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Exploiting Communication Complexity 
for Boolean Matching 

Kuo-Hua Wang, TingTing Hwang, Member, ZEEE, and Cheng Chen 

Abstract- Boolean matching is to check the equivalence of 
two functions under input permutation and inputloutput phase 
assignment. A straightforward implementation takes time com- 
plexity O(n!2”2), where n is the number of variables. Various 
signatures of variables were used to prune impossible permu- 
tations by many researchers. In this paper, based on commu- 
nication complexity, we also propose two signatures, cofactor 
and equivalence signatures, which are general forms of many 
existing signatures. These signatures are used to develop an 
efficient Boolean matching algorithm which is based on checking 
structural equivalence of OBDD’s. Experimental results on a set 
of benchmarks show that our algorithm is indeed very effective 
in solving Boolean matching problem. 

I. INTRODUCTION 

OOLEAN MATCHING is to check the equivalence of B two functions under input permutation and inputloutput 
phase assignment (so called NPN-class 111). It has been 
widely used in technology mapping recently 161-[ 121. Apply- 
ing Boolean matching in technology mapping can improve 
the quality of mapped circuits and increase the mapping 
flexibility since it exploits implicit don’t cares [2] which 
was not considered in traditional tree covering algorithm [3]. 
Moreover, it is able to shorten the mapping time when using a 
library containing complex gates with large input size. Boolean 
matching is also applied in logic verification, e.g., checking the 
equivalence of two circuits, and verifying the implementation 
of a specification. 

Various methods for Boolean matching were proposed 
[6]-[16]. Mailhot et al. 861 are among the first ones to apply 
Boolean matching to technology mapping. They proposed 
an algorithm using tautology checking based on Shannon 
decompositions. Symmetry and unateness properties were 
used to speed up the matching algorithm. Don’t cares were 
considered by a lattice-based method. Savoj et al. 171 used 
smoothing and consensus operators to solve Boolean matching 
problem. Symmetry of variables was utilized to expedite the 
matching process. The techniques presented in [lo] were based 
on computing canonical forms of functions. If two functions 
have the same canonical form then they are matched. Boolean 
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unification and branch-and-bound techniques were adopted 
in 181. The matching between two functions was checked by 
finding the most general unijier (mgu). 

Yet, another group of researchers take “signature” ap- 
proach to solve Boolean matching. Various signatures [9], 1121, 
1151, 1161 were defined to characterize the input variables of 
Boolean functions, where variables with different signatures 
can be distinguished from each other and many infeasi- 
ble permutations can be pruned. The structure of Ordered 
Binary Decision Diagrams (OBDD’s) [4] was also utilized 
for Boolean matching [ l l ] ,  [13], [14]. In [ll],  OBDD’s 
were represented by character strings. The matching between 
OBDD’s was checked by comparing their character string 
representations. In [ 131 and [ 141, Boolean matching was 
designed to transform one OBDD with different orderings until 
OBDD’s of two Boolean functions are graph isomorphism 
(structural equivalence) or failure is reported. 

In [13], the subgraphs of OBDD’s were matched in a top- 
down manner (from root to terminal nodes) while in 1141, in 
a bottom-up manner. Using OBDD structure, many infeasible 
permutations which cannot be identified by signatures can be 
pruned during the transformation process. 

In this paper, we propose a Boolean matching algorithm 
combining the signature techniques and the transformation 
method. Our method is similar to that of 1141. However, 
in 1141 only minterms count is used to select variables for 
transformation during matching process. Our algorithm is 
based on a more descriptive signatures. It can quickly prune 
a large number of infeasible matchings. 

The remaining of this paper is organized as follows. In 
Section 11, we define structural equivalence of OBDD’s and 
correlate it to Boolean matching problem. Two signatures, co- 
factor and equivalence, based on communication complexity of 
Boolean functions are proposed in Section 111. Some properties 
of these signatures are also given. In Section IV, we present a 
Boolean matching algorithm based on equivalence signature. 
Some experimental results on a set of benchmarks are shown 
in Section V. Finally, we give a brief conclusion. 

11. BINARY DECISION DIAGRAMS AND BOOLEAN MATCHING 
In this section, we first review OBDD’s and the Boolean 

matching problem. Then we correlate Boolean matching to 
structural equivalence of OBDD’s. 

The OBDD of a function f constructed by some variable 
ordering is denoted as B D D f .  Fig. 1 shows a B D D f  of 
f = 2122x3 using the variable ordering 2 1  < x2 < 23. In this 
figure, a rectangle denotes a terminal node with logical value, a 
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Fig. 1. BDDf using ordering z1 < z2 < z3 

circle denotes a nonterminal node labeled by a variable index, 
and two children are indicated by branches labeled 0 and 1. 

Definition 2.1 ( Structural Equivalence ): Two OBDD's, 
B D D f  and BDDg, have structural equivalence if 1) they 
are graph isomorphism, 2) labels of nonterminal nodes of 
two graphs have one-to-one correspondence, and 3 )  for all 
nonterminal nodes with the same index, all corresponding 
branches have the same values or all corresponding branches 
have complemented values. It is denoted as B D D f  c 
BDDg. 

lows. Given two functions f ( X )  and g(Y) ,  where X = 

assignment function $ which maps x, to a unique y3(1J3) 
for each variable LC, E X such that g ( Y )  = f ( $ ( X ) )  (or 

Boolean matching of two functions can be viewed as 
searching structural equivalence of OBDD's. Consider two 
matched functions f ( X ) ,  g(Y) and an assignment function 
$, where y3 (or y3) = $(x,) for 2, E X and yj E Y. 
The effect of z, on f (or f )  is the same as the effect y3 
(or j j 3 )  on g. Assign xz and y3 the same order index will 
result in structural equivalence OBDD' s. Therefore, we have 
the following observation. 

Observation 2.1: Let f ( X )  and g(Y) be two matched func- 
tions and g(Y) = f ( + ( X ) )  (or f ( $ ( X ) ) .  Suppose B D D f  and 
BDDg are constructed by ordering Q and p, respectively. If 
/3 = $(a )  then B D D f  

The Boolean matching problem can be stated as fo 

{xO,~l , - ,x"- l}  and Y = ( Y O , Y l , " . , Y n - l ) ,  find an 

f (+(XI). 
- 

BDDg.  
We give an example to illustrate this observation. 
Example 2.1: Consider two matched functions f ( X )  = 

z0+%x2 and g(Y) = VoV1 +&U2,  where g(Y)  = f ( $ ( X ) $  
and $(Q) = y 1 , $ ( ~ 1 )  = V2 and $(x2) = yo. The B D D  
with ordering Q = xo <XI < 2 2  and BDDg with orderings 
yo < y1 < y2 are shown in Fig. 2(a) and (b), respectively. By 
Observation 2.1, we transform initial BDDg to the other 
one using the ordering $(a)  = y1 < y2 < yo. The resultant 
OBDD is shown in Fig. 2(c) which is isomorphic to B D D f  
( B D D f  F BDDg).  

Based on Observation 2.1, the matching of g to f can 
be viewed as transforming BDDg with different variable 
orderings until B D D f  BDDg or failure is reported. A 
straightforward method for solving this problem is to enu- 
merate all possible BDDg using different variable orderings. 
Obviously, this exhaustive search is not feasible because it 
needs 2" x n! x 2 permutations, where n is the number of 

n n 

1 0 

(a) (b) (C) 

Fig. 2. Structure equivalence of B D D f  of (a) and BDDg of (c). (a) 
B D D f  with input ordering of xo < z i  < 2 2 .  (b) BDDg with input 
ordering of go < y~ < gz. (c)  B D D g  with input ordering of grl < yz < yo. 

inputs. Instead, we propose a signature based algorithm for 
this transformation. 

111. COFACTOR AND EQUIVALENCE SIGNATURES 

Many types of signatures have been proposed to speed 
up Boolean matching [9], [12], [15], [16]. These signatures 
were used to quickly distinguish inputs of Boolean functions. 
Based on communication complexity, we also propose two 
types of signatures which are general forms of many existing 
signatures. We first describe communication complexity of 
Boolean functions and show how to use OBDD's in computing 
communication complexity. Then we define two signatures - 
cofactor and equivalence signatures based on communication 
complexity. Some properties of these signatures are then 
presented. 

A. The Communication Complexity of Boolean Functions 
For a function f ( X )  and its input set X ,  o n s i z e ( f )  is the 

size of on-set, B X  is the Boolean space spanned by X ,  and a 
partition of the input set X is to partition X into two disjoint 
sets X I  and X ,  which is denoted as 7r = (Xl, X r ) .  

Definition 3.1 (Communication Complexity): Given a func- 
tion f ( X )  and a partition 7r = ( X l , X T ) ,  the Boolean space 
B X 1  can be divided into many equivalence classes so that 
f ( m l , X T )  = f (m ,2 ,Xr )  for any two elements rnl,m2 in 
the same class. The number of equivalence classes is the 
communication complexity of the function f with respect to 
the partition T .  

Given a function f ( X )  and an input partition 7r = ( X L ,  Xr), 
the communication complexity can be computed by counting 
the number of distinct row patterns in the communication 
matrix (essentially a truth table) obtained with respect to 
the input partition T .  For example, consider the function 
f ( X )  = ~ 2 E 3  + Eo2122 and a partition 7r = ( { X ,  = 
{x0 ,x1} ,XT = {z2,x3}) .  Its communication matrix with 
respect to 7r is shown in Fig. 3(a). In this matrix, there 
are two equivalence classes El = 20 + E l ,  E2 = zozl 
which correspond to row patterns A = 0 - 0-1 - 0 and 
B = 0 - 0-1-1, respectively. Using communication matrix 
to compute communication complexity is impractical since it 
needs to enumerate all 21x11 rows and check their equivalences, 
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- 
a 

XT 

Fig. 3. An example of f = c2r3 + - C O Z ~ Z ~  w.r.t. 7r = ({zo,z~}, 
{ .r:!, . r 3 } ) .  (a) Communication matrix. (b) OBDD’s with input ordering of 
“0 < c1 < d’2 < z3. 

where lXll is the number of variables in X I .  Instead, we 
propose to use OBDD to compute communication complexity. 

Given a Boolean function f ( X )  and a partition T = 
( X l ,  X,). Let a be a variable ordering which is constructed 
by the simple ordering rule: all inputs in X I  are ordered 
before all inputs in X,. Then the number of nodes direct 
below X I  [5]  in B D D f  constructed by ordering a is the 
communication complexity. Consider the same function f and 
the partition T in Fig. 3(a). The B D D f  constructed by variable 
ordering 2 0  < x1 < 2 2  < 2 3  is shown in Fig. 3(b). It has two 
nodes direct below X l .  The sub-OBDD’s rooted at a and b 
correspond to pattens A and B in the communication matrix, 
respectively. 

B. Definitions of the Signatures 

Definition 3.2 (Cofactor of Equivalence Class): Given 
a function f (X) and a partition T = ( X l , X , ) .  Let 
E l ,  E2 . ’ . E,  be the equivalence classes of f with respect 
to T .  f E ,  = f ( X ,  = E;,  X,) is defined as the cofactor of 
E;. That is, fE, = f ( X ,  = E,, X T )  is the result of partially 

Example 3.1: Consider the function f (X) = 
X Z Z : ~  + Z O X I X Z  shown in Fig. 3 and partition T = (X l  = 
{xo, xl}, X ,  = {xz, x3}). The cofactor of equivalence class 

We now define communication set. 
Dejinition 3.3 (Communication Set): Given a function 

f ( X )  and a partition 7r = ( X l , X , ) .  Let E1,Ez , . . . ,Em 
be the equivalent classes of f with respect to T .  CS,f = 
{ ( E i , c f i ) l c f i  = fE, (cofactor of Ei) for i = 1 to m ) }  is 
defined as the communication set of f with respect to the 
partition T .  

The cardinality of communication set is identical to the 
communication complexity. Each element in CS,f consists 
of two parts. The first component represents an equivalence 
class Ei and is a function of X l .  The second represents the 
corresponding cofactor c f ;  and is a function of X,. 

Example 3.2: Consider the function f ( X )  shown in Fig. 3 
and partition 7r = ( X ,  = { Z O , X ~ } , X ~  = (~2~x3)). The 
communication set is CS,f = { ( E l ,  c f l ) ,  (E2 , c f i ) }  where 

evaluating f for X I  = Ei. 

El is f~~ = ~ 2 Z 3 ,  where El = 20 + 371. 

Fig. 4. Two OBBD’s for (a) C O F S I G $ s  and (b) E Q L T S I G $ s  

E1 = 20 +?El, E2 = 370x1, c f l  = 22373 and c f 2  = xz(cf1 and 
c f 2  are the sub-OBDD’s rooted at a and b, respectively). n 

Based on the definition of communication set, we define 
cofactor and equivalence signatures. 

Definition 3.4 (Cofactor Signature): Given a function 
f ( X )  and a subset X ,  c X ,  the cofactor signature of f 
with respect to X, is defined as: 

C O F S I G $ ~  = {(onsize(cf,), E,)I(E,, cfi) E C S , ~ }  (1) 

where T = (X,, X - X,). 
Dejinition 3.5 (Equivalence Signature): Given a function 

f ( X )  and a subset X, c X, the equivalence signature of J’ 
with respect to X, is defined as 

EQUSIG$~ = {(onsize(E,), cf,)l(~,, cf,) E C S , ~ }  (2) 

where T = (X - X , ,  X9).  II 

For a given subset X,,COFSIG$s is a signature to 
characterize X ,  when X, is ordered on the top part of an 
OBDD while EQUSIGis  is a signature when X, is ordered 
at the bottom part. Fig. 4(a) and (b) shows the OBDD’s 
for computing COFSIG$$ and EQUSIGC;, respectively, 
where in Fig. 4(a) X ,  is ordered first and in Fig. 4(b) the last. 

By examining the communication matrix partitioned with 
respect to T = (X,, X - X , )  as shown in Fig. 3, C O F S I G i A  
is computed considering row pattern. The number of row pat- 
terns is the number of communication complexity with respect 
to 7r = (X, , X - X,)  . For each element (onsize( cf , ) ,  E,) in 
COFSIG$s ,  the first component is the number of 1’s in a row 
pattern, and the second component is the expression for the 
row indexes which have the corresponding row pattern. On the 
contrary, if on the same communication matrix, E Q U S I G i s  
is computed considering column pattern. The number of 
column patterns is the number of communication complexity 
with respect to the partition T = (X - X,, X,). For each 
element (onsize(&), cfi) in EQUSIG$*, the first component 
is the number of column indexes which have the same column 
pattern, and the second component is the expression for the 
corresponding column pattern. 

Example 3.3: For the function f ( X )  and par- 
tition T of Example 3.2 as shown in Fig. 3, 
C O F S I G i t  = ( ( 1 , ~  +??I), (2,TOxl)} and EQUSIG$I == 
{ (2 ,0) ,  (1,1), ( 1 , ~ o x d ) .  n 

Various existing signatures are special cases of cofactor 
and equivalence signatures. When IX,1 = 1, COFSIG5s  is 
a syndrome signature [15] or a cofactor signature [16], and 
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(4 (b) 

Fig. 5.  (a) OBDD’s o f  f and (b) OBDD’s o f  g 

E Q U S I G i  is the partner pattern [15] or single fault prop- 
agation weight signature [12]. When lX , /  = 2,COFSIGGS 
is the cross signature [9]. 

C. Properties of the Signatures 

In this section, we present some properties of cofactor 
and equivalence signatures. These properties are used in our 
Boolean matching algorithm. First, we define the equivalence 
of two signatures. 

Definition 3.6: Two (cofactor or equivalence) signa- 
tures 5’1 = { ( n t , f i ( X ) ) l i  = 1,2 , . . . ,ml}  and 5’2 = 
{ (n31g j (Y ) ) / j  = 1,2; . . ,m2}  are equivalent if and only 
if 

1) ml = m2, and 
2 )  there exists an assignment $ to see that each element 

(nt ,  f i ( X ) )  E S1 corresponds to a unique element 
(n ; ]g j (Y ) )  E S2 where n,’ = rLJ” and g j ( Y )  
f i (d4X) )  (or 7 i ( $ ( X ) ) ) .  

This equivalence relation is denoted as S1 5’2. 

Before we present Theorem 3.1, we first have Observation 
3.1. 

Obsewation3.1: Let CS,f = { ( E l , c f l ) ,  ( E 2 , c f 2 ) , . . . ,  

(E,, c f m ) }  be the communication set of f ( X )  with respect 
to - a partition T = ( X l , X r ) .  If g(Y) = f($(Xj) (or 
f(li/(x))> and T’ = (8 = $(Xz),K = NK)), then 
CS:, can be obtained from CS,f by applying $ to each 
element of CS;. That is, CS;, = {(E;($I(XI)),~~,($(X,)) 
(or ~fi($Jf(X~))))li = 1 , 2 , .  . . , m}.  

g(Y)  = f ( $ ( X ) ) ,  where $(XO) = V l ,  $(Q) = Yo, $ ( X 2 )  = 

( {zo ,z1 t , {xa ,x3})  of X , C S , f  = { ( E l , C f l ) ,  (E2,cf2)}, 

E: = E l ( $ ( & ) )  = Yo + & , E ;  = E2($(Xl))  = 

We give an example to illustrate this observation. 
Example 3.4: Consider two matched functions f (X) and 

y3, and $ ( 5 3 )  = ?j2. The OBDD’s of f and g are shown 
in Fig. 5(a) and (b), respectively. Given the partition 7r = 

where El = xo + 2 1 ,  EL) = 20x1, c f l  = X2z3, and cf2 = x2. 
By Observation 3.1, CS:, = { ( E : ,  cgl), (E ; ,  cgz)}, where 

Y o Y l > c g l  = c f l ( $ ( X r ) )  = y2Y31 and cg2 = cf l ($(X~))  = 
Y3. 

Based on Observation 3.1, Theorem 3.1 is presented. 

(a) TT, v;Fl 
nt na - . . .  1 .. . cf? 4 Ej” . 0 . . .  1 . . .  

E: . 
(b) 

Fig. 6. 
ml # 7712. (h) For the Case E : ( @ ( X I ) )  # E?(X , )  and nt # n:. 

The communication matrices o f f  w.r.t XI and X z .  (a) For the Case 

Theorem 3.1: Two matched functions f ( X )  and g(Y) ,  
where g(Y)  = f ( ? L ( X ) )  (or f ( $ J ( X ) ) ) .  If Y, = $ ( X s )  for 
any subset X ,  C XI then 

1) COFSIG$* C O F S I G $ ~ .  
2) E Q U S I G S , ~  = E Q U S I G G ~ .  

Proofi Using the procedure implied in Observation 3.1, 
we can obtain C S ~ x 8 , x - x s l  and CqYs ,Y -Y$)  for any subset 

Theorem 3.1 states the necessary condition for two functions 
to be matched. 

Theorem 3.2: Given a functions f ( X ) .  Let X1 and Xz  be 
any two subsets of X .  If EQUSIGS1 = EQUSIG$, then 

Pro08 We will prove this theorem using communication 
matrix. Recall that with respect to a given partition 
T = ( X s !  X - X, ) !  the row patterns and the column 
patterns of the same matrix are used to compute COFSIGCs 
and EQUSIG$8 , respectively. Let the matrices partitioned 
with respect to ?r = ( X I ,  X - X I )  and n’ = ( X L ) ,  X - X L ) )  be 
M I  and M2, and C O F S I G i I  = {(ni,Ei(X1))li = 
1 , 2 , . . . , m l } , C O F S I G f , 2  = {(nj”,E;(X2))1.j = 
I ,  2 ,  ’ .  . , m2}. Suppose that COFSIG$l  9 COFSIG$2.  
The inequality occurs when either the size of the sets are not 
the same or the elements in the sets are different. 

X ,  C: X .  This theorem follows obviously. 

C O F S I G ~ ~  = C O F S I G ~ ? .  

Case 1: ml # m2 

W.l.o.g., we let rnl < m2. There must exist two elements 
x,, X b  E X I  in the same equivalence class and $(za ) ,  $(Q) E 
Xz belong to different classes for any assignment $. Since 
~ , , x b  E X1 are in the same equivalence class, f ( z a , X  - 
XI) = f ( x 6 , X  - X I ) .  Entries of the two rows are the 
same as shown in the left matrix of Fig. 6(a). However, since 
$(xa ) ,$ (xb )  E Xz  are in different equivalence classes and 
thus they have different row patterns, there must exist an entry 
of rows where the values of $ J ( r c a )  and $(zb) are different. 
The right matrix of Fig. 6(a) shows the case. Now consider 
the column pattern to compute the equivalence signature. In 
the left matrix, the entries corresponding to the row index 
x, and 26 of all columns will be the same whereas in the 
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f 

3 3 

2 2 

1 1 

Fig. 7. A counter-cxample for Property 3.2. 

right matrix, there exists at least one column where the entries 
corresponding to the row index $(za) and Q(x6) are different. 
Therefore, these two matrices will not have the same column 
patterns and EQUSIG5,  $ E Q U S I G i ? .  Contradict to our 
assumption. 

Case 2: For any assignment function $, there exists at least 
one element where (.:,Et) # (n: ,$(E;)) .  

Two cases for this inequality: 
case i: E:($(X1)) # E:(X,). 
The same argument in Case 1 can be applied. 
case ii: Suppose that Et($(X1)) = E;(X,) and ni # n:. 
This implies that the number of 1’s in the row whose row 

index is expression Et  in M I  is different from that of the row 
whose row index is E: in M2. Fig. 6(b) shows the matrices, 
where columns which have 1’s at the entry with row index Et 
or E;, are moved to the right side. The number of columns 
which have 1’s in entries .with row index Et is different 
from that of columns which have 1’s in entries with row 
index E;. There must exist at least one element (N: , e f t )  E 

EQUSIG$l and one element (N:,cf:) E EQUSIG$,  
where N,’ # N;. Therefore, EQUSIGi l  $ E Q U S I G i Z .  
Contradict to our assumption. 

Therefore, C O F S I G i l  = C O F S I G i 2 .  
The converse of this theorem is not true. We show a counter- 

example in the following. 
Example 3.5: Consider f ( X )  and g(Y) shown in Fig. 7. 

Let X1 = {x1,22} and U; = {yI,y2}. COFSIGG1 = 
((3,El = :1:2),(2,E2 = z l ) , ( l , E g  = 5 1 ~ ~ ) )  and 
COFSIGC1 = ( ( 3 , ~  = y1g2),(2,e2 = yl),(l,e3 = 
Y1y2)}. We have COFSIGC1 = COFSIGG1, where 
21, x2,23, and 2 4  map to y1, y2, y3, and y4, respectively. 
However, E Q U S I G i ,  = ((1, h l ) ,  (2, hz) ,  (1, hs)}  and 
EQUSIGFl = ((1, h l ) ,  (1, hz) ,  (1, h4), (1, h)}. Therefore, 

- 

E Q U S I G ~ ,  $ EQUSIGG~.  
Theorem 3.2 says that any two subsets of variables dis- 

tinguished by cofactor signatures can be distinguished by 
equivalence signatures. Therefore, our matching algorithm 
will be based on equivalence signature rather than cofactor 
signature. 

Theorem 3.3: Given a functions f ( X ) ,  a subset X1 c X 
and X2 c X, where X2 = $(XI). If EQUSIG5, 
E Q U S I G i Z ,  then for every subset X,1 c XI and Xs2 C X2 

where Xs2 = q5(Xs1), EQUSIG$sI = EQUSIG$s2. 
Proofi Let (n ,  c f ’ )  and (n, c f 2 )  be two equivalent el- 

ements, where ( n , c f l )  E EQUSIGG1 and (n , c f2 )  E 

C f  

(a) (b) 

Fig. 8. The communication matrices of f (a) w.r.t K = (XI, X - XI) and 
(b) K‘ = (XI - { z a ) , X  - XI + { z a ) ) .  

EQUSIG$2. Suppose that XS1 = XI - {x:.}. Fig. 8(a) and 
(b) show the communication matrices partitioned with respect 

respectively. The new columns at the right matrix are obtained 
by partitioning the old column at the left with respect to 
za = 0 and x, = 1. Similarly, for any subset X , l , c fZ  
can be partitioned into 21x1pxs11 new subcolumns where 
each subcolumn corresponds to a cofactor with respect to a 
minterm in XI - X,I. The same partition can be applied to 
c f2  with respect to a minterm in X2 - Xs2. Since cf’ 
c f 2 ,  the partitioned results are also the same. Therefore, 
E Q U S I G i s I  = EQUSIG$3Z. The theorem follows. 

Based on Theorem 3.3, for a subset X ,  C X matched to a 
subset Y, C Y,  the larger the subset X, is taken to compute 
the equivalence signature, the more efficient it is to match the 
remaining unmatched inputs. 

to T = (Xi ,  X - XI)  and T’ = (XI - { x a } ,  X - X1 U {z:.}), 

IV. THE MATCHING ALGORITHM 

Based on Theorem 3.1, 3.2, and 3.3, we develop a trans- 
formation based matching algorithm. By Theorem 3.2, any 
two subsets of variables distinguished by cofactor signature 
can be distinguished by equivalence signature. Therefore, 
equivalence signature rather than cofactor signature is used 
in our algorithm. Given two functions f and g, the algorithm 
transforms the structure of BDDg to that of B D D f .  

Initially, for each input of f we first compute the candidate 
variables for matching. The candidate set is obtained using 
the equivalence signature for IX,I 1 and then IX,I = 2. 
Let f ( X )  and g(Y) be two functions to be matched. Based on 
equivalence signature, we distinguish inputs of X into many 
groups XI, X2, . . . , X,, where the signatures of variables 
in the same group are equivalent. Then, the same process 
is applied to g so that Y is also partitioned into groups 
Yl, Y2, . . . , Y,. If X i  and Y; have the same signature, Yi is 
the candidate set for matching the variables in X ; .  

Now we use an example to explain the candidate 
set generation in more detail. Consider the function 

We first compute EQUSIG:zzl for each x; E X .  
The communication matrices with respect to inputs 
x1,22,23,24 are shown in Fig. 9(a). EQUSIG{zll  = 

((1, fi), (7, f2)),EQUSIG:z2) = EQUSIGiz3)  - 

EQUSIG{z4)  = ( ( 3 ,  f o ) ,  (1, f i ) ,  (1, f i ) ,  ( 3 ,  f 3 ) ) ,  where 
f o  = 0, f l  = s ; , f 2  = z;, and f3  = 1. Thus, 
input z1 can be distinguished from x2,23,24. Now 

f(zI,x2,x3,24) = xlx2 + 21x3 + 21-4 + zlT273x4. 

- 
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(4 

X 

(b) 

(a) For X ,  = {XI} ,  { z 2 } , { ~ 3 } ,  ( ~ 4 ) .  (b) For X s  = {z4,.Tl}, 
Fig. 9. The communication matrices of f w.r.t. 71 = ( X  - X , ,  X s ) .  

{ Z Z ,  Zl }, { Z3, Zl}. 

we compute signatures for /X,I = 2 and x1 E X,.  
The communication matrices with respect to the sets 
{z2,z1},{x3,z1} and {x4,z1} are shown in Fig. 9(b). 
We obtain EQUSIG:z4,zI, = ( ( 3 ,  c f i ) ,  (1, c f i ) }  and 

Together, these two signatures distinguish input x4 from 
~ 2 ~ x 3 .  Therefore, we partition inputs to three sets (x1}, {x4}, 

If we continue increasing the size of X,, we would be 
able to distinguish all variables of X. The same procedure 
can then be applied to the other target function. However, 
it is inefficient in that the signature computations have to 
be performed twice for both target functions. Instead, after 
generating and matching candidate sets X, and Y,  of f ( X )  
and g(Y),  we proceed to transform the OBDD structure of g 
to that of f bottom up. 

We first construct B D D f  and BDDg using the ordering 
where the indistinguishable inputs are ordered before dis- 
tinguishable ones. This ordering rule follows Theorem 3.3 
where putting distinguishable inputs as many as possible on 
the bottom of BDD will fasten the distinction of unmatched 
inputs. Also note matching is possible only between x, of X, 
and y, of Y,,  where Y,  is the candidate set of X,. Therefore, 
variables with the same signature using IX, 1 = 1 and IX, I = 2 
are grouped together on OBDD and their candidate sets are 
given corresponding order indexes. Fig. 10 shows the initial 
ordering of B D D f  and BDDg. 

Now, the variable ordering of B D D f  is held fixed, we 
transform BDDg with different orderings until B D D f  -- 
BDDg or failure is reported. The transformation process 
on BDDg starts with the first candidate set of indistin- 
guishable inputs bottom up. Let X d  and Y d  be the sets of 
distinguishable inputs which are ordered at the bottom of 
B D D f  and BDDg, and xo < X I  < . . .  < xm be the ordering 
of the indistinguishable variables in X. Let x, in Xlbe the 

E Q ~ s I G { ~ ~ , ~ ~ )  = E Q U S I G [ ~ ~ , ~ ~ }  = { ( 3 , c f 1 ) , ( ~ 3 ) ) .  

and (xZ,x3}.  

B D D ~  B D D g  
matched groups 

Fig. 10. The Transformed BDDI  and BDDg.  

inputs 

next variable to be matched. Initially, i is set to m. For 
the candidate set I’ll we compute EQUSIG$dU(yj for each 
y j  E x. If there is no equivalence signature, failure of 

E Q U S I G i d U { x t l ,  then x; is matched to yj .  If there are more 
than one equivalence signatures, we select an arbitrary one 
for matching. More than one equivalence signatures happens 
when variables are symmetric or they are indistinguishable 
using equivalence signatures. For the former case, arbitrarily 
selecting one variable for matching is always correct since 
these variables are symmetric. For the latter case backtrack 
may be required. 

After matching one variable, y j  to z;, we set Xd = X d  U 

{xi}, Y d  = Y d  U { gj } , and z is decreased by one. The procedure 
continues until all variables in the candidate set are matched. 
If the candidate set can not be matched and there are backtrack 
points, then the procedure backtracks to the nearest point and 
restarts the matching procedure. Note that backtrack may occur 
only within each candidate set. Candidate sets are matched one 
by one bottom up until all variables are processed. Fig. 11 
shows the matching algorithm. The inputs to this algorithm 
are two functions f ( X ) ,  g(Y) ( B D D f ,  BDDg).  It returns 
Success if f and g are matched; otherwise returns Failure. 
The sizes of on-sets of f and g (and 3) is checked at the 
beginning of the procedure to prune unmatched functions first. 
The transpositional operator [ 171 which restructures OBDD 
with different ordering is used in transforming BDD. 

The time complexity of our algorithm mainly consists of 
three parts. The first part is the complexity of generating 
candidates sets. A procedure based on transpositional operator 
which takes time complexity O ( p 2 )  [17], where p is the size of 
OBDD, is used in computing equivalence signatures. The total 
time complexity of this part is O ( n  x ( p 2  + q 2 ) ) ,  where n , p ,  q 
are the number of inputs, the sizes of B D D f  and BDDY, 
respectively. The second part is to construct B D D f  and 
BDDg using a constrained ordering. It takes O ( n  x ( p 2 + q 2 ) ) .  
The last part is the time for transformation of BDDg. The 
worst number of transformations is E:==, \ X i \ ! ,  where IC is the 
number of candidates sets whose size is greater than 1. For 
each transformation, transpositional operator [ 171 is applied. 
Summing up these three parts, the complexity of our algorithm 
is O ( n  x ( p 2  + q 2 )  + (Et==, IXil!) x q2) .  In fact, from the 
experiments, we find that inputs can be distinguished after the 
candidate set is generated for most cases. Therefore, the time 
complexity is O ( n  x (p2  + q2) )  in practice. 

- matching is reported. If there is a unique EQUSIG$d,{y/Jl - - 
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Algorithm Boolean-Matching( J ( X ) ,  g ( Y ) )  
Input: f ( X ) ,  X = {Z~,X~,....Z.-~); 

Output: return Success if J and g are matched; othrrwise, rcturn Pailwe; 
Begin 

g(V,  = {lo,Yl,~~~,l/n-l); 

if ( o n s i z e ( f )  # y s i r e ( g ( g ) ) )  then 

endif 
Goimate candidate sets for variables in X; 
Let Xd and Yd be the sets of distingiiishable inputs; 
Construct BDD' and BUD'; /* Push down the distinguishable inputs */ 
2 = m; 
while ( i  5 m) and ( 1  2 0) do 
next: 

return Failure; 

choose an unmarked input y, E 8. where 2; t Xr; 
if (no such an input exists) then 

unmark unmatched inputs; 
i = i + l ;  /* Backtracking */ 
if (backtract to other group) then 

endif; 

mask y,; 
if ( E Q U S I G i d u , , ,  5 EQUSIG",,,,,,) then 

return Failure; 

else 

X d = , y d u { X , ) ;  
yd = ydu {Y j ) ;  
; = ; - I ;  

got0 nert; 

J* Next level matching '/ 

J* Choose next input i n  8 */ 
else 

endic 
endif; 

endwhile; 
return Success; 

End 

Fig. 11. The Boolean-Matching Algorithm. 

TABLE I 
EXPERIMENTAL REsum FOR BOOLEAN MATCHING 

V. EXPERIMENTAL RESULTS 

The proposed Boolean matching algorithm has been im- 
plemented in C language on SUN Sparcstation IPC (a 15.7 
mips machine). To demonstrate the efficiency of our algorithm, 
circuits from MCNC benchmark set have been tested. Two 
circuits, act1 and act2, of actell and actel2 cells from FPGA 

TABLE I1 
THE COMPARISON RESULTS 

act2 
I \ . . . I  I I ,  \ . . . I  I 

c m l 5 l a  I (3,3,3) I 0.7 11 (3,3,3) 1 0.6 
cordic I 0 I 42.8 11 (2,2) 32.2 

term1 
VC2 8.9 16.1 

manufacturer Actel were also included in the test set. For each 
circuit, we first constructed two OBDD's. The second OBDD 
was generated from the first one by permuting and renaming 
its input variables. Then we applied our matching algorithm 
to transform the second OBDD until these two OBDD's are 
matched. 

Table I shows the experimental results. The columns with 
labels #in and #out show the numbers of inputs and outputs of 
circuits, respectively. The column IX;I = 1 refers the number 
of inputs which could be distinguished from the other inputs. 
The column labeled IX;l > 1 refers the sizes of candidate sets 
whose sizes are greater than 1 when equivalence signature 
for IX,I = 1 and IX,I = 2 are used. The coluqm #error 
shows the number of variables which were incorrectly matched 
during the matching process. The columns matching-CPU and 
BDD-const.-CPU show the running time of our matching 
algorithm and OBDD' s construction time, respectively. The 
CPU time is measured in seconds by using time command of 
MIS [18]. The table shows that all inputs of 26 circuits could be 
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distinguished using signatures only. Candidate-set size of only 
4 circuits is bigger than 1. We also find that number of error 
variable selections during the matching process is very small. 
The reason is that when the inputs are not distinguishable, it 
often involves many legal assignments. For example, cml50a 
(cml5la) has 4! = 24(3! = 6) legal assignments since it is 
a 16 to 1 (8 to 1) multiplexer. Our algorithm is designed to 
choose any assignment. The running time of our matching 
algorithm is also short. In many cases, we have a very 
small amount CPU time compared to the construction time 
of OBDD’s. 

In [16], cofactor and breakup signatures were proposed 
to distinguish inputs. We compare our results with the results 
shown in [16]. Table I1 shows the comparison results. The 
column labeled in. inputs refers the sizes of indistinguishable 
inputs. This table shows our algorithm can distinguish all 
inputs of 6 circuits out of 9 circuits of which inputs were not 
all distinguished by [16]. The CPU time of [16] is measured 
in seconds on a SUN Sparcstation SLC (a 18 mips machine). 

VI. CONCLUSION 
We have proposed a signature based Boolean matching 

algorithm. It transforms OBDD’ s using different orderings 
until two target OBDD’s have the same structure or failure 
is reported. Equivalence and cofactor signatures which are 
general forms of many existing signatures are presented to 
speed up this transformation process. Experimental results on 
a set of benchmarks show that our algorithm is indeed very 
effective in Boolean matching problem. 
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