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SUMMARY

Software is critical for Internet service availability since an Internet service may become unavailable
due to software faults or software maintenance. In this paper, we propose a framework to allow zero-
loss recovery and online maintenance for Internet services. The framework is based on the virtual
machine (VM) technology and a connection migration technique called FT-TCP. It can recover transient
application/operating system faults and it allows fault recovery and online maintenance on a single
host. The framework substantially enhances FT-TCP so that it can be run efficiently in the VM
environment. Specifically, we propose techniques to reduce the inter-VM switches and communication.
Moreover, we propose service-specific optimizations to reduce the recovery time of FT-TCP. Finally, the
framework provides an interface for the service designers to implement more service-specific optimizations.
The framework was implemented by modifying an open source VM monitor, Xen, and the Linux kernel
running on top of Xen. The effectiveness and efficiency of the framework were evaluated by running two
Internet services, WWW proxy and FTP, on the proposed framework and measuring the impact on their
performance. According to the experimental results, our approach causes only slight performance overhead
(i.e. less than 4%) and memory overhead (i.e. less than 750 KB) for both the services. Copyright c© 2007
John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years, Internet services have gained great popularity in our daily lives. However, an Internet
service may become unavailable due to transient errors, software bugs, and system maintenance.
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According to previous research [1], a few minutes of downtime can lead to substantial financial losses.
Thus, high availability is an important factor for Internet services.

Previous research [2] has shown that software failures lead to a larger portion of system downtime
than hardware faults. Moreover, the latter can be masked by component redundancy [3–5] and
therefore software plays a critical role in system availability. Software may crash due to various
reasons. As indicated in previous research [6,7], human error is the dominant source. For example,
an administrator may misconfigure an Internet service or kill the service unintentionally, causing it to
become unavailable. Moreover, transient faults or software aging faults [8,9] may occur on Internet
services because of their long execution time. Finally, operating systems (OSs) under the Internet
services can also crash since it is difficult to make them error-free due to their high complexity [10].
In addition to failures, software maintenance is another dominant source of downtime for Internet
services [11]. For example, an Internet service usually has to stop during system maintenance, which
may involve upgrading the service applications, libraries, OS, or drivers. Although the system can be
restarted after the maintenance operation has completed, the service state and the OS state (such as the
TCP connections) will be lost, which is unacceptable for many commercial services.

Many fault-tolerant techniques have limited ability to solve the above problems. Checkpointing [12]
cannot deal with software aging faults, and it usually causes a large overhead. Connection migration
techniques [13–17] cannot recover online requests in a server-transparent way. Moreover, they require
expensive server replicas. Some connection migration techniques [14–16] even require modifications
to the client-side TCP implementations, which limits the feasibility of these techniques. Recursive
Recovery [18–20] requires the service to be composed of many fine-grained components, which leads
to performance degradation.

In this paper, we propose a framework to achieve the goal of zero-loss Internet service recovery
and upgrade on a single host. It allows an Internet service to survive transient software failures
(including software aging faults) and system maintenance operations without expensive server replicas
and client-side TCP modification. Based on a client-transparent connection recovery technique called
FT-TCP [13] and a virtual machine monitor (VMM) called Xen [21], the framework runs the backup
server (including the service application and the OS) in another VM (i.e. the backup VM). It can
detect application and OS faults, log connection states during the normal operation period, and perform
recovery when a fault is detected.

The following features make the framework unique. First, it allows online software maintenance
and fault recovery on a single host. Second, it reduces the resource usage of the backup VM and the
inter-VM communication during the normal operation period so as to greatly improve the performance
of FT-TCP on a VMM. As shown in Section 5.4, simply applying a connection migration technique
such as FT-TCP on a VMM with no optimizations results in an unacceptable performance degradation.
We eliminate most of the performance degradation to make FT-TCP feasible on a VMM. Third, we
propose service-specific optimizations to reduce the recovery time of FT-TCP, and the framework
provides an interface for the service designers to implement more service-specific optimizations.

We evaluate the effectiveness and efficiency of the framework by running two Internet service
programs, Squid proxy server and Proftpd FTP server, on the proposed framework and measuring
their performance impacts. According to the experimental results, our approach incurs little overhead
both in terms of performance (i.e. less than 4%) and memory space (i.e. less than 750 KB).

The rest of this paper is organized as follows. Section 2 describes the background technique, FT-TCP.
Section 3 presents the design and implementation of our framework. Section 4 shows the possible
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Figure 1. Overview of FT-TCP.

improvement on FT-TCP. Section 5 shows the experimental results, and Section 6 a description of
related efforts. Finally, we give discussions and conclusions in Sections 7 and 8, respectively.

2. BACKGROUND

As mentioned in Section 1, our zero-loss service recovery framework is based on FT-TCP. In this
section, we introduce the FT-TCP [13] technique and the control flow it uses to recover an Internet
service.

2.1. FT-TCP system

FT-TCP involves three logical entities: primary, backup, and logger, where the logger is co-located
with the backup. As shown in Figure 1, FT-TCP inserts wrappers around the TCP layer of the primary
and the backup machines. The wrappers intercept all the outgoing/incoming TCP packets on the
primary machine and record the packet information to the logger machine. If the primary machine fails,
FT-TCP recovers the online TCP connections on the backup machine according to the logged content
in an application-transparent way.

Two wrapper layers are used in FT-TCP. The north side wrapper (NSW) sits above the TCP. It records
the results of specific system calls issued by the service application in order to ensure deterministic
execution. For example, it logs the returned length of each socket read operation and the result
of each gettimeofday() system call. During the recovery period, the NSW returns exactly the same
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values (which are logged) to the application to maintain determinism‡. Suppose that during the normal
operation period a service performs two socket read operations and the results, 500 and 1000 bytes,
respectively, are logged. During the recovery period, the NSW ensures that the socket read operations
issued by the restarted service also return 500 and 1000 bytes, respectively.

The wrapper layer below the TCP is called the south side wrapper (SSW). During the normal
operation period, SSW records the client requests of each online TCP connection to the logger.
In addition, it also records the number of bytes received from and sent to each of the clients. During the
recovery period, the SSW re-establishes the online TCP connections on behalf of the clients according
to the logged content to enable the service to continue.

2.2. Recovery flow

The flow of connection recovery is presented in Figure 2. In order to recover a connection in a client-
transparent way, FT-TCP re-establishes the connection on behalf of the client and replays the request-
processing flow from the beginning.

For the connection re-establishment, the SSW sends a fake SYN packet to its local TCP (i.e. the
TCP of the backup machine). When receiving a SYN packet, the TCP sends a SYN/ACK packet back,
which is intercepted and then discarded by the SSW. The SSW then calculates the delta seq, which is
the difference between the initial server-side sequence numbers of the re-established and the original
connections. The delta seq is used for adjusting the sequence numbers of the following outgoing
(i.e. server-to-client) TCP packets and ACK sequence numbers of the following incoming packets in
order to maintain client-side transparency. Note that the sequence numbers of the incoming packets and
ACK sequence numbers of the outgoing packets do not need to be adjusted since SSW uses a special
initial sequence number, which is equal to last ack no − 1 (where the last ack no represents the last
ACK sequence number from the primary server), in the SYN packet it fakes. Finally, the SSW sends a
fake ACK packet to complete the TCP three-way handshake.

After the connection is re-established, the service application replays the request-processing flow
(i.e. accept the connection, read the request, process the request, and write the response) with the help
of the NSW. For example, when the service application issues a socket read operation, the NSW obtains
the logged return length and returns that number of bytes from the logged request. As another example,
NSW is also responsible for dropping duplicated response data.

As mentioned above, FT-TCP logs the client requests and the results of specific system calls for all
the online connections. To avoid overwhelming the memory, the log can be stored on a disk.

3. DESIGN AND IMPLEMENTATION

In this section, we describe the design and implementation of the proposed framework. We first give
an overview of the system components in the framework and then describe the fault recovery and the
online maintenance techniques.

‡FT-TCP assumes that all the factors that affect deterministic execution can be handled in this way. Thus, a restarted service can
have exactly the same behavior as the original.
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(a) (b)

Figure 2. (a) Normal connection setup and (b) connection recovery.

3.1. System components

As shown in Figure 3, we implement our framework in both the OS (i.e. Linux) and the VMM
(i.e. Xen). The former part is called the OS layer zero-loss subsystem (OZS), while the latter part
is called the VMM layer zero-loss subsystem (VZS).

The major components of the framework are the protocol manager, health monitor, and recovery
manager. The protocol manager is responsible for managing the boot-up/suspension/resumption of the
backup VM. The health monitor is used for detecting service application and OS failures. Finally, the
recovery manager is responsible for recovering TCP and service states on the backup VM. In addition
to the components, we enhanced FT-TCP and provided an interface to allow the service designers to
implement their service-specific optimizations on FT-TCP. Moreover, the framework provides system
calls for the administrators to control the backup server and the service migration.

3.2. Fault recovery

As mentioned previously, our framework is based on FT-TCP, which involves the primary server, the
backup server, and the logger. We ran the primary server on one VM and the backup server on another.
Originally, the logger ran in the backup VM or in a dedicated VM. However, this caused frequent
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Figure 3. System components.

inter-VM communication (owing to the traffic of connection state logging between the primary VM
and the logger). To eliminate such traffic, we provided a persistent log buffer accessible both by the
primary and the backup VMs to store the connection state. Moreover, we suspended the backup VM
during normal operation so that it does not contend for CPU resources with the primary VM. Once the
primary fails, the backup server is resumed to take over the job of the primary. Finally, we provided a
fault-detection mechanism for detecting application or OS faults and a recovery mechanism to recover
the service state.

Figure 4 shows the recovery flow. Before starting an Internet service, the administrator starts a
backup server. Then, in order to supply the primary server with the overall system resources, the
backup server releases its CPU time. The primary server then performs the normal operations and
logs the connection information. When a fault is detected, the VMM wakes up the backup server and
recovers the service state so that the system can provide the service continually. Note that we do not
address the issues of recursive failover. Therefore, we assume that no further failures occur during the
recovery period.

In the following, we first describe the details of booting-up and suspending the backup server.
Then, the connection logging approach is presented, which is followed by a description of the fault-
detection mechanism and the recovery flow.
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Figure 4. Overview of fault recovery.

3.2.1. Backup server boot-up

To manage the boot-up of the backup server, we developed a protocol involving the VMM and three
domains: control§, primary, and backup. The domains implement the protocol based on the API
provided by our framework, as shown in Table I.

Figure 5 shows the flow for booting up a backup server. Originally, Xen only allows the control
domain to boot up the other domains. In order to enable an authorized primary server to boot up
its backup, we allow the administrator to register the primary servers that have the right to boot up
their backups. Specifically, the administrator can register an entry for each primary server that has
the right in the backup-grant table in advance. The table is stored in VMM and maintained by the
protocol manager, and the registration is made by calling the sys ins auth() system call in the control
domain. When a primary server boots a backup server (via the sys boot backup server() system call),
the protocol manager will check to see if the primary server has the grant.

§A domain refers to a VM on the Xen VMM, and the OS in a domain is called the guest OS. Xen has a special domain called
the control domain to allow the administrator to manage the other domains.
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Table I. System call API provided by the framework.

Function name Description

sys ins auth() Install authentication information to the VMM
sys boot backup server() Boot the backup server
sys change backup ip() Change the backup’s IP address
sys suspend backup server() Suspend the backup server
sys wakeup backup server() Wake up the backup server
sys migrate service() Notify the recovery manager to migrate the service

Figure 5. Flow for booting a backup server.

Originally, Xen gives a unique IP address to each guest OS so that each domain can communicate
with external hosts. This results in a longer recovery time since the backup server needs to take over the
IP address of the primary server when the latter crashes. Thus, we provide a sys change backup ip()
system call to allow the primary and backup servers to share a single IP address. When the system call
is invoked by the primary server, a signal will be sent to the backup server through the VZS, and the
backup server will receive the primary IP address from the VZS and change its IP address accordingly.
The IP address changing is performed by a user-level task which invokes a shell command, ipconfig.

Copyright c© 2007 John Wiley & Sons, Ltd.
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After the IP address is changed, the backup server should release its CPU time so that it will not
affect the performance of the primary server. This is done by calling the sys suspend backup() system
call by the primary server. When the system call is invoked, Xen will remove the backup VM task from
the run queue of Xen. Note that the system call is not required if Xen can automatically suspend an idle
VM. However, Xen version 1.2, which is the implementation we use in this paper, does not provide
such a capability.

Although the above system calls are implemented in the OZS, most of them require cooperation from
the VZS. Communication between the OZS and the VZS is achieved through hypercalls¶ and events.

3.2.2. Connection state logging

As mentioned above, we provide a persistent log buffer to record the connection state of the primary
server‖. The buffer remains alive even when the primary server crashes. We use a memory area of the
primary server as the log buffer. During the recovery period, the backup server remaps the log buffer
into its virtual address space and recovers the service state accordingly.

3.2.3. Fault detection

Software faults can occur in service applications and OSs. In the following, we describe how to detect
the faults.

An application fault is detected by intercepting abnormal process terminations. Specifically, the
fault detection is implemented by intercepting the do exit() function in Linux to check its error code
parameter. A specific bit of the error code parameter will be turned on if the process termination is
caused by a fault (e.g. segmentation violation, trap, etc.). Therefore, we can simply check the bit to see
if the process termination is abnormal.

To detect an OS fault, we inserted a heartbeat generator in the primary OS and a heartbeat checker
in Xen. At each timer interrupt, the former sends a heartbeat to Xen by increasing the value of the
variable heartbeat counter by one, which is shared by the primary domain and Xen. The latter checks
the variable at each timer interrupt to detect OS faults. If the value remains the same for the period of
two successive timer interrupts (i.e. about 20 ms), the OS is considered to have failed and the checker
notifies the recovery manager to recover the system. It is worth noting that the heartbeat mechanism
is implemented based on shared memory instead of a hypercall, and thus it eliminates the overhead of
frequent privilege mode crossings.

3.2.4. Recovery flow

When a fault is detected, the recovery manager will follow the recovery protocol for system recovery.
Figure 6 illustrates the protocol, which is divided into three steps. First, the recovery manager must

¶Similar to system calls that are an interface provided by an OS, hypercalls are an API provided by Xen VMM.
‖Since the connection state that we log (i.e. the content of the log buffer) is the same as that logged by FT-TCP, we will skip its
description here.
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Figure 6. Recovery flow.

change the network path so that incoming packets which were originally delivered to the primary
server will now be delivered to the backup server. Xen stores IP-to-domain mappings for each domain
(i.e. in the net schedule list list) in order to perform packet delivery, and thus the network path changing
can be performed by simply updating the mapping that corresponds to the IP address of the backup
server∗∗. Second, the recovery manager must wake up the backup server so that the backup server can
take over the job of the primary server. Third, the recovery manager must send an event to notify the
backup server to recover the system. When receiving the event, the recovery manager in the backup
server obtains the physical address of the log buffer through a hypercall, remaps the log buffer, and
then executes the FT-TCP recovery flow.

It is worth noting that, if the fault does not crash the kernel of the primary domain, the administrator
can assign a new IP address to the primary domain and connect to that domain to perform fault
diagnosis.

∗∗Although the primary and the backup domains share a single IP address, the IP-to-domain mapping maps the IP address to
exactly one domain at any given time. Therefore, to determine the target domain, the packet delivery code does nothing more
than query the mapping.
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Figure 7. Overview of the online maintenance flow.

3.3. Online maintenance

Most of the mechanisms for online maintenance are the same as those for fault recovery, for
example a backup server and a log buffer are also used. The main difference is that we provide a
sys migrate service() system call (as shown in Table I) to allow explicit service migration when the
administrator completes system maintenance.

Figure 7 gives a brief overview of the online maintenance flow. First, as shown in Figures 7(a)
and 7(b), the protocol manager of the primary VM boots up the backup VM and then suspends it.
When the system needs maintenance, the protocol manager wakes up the backup VM so as to allow
the administrator to perform system maintenance on it, as shown in Figure 7(c). When the system
maintenance is completed, the administrator can use the sys migrate service() system call to migrate
the service state from the primary server to the backup server, as shown in Figure 7(d). Finally, as
shown in Figure 7(e), the backup server takes over the job, and the primary server can be suspended.

3.3.1. Maintenance flow

Figure 8 shows the detailed flow for achieving online maintenance. As mentioned in Section 3.2.1, the
backup server suspends itself after it has initialized, and after the IP address of the backup server has
been changed to the IP address of the primary server in order to allow fast fault recovery.

Copyright c© 2007 John Wiley & Sons, Ltd.
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Figure 8. Flow of service migration.

Therefore, to allow online maintenance, the administrator first wakes up the backup server and
restores its IP address by calling the sys wakup backup server() and sys change backup ip() system
calls, respectively. When the system maintenance on the backup server is finished, the administrator
changes the IP address of the backup server back to that of the primary server and calls the sys migrate
service() system call (as shown in Table I) to explicitly migrate the service. This system call notifies
the recovery manager to migrate the service by using the strategy mentioned in Section 3.2.4.

4. RECOVERY TIME REDUCTION

For some Internet services, it may take a long time for FT-TCP to recover them. In this section, we take
two Internet services (FTP and HTTP proxy) as examples to show that service-specific optimizations
can reduce the recovery time. To ease the implementation effort, the framework provides an interface
for Internet service developers to implement such optimizations.

Many Internet protocols, such as FTP, SAMBA, and HTTP 1.1, use long-lived connections/sessions
for multiple object transmission. FT-TCP may take a long time when recovering such services since it
replays the connection re-establishment and object transmission from the beginning. We use FTP as an
example of this recovery process. As shown in Figure 9, the FTP session contains control commands
and a sequence of data commands. If a fault happens during the transmission of the crtt.tar.gz file
(i.e. the second data connection), FT-TCP will replay all the control and data commands.
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Figure 9. Examples of using FTP for sending files.

However, as shown in the figure, the first set of data commands does not need to be replayed since
the corresponding connection has been successfully completed before the fault occurs. Removing such
data commands could reduce the recovery time.

A similar situation occurs on relay servers such as proxies††. Although FT-TCP can recover a
system in a client-transparent way, the recovery is not transparent to end-servers. Specifically, applying
FT-TCP on a relay server would cause it to establish a new connection and send the request again to

††We refer to servers that are responsible for relaying requests and responses as relay servers. Such servers also act as clients.
The other servers that act as servers only are called end-servers.
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Table II. Wrapper registration API.

Function name Main operations

wr create() Create a wrapper structure for the service
wr ins nsw() Install the NSW
wr ins ssw() Install the SSW
wr unins nsw() Uninstall the NSW
wr unins ssw() Uninstall the SSW

the end-server for each request that needs to be recovered. This may cause problems for dynamic-
object or transaction-based requests. In addition, it results in a longer recovery time. To achieve end-
server transparency and reduce the recovery time, the developer of the fault-tolerant relay service can
implement a counterpart of FT-TCP. During the recovery period, the counterpart drops the requests
that are resent to the end-server and re-feeds the responses, which have already been received from the
end-server, to the relay service application.

Applying such service-specific optimizations on FT-TCP is not easy since FT-TCP itself is a mass
of functions and does not provide a clear API for its users. In order to reduce the workload for the
developers, we decomposed FT-TCP into several basic operations and export APIs for invoking those
operations. Thus, when implementing a fault-tolerant service, the developers can invoke the operations
provided by FT-TCP according to their needs. In addition, we have implemented operations to support
the above optimizations. For example, a fault-tolerant FTP service can invoke operations to remove
requests that no longer need to be replayed during the recovery period. As another example, a fault-
tolerant proxy service can invoke an operation to drop the resent requests to the end-server during the
recovery period.

Tables II–IV show part of the exported API, which can be divided into three categories. The first
category is wrapper registration API (shown in Table II), by which application designers can install
their wrapper functions. Specifically, designers invoke wr ins nsw() and wr ins ssw() to install their
NSWs (i.e. above the TCP) and SSWs (i.e. below the TCP), which are invoked whenever a packet goes
through the TCP. The second category is the client-side API (shown in Table III), which implements
the original functionality of FT-TCP and can be used to log information related to client connections.
For example, if a SYN packet is received from a client, we can invoke the cs rec syn() function to
create an entry in the log buffer to record information about the new connection. Alternatively, if the
application issues a socket read operation, the cs read op() function can be invoked to log the return
value. From the above description we can see that as a general rule for invoking this API we should
find out the type of the packet the server currently sends/receives and call the corresponding function.
We also provide a server-side API, which implements a counterpart of FT-TCP and thus can be used
to log information related to server connections. However, we do not describe it in this paper owing
to space limitations. The third category is the application-specific API (shown in Table IV), which
helps service designers to perform service-specific optimizations. Currently, we implemented two
functions as remove request() and as remove response() for services that utilize persistent connections
to remove requests and responses that no longer need to be replayed during the recovery period.
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Table III. Client-side API.

Function name Main operations

cs rec syn() Create a new log entry for the connection
cs rec data() Record the ACK sequence number and packet payload during normal operation;

perform packet adjustment during the recovery period
cs rec fin() Prepare to close a connection and free the log entry
cs rec rst() Free the corresponding log entry
cs snd ack() Record the ACK sequence number during normal operation; perform packet

adjustment during recovery period
cs snd saa() Calculate delta seq during recovery period
cs snd fin() Prepare to close a connection and free the log entry
cs snd rst() Free the corresponding log entry
cs read op() Record the return value of read during normal operation; provide request data

from the log buffer during recovery period
cs write op() Drop duplicated responses sent to the client during recovery period

Table IV. Application-specific API.

Function name Main operations

as remove request() Remove the specified requests in the log buffer
as remove response() Remove the specified responses in the log buffer

Now we describe how to use the APIs to implement a fault-tolerant FTP system. First of all, the
developers should register their wrappers by calling wr ins nsw() and wr ins ssw(). In the wrappers,
the client-side API should be invoked when necessary. For example, when a data command is received,
cs rec data() can be called to log the command. When a file is completely transferred, the FTP server
application sends a specific reply (i.e. reply number 226) to notify the client. Upon intercepting the
reply, the SSW can invoke cs remove request() to remove the commands corresponding to the data
connection. When a fault occurs, the logged commands will be replayed with the help of FT-TCP.
The commands that were removed will not be replayed during the recovery.

Note that, in our framework, input from the service developers are required only when they want to
implement service-specific optimizations, and the service applications do not need to be modified.

5. PERFORMANCE EVALUATION

In this section, we evaluate the effectiveness and efficiency of our framework. First, we measure
the overhead of our framework and then measure the recovery time. Finally, we demonstrate the
effectiveness of the online maintenance support of our framework.
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Table V. Experimental environment.

Client FT machine End-server

Hardware P4 1.6 GHz, P4 2.0 GHz, P4 2.0 GHz,
256 MB memory 1 GB memory 256 MB memory

VMM N/A Xen 1.2 N/A
OS Linux 2.4.18 Xenolinux 2.4.26 Linux 2.4.18

Guest domains N/A Control domain—64MB N/A
Primary domain—256 MB
Backup domain—256 MB

Software http load 12mar2006, Squid-2.5.STABLE4, Apache 2.0.40
dkftpbench 0.45, wget Proftpd-1.2.8

5.1. Experimental environment

As shown in Table V, we run the experiments using three machines, one for clients, one for the
fault-tolerant system (i.e. the FT machine), and the other for the end-server, all three of which are
connected via 100 Mbps fast Ethernet links. The client machine is a Pentium 4 1.6 GHz PC with
256 MB of memory, running Linux kernel 2.4.18 and benchmark applications such as http load version
12mar2006 [22], and dkftpbench version 0.45 [23]. The end-server machine is a Pentium 4 2.0 GHz PC
with 256 MB DRAM, running Linux kernel 2.4.18 and Apache server version 2.0.40. The FT machine
is an Intel Pentium 4 2.0 GHz PC with 1 GB DRAM, running Xen 1.2 as the VMM, Xenolinux 2.4.26
as the guest OS, and Squid-2.5.STABLE4 [24] and Proftpd-1.2.8 [25] as the applications. We allocate
64 MB, 256 MB, and 256 MB of memory for the control domain, primary domain, and backup domain,
respectively.

5.2. Performance overhead

In this experiment, we use the http load benchmark to measure the impact of state logging on the
performance of Squid. The benchmark runs a number of concurrent clients, each of which requests
files from the Web server via the Squid server. The size distribution of the requested files is obtained
from the Webstone benchmark [26]. Figure 10 shows the comparison of the client-perceived response
time with and without our framework. The white bars indicate the response time running on the normal
OS and the black bars indicate the response time running on our framework. From this figure we can
see that using our framework results in only slight performance degradation, ranging from 1 to 4%.

In addition to the performance overhead on Squid, we also measure the performance overhead of
our framework on a FTP service program, Proftpd, by using the dkftpbench benchmark version 0.45.
Figure 11 shows the performance scores of Proftpd with and without our framework. The scores are
reported by dkftpbench, and the figure shows that the throughput degradation is only about 1.12%.
These figures demonstrate that our framework has little impact during normal operation.
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Figure 10. Performance comparison on Squid.

Figure 11. Performance of Proftpd (connection throughput).
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Figure 12. Memory overhead when running Squid.

5.3. Memory overheads

In this section, we measure the memory overhead (i.e. the size of the in-memory log buffer) of our
framework. Typically, the overhead comprises three parts: logged requests, logged responses, and data
structures for maintaining connection logging. In the first experiment, we use the http load benchmark
to make a number of concurrent requests to the Squid proxy server and measure the maximum size of
the log buffer. The size distribution of the requested files is obtained from the Webstone benchmark
(see Figure 12 for the results). As shown in the figure, the overhead is less than 750 KB for 400
concurrent connections, which does not cause much pressure on a server system. Moreover, the logged
response data dominates the overhead because the size of a Web response is usually much lager than
that of a Web request.

In the second experiment, we measure the memory overhead when running the Proftpd server.
The clients are a mixture of wget (60%) and ftp-get (40%) programs, while the latter is implemented
by us. Each client downloads a 5 MB file from the server, and each of the ftp-get clients performs a
random number of directory changes before downloading the file. As shown in Figure 13, the memory
overhead is only about 100 KB for 400 concurrent clients. Moreover, the response data are not logged
since they can be regenerated from the file system.

According to the experimental results presented in this section, the in-memory log buffer does not put
much pressure on a server system in normal cases. However, there are some cases where the overhead
can overwhelm the system memory, which will be discussed in Section 7.

5.4. Effects of reducing inter-VM traffic and switching

In order to demonstrate the performance benefit of reducing the inter-VM traffic, we compare the
performance of our framework with that of the original FT-TCP architecture, in which the primary VM
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Figure 13. Memory overhead when running Proftpd.

sends a log to the logger VM (i.e. the backup VM). In this experiment, the client machine uses the
wget utility to download a 5 MB file from the end-server, via the Squid server run on the FT machine
(see Figure 14 for the results). The ORIG, EFT-TCP, and FT-TCP bars represent the performance
of the original Squid, the Squid running on our framework, and the Squid running on the original
FT-TCP architecture, respectively. As shown in the figure, use of FT-TCP results in a 51.35%
performance degradation, which results mainly from the inter-VM switching and traffic. In contrast,
our framework does not have this overhead and there is only 1.25% performance degradation, which
makes its application on a VMM more feasible.

5.5. Recovery time

In this experiment, we measure the performance of Squid on our framework with the presence of
failures. In the experiment, the client requests one file from the server machine through the Squid on the
FT machine, and the Squid process is terminated when the first half of the file data is sent to the client.
Under this situation, our framework recovers the Squid on the backup domain. For comparison, we
also measure the performance of restarting the Squid process on the same domain (i.e. the primary
domain). The results are given in Figure 15. The white bars represent the transmission time when
no fault occurs, the gray bars represent the transmission time when the fault occurs and is recovered
by our framework, and the black bars represent the transmission time when the a fault occurs and is
recovered by restarting the Squid server on the same domain. According to the results, recovery in
a single domain and in different domains lead to delays of about 600 ms and 300 ms, respectively.
Thus, recovery in different domains is more efficient. The reason is that recovery in the same domain

Copyright c© 2007 John Wiley & Sons, Ltd.



1368

Softw. Pract. Exper. 2007; 37:1349–1376
DOI: 10.1002/spe

D.-W. CHANG ET AL.

Figure 14. Benefit of reducing the inter-VM traffic and switching.

Figure 15. Fault occurring when the first half of the data is sent.

must wait for the re-initialization of the Squid server, which takes about 300 ms in our environment.
In contrast, Squid has been initialized and suspended on the backup domain under our framework.

Note that the 300 ms delay is not the real recovery time. Figure 16 shows the measured recovery
time of the 35 MB file transfer. The recovery time is divided into three parts. The preparation time
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Figure 16. Recovery time of a single connection.

Figure 17. Performance of recovering multiple connections.

Tp represents the time between the occurrence of the fault and the execution of the backup domain.
The connection re-establishment time Tc represents the time for re-establishing the connection, and the
data recovery time Tr represents the time for replaying the data transfer until the time when the fault
occurs. As shown in the figure, the total recovery time is about 65 ms. The extra 235 ms delay comes
from the drop of the TCP congestion window size since the connection is closed when the fault occurs
and is established again during the recovery period.

Figure 17 shows the time for recovering multiple connections. In this experiment, we use multiple
concurrent clients to download files from the Proftpd run on the FT machine. Each client sends six
control command requests (including USER, PASS, SYST, PWD, TYPE I, and CWD) and two data
command requests (including PASV and RETR) to download a 5 MB file. We inject a fault when the
last client has received 2.5 MB of data. As shown in the figure, the size of the data needing to be
replayed (i.e. the replay size) grows, which leads to the increment of the recovery time, as there are
more clients. To recover 400 pending connections, the system replays about 1 GB of data and takes
about 20 s. Note that the 1 GB of data is not stored in the log buffer. Instead, it is reloaded by the FTP
server program from the file system. Moreover, the large replay size is the result of the limitation of
FT-TCP, which replays each request from the beginning (although we can remove requests that have
been done in the FTP case) in order to maintain server application transparency.
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Figure 18. Recovery performance with varying fault time.

Figure 18 shows the recovery time of 100 and 400 pending client connections with varying fault
times. We inject faults when the last client has received R bytes of data. As shown in the figure, the
recovery time grows as R increases from 0.5 to 3.5 MB as a result of the increment of the recovery size.
However, as R increases further, some clients are finished and hence the recovery size decreases,
causing the recovery time to drop.

5.6. Online maintenance

In the last experiment, we demonstrate the effectiveness of online maintenance on Proftpd.
We download a 5 MB file from a rate-limited Proftpd on the primary domain and manually migrate
the service from the primary domain to the backup domain (which contains a rate-unlimited Proftpd)
during the file transfer. The transmission rate of the Proftpd on the primary domain is limited to
1 MB s−1, and we measure the average throughput before and after the service migration. Figure 19
shows the results that service migration takes approximately 80 ms and the average throughput is
increased to 11 MB s−1 after the service migration. This demonstrates that the administrator can
upgrade the service on the backup domain and then perform service migration without stopping the
service.

6. RELATED WORK

In this section, we first describe related research in transport-layer fault tolerance, and then describe
efforts in online maintenance. Finally, other related efforts are mentioned.
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Figure 19. Online maintenance of Proftpd.

6.1. Transport-layer fault tolerance

Snoeren et al. [14] proposed a cluster-based approach to improve the availability of a Web service.
The approach inserts a HTTP-aware module between the application and the transport layers to
log the inter-layer interactions. Moreover, it uses TCP migrate options to record the TCP state for
connection resumption. The advantage of this approach is that it requires no modification to the server
application. However, the TCP migrate options which the approach uses require modification to the
TCP implementations of both the server and the clients, reducing the feasibility of the approach.

Migratory TCP (M-TCP) [16] allows online connections to be migrated from one server to another
cooperative server. When a server overloads or fails, the migration process will be triggered, which
causes the client to reconnect to a server replica with better performance. A set of APIs are provided
for the server application to transfer service states between server replicas. However, as in Snoeren
et al. [14], M-TCP requires extending both the client-side and the server-side TCP implementations to
accomplish dynamic connection migration.

TCP Splicing [27] splices two physical connections, a client-proxy connection and a proxy-server
connection, into a virtual client-server TCP connection. As shown in Figure 20, all the clients connect
to the proxy, which receives and dispatches the client requests to the back-end-servers. The proxy
records IP addresses, port numbers, and TCP sequence numbers of both the client-proxy and proxy-
server connections. If the server crashes, the proxy migrates the client request to another server in
a way that is transparent to both the client and the server. However, this approach requires multiple
server replicas and an extra proxy machine. In contrast, we address software failure and perform fault
recovery on a single node.

FT-TCP [13] is a client-transparent connection recovery technique. As described in Section 2,
FT-TCP requires a primary server, a backup server, and a logger (which can be co-located with the
backup machine). If the primary crashes, the backup can take over the job of serving clients and replay
the requests that are pending when the fault occurs. Our approach improves FT-TCP in two ways.
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Figure 20. TCP splicing.

First, we make it more feasible to apply FT-TCP on a VMM by reducing the inter-VM traffic and
switches. Second, we propose two optimizations for reducing the recovery time of FT-TCP and allow
the service designers to implement more service-specific optimizations.

6.2. On-line maintenance

The Cluster Rolling Upgrade [28] provides a way to perform online maintenance by using spare nodes
or cluster nodes. In this approach, the administrator upgrades the system on a cluster node (or a spare
node) and then migrates the application to that node. However, this approach does not address the
problem of online connection migration, and it requires at least one extra spare or cluster node for
software maintenance.

Devirtualization [29] enables online maintenance on a single node. It starts the VMM and the
backup domain dynamically when a software maintenance operation is needed. Once the maintenance
operation is finished on the backup domain the service state can be migrated to that domain, and
then the original domain and the VMM can be shut down. This approach provides a good level of
performance during normal operations since the VMM is presented only when maintenance is needed.
However, it focuses only on decreasing the planned downtime and cannot deal with software faults.

VM Migration [30,31] allows migrating a live VM (including the OS and the application services)
from one physical host to another, and thus enables load balancing and low-level maintenance.
Since the migration operation involves transmission of the whole VM state, the two main issues are
(1) how to perform the background transmission of the memory pages without largely degrading the
system performance, and (2) when to stop the source VM and transmit all the remaining pages to the
destination. The authors did not address the issues of fault management. In contrast, our work deals
with application/OS faults occurring on a VM.

6.3. Other approaches

Autonomic computing [32] proposes self-healing techniques that can automatically detect, diagnose,
and repair software and hardware problems. Recovery-oriented computing [2,33] also proposed new
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techniques to deal with hardware faults, software bugs, and operator errors. The basic principle of these
two projects is similar to ours, i.e. systems should deal with faults instead of preventing them.

Checkpointing [12, 34–38] is a common technique for system recovery. It saves the state of a running
program periodically to a stable storage. When the system crashes, the last checkpointed state can be
reloaded to recover the system. This approach has two drawbacks. First, it cannot solve the software
aging problem since the checkpoint state ages rather than being refreshed, so even if the system can
be recovered the software may fail again immediately. Second, checkpointing usually results in a large
performance overhead due to the large volume of states that need to be stored.

Recursive Restart (RR) [18,19] and Scalable Network Services (SNS) [20] both allow a fine-
grained component-based service to restart a component or a set of components (instead of the
whole service) once the component fails, and thus reduce the service restart time. However, the inter-
component communication degrades the system performance, which is not suitable for performance-
critical Internet services. Moreover, they require an Internet service to be composed of fine-grained
components, which requires redesigning the legacy Internet service programs.

Backdoors system [39] can recover a service session state in a cluster environment. When a service
node fails, the session state on the failed node is transferred to a backup node via the remote direct
memory access (RDMA) mechanism. Similar to our work, the system detects OS failures. However, it
requires service applications to checkpoint their state periodically, which requires moderate application
modifications. Moreover, it requires special/programmable network cards with a RDMA capability.

Zap [40] allows a group of processes with online connections to be migrated to a new host by using
the following two mechanisms. First, it checkpoints the connection state right before the migration so
that the state can be restored on the new host. Second, it utilized an end-to-end VNAT (Virtual Network
Address Translation) [41] approach and a proxy to direct the traffic to the new host. In contrast with
our work, Zap does not address application and OS failures. Moreover, an extra proxy is required for
client connection migration.

SSM [42] is a highly-available storage system for the user session state. In the system, stateless
application servers access the session state via connection with the storage nodes. SSM improves
the availability of the session state by distributing the state to multiple storage nodes. Moreover,
each storage node can be restarted and recovered independently if faults have occurred on that node.
In contrast with our work, SSM assumes that application servers are stateless, and requires the
application services to access the session state on the storage nodes. In contrast, our work does not
have such a requirement and is able to recover stateful service applications.

7. DISCUSSIONS

In this section, we provide discussions about the memory overhead and the fault-detection techniques.
As shown by the experimental results, the log buffer does not cause memory pressure on the system

in normal cases. However, there exist some pathological cases in which the buffer may overwhelm the
system. For example, uploading a huge file to our fault-tolerant FTP server causes memory pressure
on the server as a result of the logging of the client request (i.e. the content of the uploaded file).
For another example, if the consumption rate of the response data is far behind the production rate
in a Web proxy system (e.g. maybe owing to the congestion of the network path between the proxy
and the client), the not-yet-consumed response data will cause memory pressure to the proxy system.
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These problems can be solved by storing the log buffer into a disk, or by closing the TCP receive
window of the server connection temporarily. In the future, we will incorporate these approaches into
our framework.

As described previously, we use techniques to detect application and OS faults. However, there are
still a number of faults that cannot be detected by these techniques. For example, an infinite loop
in a service application cannot be detected since it does not cause the abnormal termination of the
application. We can detect such faults by sending test requests to the application periodically and
checking the results. Some other OS faults can be detected by catching kernel exceptions, or by tracking
the numbers of served interrupts and context switches, as proposed by Sultan et al. [39]. In the future,
we will incorporate more fault-detection techniques into our framework.

8. CONCLUSIONS

In this paper, we proposed a framework for providing a zero-loss Internet service recovery and upgrade
on a single host. Based on Xen and FT-TCP, the framework can recover transient application and
OS faults. In addition, it allows online service upgrades without stopping the service. In order to
make the application of FT-TCP to VMMs more feasible, we proposed techniques to reduce the
inter-VM switches and communication. Moreover, we proposed service-specific optimizations to
reduce the recovery time of FT-TCP. Finally, the framework was shown to provide an interface for
service designers to implement more service-specific optimizations. We evaluated the effectiveness
and efficiency of our framework on two popular service programs, Squid and Proftpd. According to
the experimental results, our approach incurs little performance overhead (i.e. ranging from 1 to 4%)
and memory overhead (i.e. less than 750 KB).

In the current implementation, the framework integrates optimizations for FTP and proxy services.
In the future we will investigate more possible optimizations for other services and integrate them into
our framework. In addition, we will provide a better interface for the service designers so that they can
specify their optimizations, instead of implementing the optimizations by themselves.
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