
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. IO, OCTOBER 1996 1249

Exploiting Communication Complexity
for Boolean Matching

Kuo-Hua Wang, TingTing Hwang, Member, ZEEE, and Cheng Chen

Abstract- Boolean matching is to check the equivalence of
two functions under input permutation and inputloutput phase
assignment. A straightforward implementation takes time com-
plexity O(n!2”2), where n is the number of variables. Various
signatures of variables were used to prune impossible permu-
tations by many researchers. In this paper, based on commu-
nication complexity, we also propose two signatures, cofactor
and equivalence signatures, which are general forms of many
existing signatures. These signatures are used to develop an
efficient Boolean matching algorithm which is based on checking
structural equivalence of OBDD’s. Experimental results on a set
of benchmarks show that our algorithm is indeed very effective
in solving Boolean matching problem.

I. INTRODUCTION

OOLEAN MATCHING is to check the equivalence of B two functions under input permutation and inputloutput
phase assignment (so called NPN-class 111). It has been
widely used in technology mapping recently 161-[121. Apply-
ing Boolean matching in technology mapping can improve
the quality of mapped circuits and increase the mapping
flexibility since it exploits implicit don’t cares [2] which
was not considered in traditional tree covering algorithm [3].
Moreover, it is able to shorten the mapping time when using a
library containing complex gates with large input size. Boolean
matching is also applied in logic verification, e.g., checking the
equivalence of two circuits, and verifying the implementation
of a specification.

Various methods for Boolean matching were proposed
[6]-[16]. Mailhot et al. 861 are among the first ones to apply
Boolean matching to technology mapping. They proposed
an algorithm using tautology checking based on Shannon
decompositions. Symmetry and unateness properties were
used to speed up the matching algorithm. Don’t cares were
considered by a lattice-based method. Savoj et al. 171 used
smoothing and consensus operators to solve Boolean matching
problem. Symmetry of variables was utilized to expedite the
matching process. The techniques presented in [lo] were based
on computing canonical forms of functions. If two functions
have the same canonical form then they are matched. Boolean

Manuscript received April 22, 1994; revised March 30, 1995 and April
24, 1996. This work was supported by a Grant from the National Science
Council of R.O.C. under Contracts NSC-81-0404-E-007-129. This paper was
recommended by Associate Editor M. Fujita.

K.-H. Wang and C. Chen are with the Department of Computer Science and
Information Engineering, National Chiao Tung University, HsinChu, Taiwan
30050.

T.T. Hwang is with the Department of Computer Science, National Tsing
Hua University, HsinChu, Taiwan 30043.

Publisher Item Identifier S 0278-0070(96)07397-6.

unification and branch-and-bound techniques were adopted
in 181. The matching between two functions was checked by
finding the most general unijier (mgu).

Yet, another group of researchers take “signature” ap-
proach to solve Boolean matching. Various signatures [9], 1121,
1151, 1161 were defined to characterize the input variables of
Boolean functions, where variables with different signatures
can be distinguished from each other and many infeasi-
ble permutations can be pruned. The structure of Ordered
Binary Decision Diagrams (OBDD’s) [4] was also utilized
for Boolean matching [l l] , [13], [14]. In [ll], OBDD’s
were represented by character strings. The matching between
OBDD’s was checked by comparing their character string
representations. In [131 and [141, Boolean matching was
designed to transform one OBDD with different orderings until
OBDD’s of two Boolean functions are graph isomorphism
(structural equivalence) or failure is reported.

In [13], the subgraphs of OBDD’s were matched in a top-
down manner (from root to terminal nodes) while in 1141, in
a bottom-up manner. Using OBDD structure, many infeasible
permutations which cannot be identified by signatures can be
pruned during the transformation process.

In this paper, we propose a Boolean matching algorithm
combining the signature techniques and the transformation
method. Our method is similar to that of 1141. However,
in 1141 only minterms count is used to select variables for
transformation during matching process. Our algorithm is
based on a more descriptive signatures. It can quickly prune
a large number of infeasible matchings.

The remaining of this paper is organized as follows. In
Section 11, we define structural equivalence of OBDD’s and
correlate it to Boolean matching problem. Two signatures, co-
factor and equivalence, based on communication complexity of
Boolean functions are proposed in Section 111. Some properties
of these signatures are also given. In Section IV, we present a
Boolean matching algorithm based on equivalence signature.
Some experimental results on a set of benchmarks are shown
in Section V. Finally, we give a brief conclusion.

11. BINARY DECISION DIAGRAMS AND BOOLEAN MATCHING
In this section, we first review OBDD’s and the Boolean

matching problem. Then we correlate Boolean matching to
structural equivalence of OBDD’s.

The OBDD of a function f constructed by some variable
ordering is denoted as B D D f . Fig. 1 shows a B D D f of
f = 2122x3 using the variable ordering 2 1 < x2 < 23. In this
figure, a rectangle denotes a terminal node with logical value, a

0278-0070/96$05.00 0 1996 IEEE

1250 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 10, OCTOBER 1996

Fig. 1. BDDf using ordering z1 < z2 < z3

circle denotes a nonterminal node labeled by a variable index,
and two children are indicated by branches labeled 0 and 1.

Definition 2.1 (Structural Equivalence): Two OBDD's,
B D D f and BDDg, have structural equivalence if 1) they
are graph isomorphism, 2) labels of nonterminal nodes of
two graphs have one-to-one correspondence, and 3) for all
nonterminal nodes with the same index, all corresponding
branches have the same values or all corresponding branches
have complemented values. It is denoted as B D D f c
BDDg.

lows. Given two functions f (X) and g(Y) , where X =

assignment function $ which maps x, to a unique y3(1J3)
for each variable LC, E X such that g (Y) = f ($ (X)) (or

Boolean matching of two functions can be viewed as
searching structural equivalence of OBDD's. Consider two
matched functions f (X) , g(Y) and an assignment function
$, where y3 (or y3) = $(x,) for 2, E X and yj E Y.
The effect of z, on f (or f) is the same as the effect y3
(or j j 3) on g. Assign xz and y3 the same order index will
result in structural equivalence OBDD' s. Therefore, we have
the following observation.

Observation 2.1: Let f (X) and g(Y) be two matched func-
tions and g(Y) = f (+ (X)) (or f ($ (X)) . Suppose B D D f and
BDDg are constructed by ordering Q and p, respectively. If
/3 = $(a) then B D D f

The Boolean matching problem can be stated as fo

{xO,~l , - ,x"- l} and Y = (Y O , Y l , " . , Y n - l) , find an

f (+(XI).
-

BDDg.
We give an example to illustrate this observation.
Example 2.1: Consider two matched functions f (X) =

z0+%x2 and g(Y) = VoV1 +&U2, where g(Y) = f ($ (X) $
and $(Q) = y 1 , $ (~ 1) = V2 and $(x2) = yo. The B D D
with ordering Q = xo <XI < 2 2 and BDDg with orderings
yo < y1 < y2 are shown in Fig. 2(a) and (b), respectively. By
Observation 2.1, we transform initial BDDg to the other
one using the ordering $(a) = y1 < y2 < yo. The resultant
OBDD is shown in Fig. 2(c) which is isomorphic to B D D f
(B D D f F BDDg).

Based on Observation 2.1, the matching of g to f can
be viewed as transforming BDDg with different variable
orderings until B D D f BDDg or failure is reported. A
straightforward method for solving this problem is to enu-
merate all possible BDDg using different variable orderings.
Obviously, this exhaustive search is not feasible because it
needs 2" x n! x 2 permutations, where n is the number of

n n

1 0

(a) (b) (C)

Fig. 2. Structure equivalence of B D D f of (a) and BDDg of (c). (a)
B D D f with input ordering of xo < z i < 2 2 . (b) BDDg with input
ordering of go < y~ < gz. (c) B D D g with input ordering of grl < yz < yo.

inputs. Instead, we propose a signature based algorithm for
this transformation.

111. COFACTOR AND EQUIVALENCE SIGNATURES

Many types of signatures have been proposed to speed
up Boolean matching [9], [12], [15], [16]. These signatures
were used to quickly distinguish inputs of Boolean functions.
Based on communication complexity, we also propose two
types of signatures which are general forms of many existing
signatures. We first describe communication complexity of
Boolean functions and show how to use OBDD's in computing
communication complexity. Then we define two signatures -
cofactor and equivalence signatures based on communication
complexity. Some properties of these signatures are then
presented.

A. The Communication Complexity of Boolean Functions
For a function f (X) and its input set X , o n s i z e (f) is the

size of on-set, B X is the Boolean space spanned by X , and a
partition of the input set X is to partition X into two disjoint
sets X I and X , which is denoted as 7r = (Xl, X r) .

Definition 3.1 (Communication Complexity): Given a func-
tion f (X) and a partition 7r = (X l , X T) , the Boolean space
B X 1 can be divided into many equivalence classes so that
f (m l , X T) = f (m ,2 ,Xr) for any two elements rnl,m2 in
the same class. The number of equivalence classes is the
communication complexity of the function f with respect to
the partition T .

Given a function f (X) and an input partition 7r = (X L , Xr),
the communication complexity can be computed by counting
the number of distinct row patterns in the communication
matrix (essentially a truth table) obtained with respect to
the input partition T . For example, consider the function
f (X) = ~ 2 E 3 + Eo2122 and a partition 7r = ({ X , =
{x0 ,x1} ,XT = {z2,x3}) . Its communication matrix with
respect to 7r is shown in Fig. 3(a). In this matrix, there
are two equivalence classes El = 20 + E l , E2 = zozl
which correspond to row patterns A = 0 - 0-1 - 0 and
B = 0 - 0-1-1, respectively. Using communication matrix
to compute communication complexity is impractical since it
needs to enumerate all 21x11 rows and check their equivalences,

WANG er al.: EXPLOITING COMMUNICATION COMPLEXITY 1251

-
a

XT

Fig. 3. An example of f = c2r3 + - C O Z ~ Z ~ w.r.t. 7r = ({zo,z~},
{ .r:!, . r 3 }) . (a) Communication matrix. (b) OBDD’s with input ordering of
“0 < c1 < d’2 < z3.

where lXll is the number of variables in X I . Instead, we
propose to use OBDD to compute communication complexity.

Given a Boolean function f (X) and a partition T =
(X l , X,). Let a be a variable ordering which is constructed
by the simple ordering rule: all inputs in X I are ordered
before all inputs in X,. Then the number of nodes direct
below X I [5] in B D D f constructed by ordering a is the
communication complexity. Consider the same function f and
the partition T in Fig. 3(a). The B D D f constructed by variable
ordering 2 0 < x1 < 2 2 < 2 3 is shown in Fig. 3(b). It has two
nodes direct below X l . The sub-OBDD’s rooted at a and b
correspond to pattens A and B in the communication matrix,
respectively.

B. Definitions of the Signatures

Definition 3.2 (Cofactor of Equivalence Class): Given
a function f (X) and a partition T = (X l , X ,) . Let
E l , E2 . ’ . E, be the equivalence classes of f with respect
to T . f E , = f (X , = E;, X,) is defined as the cofactor of
E;. That is, fE, = f (X , = E,, X T) is the result of partially

Example 3.1: Consider the function f (X) =
X Z Z : ~ + Z O X I X Z shown in Fig. 3 and partition T = (X l =
{xo, xl}, X , = {xz, x3}). The cofactor of equivalence class

We now define communication set.
Dejinition 3.3 (Communication Set): Given a function

f (X) and a partition 7r = (X l , X ,) . Let E1,Ez , . . . ,Em
be the equivalent classes of f with respect to T . CS,f =
{ (E i , c f i) l c f i = fE, (cofactor of Ei) for i = 1 to m) } is
defined as the communication set of f with respect to the
partition T .

The cardinality of communication set is identical to the
communication complexity. Each element in CS,f consists
of two parts. The first component represents an equivalence
class Ei and is a function of X l . The second represents the
corresponding cofactor c f ; and is a function of X,.

Example 3.2: Consider the function f (X) shown in Fig. 3
and partition 7r = (X , = { Z O , X ~ } , X ~ = (~2~x3)). The
communication set is CS,f = { (E l , c f l) , (E2 , c f i) } where

evaluating f for X I = Ei.

El is f~~ = ~ 2 Z 3 , where El = 20 + 371.

Fig. 4. Two OBBD’s for (a) C O F S I G $ s and (b) E Q L T S I G $ s

E1 = 20 +?El, E2 = 370x1, c f l = 22373 and c f 2 = xz(cf1 and
c f 2 are the sub-OBDD’s rooted at a and b, respectively). n

Based on the definition of communication set, we define
cofactor and equivalence signatures.

Definition 3.4 (Cofactor Signature): Given a function
f (X) and a subset X , c X , the cofactor signature of f
with respect to X, is defined as:

C O F S I G $ ~ = {(onsize(cf,), E,)I(E,, cfi) E C S , ~ } (1)

where T = (X,, X - X,).
Dejinition 3.5 (Equivalence Signature): Given a function

f (X) and a subset X, c X, the equivalence signature of J’
with respect to X, is defined as

EQUSIG$~ = {(onsize(E,), cf,)l(~,, cf,) E C S , ~ } (2)

where T = (X - X , , X9). II

For a given subset X,,COFSIG$s is a signature to
characterize X , when X, is ordered on the top part of an
OBDD while EQUSIGis is a signature when X, is ordered
at the bottom part. Fig. 4(a) and (b) shows the OBDD’s
for computing COFSIG$$ and EQUSIGC;, respectively,
where in Fig. 4(a) X , is ordered first and in Fig. 4(b) the last.

By examining the communication matrix partitioned with
respect to T = (X,, X - X ,) as shown in Fig. 3, C O F S I G i A
is computed considering row pattern. The number of row pat-
terns is the number of communication complexity with respect
to 7r = (X, , X - X,) . For each element (onsize(cf ,) , E,) in
COFSIG$s , the first component is the number of 1’s in a row
pattern, and the second component is the expression for the
row indexes which have the corresponding row pattern. On the
contrary, if on the same communication matrix, E Q U S I G i s
is computed considering column pattern. The number of
column patterns is the number of communication complexity
with respect to the partition T = (X - X,, X,). For each
element (onsize(&), cfi) in EQUSIG$*, the first component
is the number of column indexes which have the same column
pattern, and the second component is the expression for the
corresponding column pattern.

Example 3.3: For the function f (X) and par-
tition T of Example 3.2 as shown in Fig. 3,
C O F S I G i t = ((1 , ~ +??I), (2,TOxl)} and EQUSIG$I ==
{ (2 ,0) , (1,1), (1 , ~ o x d) . n

Various existing signatures are special cases of cofactor
and equivalence signatures. When IX,1 = 1, COFSIG5s is
a syndrome signature [15] or a cofactor signature [16], and

1252 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. i s , NO. IO, OCTOBER 1996

(4 (b)

Fig. 5. (a) OBDD’s o f f and (b) OBDD’s o f g

E Q U S I G i is the partner pattern [15] or single fault prop-
agation weight signature [12]. When lX , / = 2,COFSIGGS
is the cross signature [9].

C. Properties of the Signatures

In this section, we present some properties of cofactor
and equivalence signatures. These properties are used in our
Boolean matching algorithm. First, we define the equivalence
of two signatures.

Definition 3.6: Two (cofactor or equivalence) signa-
tures 5’1 = { (n t , f i (X)) l i = 1,2 , . . . ,ml} and 5’2 =
{ (n31g j (Y)) / j = 1,2; . . ,m2} are equivalent if and only
if

1) ml = m2, and
2) there exists an assignment $ to see that each element

(nt , f i (X)) E S1 corresponds to a unique element
(n ;]g j (Y)) E S2 where n,’ = rLJ” and g j (Y)
f i (d4X)) (or 7 i ($ (X))) .

This equivalence relation is denoted as S1 5’2.

Before we present Theorem 3.1, we first have Observation
3.1.

Obsewation3.1: Let CS,f = { (E l , c f l) , (E 2 , c f 2) , . . . ,

(E,, c f m) } be the communication set of f (X) with respect
to - a partition T = (X l , X r) . If g(Y) = f($(Xj) (or
f(li/(x))> and T’ = (8 = $(Xz),K = NK)), then
CS:, can be obtained from CS,f by applying $ to each
element of CS;. That is, CS;, = {(E;($I(XI)),~~,($(X,))
(or ~fi($Jf(X~))))li = 1 , 2 , . . . , m}.

g(Y) = f ($ (X)) , where $(XO) = V l , $(Q) = Yo, $ (X 2) =

({zo ,z1 t , {xa ,x3}) of X , C S , f = { (E l , C f l) , (E2,cf2)},

E: = E l ($ (&)) = Yo + & , E ; = E2($(Xl)) =

We give an example to illustrate this observation.
Example 3.4: Consider two matched functions f (X) and

y3, and $ (5 3) = ?j2. The OBDD’s of f and g are shown
in Fig. 5(a) and (b), respectively. Given the partition 7r =

where El = xo + 2 1 , EL) = 20x1, c f l = X2z3, and cf2 = x2.
By Observation 3.1, CS:, = { (E : , cgl), (E ; , cgz)}, where

Y o Y l > c g l = c f l ($ (X r)) = y2Y31 and cg2 = cf l ($(X~)) =
Y3.

Based on Observation 3.1, Theorem 3.1 is presented.

(a) TT, v;Fl
nt na - . . . 1 .. . cf? 4 Ej” . 0 . . . 1 . . .

E: .
(b)

Fig. 6.
ml # 7712. (h) For the Case E : (@ (X I)) # E?(X ,) and nt # n:.

The communication matrices o f f w.r.t XI and X z . (a) For the Case

Theorem 3.1: Two matched functions f (X) and g(Y) ,
where g(Y) = f (? L (X)) (or f ($ J (X))) . If Y, = $ (X s) for
any subset X , C XI then

1) COFSIG$* C O F S I G $ ~ .
2) E Q U S I G S , ~ = E Q U S I G G ~ .

Proofi Using the procedure implied in Observation 3.1,
we can obtain C S ~ x 8 , x - x s l and CqYs ,Y -Y$) for any subset

Theorem 3.1 states the necessary condition for two functions
to be matched.

Theorem 3.2: Given a functions f (X) . Let X1 and Xz be
any two subsets of X . If EQUSIGS1 = EQUSIG$, then

Pro08 We will prove this theorem using communication
matrix. Recall that with respect to a given partition
T = (X s ! X - X,) ! the row patterns and the column
patterns of the same matrix are used to compute COFSIGCs
and EQUSIG$8 , respectively. Let the matrices partitioned
with respect to ?r = (X I , X - X I) and n’ = (X L) , X - X L)) be
M I and M2, and C O F S I G i I = {(ni,Ei(X1))li =
1 , 2 , . . . , m l } , C O F S I G f , 2 = {(nj”,E;(X2))1.j =
I , 2 , ’ . . , m2}. Suppose that COFSIG$l 9 COFSIG$2.
The inequality occurs when either the size of the sets are not
the same or the elements in the sets are different.

X , C: X . This theorem follows obviously.

C O F S I G ~ ~ = C O F S I G ~ ? .

Case 1: ml # m2

W.l.o.g., we let rnl < m2. There must exist two elements
x,, X b E X I in the same equivalence class and $(za) , $(Q) E
Xz belong to different classes for any assignment $. Since
~ , , x b E X1 are in the same equivalence class, f (z a , X -
XI) = f (x 6 , X - X I) . Entries of the two rows are the
same as shown in the left matrix of Fig. 6(a). However, since
$(xa) ,$ (xb) E Xz are in different equivalence classes and
thus they have different row patterns, there must exist an entry
of rows where the values of $ J (r c a) and $(zb) are different.
The right matrix of Fig. 6(a) shows the case. Now consider
the column pattern to compute the equivalence signature. In
the left matrix, the entries corresponding to the row index
x, and 26 of all columns will be the same whereas in the

WANG er al.: EXPLOITING CONIMUNICATION COMPLEXITY 1253

f

3 3

2 2

1 1

Fig. 7. A counter-cxample for Property 3.2.

right matrix, there exists at least one column where the entries
corresponding to the row index $(za) and Q(x6) are different.
Therefore, these two matrices will not have the same column
patterns and EQUSIG5, $ E Q U S I G i ? . Contradict to our
assumption.

Case 2: For any assignment function $, there exists at least
one element where (.:,Et) # (n: ,$(E;)) .

Two cases for this inequality:
case i: E:($(X1)) # E:(X,).
The same argument in Case 1 can be applied.
case ii: Suppose that Et($(X1)) = E;(X,) and ni # n:.
This implies that the number of 1’s in the row whose row

index is expression Et in M I is different from that of the row
whose row index is E: in M2. Fig. 6(b) shows the matrices,
where columns which have 1’s at the entry with row index Et
or E;, are moved to the right side. The number of columns
which have 1’s in entries .with row index Et is different
from that of columns which have 1’s in entries with row
index E;. There must exist at least one element (N: , e f t) E

EQUSIG$l and one element (N:,cf:) E EQUSIG$,
where N,’ # N;. Therefore, EQUSIGi l $ E Q U S I G i Z .
Contradict to our assumption.

Therefore, C O F S I G i l = C O F S I G i 2 .
The converse of this theorem is not true. We show a counter-

example in the following.
Example 3.5: Consider f (X) and g(Y) shown in Fig. 7.

Let X1 = {x1,22} and U; = {yI,y2}. COFSIGG1 =
((3,El = :1:2),(2,E2 = z l) , (l , E g = 5 1 ~ ~)) and
COFSIGC1 = ((3 , ~ = y1g2),(2,e2 = yl),(l,e3 =
Y1y2)}. We have COFSIGC1 = COFSIGG1, where
21, x2,23, and 2 4 map to y1, y2, y3, and y4, respectively.
However, E Q U S I G i , = ((1, h l) , (2, hz) , (1, hs)} and
EQUSIGFl = ((1, h l) , (1, hz) , (1, h4), (1, h)}. Therefore,

-

E Q U S I G ~ , $ EQUSIGG~.
Theorem 3.2 says that any two subsets of variables dis-

tinguished by cofactor signatures can be distinguished by
equivalence signatures. Therefore, our matching algorithm
will be based on equivalence signature rather than cofactor
signature.

Theorem 3.3: Given a functions f (X) , a subset X1 c X
and X2 c X, where X2 = $(XI). If EQUSIG5,
E Q U S I G i Z , then for every subset X,1 c XI and Xs2 C X2

where Xs2 = q5(Xs1), EQUSIG$sI = EQUSIG$s2.
Proofi Let (n , c f ’) and (n, c f 2) be two equivalent el-

ements, where (n , c f l) E EQUSIGG1 and (n , c f2) E

C f

(a) (b)

Fig. 8. The communication matrices of f (a) w.r.t K = (XI, X - XI) and
(b) K‘ = (XI - { z a) , X - XI + { z a)) .

EQUSIG$2. Suppose that XS1 = XI - {x:.}. Fig. 8(a) and
(b) show the communication matrices partitioned with respect

respectively. The new columns at the right matrix are obtained
by partitioning the old column at the left with respect to
za = 0 and x, = 1. Similarly, for any subset X , l , c fZ
can be partitioned into 21x1pxs11 new subcolumns where
each subcolumn corresponds to a cofactor with respect to a
minterm in XI - X,I. The same partition can be applied to
c f2 with respect to a minterm in X2 - Xs2. Since cf’
c f 2 , the partitioned results are also the same. Therefore,
E Q U S I G i s I = EQUSIG$3Z. The theorem follows.

Based on Theorem 3.3, for a subset X , C X matched to a
subset Y, C Y, the larger the subset X, is taken to compute
the equivalence signature, the more efficient it is to match the
remaining unmatched inputs.

to T = (Xi , X - XI) and T’ = (XI - { x a } , X - X1 U {z:.}),

IV. THE MATCHING ALGORITHM

Based on Theorem 3.1, 3.2, and 3.3, we develop a trans-
formation based matching algorithm. By Theorem 3.2, any
two subsets of variables distinguished by cofactor signature
can be distinguished by equivalence signature. Therefore,
equivalence signature rather than cofactor signature is used
in our algorithm. Given two functions f and g, the algorithm
transforms the structure of BDDg to that of B D D f .

Initially, for each input of f we first compute the candidate
variables for matching. The candidate set is obtained using
the equivalence signature for IX,I 1 and then IX,I = 2.
Let f (X) and g(Y) be two functions to be matched. Based on
equivalence signature, we distinguish inputs of X into many
groups XI, X2, . . . , X,, where the signatures of variables
in the same group are equivalent. Then, the same process
is applied to g so that Y is also partitioned into groups
Yl, Y2, . . . , Y,. If X i and Y; have the same signature, Yi is
the candidate set for matching the variables in X ; .

Now we use an example to explain the candidate
set generation in more detail. Consider the function

We first compute EQUSIG:zzl for each x; E X .
The communication matrices with respect to inputs
x1,22,23,24 are shown in Fig. 9(a). EQUSIG{zll =

((1, fi), (7, f2)),EQUSIG:z2) = EQUSIGiz3) -

EQUSIG{z4) = ((3 , f o) , (1, f i) , (1, f i) , (3 , f 3)) , where
f o = 0, f l = s ; , f 2 = z;, and f3 = 1. Thus,
input z1 can be distinguished from x2,23,24. Now

f(zI,x2,x3,24) = xlx2 + 21x3 + 21-4 + zlT273x4.

-

1254 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 10, OCTOBER 1996

001 1 ig 111 101

100

001
011
010

110 1 1 110
111 1 1 111
101 101 7i 100 1 1 100

(4

X

(b)

(a) For X , = {XI} , { z 2 } , { ~ 3 } , (~ 4) . (b) For X s = {z4,.Tl},
Fig. 9. The communication matrices of f w.r.t. 71 = (X - X , , X s) .

{ Z Z , Zl }, { Z3, Zl}.

we compute signatures for /X,I = 2 and x1 E X,.
The communication matrices with respect to the sets
{z2,z1},{x3,z1} and {x4,z1} are shown in Fig. 9(b).
We obtain EQUSIG:z4,zI, = ((3 , c f i) , (1, c f i) } and

Together, these two signatures distinguish input x4 from
~ 2 ~ x 3 . Therefore, we partition inputs to three sets (x1}, {x4},

If we continue increasing the size of X,, we would be
able to distinguish all variables of X. The same procedure
can then be applied to the other target function. However,
it is inefficient in that the signature computations have to
be performed twice for both target functions. Instead, after
generating and matching candidate sets X, and Y, of f (X)
and g(Y), we proceed to transform the OBDD structure of g
to that of f bottom up.

We first construct B D D f and BDDg using the ordering
where the indistinguishable inputs are ordered before dis-
tinguishable ones. This ordering rule follows Theorem 3.3
where putting distinguishable inputs as many as possible on
the bottom of BDD will fasten the distinction of unmatched
inputs. Also note matching is possible only between x, of X,
and y, of Y,, where Y, is the candidate set of X,. Therefore,
variables with the same signature using IX, 1 = 1 and IX, I = 2
are grouped together on OBDD and their candidate sets are
given corresponding order indexes. Fig. 10 shows the initial
ordering of B D D f and BDDg.

Now, the variable ordering of B D D f is held fixed, we
transform BDDg with different orderings until B D D f --
BDDg or failure is reported. The transformation process
on BDDg starts with the first candidate set of indistin-
guishable inputs bottom up. Let X d and Y d be the sets of
distinguishable inputs which are ordered at the bottom of
B D D f and BDDg, and xo < X I < . . . < xm be the ordering
of the indistinguishable variables in X. Let x, in Xlbe the

E Q ~ s I G { ~ ~ , ~ ~) = E Q U S I G [~ ~ , ~ ~ } = { (3 , c f 1) , (~ 3)) .

and (xZ,x3}.

B D D ~ B D D g
matched groups

Fig. 10. The Transformed BDDI and BDDg.

inputs

next variable to be matched. Initially, i is set to m. For
the candidate set I’ll we compute EQUSIG$dU(yj for each
y j E x. If there is no equivalence signature, failure of

E Q U S I G i d U { x t l , then x; is matched to yj . If there are more
than one equivalence signatures, we select an arbitrary one
for matching. More than one equivalence signatures happens
when variables are symmetric or they are indistinguishable
using equivalence signatures. For the former case, arbitrarily
selecting one variable for matching is always correct since
these variables are symmetric. For the latter case backtrack
may be required.

After matching one variable, y j to z;, we set Xd = X d U

{xi}, Y d = Y d U { gj } , and z is decreased by one. The procedure
continues until all variables in the candidate set are matched.
If the candidate set can not be matched and there are backtrack
points, then the procedure backtracks to the nearest point and
restarts the matching procedure. Note that backtrack may occur
only within each candidate set. Candidate sets are matched one
by one bottom up until all variables are processed. Fig. 11
shows the matching algorithm. The inputs to this algorithm
are two functions f (X) , g(Y) (B D D f , BDDg). It returns
Success if f and g are matched; otherwise returns Failure.
The sizes of on-sets of f and g (and 3) is checked at the
beginning of the procedure to prune unmatched functions first.
The transpositional operator [171 which restructures OBDD
with different ordering is used in transforming BDD.

The time complexity of our algorithm mainly consists of
three parts. The first part is the complexity of generating
candidates sets. A procedure based on transpositional operator
which takes time complexity O (p 2) [17], where p is the size of
OBDD, is used in computing equivalence signatures. The total
time complexity of this part is O (n x (p 2 + q 2)) , where n , p , q
are the number of inputs, the sizes of B D D f and BDDY,
respectively. The second part is to construct B D D f and
BDDg using a constrained ordering. It takes O (n x (p 2 + q 2)) .
The last part is the time for transformation of BDDg. The
worst number of transformations is E:==, \ X i \ ! , where IC is the
number of candidates sets whose size is greater than 1. For
each transformation, transpositional operator [171 is applied.
Summing up these three parts, the complexity of our algorithm
is O (n x (p 2 + q 2) + (Et==, IXil!) x q2) . In fact, from the
experiments, we find that inputs can be distinguished after the
candidate set is generated for most cases. Therefore, the time
complexity is O (n x (p2 + q2)) in practice.

- matching is reported. If there is a unique EQUSIG$d,{y/Jl - -

WANG et al.: EXPLOITING COMMUNICATION COMPLEXITY 1255

Algorithm Boolean-Matching(J (X) , g (Y))
Input: f (X) , X = {Z~,X~,....Z.-~);

Output: return Success if J and g are matched; othrrwise, rcturn Pailwe;
Begin

g(V, = {lo,Yl,~~~,l/n-l);

if (o n s i z e (f) # y s i r e (g (g))) then

endif
Goimate candidate sets for variables in X;
Let Xd and Yd be the sets of distingiiishable inputs;
Construct BDD' and BUD'; /* Push down the distinguishable inputs */
2 = m;
while (i 5 m) and (1 2 0) do
next:

return Failure;

choose an unmarked input y, E 8. where 2; t Xr;
if (no such an input exists) then

unmark unmatched inputs;
i = i + l ; /* Backtracking */
if (backtract to other group) then

endif;

mask y,;
if (E Q U S I G i d u , , , 5 EQUSIG",,,,,,) then

return Failure;

else

X d = , y d u { X ,) ;
yd = ydu {Y j) ;
; = ; - I ;

got0 nert;

J* Next level matching '/

J* Choose next input i n 8 */
else

endic
endif;

endwhile;
return Success;

End

Fig. 11. The Boolean-Matching Algorithm.

TABLE I
EXPERIMENTAL REsum FOR BOOLEAN MATCHING

V. EXPERIMENTAL RESULTS

The proposed Boolean matching algorithm has been im-
plemented in C language on SUN Sparcstation IPC (a 15.7
mips machine). To demonstrate the efficiency of our algorithm,
circuits from MCNC benchmark set have been tested. Two
circuits, act1 and act2, of actell and actel2 cells from FPGA

TABLE I1
THE COMPARISON RESULTS

act2
I \ . . . I I I , \ . . . I I

c m l 5 l a I (3,3,3) I 0.7 11 (3,3,3) 1 0.6
cordic I 0 I 42.8 11 (2,2) 32.2

term1
VC2 8.9 16.1

manufacturer Actel were also included in the test set. For each
circuit, we first constructed two OBDD's. The second OBDD
was generated from the first one by permuting and renaming
its input variables. Then we applied our matching algorithm
to transform the second OBDD until these two OBDD's are
matched.

Table I shows the experimental results. The columns with
labels #in and #out show the numbers of inputs and outputs of
circuits, respectively. The column IX;I = 1 refers the number
of inputs which could be distinguished from the other inputs.
The column labeled IX;l > 1 refers the sizes of candidate sets
whose sizes are greater than 1 when equivalence signature
for IX,I = 1 and IX,I = 2 are used. The coluqm #error
shows the number of variables which were incorrectly matched
during the matching process. The columns matching-CPU and
BDD-const.-CPU show the running time of our matching
algorithm and OBDD' s construction time, respectively. The
CPU time is measured in seconds by using time command of
MIS [18]. The table shows that all inputs of 26 circuits could be

1256 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 10, OCTOBER 1996

distinguished using signatures only. Candidate-set size of only
4 circuits is bigger than 1. We also find that number of error
variable selections during the matching process is very small.
The reason is that when the inputs are not distinguishable, it
often involves many legal assignments. For example, cml50a
(cml5la) has 4! = 24(3! = 6) legal assignments since it is
a 16 to 1 (8 to 1) multiplexer. Our algorithm is designed to
choose any assignment. The running time of our matching
algorithm is also short. In many cases, we have a very
small amount CPU time compared to the construction time
of OBDD’s.

In [16], cofactor and breakup signatures were proposed
to distinguish inputs. We compare our results with the results
shown in [16]. Table I1 shows the comparison results. The
column labeled in. inputs refers the sizes of indistinguishable
inputs. This table shows our algorithm can distinguish all
inputs of 6 circuits out of 9 circuits of which inputs were not
all distinguished by [16]. The CPU time of [16] is measured
in seconds on a SUN Sparcstation SLC (a 18 mips machine).

VI. CONCLUSION
We have proposed a signature based Boolean matching

algorithm. It transforms OBDD’ s using different orderings
until two target OBDD’s have the same structure or failure
is reported. Equivalence and cofactor signatures which are
general forms of many existing signatures are presented to
speed up this transformation process. Experimental results on
a set of benchmarks show that our algorithm is indeed very
effective in Boolean matching problem.

REFERENCES

S. Muroga, Threshold Logic and its Applications. New York: Wiley-
Inlersci., 1971.
K. A. Bartlett, R. K. Brayton et al., “Multilevel logic minimization using
implicit don’t cares,” IEEE Trans. Computer-Aided Design, vol. 7, pp.
723-740, June 1988.
K. Keutzer, “DAGON: Technology binding and local optimization by
DAG matching,” in Proc. DAC24, June 1987, pp. 341-347,
R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. Comput., vol. C-35, pp. 677-691, Aug. 1986.
C. L. Berman, “Circuit width, register allocation, and ordered binary
decision diagrams,” IEEE Trans. Computer-Aided-Design, vol. 10, pp.
1059-1066, Aug. 1991.
F. Mailhot and C. De Micheli, “Technology mapping using boolean
matching and don’t care sets,” in Proc. EDAC’90, 1990, pp. 212-216.
H. Savoj, M. J. Silva, R. K. Brayton, and A. Sangiovanni-Vincentelli,
“Boolean matching in logic synthesis,” in Proc. Euro-DAC’92, 1992,
pp. 168-174.
K.-C. Chen, “Boolean matching based on Boolean unification,” in Proc.
Euro-DAC’93, 1993, pp. 34G351.
U. Schlichtmann, F. Brgkexz, and P. Schneider, “Efficient Boolean
matching based on unique variable ordering,” in IWLS’93.
J. R. Bruch, and D. Long, “Efficient Boolean function matching,” in
Proc. ICCAD’92, 1992, pp. 408411.

K. Zhu. and D. F. Wong, “Fast Boolean matching for field programmable
gate arrays,” in Proc. Euro-DAC’93, 1993, pp, 352-357.
U. Schlichtmann, F. Brglez, and M. Hermann, “Characterization of
Boolean functions for rapid matching in EPGA technology mapping,”
in Proc DAC’92, 1992, pp. 374-379.
Y. T. Li, S. Sarma, and P. Massoud, “Boolean matching using binary
decision diagrams with applications to logic synthesis and verification,”
in Proc. ICCD’92, 1992, pp. 452458.
Y. Matsunaga, “A new algorithm for Boolean matching utilizing struc-
tural information,” in SASIMI’93, 1993, pp. 366-373.
D. I. Chen and M. Marek-Sadowska, “Verifing equivalence of functions
with unknown input correspondence,” in Proc. EDAC’93, 1993, pp.
81-85.
J. Mohnke, and S. Malik, “Permutation and phase independent Boolean
comparison,” in Proc. EDAC’93, 1993, pp. 86-92.
K. H. Wang, T.-T. Hwang, and C. Chen, “Restructuring binary decision
diagrams based on functional equivalence,” in Proc. EDAC’93, Feb.
1993, pp. 261-265.
R. K. Brayton ef al., “MIS: A multiple-level logic optimization system,”
IEEE Trans. Computer-Aided Design, vol. CAD-6, pp. 1062-1081, Nov.
1987.

Kuo-Hua Wang received the Ph.D. degree from the
Institute of Computer Science and Information Engi-
neering, National Chiao Tung University, HsinChu,
Taiwan, in 1994.

His current research interests include logic syn
thesis and optimization, logic verification, and high-
level synthesis

TingTing Hwang (M’90) for a photograph and biography, see this issue, p.
1236.

Cheng Chen received the M S. degree from the
Institute of Electronics, National Chiao Tung Uni
versity (NCTU), Taiwan, R.O.C. in 1971.

Currently he is a Professor with the Institute
of Computer Science and Information Engineenng,
NCTU. From 1972 to 1977, he was an instructor
with the Department of Computer Science, NCTU
and from 1977 to 1981, he was an Associate Profes
sor with the Department of Computer Engineering.
During the academic year 1980, he was a visiting
scholar with the University of Illinois at Urbana-

Champaign He then became full professor with the Department of Computer
Engineering from 1981 untll the present From 1987 to 1988, he was the
Chairman of the Department of Computer Engineering, NCTU During the
academic year 1988, he was a Visiting Scholar at Carnegie Mellon University,
Pittsburgh, PA. Currently, he is also the Deputy Director of Microelectronic
and Information System Research Center, NCTU His research interests
include computer architecture, parallel processing, compiling techniques for
RISC and superscalar systems, high performance inference machines

Professor Chen is a member of the IEEE Computer Society

