) Taiwan Index Futures traded at the Singapore
Exchange Limited (SGX) are chosen for an empirical study to verify the accuracy and
profitability of the model.

Keywords: trading rule; high frequency data; intra-day trading; XCS.



1. Introduction

In futures and options markets, if market imperfection or market inefficiency exists, the
phenomenon of mispricing can easily occur, creating a price difference between commaodities
or underlying products (price spread), thereby often leading to the rise of arbitrage
opportunities. This phenomenon is more common amongst emerging markets and markets
experiencing thinner trading volumes than in mature markets and markets with higher
transaction volumes (Wang & Hsu, 2006). Depending on different exchange commaodities and
exchange markets, trading in the price spread can generally be divided into two types (Moles
& Terry, 1997): (1) inter-market (or inter-commodity) spread: two highly related financial
products that are traded within the same stock exchange, e.g. arbitrage between stocks and
index futures; or two financial products offered in different exchanges covering the same
underlying commodity or similar commodities. (2) intra-market (or intra-commodity) spread:
arbitrage between products with the same underlying commodity but with different expiry
months, e.g. futures contracts for the same index which mature on different months. In
general, arbitrage opportunities are rare and difficult to discover, because the calculations are
too complex, especially with inter-market arbitrage trading, where expiry dates for different
futures contracts, the immediate foreign exchange calculation, and immediate calculation of
fair price must all be considered at the same time.

Regardless of the type of arbitrage, when evaluating an opportunity in arbitrage,
establishing the fair price of the product and then assessing the magnitude of the price spread
are the most important research issues worthy of attention. According to previous studies, the
methodologies for detecting arbitrage opportunities can be classified into three categories: the
cost of carry model, econometric and behavioral finance, and computational Intelligence
approach.

The cost of carry model is the most basic theorem when considering futures arbitrage.
However, the actual prices in the index futures markets are generally found to be lower than
the theoretical prices predicted by the cost of carry model (Cornell & French, 1983;
Figlewski, 1984; Modest & Sundaresan, 1983). This makes the model imperfect in explaining
and forecasting price movements in stocks and index futures (Klemkosky & Lee, 1991).

The econometric model considering the arbitrageur behavior can yield a more accurate
evaluation of the probability of profiting through arbitrage in practice. Some researchers
investigated the inter-market spread trading based on econometrics, such as the spread of
West Texas Intermediate (WT]I) and Brent Crude (Brent) spread (Dunis et al., 2006; Dunis et
al., 2008), the price spread between the Singapore Exchange Limited (SGX) Morgan Stanley
Capital International (MSCI) Taiwan Index and the Taiwan Futures Exchange (TAIFEX)
Taiwan Stock Index Futures (TX), the price spread between the TAIFEX Taiwan Stock
Exchange Electronic Sector Index (TE) and the Financial Sector Index (TF) Futures (Luo,
2002), and the FTSE 100 and the FTSE Mid 250 contract traded on the London International
Financial Futures and Options Exchange (LIFFE) (Butterworth & Holmes, 2002). However,
most econometric models use time series as a starting point, using only the daily closing
prices, and neglects other determining factors and conditions (e.g. time to maturity). Hence,
there are some limitations in their capacity to evaluate the probability of arbitrage, especially
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for intra-day trading data and it is difficult to apply these models to develop a trading
decision support system that is capable of high frequency data processing.

In processing high-frequency data for intra-day trading, computational intelligence is a
new approach. The real-time updated transaction data are typical data streams that can be
processed using temporal data mining skill. A statistical arbitrage trading system for the S&P
500 Futures Index is proposed based on the flexible least squares (FLS), showing that the
FLS can be employed as a building block of an algorithmic trading system (Montana et al.,
2009).

More recently, many trading decision support systems have been developed based on
computational intelligence techniques. There are two main approaches to developing trading
decision support system. One is the pricing-based model, which is a non-parameter model for
financial asset pricing; the other is the rule-based model, which focuses on the profitable
trading rule discovery.

When constructing the pricing-based model, the fluctuation of the financial asset price is
forecast by approximating the functional mapping between the financial asset price and its
influencing factors. The market price in the next trading period is forecast using historical
financial time series data and relative factors such as technique analysis indicators or
economic indicators.

Fuzzy rule is commonly used for stock price prediction model and can be implemented
in a real-time trading system. Chang and Liu (2008) proposed a Takagi-Sugeno-Kang
(TSK)-type fuzzy rule-based system for stock price prediction. Furthermore, this model is
improved by combining the wavelet transform (Chang & Fan, 2008). Zarandi, Rezaee,
Turksen, and Neshat (2009) proposed a type-2 fuzzy rule-based expert system model for
stock price analysis. Although these models can obtain more accurate prediction results than
the traditional regression model, they only consider the investment trading, and they can
hardly be applied for arbitrage trading.

Some arbitrage trading systems have been proposed based on the target price forecasting.
An index arbitrage model for the Irish market index (ISEQ) and the FTSE 100 index is
demonstrated using recurrent neural network models combined with the Kalman filter
(Edelman, 2008). An option arbitrage trading system for American-style call options on the
British Pound versus the US dollar currency futures is proposed based on a novel pseudo
self-evolving cerebellar model arithmetic computer (PSECMAC) option-pricing model
(Teddy et al., 2008). However, these research only demonstrate the detection for daily
arbitrage trading and do not show capability when applied to practical intra-day arbitrage
trading

When constructing the rule-based model, the trading rule is commonly generated by
identifying the charting patterns. A new template grid, which is a matching technique based
on pattern recognition, is proposed to detect bull flag technical trading rules (Wang & Chan,
2007) and buy signals (Wang & Chan, 2009). Li and Kuo (2008) combined the K-chart
technical analysis, wavelet transform, and self-organizing map network to construct a
forecasting model and to generate buying and selling signals.



More recently, the hybrid models, which combine the price forecasting model and rule
discovery mechanism, have been proposed in many literature. Tan, Quek, and Yow (2008)
proposed a novel rough set-based pseudo outer-product (RSPOP) fuzzy neural network
intelligent stock trading system. They combined the price predictive model and technique
indicator predictive model to obtain the optimal trading rules. Ghandar, Michalewicz,
Schmidt, To, and Zurbrugg (2009) used an evolutionary process in trading rules drawn from a
fuzzy logic rule base. However, no literature has focused on inter-market arbitrage trading.

In order to develop a profitable and easy to implement system for arbitrage trading, we
combine expert knowledge and statistical analysis to determine the properly trading timing
conditions. Moreover, we then use these conditions to filter rapidly the transaction data
stream and reduce the computational loading for high-frequency data processing.
Furthermore, the knowledge discovery process is applied to generate the arbitrage trading
rule using the filtered data.

XCS is a knowledge discovery process that has already been applied in various related
studies on financial investment, and it has shown the capacity to process financial time series
data. These studies also indicate that the XCS model is more profitable compared with the
random or buy and hold model (Beltrametti et al., 1997; Liao & Chen, 2001; Schulenburg &
Ross, 2002). Therefore, this study will utilize the classifier system’s dynamic learning
function to build a self-learning, self-adaptive inter-market arbitrage model that can be
applied within a dynamic market. Using the SGX MSCI Taiwan Index Futures and TAIFEX
TX as the study object, we will assess the effect of actual costs of trading, price spreads,
different expiry dates, and trading timing, and then design an inter-market arbitrage
investment decision support system that can be put to practical use.

The rest of the paper is organized as follows: Part 2 illustrates the inter-market arbitrage
strategy and method in this study; Part 3 describes the proposed XCS model; Part 4 details
the experiment design and the results; and lastly, conclusions drawn from the study are
discussed in Part 5.



2. Arbitrage Strategy Analysis

2.1. Inter-market arbitrage

When conducting futures index arbitrage, the common method is to calculate the
theoretical fair price based on the term to maturity and the underlying commaodity first and
then compare it to the actual market price to calculate the extent of mispricing. To assess the
price spread inter-market, the extent of mispricing must be normalized as follows:

wi = =R (1)
FP/

where ! is the normalized mispricing at time t, g is the actual future price, gp' is
the theoretical fair price of the index futures, and i is the individual futures contractor.

The mispricing differential between the two related products is used as the inter-market
price spread. Using the indices nominated for study the SGX MSCI Taiwan Index Futures
and the TAIFEX Taiwan stock index futures would be as follows:

SM, =M - M (2)

where sv, is the spread mispricing differential, and vr and ms represent the

normalized mispricing in the TAIFEX Taiwan Stock Index Futures and the SGX MSCI
Taiwan Index Futures, respectively.

When gy, reaches a certain extent and becomes greater than the cost of the arbitrage
transaction (7c), that is |sm|>Tc, then proceeding with the arbitrage trading is worth

considering. Using Eq. (2) as an example, due to the special characteristic of the index futures
price converging towards the spot price as the expiry date for the futures contract is
approaching, where spread was found to be underpriced (sm, <o), an arbitrageur would take a

long position in the TAIFEX Taiwan stock index futures contracts and simultaneously set up
an opposing short position in the MSCI Taiwan Index Futures contracts.

In general, the cost of carry model is most commonly applied to calculate the theoretical
fair price of the index futures using the Eq. below:

FR = |1 et 970 (3)
where i equates to the price of the underlying stock index at time t, . refer to the

risk-free interest rate, 4 is the dividend yield rate, and t, is the futures contract expiration
date.



To process high frequency inter-minute data in inter-market arbitrage trading, we
simplified Eq. (3) by replacing rp'with i and then substituting this in Eg. (1) and (2) to
calculate m' and gm, . Although, the expiry date effect in Eq. (3) is neglected, it is still

considered as an important factor when designing XCS in this study. The modified Equations
in the study are expressed as follows:

M‘i _ Ftil_ilti (4)

SV, — N7 N (5)

2.2. Determining arbitrage trading conditions

To increase the efficiency of processing high frequency data from inter-minute trading,
we search for the conditions that can be applied to data filtering, based on the characteristics
of historical daily trading data, and the magnitude of the probability of successful arbitrage.

First, we use Eq. (4) to calculate respectively two futures products’ inter-market trading
price spread between each futures product’s price and spot price. We then substitute this into
Eq. (5) to calculate whether the absolute value obtained is greater than the cost of transactions
and then proceed with arbitrage trading.

Therefore, we can conduct classification based on the different combinations of
scenarios with price spreads correlation to calculate the probability of success of arbitrage,
using it to discover the most frequent condition for successful arbitrage under various
correlated price spread combinations. The conditions are listed in Table 1 and illustrated in
Fig. 1.

Table 1. Condition classification for statistical arbitrage

No. - - Trading position
M | MS | SM,
condition TX MCSI
1 >0 >0 >0 Short Long
2 >0 >0 <0 Short Long
3 >0 <0 >0 Short Long
4 <0 <0 >0 Long Short
5 <0 <0 <0 Long Short
6 <0 >0 <0 Long Short




The probability of successful arbitrage for each condition was then calculated using the
support value widely used for mining association rules (Han, 2006).

support = probabiliy of successful arbitrage
_ total no.of timesof profit - making (6)
total no. of occurrenceof the conditions

Finally, the conditions with high support value would be used for filtering arbitrage
opportunities. Only the data that matches the condition would be used for the XCS
knowledge discovery process.

2.3. Trading interval and portfolio management

When constructing an inter-market arbitrage trading model, we must first set an entry
interval in arbitrage trading based on the respective expiry dates for the product in each
market. A the same time, this interval must be similar to the longest holding period for the
futures, so as to avoid the effects caused by the different portfolio management in practice
due to any difference in expiry dates, and to avoid the occurrence of closing out or rolling
over of position at expiry. We set the arbitrage trading interval using the day after the MSCI
Taiwan Index Futures contract settlement date and the following month’s last trading day of
the TX contract as one period. The last exit trading day is the TX contract settlement date.
The trading interval is illustrated in Fig. 2.

Furthermore, to calculate the final profit/loss from arbitrage trading, establish the
relationship between the corresponding prices inter-market, and avoid the assumption of too
much trading risk via the establishment of stop-loss, profit-cap mechanisms, when the profit
from trading is greater than the profit-cap threshold, profit-realization will be conducted.
Conversely, if the loss exceeds the stop-loss threshold, immediate action will also be taken to
exit and minimize loss. In addition, if during the trading period, neither the stop-loss nor the
profit-cap trading is triggered, then on the last trading day for the TX contract, exit trading
will be executed at the spot index price of the last order (at 13:30) and profit/loss will be
calculated.

This study assumes relevant trading parameters based on practical experiences, which
are set out as follows:

e Price spread ratio (hedge ratio): TX contracts: MSCI Taiwan Index Futures contracts =
3:4

e Transactions costs: calculating retail transaction fees and tax, the total cost of trading is
approximately TWD5,800.

e Stop-loss & Profit cap: this study utilizes the knowledge acquisition training period, uses
the loss-making (profit-making) investment trading data as a statistical sample to
calculate the distribution of dollar value lost (profit), and sets the stop-loss (profit-cap)
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value to cut loss (profit) at 30% (70%) of the maximum loss (profit). This is illustrated in
Fig. 3 below.



3. The XCS-based Model for Arbitrage

3.1. Extended classifier system

The classifier system is an adaptive rule-base system consisting of enhanced learning
mechanisms and the genetic algorithm, which is capable of developing various combinations
of rules within the system to acquire optimal rules. Therefore, the classifier system can
categorize external states, accurately yield predictions, and can also adapt to changes in
external states, thereby generating different predictions under different states to reflect the
appropriate solution applicable to the dynamic environment.

The original concept of the classifier system came from Holland (1976), under the term
Cognitive System (CS). Following, Holland and Reitman (1977) jointly proposed the
Learning Classifier Systems (LCS). Since then, subsequent research conducted by many
scholars gradually strengthened the overall operational efficiency and stability of the system.

An improved version of the learning mechanism was proposed by Wilson (1995, 1998).
He adjusted the fitness of LCS, changing the original use of expected return as a basis for
calculating the accuracy of the expected return. He also improved the algorithm for learning.
The improved model was named Extended Classifier Systems (XCS).

In XCS, the so-called classifier is composed of many “IF condition/ THEN action” rules
to represent the corresponding external state. This is represented by the following formula:

<classifier> : = <condition>/<action> (7

For the sake of easy application, binary coding is typically used for the condition and the
action to represent various parameters of the external state. It is also used as a code for the
following set of instructions:

<condition> : = {0,1,1#,0,1,....} L (8)
<action> : = {0,1,....,n-1} 9)

Within these codes, L represents the length of the rules, # represents the unimportant
characteristics which mean that 0 and 1 can both be matching states, and n represents the
classified resulting numbers.

The main structure and application process are represented in Figure 4. The algorithm of
the XCS model is shown in Figure 5.

As can be seen, XCS receives information on the external state through detectors,
coding it into chains of rules that can be processed by the system. These chains of rules are
called classifiers. These classifiers are then compared to the classifiers identified in the
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external state’s information system and population set [P], and those that match the current
imputed state are selected to create a match set [M]. If no matching classifiers are found in
the population set, then the cover mechanism is triggered to set up one that contains the set of
information as that point in time, and action will be randomly generated thereafter. From the
action of each classifier in the match set, the weighted average of each action is then
calculated based on the fitness of the classifiers to construct a prediction array [PA] for
returns. Finally, the appropriate action is determined through the random exploration or
exploitation method. This action is then used to set up an action set [A]. After determining
the appropriate action, the system delivers the action to the effector to be sent for execution
under the given conditions. Depending on the level of correctness resulting from the
execution, the system will then provide internal reinforcement to the classifiers, and the
relevant weighting in terms of the strength of each classifier within the action set is thus
updated. Afterwards, the evolutionary genetic algorithms mechanism is applied within the
action set, which will then eliminate the relatively weak rules. Therefore, after a period of
learning, the system can generate the most appropriate action classifier that can adapt to the
various states created by various changes within a dynamic environment.

3.2. The proposed xcs-based arbitrage model

This study uses XCS to establish an inter-market arbitrage model. Fig. 6 represents the
structure of the arbitrage trading system in this study, which consists of three main
components: data processing, XCS, and portfolio management.

First, in order to deal with the huge volume of intra-day 1-minute transaction data, in the
data pre-processing stage, the arbitrage conditions are determined using the association rule
mining approach described in Section 2.2. The price spread correlations, i.e. the positive or
negative sign of yi™ ms and swi, are applied to calculate the most frequent item and then to

filter out high-risk arbitrage opportunities so as to increase the efficiency of the model’s high
frequency data operation.

Second, with the remaining data, the XCS learning algorithm is applied to conduct a
purification of trading knowledge to find the descriptive factor for the most suitable state for
arbitrage trading. XCS is a type of self-adjusting learning algorithm. Based on the dynamic
factors of the state, it can search for conditions with the highest fitness. Therefore, we have
chosen some of the most commonly observed market trading data to be used as descriptive
factors for setting up the conditions for arbitrage. These factors are imputed into XCS and
tied in with calculations of the return in value for arbitrage to facilitate learning of hidden
knowledge and to seek applicable knowledge and rules for arbitrage trading.

Finally, in the portfolio management component, we take into account some of the
demands of trading in practice, such as stop-loss, profit cap, and closing out of positions at
expiry. Daily settlement for profits in arbitrage trading is conducted and applied to manage
the arbitrage portfolio, eventually working out the investment decision of buying, holding, or
selling.

3.3. Knowledge encoding and discovery by XCS



In XCS, the so-called classifier is made up of many ‘IF condition/ THEN action’ rules to
represent the corresponding external state. Usually, for the sake of easy application, binary
coding is used for the condition and action to represent various parameters of the external
state.

Based on Eq.s (4) and (5) described in Section 2.1, we use the price spread and the price
spread ratio as the conditions descriptive factors of the classifier system. Further, the time of
trading is also an important factor that will influence the arbitrage profitability. The expiry
date are considerd as the conditions descriptive factors of the classifier system. The
performance of arbitrage activities is different within the same trading day and a certain time
in the day tends to be favored (Taylor, 2007). To take into account inter-day activities, we
also add in intra-day transaction times as a state descriptive factor.

These conditions and action of the classifier must go through a process of discretization
before binary coding can be conducted. Therefore, we use a linear function to conduct
discretization. Table 2 shows the composition of the classifier in this study.

Table 2. Composition of the classifier

_Conditons T Action
Bit 1-4 Bit 5-8 Bit 9-12 Bit 13-14 Bit 15
price spread between | price spread ratio of TX | the term to expiry date o Profitable
TXand MSCI(MT) | (M) for TX (T, ~t) Intra-day trading iming | (rrye/ False)
Examples:
0<X<=3/16 >0 0<Y<=2/16 >0 z=1 >0 9:00<=T<10:00->0 True (profit) > 0
3/16<X<=6/16 >1 2/16<Y<=6/16 >1 Z=2 -0 10:00<=T<11:00->1 False (loss) > 1
.................. 11:00<=T<12:00->2
15/16<X 215 30/16<Y ->15 Z=16 ->15 12:00<=T<13:30>3

Moreover, in the process of knowledge discovery, there are some parameters for the
XCS operation that need to be defined. In this study, the pay-off function used in XCS
follows the hierarchical structured proposed by Wilson (1998). The three levels set are
maximum profit (loss), stop-loss (profit cap), and minimum profit (loss). When XCS is in
operation, the evolution of classifier rules are also generated by the genetic algorithm used
for setting the relevant parameters according to the best value set as proposed by Wilson
(1998).

3.4. Evaluation method

This study follows the prediction of the XCS arbitrage model, using intra-day 1-minute
trading data to conduct testing. Based on trading time and trading data, predictions are made
on whether or not inter-market arbitrage trading can be conducted. We measure the accuracy
of prediction and profitability respectively and use them as indicators to evaluate the model.
They are defined as follows:
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1. Accuracy:

no.of timesof actual profit generation
Accuracy =

no. of transactions
2. Profitability:

Trading profit/loss
= (sale price) - (purchase price) - (transactions costs)

Profitabilty = Average profit/loss per trade
Y Trade profit/loss
- Znumberof transactions

11
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4. Empirical Result

4.1. Data and experiment design

This study obtains the empirical trading data from the TAIFEX Taiwan Index Futures
(spot month), the Taiwan Weighted Index, the MSCI Taiwan Index Futures (spot month), the
MSCI Taiwan Index, and the corresponding underlying index’s intra-day 1-minute data. The
foreign exchange rate of TWD/USD is the daily close price. All the transaction data are
provided by the APEX International Financial Engineering. Empirical analysis is undertaken
on data obtained within the intervals and selected from January 1, 2001 to December 30,
2006. Due to the fact that this study uses price spreads as the benchmark, when executing
strategies, the timing used is mainly the intersection between the spot market’s and the
futures market’s opening times. The intra-day trading period for the sample data collection is
between 9:00 in the morning and 13:30 in the afternoon.

The main aim of designing the experiments is to look closely at the XCS model’s
applicability in arbitrage and compare it against a random trading strategy. That is, when the
XCS arbitrage model determines at a certain point in time whether or not to give prediction to
an arbitrage opportunity, the random model would also generate a random trading signal
(which corresponds to an action generated from the XCS model). It would also execute
arbitrage trading according to the random trading signal generated, holding the positions till
expiry without any allowance for any stop-loss or profit-cap mechanism.

To further test the effects of different characteristics of the data collected from different
calendar years in trading and different time intervals in the XCS model, three types of
training and testing datasets are designed, each undergoing empirical simulation using the
XCS model and the random model to conduct a total of six types of testing. The experiment
design and the relevant variants collation are shown is Table 3.

Table 3. Experiment design

No. Time-fra Training Year of

Testing model
dataset me period testing

DS1 4 years 2001~2003 2004
(1) XCs

DS 2 5 years 2001~2004 2005
(2) Random

DS3 6 years 2001~2005 2006

4.2. Arbitrage conditions for data stream filter

To reduce the data size, processing and filtering of one minute high frequency data are
one of the key processes for arbitrage in this study. Meanwhile, the correlation between price
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spread and successful arbitrage provides a benchmark for the situational description
classification in our model’s assessment of arbitrage success. Following the method described
in Section 2.2 and substituting the daily trading data collected between January 1, 1998 and
December 30, 2006 into the model, the resulting conditions and their support values are listed
in Table 4 below.

From the table, it can be seen that Conditions 3 and 6 yield better arbitrage opportunities.
Therefore, this study utilizes these two rules as data filtering conditions. Only intra-day
1-minute data that fit these two conditions will be entered into XCS for knowledge discovery.

Table 4. Arbitrage conditions determination

No. - =5 = o
M/ M} SM, Support
Condition
1 >0 >0 >0 150/295 (0.51)
2 >0 >0 <0 60/270 (0.22)
3 >0 <0 >0 95/157 (0.61)*
4 <0 <0 >0 60/237 (0.25)
5 <0 <0 <0 81/203 (0.51)
6 <0 >0 <0 112/197 (0.57)*

4.3. Knowledge rules analysis

In this study, we performed a preliminary experiment to illustrate the knowledge
discovery ability of the XCS model. Simulateously, we simulated the arbitrage trading with
intra-day 1-minute data to illustrate the trading system.

In the preliminary expriment, we set the arbitrage condition for filtering the data stream
as Condition 3 and the dataset for expriment as DS 3. The XCS-based arbitrage model was
trained and tested according to the intra-day 1-minitue trading data for six years. During
model training, only 26,471 pieces of 1-minute trading data distributed in 395 trading days
from year 2001 to year 2005 could fit the condition and pass the data stream filter. After XCS
training, 227 trading rules were generated from 26,471 pieces of 1-minute trading data, which
were then used for testing.

During testing, only 1,108 pieces of 1-minute trading data in the year 2006 could fit the
condition and pass the data stream filter. Among these, only 359 pieces of data were matched
with 57 rules, which were generated by XCS. We then excuted the arbitrage transaction. We
captured the trading situation of one trading day in the testing period to illustrate the
capability of the XCS model.
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Figure 7 is the simulated trading situation on 2 Janurary 2006. Small pieces of the
streaming data during the whole trading day were filtered out as the arbitrage interval.
Among the 271 pieces of intra-day 1-minute trading data from 9:00 AM to 13:30 PM, only
46 pieces of data could fit Condition 3, and they were viewed as the arbitrage opportunities.
Seventeen pieces of 1-minute trading data among the arbitrage opportunities were matched
with the XCS rules, and the arbitrage transaction was then executed. In Figure 7, we can
observe that the arbitrage opportunities were distrbuted during the period from market
opening at 9:00 AM to 10:27 AM. The arbitrage transactions were concentrated between 9:17
AM and 9:52 AM, lasting about five minutes. The arbitrage opportunities did not occur every
time. Only a few arbitrage opportunities matched the XCS rules and were suitable to excute
abitrage transaction.

In order to understand the meaning of the knowledge rule generated by XCS, the top
five rules selected by the correctness rate and occurrence times in training and testing are
listed in Table 5.

Table 5. Knowledge rules generated by XCS-based arbitrage model

Rules Training Testing

No. |  Condition Cor.rate | Occ.times | Cor.rate [ Occ. times
Top 5 rule of correctness rate in training
87 10000110101 | 100 % 41 N. A. 0
100 00000010111 | 100% 36 78 % 9
130 00000000010 | 100 % 34 0% 13
98 00000010100 | 100 % 25 N.A. 0
178 10000010001 | 100% 21 100 % 3

Top 5 rule of correctness rate in testing

200 00000010010 | 100% 1 100 % 28
216 10000000001 | 100% 13 100 % 5
196 00000010000 | /0% 4 100 % 5
201 10000010011 | 85% 17 100 % 19
153 10000111110 | 100% 3 100 % 17

Top 5 rule occurred in training

46 10000000011 |  61% 62 100 % 1
48 00000000110 | 77 % 47 100 % 6
87 10000110101 | 100 % 41 N.A. 0
27 00000000011 | 95 % 40 30 % 10
28 10000101111 | 97% 38 N.A. 0

Top 5 rule occurred in testing

200 00000010010 | 100% 1 100 % 28
216 10000000001 | 100% 13 100 % 5
196 00000010000 | /0% 4 100 % 5
201 10000010011 | 85% 17 100 % 1
153 10000111110 | 100% 3 100 % 17




In Table 5, we can observe that the knowledge rules with high correctness rate in
training seldom occurred during testing; similary, the knowledge rules with high correctness
rate in testing seldom occurred during training. The highest correctness rate of the knowledge
rules both in training and testing were 100%. However, the correctness rate of the knowledge
rules that occurred most frequently during training was less than 100%. Moreover, the
knowledge rules with the highest correcness rate were consistent with the rules that occurred
most frequently during testing.

Based on the above analysis, we conclude that for a certain knowledge rule generated by
XCS, the correctness rate in training is inconsistent during testing. We also find that the rule
with the highest correctness rate in training does not work during testing, while the rule with
the highest correctness rate in testing does not work as well as that during training. However,
the rules that occurred most frequently and have the highest correctness rate are consistent
during testing. Applying these rules in trading can help gain profit.

4.4 Model comparison

From the two conditions derived in the previous section, Conditions 3 and 6 are used as
the filtering conditions. The XCS model then undergoes a processes of learning and
verification, testing the accuracy and profitability of the model. As the XCS model uses the
genetic algorithm (GA) for selection of the fittest situational factor and has a random
mutation characteristic, repeated experiments on the same dataset will yield results that are
inconsistent with the expectations. Repeated experiments yielding inconsistent results can
also occur in the random trading model. For this reason, the experiment on the same dataset
should be repeated for 10 trials, and the average and standard deviation of these 10 sets of
experiment results should be calculated. The results of the experiment under the two
conditions are collated in Table 6 and Table 7.

Table 6. Model comparison of accuracy

Accuracy (%)
Min. [ Max. | Ave. [ Std.

Model | Dataset

Condition 3
DS1 59.28 | 77.45 69.58 6.79
XCS DS 2 48.23 | 53.73 52.13 1.65
DS 3 74.86 | 83.25 79.29 3.16
DS1 47.15 | 49.68 48.53 0.86

Rand. DS 2 4722 | 49.21 48.55 0.6
DS 3 45.48 | 50.63 48.67 1.58
Condition 6

DS1 65.78 | 68.41 66.45 1.05
XCS DS 2 27.65 | 34.61 31.87 2.12
DS 3 66.05 | 75.87 70.55 3.13
DS1 47.02 | 49.19 48.37 0.73
Rand. DS 2 47.83 | 49.63 48.68 0.59

15



Table 7. Model comparison of profitability

Profitability (per trading)
Model | Dataset =g =T Viax. | Ave. | Std.
Condition 3
DS 1 2674 15805 8538 4462
XCS DS 2 89 1782 889 496
DS 3 10187 | 13752 12025 1217
DS 1 -1241 2281 -38 1048
Rand. DS 2 -288 422 147 272
DS 3 -3498 | 11904 1740 4912
Condition 6
DS1 8538 10259 9462 639
XCS DS2 | -7794 | -4814 -5906 577
DS 3 4785 | 16059 | 10140 3369
DS 1 -1525 1756 -137 1013
Rand. DS 2 -842 424 -235 360
DS 3 581 845 17 430

From Table 6, it can be observed that in terms of accuracy, through the inter-market
arbitrage model’s constructed random model, there is close accuracy in all the simulated
trading scenarios. However, the accuracy of the XCS model compared with all the simulated
trading scenarios is distinct. For the XCS model, apart from the average accuracy of
Condition 6 not exceeding 50% during the testing period in 2006 (DS 2) and having the
lowest value of 31.87% amongt all the experiments, its other situational accuracy levels all
exceed 50% and are superior to the random model (which averaged around 48% in accuracy
across all situations). Amongt the experiments, Condition 3 generated the maximum average
accuracy of 79.29% during the testing period in 2006 (DS 3).

From Table 7, in terms of profitability, regardless of condition and dataset selection, all
tests of the XCS model — with the exception of Condition 6 in the 2006 (DS 2) testing period
which results in a negative return and underperformed the random model — has shown far
greater profitability than the random model.
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5. Conclusion

In inter-market arbitrage, if two futures products have different expiry dates, then a
closing out of position will be forced upon the underlying commodity that first reaches expiry,
exposing other components that are yet to expire due to risks. This will in turn lead to the
failure of the arbitrage strategy. These risks are difficult to quantify using traditional financial
engineering. Therefore, this study addressed this issue by proposing a dynamic learning,
adjustable XCS inter-market arbitrage trading model to reduce risks associated with
inter-market arbitrage. In addition, this study also proposed a solution for handling large
volumes of intra-day 1-minute trading data. By using association rules to filter high
frequency data, inter-market arbitrage opportunities can be immediately identified through
searching the intra-day one minute trading data.

This study used nearly six years’ of intra-day 1-minute trading data to conduct this
empirical research, measuring the XCS model’s accuracy and profitability and comparing it
with the testing results generated by random trading strategies. Results from this research
show that — compared to the random model — by using factors such as price spread ratio,
expiry date, and intra-day trading time to build the XCS inter-market arbitrage model, it
yields sufficient accuracy and profitability and can effectively lower the risks associated with
inter-market arbitrage.

17



References

Beltrametti, L., Fiorentini, R., Marengo, L., & Tamborini, R. (1997). A
learning-to-forecast experiment on the foreign exchange market with a classifier
system. Journal of Economic Dynamics & Control, 21(8-9), 1543-1575.

Butterworth, D., & Holmes, P. (2002). Inter-market spread trading: Evidence from
UK index futures markets. Applied Financial Economics, 12(11), 783.

Chang, P., & Fan, C. (2008). A hybrid system integrating a wavelet and TSK fuzzy
rules for stock price forecasting. leee Transactions on Systems Man and
Cybernetics Part C-Applications and Reviews, 38(6), 802-815.

Chang, P., & Liu, C. (2008). A TSK type fuzzy rule based system for stock price
prediction. Expert Systems with Applications, 34(1), 135-144.

Cornell, B., & French, K. R. (1983). The pricing of stock index futures. Journal of
Futures Markets, 3(1), 1-14.

Dunis, C. L., Laws, J., & Evans, B. (2006). Trading futures spreads: An application of
correlation and threshold filters. Applied Financial Economics, 16(12), 903.

Dunis, C. L., Laws, J.,, & Evans, B. (2008). Trading futures spread portfolios:
Applications of higher order and recurrent networks. The European Journal of
Finance, 14(6), 503.

Edelman, D. (2008). Using kalman-filtered radial basis function networks for index
arbitrage in the financial markets. Natural Computing in Computational Finance;
STUDIES IN COMPUTATIONAL INTELLIGENCE; 1st European Workshop on
Evolutionary Computation in Finance and Economics, Valencia, SPAIN. , 100
187-195.

Figlewski, S. (1984). Explaining the early discounts on stock index futures: The case
for disequilibrium. Financial Analysts Journal, 40(4), 43-47.

Ghandar, A., Michalewicz, Z., Schmidt, M., To, T., & Zurbrugg, R. (2009).
Computational intelligence for evolving trading rules. leee Transactions on
Evolutionary Computation, 13(1), 71-86.

Han, J. & Kamber, M. (2006) Data Mining: Concepts and Techniques (2nd ed.),
Morgan Kaufmann,

Holland, J. H. (1976). Adaptation. In Rosen, R. and Snell, F. M., editors, Progress in
Theoretical Biology, 4. Plenum, New York.

18



Holland, J. H., & Reitman, J. S. (1977). Cognitive systems based on adaptive
algorithms. SIGART Bull., (63), 49-49.

Klemkosky, R. C. & Lee, J. H. (1991). The intraday ex post and ex ante profitability
of index arbitrage. Journal of Futures Markets, 11(3), 291-311.

Li, S., & Kuo, S. (2008). Knowledge discovery in financial investment for forecasting
and trading strategy through wavelet-based SOM networks. Expert Systems with
Applications, 34(2), 935-951.

Liao, P. Y., & Chen, J. S. (2001). Dynamic trading strategy learning model using
learning classifier systems. Proceedings of the 2001 Congress on Evolutionary
Computation, Vols 1 and 2; IEEE Congress on Evolutionary Computation;
Congress on Evolutionary Computation (CEC 2001), SEOUL, SOUTH KOREA.
783-789.

Luo, W. C. (2002), Spread Arbitrage between Stock Index Futures in Taiwan: A
Cointegration Approach, Working paper, University of Southampton.

Modest, D. M., & Sundaresan, M. (1983). The relationship between spot and futures
prices in stock index futures markets - some preliminary evidence. Journal of
Futures Markets, 3(1), 15-41.

Moles, P. & Terry, N. (1997), The Handbook of International Financial Terms,
Oxford University Press.

Montana, G., Triantafyllopoulos, K., & Tsagaris, T. (2009). Flexible least squares for
temporal data mining and statistical arbitrage. Expert Systems with Applications,
36(2), 2819-2830.

Schulenburg, S., & Ross, P. (2002). Explorations in LCS models of stock trading.
Advances in Learning Classifier Systems; LECTURE NOTES IN ARTIFICIAL
INTELLIGENCE; 4th International Workshop on Learning Classifier Systems,
SAN FRANCISCO, CALIFORNIA. , 2321 151-180.

Tan, A., Quek, C., & Yow, K. C. (2008). Maximizing winning trades using a novel
RSPOP fuzzy neural network intelligent stock trading system. Applied
Intelligence, 29(2), 116-128.

Taylor, N. (2007). A new econometric model of index arbitrage. European Financial
Management, 13(1), 159-183.

Teddy, S. D., Lai, E. M. -K., & Quek, C. (2008). A cerebellar associative memory
approach to option pricing and arbitrage trading. Neurocomputing; 13th
International Conference on Neural Informational Processing, Hong Kong,
PEOPLES R CHINA. , 71(16-18) 3303-3315.

19



Wang, J., & Hsu, H. (2006). Degree of market imperfection and the pricing of stock
index futures. Applied Financial Economics, 16(3), 245.

Wang, J., & Chan, S. (2007). Stock market trading rule discovery using pattern
recognition and technical analysis. Expert Systems with Applications, 33(2),
304-315.

Wang, J., & Chan, S. (2009). Trading rule discovery in the US stock market: An
empirical study. Expert Systems with Applications, 36(3), 5450-5455.

Wilson, S. W. (1995). Classifier fitness based on accuracy. Evol.Comput., 3(2),
149-175.

Wilson, S. W. (1998). Generalization in the XCS classifier system. In J. R. Koza et al.
(Eds.), Genetic Programming 1998: Proceedings of the Third Annual Conference, pp.
665-674. Morgan Kaufmann.

Zarandi, M. H. F., Rezaee, B., Turksen, I. B., & Neshat, E. (2009). A type-2 fuzzy
rule-based expert system model for stock price analysis. Expert Systems with
Applications, 36(1), 139-154.

20



o TR

& !ﬁﬁﬂzﬁ“%mfp]% BEMIALrEE A ERFITG- T ot hiE
ERFRDFL L \miﬁ'lﬁ—imfﬁigq‘zﬁ EFHREO ELAR
LA N s DR U V) A [ R LR o R ER S UL
S g L E A U FABHOE St AT 7S F T o PR
WO A R TR R A RE T AL BB T S e enisalie
FEOHhd EBFEL T RS BRT R RS AN L R Pp A
PR AR BT S A B R T A BT e LT e
#»Z 0 Ra $ﬁﬁ$§;9‘,\j7 € F Tl R R FIpt g A gy gyt H A;jg,,,
LHFan i Halm k@S BB PFA TR - FPL S EF L T
BYERAD FTAY DB € o bl gm@ﬂ’gﬂiﬁﬁﬁﬁ%ﬁﬁﬁ
EREFEF L O NBARIBFETORAIREIFRATA > L 2EALLFT AR
T8 F - a1 BFrEER L baps FELEFEE PRy Y &
RFOILE LRl FlA AR R B R Fl R g R B TR R D R
SV RIFTAEE CHWRALFEIRT G oo

A EAHPEORBEFTARE SR THE T AN AR RS ESR
PP R ERAT S R A AR P EAE NG RERR R R
TR Eg R B FRFT R SR B a3 S W
HBFS R N e L BARIEKH DA K2 o [ pIATHD o AL B A S
TR (LA FT) (EP S - AP LR RT IR EHRE -

BAVERGYET T AR T EANEABETARKEST ﬂw’“%ﬁ
PORERNMEL 2 FEEFLIERY AT W R wiiﬁ%ﬁﬂ 5
¢ 7 Oklahoma state university ~ California State University ~ + ;& pﬂpw 2R
CHIRZE B L AR RIREK Y B RD A AR Y R AR
FLAEL > #FA B«]?—?{ TEA SRR D AEY PR ATahim o

AL H S ERPN ST F R Y RS AR RE TR e R
Benffid 2t e g5 o Ao R idr REF T PRI B Tika F 177 49
T 5 AR o i AR B TR B AT o

21

-



1P M EIEE £

1.%- &
Yu-Chia Hsu, An-Pin Chen (2008), "Clustering Time Series Data by SOM for the
Optimal Hedge Ratio Estimation,” Proceedings of International Conference on
Convergence Information Technology (ICCIT '08), Nov. 11-13, 2008. Busan,
Korea. (El)

2. Tsai Wen-Chih, An-Pin Chen (2008), "Global Asset Allocation using XCS
Experts in Country-Specific ETFs," Proceedings of International Conference on
Convergence Information Technology (ICCIT '08), Nov. 11-13, 2008. Busan,
Korea. (EI)

3. Yu-Chia Hsu, An-Pin Chen (2009), “SOM-Based Hedge Ratio Estimation with
Hierarchical Cluster Resampling,” Proceedings of the 12th IEEE International
Conference on Computational Science and Engineering (IEEE CSE'09), August
29-31, 2009, Vancouver, BC, Canada. (El)

2.% - #
1. Yu-Chia Hsu, An-Pin Chen, Jia-Haur Chang (2010), “An inter-market arbitrage

trading system based on extended classifier systems.” Expert Systems with
Applications, doi:10.1016/j.eswa.2010.09.039. (forthcoming), (SCI, IF=2.908)

2. An-Pin Chen, Yu-Chia Hsu (2010), “Dynamic Physical Behavior Analysis for
Financial Trading Decision Support,” IEEE Computational Intelligence
Magazine, Vol. 5, issue 4, 2010. (forthcoming) (SCI, IF=2.54)

3. Wen-Chih Tsai, An-Pin Chen(2010), “Strategy of global asset allocation
using extended classifier system. Expert Systems with Applications”,
pp 6611-6617, Volume 37, Issue 9, 9 March 2010 (SCI, 1IF=2.908)

4.  Wen-Chih Tsai, An-Pin Chen(2010), “Using the XCS Classifier System for
portfolio allocation of MSCI index component stocks”. Expert Systems with
Applications, pp 6611-6617, Volume 37, Issue 9, 9 March 2010 (SClI,
IF=2.908)

22



