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中英文摘要 

 

無線感測網路相關的研究議題得到許多研究單位及學者的關注，近年來ZigBee通訊協

定被視為最適用於感測網路的通訊協定，本計畫將研究以ZigBee 樹狀網路為基礎之無線感

測網路相關通訊協定，本計畫為三年之計畫，其目標主要包含三個面向：(1) ZigBee無線感

測網路生成之研究，(2) ZigBee樹狀網路資料傳遞排程，(3) ZigBee基礎之長鏈狀網路研究。

在第二年中，本計畫將討論ZigBee網路中之資料收集所遇到之問題。Convergecast在無線感

測網路中是一個很基本的應用，而目前的convergecast大多著重於降低回報延遲及能源的消

耗，然而，一個好的設計除了考慮這些因素外，還必須和標準相容。因此，本計畫於ZigBee
樹狀網路中，針對快速回報定義了一個最小延遲的訊框排程問題，並証明其為一個困難的

問題，同時使此問題相容於IEEE 802.15.4之規範，並且於某些特殊的網路型態中，提出了

最佳解法；於一般網路型態型，提出了集中式及分散式的時槽分配方法。 
 

關鍵字：convergecast、圖形理論、IEEE 802.15.4、排程、無線感測器網路、ZigBee 
 
Recently, a lot of research works have been dedicated to the wireless sensor networks 

(WSNs) field. ZigBee is a communication standard which is considered to be suitable for WSNs. 
In this project, we discuss initialization and communication protocols for ZigBee tree-based 
WSNs. This project contains three research topics including 1) formation of a ZigBee-based 
WSN, 2) scheduling for ZigBee tree-based networks considering data flows, and 3) ZigBee-based 
long thin networks. In the second year, we discuss the data gathering in ZigBee networks. 
Convergecast is a fundamental operation in wireless sensor networks. Existing convergecast 
solutions have focused on reducing latency and energy consumption. However, a good design 
should be compliant to standards, in addition to considering these factors. Based on this 
observation, this work defines a minimum delay beacon scheduling problem for quick 
convergecast in ZigBee tree-based wireless sensor networks and proves that this problem is 
NP-complete. Our formulation is compliant with the low power design of IEEE 802.15.4. We 
then propose optimal solutions for special cases and heuristic algorithms for general cases. 

 
Keywords: convergecast, graph theory, IEEE 802.15.4, scheduling, wireless sensor network, 
ZigBee. 
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一、 前言 

在許多無線網路的應用中，網路上的裝置需要將應用層所產生的感測資料回報至一

資料收集基地台(Sink)，然而在某些特殊的網路應用中，如監控、保全等，裝置並不是隨

時皆要傳遞資料，因此節點可依照需求進入休眠模式以減少電量消耗。ZigBee[1]協定中

亦提供了一信標網路 (Beacon-enabled network) 架構來支援此類需求。在此類型的網路

中，網路的拓樸必須為 ZigBee 樹狀網路，網路中的協調者(Coordinator)當作是根節點

(root)，並同時為資料收集基地台(Sink)，Sink 可以連結若干中繼節點(Router)作為其子節

點(Child)，中繼節點亦可以連結若干節點當作其子節點。在此網路中，裝置採取類似分

時多工(Time Division Multiple Access，TDMA)的技巧來分配節點的傳輸時間，網路當中

的 Sink 發送 Beacon 封包宣告網路超級訊框(Superframe)格式，在一個超級訊框

(Superframe) 時間內，時間被切割成多組時槽(Time Slot)，而 Sink 佔領一時槽用以接收

或傳送網路上其他裝置之資料，而剩餘之時槽可供網路中的其他中繼節點使用，中繼節

點亦藉由發送 Beacon 封包宣告其所佔據之時槽，當一節點 D 收到某 Router A 之 Beacon，
節點 D 可在 Router A 所佔領之時槽傳送給 Router A，或是接收 Router A 所要傳送給節

點 D 之資料。 
 

然而網路上的節點不能恣意地選擇時槽，當一網路上的節點D欲傳遞資料時至Sink時，

它必須等待其父節點(假設為 Router A)之 Beacon，假若有另一Router B與Router A選擇相同

之時槽，且Router B亦為節點D之鄰居，此時Router A與Router B會同時發出Beacon，則會造

成Beacon在節點D處發生碰撞，由於節點D接收不到Router A之Beacon，則因此無法傳遞資

料給Router A。倘若此時網路上有許多的Beacon發生碰撞，則整個網路的運作將為之癱瘓。

因此設計一個能避免Beacon碰撞的排程演算法是相當重要的，同時，除了要避免Beacon 碰
撞外，Beacon的排程演算法亦要考慮傳遞延遲之問題。 
 

目前有幾篇文獻[2][3][4][5][6][7]也探討關於省電之網路資料回報之排程，在文獻[6]
中，作者探討在基於欲達到低回報延遲以及低能量消耗的目標下，建構出一個平衡樹

(balance tree)連接網路節點，並且指定分碼多工編碼(CDMA code)給網路節點用以降低傳輸

干擾影響已達到節能目的。在文獻[7]中，作者探討在最小化能量消耗的情況下，該如何使

得資料的回報能夠在一個指定的時間內到達資料收集伺服器，作者提出一個動態規劃演算

法(Dynamic programming algorithm)來計算出一動態排程，但是該演算法必須假設每個節點

可以同時間收集數個資料封包。由此可見文獻[6]及[7]皆必須假設節點的能力(可使用CDMA 
編碼及同時接收多個封包)，且所提出之演算法不符合ZigBee 規範。在文獻[5]中，作者提

出一個低功耗及低延遲的媒體擷取層通訊協定(MAC protocol)，稱之為DMAC，網路中的感

測器使用一個樹狀結構連結，並且節點們長時間皆處於睡眠狀態，當感測器由睡眠狀態切

換至活動狀態時，該感測器先將無線模組狀態開啟於接收狀態然後再切換至傳輸狀態，

DMAC 使用階梯式排程方式來達到低傳輸延遲之目的，也就是說一感測器先接收來自子節

點之封包後，切換至傳送模式轉發封包給其父節點。類似於文獻[5]之方法，在文獻[4]中作

者亦使用階梯式排程方式，並且考量網路資料流流量，在此網路中，父節點定期廣播其剩

餘之時槽數目，其子節點可依據其流量大小，向父節點註冊所需要之時槽數。在文獻[3]中，

作者提出一分散式回報排程演算法，其基本的概念為先將感測器使用一展延樹連接起來，
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接著將該樹簡化成數個重疊之線性拓樸，針對每個線性拓樸，該演算法則由下到上(節點至

資料收集伺服器)方向排程節點之傳送時間。而文獻[2]中，作者提出一個集中式演算法來排

程封包傳遞，該演算法將感測器分割成數個區段，每個區段內的感測器之傳輸不會影響在

同於該區段內的感測器之傳輸，簡單來說，文獻[2]中所提出的方法為創造出多個可平行處

理之傳輸區段以降低回報延遲。雖然文獻[2][3][4][5]所提出的方法皆與本計畫之目標一致，

但是所提出之演算法皆不適用於ZigBee 網路。 
 

二、 背景知識 

0 10987654321 14131211 15

GTS 
0

GTS 
1

Beacon Beacon
競爭區間 免競爭區間

閒置區間

SD = aBaseSuperframeDuration*2SO  symbols

BI = aBaseSuperframeDuration*2BO  symbols
 

圖 1：IEEE 802.15.4 Superframe 架構 
 

在 IEEE 802.15.4[8]中，定義了兩種網路設備，分為：Full-Function Device (FFD)與
Reduced-Function Device (RFD)。一個 FFD 具有 Personal Area Network (PAN) Coordinator、
Router 與 RFD 等功能，它可以與 RFD 或是 FFD 進行資料傳輸。RFD 是一個極其簡單的網

路設備，只具備與單一 FFD 進行資料傳輸的功能。 
 
在 IEEE 802.15.4 中，FFD 允許採用 Superframe，所謂的 Superframe 是一段由同一個

Coordinator 所發的兩個連續的 Beacon 所限定的時間區段(Beacon interval, BI)。在

Beacon-enabled network 下發 Beacon 的目的是要作同步化，任何設備想要進行資料傳輸都必

須在屬於 Superframe 內的活動區間內以 slotted CSMA/CA 的方式對傳輸通道進行存取。活

動區間又可分為競爭區間與免競爭區間，協調者只在活動區間和個人區域網路中的裝置互

動收送資料，而在閒置區間則可以進入省電模式(休眠)以減少電源消耗。對於協調者以外的

裝置來說，它們在沒有資料要傳送時可以進入省電模式。 
 
Superframe 的結構由 Beacon 訊框中包含的資訊來決定，Beacon Order (BO)決定 Beacon

發送的間隔而 Superframe Order (SO)則決定活動區間的長短，SO 及 BO 為介於 0 至 14 間之

整數且需符合 SO≦BO 之限制。活動區間的長度被設定為： 
aBaseSuperframeDuration × 2SO symbols， 

 
aBaseSuperframeDuration 為 IEEE 802.15.4 預設參數，其值為 960 symbols，而一個 symbol
的大小依據所使用之不同的操作頻帶有著不同的設定，例如操作於 2.4 GHz 的網路，一個

symbol 的大小為 16 us。而一個 Superframe 的長度為： 
 

aBaseSuperframeDuration × 2BO symbols。 
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由此設定一個操作於 2.4 GHz 頻帶的網路，Superframe 的長度可從 15.36 ms 到 215.7
秒不等。當 SO=15 時代表不使用 Superframe 的架構。目前在 IEEE802.15.4 標準中對於

Beacon-enabled 網路的說明僅限於星狀網路，對於多節網路尚未提出完整的解決方案。然而

在 IEEE 802.15.4b 裡則會修正此問題。在 IEEE 802.15.4b 中，BI 的長度為所收到之父節點

之 Beacon 間隔，裝置可在 Beacon 間隔中挑選一時槽來傳送其信標(如圖 1 所示)。 
 

0 10987654321 14131211 15

Received 
Beacon

Transmitted 
Beacon

Inactive

BI = aBaseSuperframeDuration×2BO  symbols

Inactive

Received 
Beacon

Start Time >SD

0 10987654321 14131211 15

SD = aBaseSuperframeDuration×2SO  symbols 
(Incoming superframe)

SD = aBaseSuperframeDuration×2SO  symbols 
(Outgoing superframe)

 

圖 2: IEEE 802.15.4b 中所允許之信標網路模式 
 
在 IEEE802.15.4 標準中對於 Beacon-enabled 網路的說明僅限於星狀網路，對於多點跳

躍網路(Multihop networks)尚未提出完整的解決方案。在新版規範 IEEE 802.15.4b[9]中則修

正此問題。在 IEEE 802.15.4b 中，Superframe 的時間長短為所收到之父節點之 Beacon 間隔

(BI)，裝置可在 Beacon 間隔中挑選一時段來傳送其 Beacon (如圖 2 所示)。當收到父節點的

Beacon 時，該裝置必須切換至 Active 模式並且保持該狀態直到該活動區間結束，這一段時

間被稱作為 Incoming superframe，然而該裝置亦可以發送自己的 Beacon，並且可使得其子

裝置保持清醒一段時間，該段時間稱作為 Outgoing superframe。由上討論可知一個父節點

之 Outgoing superframe 即為其子節點之 Incoming superframe，而為避免子節點無法辨識

Incoming superframe 的到來，在選擇 Outgoing superframe 時，必須避免 beacon 發生干擾之

情形。 
 

三、 研究目的 

除了要避免 Beacon 碰撞外，Beacon 的排程亦要考慮傳遞延遲之問題。以圖 3 之網路

環境為例，圖上的虛線為不能使用相同時槽之路由器，以下我們展示不同的信標排程將會

造成不一樣的傳輸延遲。 

A

B

C

A

B

C

PAN 
Coordinator

Router (FFD)
End device (RFD)
Interference neighbor  

圖 3：ZigBee 網路資料傳遞情境 
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圖 4 為一信標排程之例子，網路上的資料流都是由裝置流向主裝置，圖 4  
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圖 4：一個信標排程例子 

 
中的大方框為每個裝置所佔領之時槽，在時槽的一開始時佔領該時槽的裝置先發送信標，

接著則開始競爭區間來讓其底下的裝置傳送資料給它。在圖 4 的例子中，路由器 A 及 B 聆

聽路由器 C 的信標，並且在活動區間內利用競爭之方式將資料送給路由器 C。而路由器 C
也必須要聽取協調者之信標。由圖 4 的排程中，路由器 B 的時槽落於 C 之後，所以當路由

器 B 有資料要送給 C 裝置時，必須等待將近一個 Beacon 間隔才會等到路由器 C 的下一個

信標。當網路 Duty Cycle 很小時，Beacon 間隔可能較一時槽大數倍，例如在 2.4GHz 的頻

帶下，當設定網路的 Duty cycle 為 1.56%，則一個 Beacon 間隔長度為 251.7 秒，而時槽長

度僅為 3.9 秒。因此上述之例子整體網路的回報延遲將長達四分多鐘，然而如果網路的範

圍更大，使用不佳的排程方法，由裝置到主裝置間訊息的傳遞可能會造成相當長的延遲。 
 

圖 5 顯示了一個改善圖 4 信標排程之例子，在圖 5 的排程中，訊息傳遞的延遲的計量

單位縮短為數個時槽，所以在修正過後的排程的回報延遲可以縮短至三個時槽長度(也就是

10 秒左右)，這顯示了不同之排程方式將可以有效的降低傳輸延遲，且同時間亦可以達到省

電之目的。 
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圖 5：一較佳的信標排程 
 

四、 研究方法 

首先，在此計畫中，我們先定義此時槽安排之問題為 Minimum Delay Beacon Scheduling 
(MDBS) Problem。給予一個 ZigBee 網路，針對具 Router 能力的裝置(Router-capable 
device)，且考慮所有具有 Router-capable 能力之裝置中其通訊連結皆為雙向時，則可將此節

點和連結表式成一個圖 G=(V, E)。同時，於 G 中，我們再將 Router 間會產生直接干擾及間

接干擾的兩點連立連線，最後變成產生圖 GI=(V, EI)。而此時槽安排問題的目標便是要替每

一個 Router i 找出一個時槽 s(i)，而如果 Router i 和 Router j 於 GI 中存在有一邊時，則 s(i)
不等於 s(j)。在給定每一個 Router 一個時槽之後，Router i 到 Router j 之間的回報延遲便如

下之定義： 
 

dij = (s(j) – s(i)) mod k 
 

因此，我們可以將圖 G 最後轉換成一有向之權重圖 GD=(V, ED)，如果(i, j)存在於 E 中時，

則 ED將存在有(i, j)和(j, i)兩個有向邊，其中(i, j)之權重為 dij，而(j, i)之權重為 dji。由 GD更

可得知網路上之每個節點至基地台之回報延遲時間為此節點至基地台的最短路徑權重總

合，而整個網路之回報延遲時間 L(G)便為所以節點之回報延遲時間最大者。 
 
定義一 給定一圖 G=(V, E)，MDBS 問題便為替每一個網路節點找出一個無干擾之時槽安排

演算法，且可以使得網路之回報延遲時間 L(G)最小。 
 
定義二 給定一圖 G=(V, E)以及一個延遲時間限制 d，則 Bounded Delay Beacon Scheduling 
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(BDBS)問題便為決定出是否存在一無干擾之時槽安排方法，可以使得 L(G) ≤ d。 
 
因此，本計畫證明了一個定理如下： 
 
定理一 BDBS 問題為一個困難(NP-complete)的問題。 
 

MDBS 問題之解決方案 
在本計畫中，根據上面的分析與定義，我們針對不同的 ZigBee 網路型態，分別提出不

同之解決方法： 
 

特殊網路型態之最佳解決方案 
 

如圖6所示，當ZigBee網路型態為一個線狀(Regular Linear)或者為一環狀(Regular Ring)
網路時，MDBS 問題將存在一多項式時間之最佳解。在此網路型態中，每一個節點之連結

情形可影響至 h hop 遠之節點，所以於 GI中，每一個節點之最大 degree 數為 2h。因此，於

線狀網路型態中，我們可以採用 bottom-up 的方式來安排時槽，最底下之節點(也就是離 Sink
最遠之節點)其時槽為 0，而其他節點 v 之時槽 s(v)安排方式如下： 

 
s(v) = (k’+ 1) mod k 

 
而其中 k’為 child 節點之時槽，k 為網路中所有的時槽數。很明顯的可以看出，此時槽安

排法的確為一最佳的時槽安排演算法。而圖 6(a)即為線狀網路時槽安排的一個例子。 
 

 
圖 6：線性及環狀網路之最佳時槽分配法範例 

 
    於環狀網路型態中，首先我們先依照 Sink 節點，將此網路分成左群和右群節點，而左
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群節點的成員為 Sink 節點以及 Sink 往左開始算至第  個節點，而其他節點便屬於右

群節點。而決定出左群和右群節點之後，便可將其看成兩個線狀網路，而時槽安排方法如

下： 
 
1. 左群節點之時槽安排和線狀網路安排法相同。 
2. 右群節點之時槽安排為 top-down 之方式由 Sink 開始往下安排，而對於每一個位於右群

節點內之節點 v，其時槽為 s(v) = (j – c)，而其中 j 為其父親節點之時槽，而 c 為確保

s(v)不會和其互相干擾鄰居節點時槽重覆下中之最小整數。 
 
圖 6(b)即為環狀網路時槽安排的一個例子。 
 
集中式樹狀時槽安排解決方案 
 

 

圖 7：嘗錯式時槽安排方法之(a)步驟 2 和(b)步驟 3 
 

對於尋常之網路結構，本計畫亦提出一進中式的嘗錯式時槽安排解決方案 (Heuristic 
slot assignment solutions)，其基本精神為以最緊密之方式來安排節點之時槽。這一個演算法

主要包含兩個步驟，假設 G 為網路上路由器們所組成的一個圖，k 為所有可用的時槽數量。 
 
1. 由 G，首先建構一個寬度優先展延樹(Breadth first spanning tree)。 
2. 接著以由下至上之方式(Bottom-up manner)瀏覽這顆樹上的成員。當拜訪到一個節點 v，

首先以下列之方式指定一個暫存的時槽 t(v)給節點 v。 
 
i. 如果節點 v 是一個樹葉節點(leaf node)，則設定 t(v)為一個最小的非負整數 l，並且必

須保證該 l 的數值不會與之前已經被拜訪過且與 v 為干擾鄰居節點的時槽相同。 
ii. 如果節點 v 是一個在樹中的節點(in-tree node)，則先設定一個變數 m 為 v 的所有小孩

中最大的暫存時槽數值，也就是說 m=max{t(child(v)}，其中 child(v)為節點 v 的子節

點之集合。接著我們指定 t(v)為一個最小的非負整數 l > m，並且必須保證該 l 的數

值不會與之前已經被拜訪過且與 v 為干擾鄰居節點的時槽相同。 
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做完上述指定暫存時槽後，可以指定節點v的時槽s(v)=t(v) mod k。 
 
3. 從Sink節點開始以top-down的方法來拜訪每個節點，當節點v被拜訪到時，我們便嘗試找

尋一個新的時槽s’，使得(s(par(v)) – s’) mod k < (s(par(v)) – s(v)) mod k，若如可以找到此

s’，則s(v) = s’。 
 

在執行完這兩步驟後，網路上之路由器們即被指定到一個可盡量使得回報延遲降低之時槽

安排方式。而圖 7(a)便為步驟 2 執行完後的一個例子，而圖 7(b)為步驟 3 中，節點 B、C、
及 D 都能找到另一個時槽來降低各自的回報延遲時間的一個例子。 
 
分散式時槽安排解決方案 
 

本計畫亦針對尋常的網路結構提出一套分散式時槽安排方式，在此方法中，每一個節

點會利用[22]中所提出之方法，來計算出其直接及間接干擾節點。而整個時槽安排方法由

Sink 發起，一開始 Sink 會將自己的時槽設定為 k – 1，之後便開始擴播 Beacon，而針對每

一個收到 Beacon 之節點，便會依照下列步驟來決定自己的時槽： 
 
1. 收到 Beacon 之節點 v 會傳送一 association request 封包至 Beacon 發起者。 
2. 如果 v 無法成功 associate 上這個 Beacon 發起節點，則 v 會停止時槽安排演算法，而等

待下一次收到 Beacon。 
3. 如果 v 成功的 associate 上 Beacon 發起節點，則對於所有會和 v 產生直接和間間干擾之

節點 u，v 會計算出一個最小的整個 m，使得(s(par(v)) – m) mod k ≠ s(u)，最後，v 會決

定自己的時槽 s(v)為(s(par(v)) – m) mod k。 
4. 在一段 twait 的時間內，v 會廣播自己所決定的時槽 s(v)，而其間如果發現有一鄰居節點 u

且(u, v)  EI，則如果下列的規則滿足的話，v 便會更改原本的時槽為一個新時槽，並且

回到步驟 3。 
 
i. 於 GI 中，節點 u 之 degree 大於節點 v 之 degree。 
ii. 若 u, v 之 degree 相同，則節點 u 之深度比節點 v 之深度淺，也就是 u 比較靠近 Sink。 
iii. 若 u, v 之 degree 和深度皆相同，則 u 之 ID 比 v 還小 

 
5. 在 twait 終止時，v 便可決定出自己的時槽，並開始廣播自己的 Beacon。 
 

五、 結果與討論 

在本計畫中，對於ZigBee網路環境中，針對convergecast我們定義了一個MDBS的問題，

同時限制此問題之時槽排程安排上必須相容於ZigBee標準之規範。我們証明了此問題為一

個困難的問題，並且於某些特殊的網路型態中，提出了最佳解法；於一般網路型態型，提

出了集中式及分散式的時槽分配方法。 
 
而在現實的網路中，亦有可能存在會有雙向資料流之應用存在，在[11]中，作者將我們

的概念延伸為雙向 Beacon 排程問題，其目標為同時支援上傳(upstream, i.e., convergecast)以
及下傳(downstream, i.e., broadcast)之資料流，作者修改了原本 IEEE 802.15.4b 中所定義之

Superframe 架構，並新增了一 Outgoing superframe 以及一 Incoming superframe，因此一個

路由器可以分配到兩個時槽，一個時槽主要用以傳送上傳資料，另一時槽則主要用以傳送

下傳資料。在[11]中，時槽安排方式之概念類似於我們所提出之方法，但由於需為每一路由

器安排兩個時槽增加了演算法設計之複雜度，在[11]中作者亦觀察到一可以降低干擾鄰居數
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量之方法，該方法可以使得時槽的安排能夠更加緊密，亦即能夠更降低上傳及下傳之延遲

時間。 
 
同時，在[11]中之作者亦觀察到可以更加減少干擾鄰居之方法，其概念為將網路上的路

由器依照干擾的狀態以及其實體網路連結狀態做一分類，在安排時槽時即使某些節點互為

鄰居節點，但是當他們使用相同的時槽有可能不會造成時槽的干擾，舉例來說：假設兩路

由器節點互為鄰居，但是此兩路由器節點皆沒有小孩節點，則此兩路由器亦可以使用相同

時槽，如此並不會造成任何 Beacon 碰撞之情形發生。 
 
 

 出席國際學術會議心得報告及發表之論文各一份 

所出席之國際學術會議為「IEEE International Conference on Communications Conference」，

其出國之報告書如附錄一 
 

 本計畫目前的研究成果為二篇論文如下： 

附錄二： 

Y.-C. Tseng and M.-S. Pan, "Quick Convergecast in ZigBee Beacon-Enabled Tree-Based 
Wireless Sensor Networks", Computer Communications, Vol. 31, No. 5, Mar. 2008, pp. 
999-1011. (SCIE, EI)  

 

附錄三： 

Y.-C. Tseng and M.-S. Pan, “Quick Convergecast in ZigBee/IEEE 802.15.4 Tree-Based Wireless 
Sensor Networks”, ACM Int’l Workshop on Mobility Management and Wireless Access (ACM 
MobiWac), 2006. (selected as a candidate of the Best Paper Award)  
 
 
 計畫成果自評 

第二年的主要工作目標有兩項：(1) ZigBee網路快速回報之研究方法及問題定義，(2) 針
對所定義之問題提出適切的解決方案。而在本計畫中，針對 ZigBee快速回報問題，除了考

慮了降低回報延遲及能源的消耗，並且符合了ZigBee標準的規範，因為本計畫定義了一個

MDBS的問題。同時，我們提出了定理一來證明 MDBS為一個困難的問題。 
此外，針對MDBS問題，針對特殊的網路型態：線狀網路及環狀網路，我們提出了一

個多項式時間之最佳同，同時，針對一般的網路型態，我們也分別提出了集中式及分散式

演算法來解之，因此本研究可利用我們所提出之方法來降低 ZigBee網路回報的時間。 
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An Energy Efficient Sleep Scheduling Considering
QoS Diversity for IEEE 802.16e Wireless Networks
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E-mail: {chencz,jmliang,yctseng}@cs.nctu.edu.tw

Abstract—Power management is one of the most important
issues in IEEE 802.16e wireless networks. In the standard, it
defines three types of power saving classes (PSCs) for flows with
different QoS characteristics. It allows a mobile device to turn
off its wireless radio when all its PSCs are in sleep states. In
this paper, we consider the scheduling of power saving classes
of type II in an IEEE 802.16e network with a BS and multiple
MSSs (mobile subscriber stations). Previous work proposes to
enforce all MSSs to have the same sleep cycle, thus leading to
higher energy cost for those MSSs with less strict delay bounds.
We observe that if the sleep cycles of MSSs can be assigned
according to their delay bounds, MSSs can significantly reduce
their duty cycles. We propose an efficient tank-filling algorithm,
which is standard-compliant and can allocate resources to MSSs
according to their QoS characteristics with the least number of
active frames. Simulation results verify that our algorithm incurs
less power consumption and leads to higher bandwidth utilization
than the previous schemes.

Index Terms—IEEE 802.16e, power management, power saving
class (PSC), quality of service (QoS), WiMAX, wireless network.

I. INTRODUCTION

The IEEE 802.16e [1], [2] is a promising standard for
providing broadband wireless access to mobile subscriber
stations (MSSs) with high mobility. Like most other wireless
mobile systems, how to conserve energy for battery-powered
MSSs is a critical issue in IEEE 802.16e. In IEEE 802.16e,
three types of PSCs (power saving classes) are defined. A PSC
can be associated to one or more flows in an MSS. When a
PSC is activated, it repeatedly switches between sleep and
listening windows, where only during a listening window, can
its member flows transmit/receive data. When all PSCs of an
MSS are in their sleep windows, the MSS can turn off its radio
transceiver to save energy.

The three types of PSC in IEEE 802.16e are reviewed
below. In type I, the sizes of listening windows are fixed
while the sizes of sleep windows grow exponentially when
no data arrives. Once any traffic arrives, the PSC will be
deactivated, until all queued traffics are delivered. So, PSCs of
type I are more suitable for non-real-time traffic variable-rate
(NRT-VR) and best-effort (BE) flows. In type II, the sizes of
both listening and sleep windows are fixed. However, unlike
type I, the arrival of traffics will not deactivate the PSC. This
type II is more suitable for unsolicited grant service (UGS)
and real-time traffic variable-rate (RT-VR) flows. In type III,
it is only valid for one sleep window, after which the PSC is

deactivated. This type is more suitable for multicast services
and management operations. Among these three types, we
are more interested in PSC of type II because one may
dynamically adjust such PSCs’ sleeping behaviors to maximize
MSSs’ energy efficiency.

In the literature, performance analyses for PSCs in an IEEE
802.16e network are conducted in [3]–[5]. For an MSS-BS
pair, [6]–[8] focus on the design of PSCs of type I. How to
adaptively adjust the initial sleep window is addressed in [6].
Assuming that the distribution of the response packet arrival
time is known, [7] proposes a decision algorithm such that
the MSS can stay asleep until response packets are expected
to arrive. In [8], how to adjust the minimum and the maximum
sleep windows is discussed. For type II, assuming that PSCs
are already given, a Maximum Unavailability Interval scheme
is proposed in [9] for selecting the optimal start frame for
each PSC to maximize its unavailable duration. References
[10], [11] propose to apply one single PSC to accommodate all
real-time flows in an MSS; parameters of the PSC are selected
to meet the flow with the strictest bandwidth and packet delay
bound. Considering multiple MSSs under the same BS, [12]
proposes a Longest-Virtual-Burst-First (LVBF) scheme, which
always selects a primary MSS in the burst mode to serve and
only gives the necessary bandwidth to the other MSSs to meet
their requirements. However, it does not take delay constraints
of flows into consideration. Reference [13] proposes to serve
each MSS by a PSC of type II, but all of them share the
same sleep cycle. This results in PSCs without overlapping in
their active frames. However, since the common sleep cycle
is bounded by the strictest delay bound of all MSSs, this way
causes some MSSs to have too many active frames.

In this work, we focus on PSCs of type II. Given multiple
MSSs under a BS, we consider the arrangement of PSCs for
these MSSs according to their delay bounds and bandwidth
requirements. This involves not only the selection of each
PSC’s parameters, but also the selection of their listening
windows to reduce the overall active frames of MSSs. We
propose a tank-filling algorithm, which regards the resources
of the BS as a sequence of periodical tanks, each being able to
provide a fixed amount of bandwidth. The result outperforms
that of [13] because we relax the constraint that all PSCs
should share the same sleeping cycle. Simulation results are
provided to verify these claims.

The rest of this paper is organized as follows. Section II



gives some motivations and formally defines the problem. Our
tank-filling algorithm is presented in Section III. Simulation
results are shown in Section IV. Section V concludes this
paper.

II. MOTIVATION AND PROBLEM DEFINITION

In this section, we first motivate our work by discussing
previous work [13]. Then we formally define our problem. In
[13], assuming that there are multiple MSSs, each to be served
by a PSC of type II, it enforces each MSS to adopt a PSC of the
same sleep cycle length. The sleep cycle is selected to meet the
MSS with the tightest delay bound. While the solution is easy
to implement, this is too restricted and may incur too many
active frames to some MSSs. Fig. 1 shows an example with
two MSSs M1 and M2, which have data arrival rates of τ1 =
0.2Ω/frame and τ2 = 0.075Ω/frame and delay bounds of D1 =
4 (frames) and D2 = 12 (frames), respectively, where Ω is the
capacity of a frame. Fig. 1(a) shows the schedule computed by
[13]. Since min(D1,D2) = 4, in every four frames, M1 and
M2 will be active for one frame and be allocated of bandwidths
τ1 × 4 = 0.8Ω and τ2 × 4 = 0.3Ω, respectively, per frame.
Also, their active frames are shifted to avoid overlapping. As
Fig. 1(b) shows, by assigning each MSS a sleep cycle adaptive
to its delay bound, M1 and M2 can have sleep cycles of 4
and 12 frames, respectively, where in each active frame, they
receive τ1 × 4 = 0.8Ω and τ2 × 12 = 0.9Ω of bandwidths.
Still we can manage to incur no overlapping among their active
frames, so M2’s duty cycle is significantly reduced.

The above observation motivates us to study a power
management problem as follows. We consider a BS serving
n MSSs Mi, i = 1..n. Each Mi has a data arrival rate of
τi bits/frame and each data arrival has a delay bound of Di

frames. Assuming the available bandwidth per frame is Ω bits
and

∑
i=1..n

τi ≤ Ω, the goal is to assign each Mi a PSC of

type II with a sleep cycle of TS
i , a listening window of TL

i ,
and an offset of TO

i , such that TS
i ≤ Di and the total number

of active frames for all MSSs is minimized. Also, there is
implicit requirement that whenever a listening window of an
MSS arrives, the BS should be able to serve all its backlog
data that would be overdue otherwise.

III. THE PROPOSED TANK-FILLING SCHEME

In an IEEE 802.16e wireless network, the BS is responsible
for scheduling the sleep frames of the MSSs associated with
it. Initially, each Mi, i = 1..n, will send a request to the BS
containing its Di. We propose a tank-filling (TF) algorithm for
the BS to determine the following parameters for each Mi:
(1) (TS

i , TL
i , TO

i ) and (2) amount of bandwidth Bi,j allocated
to Mi in the j-th active frame in each listening windows,
j = 1..TL

i (noth that Bi,j is a real number between 0 and 1).
Then these parameters are sent to each Mi. Then these MSSs
will behave accordingly.

Our TF algorithm considers the resources of the BS as a
sequence of repetitive tanks, each being able to hold Ω amount
of water per frame. It maintains an important property that
TS

i of each Mi is an integer multiple of its previous TS
i−1 for

each i = 2..n. So, we call TS
1 as the basic cycle, or simply

Tbasic, of the network. Intuitively, this property helps make
MSSs’ sleeping behaviors regular and increase the overlapping
of their listening windows. Assuming that TS

1 , TS
2 , ..., TS

n , are
known (recall that TS

1 = Tbasic), the resources controlled by

the BS are represented by an array R[1 : T S
n

Tbasic
, 1 : Tbasic],

where each R[k, �], k = 1..
T S

n

Tbasic
and � = 1..Tbasic, is to

record the amount of remaining resource in the �-th frame
of the k-th basic cycle. Initially, R[k, �] = Ω is regarded as
an empty tank. Gradually, we will fill in more data to each
tank. Below, we present our TF algorithm in three steps. (A)
Assuming that Tbasic is known, we will choose TS

i of each
Mi, i = 1..n. (B) Determine TL

i , TO
i , and Bi,j , j = 1..TL

i ,
of each Mi, i = 1..n. (C) In the end, we will come back and
search for the most energy-efficient basic cycle Tbasic.

A. Determining TS
i of Mi

To decide TS
i , we first sort MSSs by their delay bounds.

Without loss of generality, let D1 ≤ D2 ≤ · · · ≤ Dn.
Supposing that TS

1 = Tbasic is known and TS
1 ≤ D1, we

set TS
i , i = 2..n, as follows:

TS
i = TS

i−1 ×
⌊

Di

TS
i−1

⌋
. (1)

It is not hard to see that Eq. (1) implies TS
i ≤ TS

i−1 × Di

T S
i−1

=

Di. So, TS
i guarantees the delay bound of Mi. In fact, Eq. (1)

also ensures that TS
i is an integer multiple of TS

i−1.
Lemma 3.1: Eq. (1) guarantees that each TS

i is an integer
multiple of TS

i−1, i = 2..n, and TS
i ≤ Di, i = 1..n.

B. Scheduling TL
i , TO

i , and Bi,j of Mi

Recall the array R[·, ·], which represents the resource of the
BS. We will sequentially allocate resources for Mi, i = 1..n,
by updating R[·, ·]. Our algorithm is called ‘tank-filling’ when
Mi is being considered, we will test every ‘starting’ tank in R
by sequentially filling its data to the empty part of that tank
and continuing to next tank in R, until all the data is drained.
Note that here R is regarded as TS

n tanks is a row-major way.
Among these testing starting tank, the one resulting in the least
active frames to Mi is selected. The detail procedure for Mi

is follows, where i starts from 1 and end at n:

a) Calculate the bandwidth requirement of Mi per TS
i

by γi = τi × TS
i .

b) When Mi enters the step, R[·, ·], if regarded in a
row-major order, has a period of TS

i−1 (see that note
at the end of step (d)). So we let j = 1..TS

i−1 as
the potential indices of the starting tanks and run the
following steps for each j.

i) Starting from the j-th tank in R[·, ·], we
fill in the bandwidth requirement γi of Mi

into the empty part of the tank. If there
is sufficient space for γi, we are done;
otherwise we fill the j-th tank up proceed to
the (j +1)-th tank. We continue the process
until all γi is satisfied.
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Fig. 1. Sleep scheduling for two MSSs M1 and M2 using (a) a common sleep cycle and (b) different sleep cycles.

ii) Let f(j) be the number of tanks that have
been used to serve Mi’s data. This is re-
garded as the cost function to start with the
j-th tank.

c) Among all possible js in step (b), let j∗ be the index
which induces the smallest cost f(·). We then place
Mi’s demand starting from the j∗-th tank according
to above procedure. Note that in case of a tie, we
will give priority to the one which leaves the least
remaining resource in the last frame where Mi’s
demand is placed.

d) Then we set TL
i = f(j∗) and TO

i = j∗. Also, we
set Bi,j to the bandwidth allocated to Mi in the
j-th tank, j = 1..TS

n , and subtract Bi,j from the
corresponding entry in R (note that the allocation in
step (b) should be repeated T S

n

T S
i

for array R, so R

has a period of TS
i at the end of this step).

As noted in step (d), after the allocation of Mi, array R has
a period of TS

i . This would simplify our next allocation for
Mi+1 since TS

i+1 is an integer multiple of TS
i .

Example 1: Fig. 2 shows an example of step B. There are
5 MSSs M1, M2, M3, M4, and M5 with sleeping cycles of
TS

1 = Tbasic, TS
2 = 2Tbasic, TS

3 = 2Tbasic, TS
4 = 2Tbasic, and

TS
5 = 4Tbasic and required resources per cycle of γ1 = 0.5Ω,

γ2 = 1.25Ω, γ3 = 0.4Ω, γ4 = 0.4Ω, and γ5 = 2.5Ω,
respectively, where Tbasic = 3 frames. Initially, R[k, �] = Ω
for k = 1..4 and � = 1..3. Then, each Mi is scheduled as
follows. For M1, we can only set j∗ = 1. Then, the BS
reserves γ1 = 0.5Ω resource for M1 in every basic cycle
as shown in Fig. 2(1) and set B1,1 = B1,4 = B1,7 =
B1,10 = 0.5Ω, TO

1 = j∗ = 1, and TL
1 = f(1) = 1; so

R[1, 1] = R[2, 1] = R[3, 1] = R[4, 1] = 0.5Ω and R[k, �] = Ω
for k = 1..4 and � = 2, 3. For M2, its j∗ can be 1 or 2 or 3
and allocating γ2 by starting from any of the two basic cycles
are the same. Since �0.5Ω + 1.25Ω� − (0.5Ω + 1.25Ω) =
0.25Ω < �1.25Ω� − 1.25Ω = 0.75Ω, setting j∗ = 1 and
3 would create the least number of active frames and leave
the least remaining resource in the last frame. So we select
j∗ = 1. After the allocation, shown as Fig. 2(2), we set
B2,1 = B2,7 = 0.5Ω, B2,2 = B2,8 = 0.75Ω, TO

2 = j∗ = 1,

and TL
2 = f(1) = 2 and update R[1, 1] = R[3, 1] = 0 and

R[1, 2] = R[3, 2] = 0.25Ω. For M3, choosing j∗ = 3, 4, 5,
and 6 would create the same and least number of active frames
(i.e., f(3) = f(4) = f(5) = f(6) = 1 < f(2) = 2 < · · · ),
but setting j∗ = 4 would leave less remaining resource in
the last allocated frame (i.e., 0.1Ω). So we set j∗ = 4
and update B3,4 = B3,10 = 0.4Ω, TO

3 = j∗ = 4, and
TL

3 = f(4) = 1, as shown in Fig. 2(3). Then update
R[2, 1] = R[4, 1] = 0.1Ω. For M4, setting j∗ = 3, 5, and
6 would create the same and least number of active frames
(i.e., f(3) = f(5) = f(6) = 1 < f(2) = f(4) = 2 < · · · )
and leave the same remaining resource in the last frame.
So we choose j∗ = 3 and set B4,3 = B4,9 = 0.4Ω,
TO

4 = j∗ = 3, and TL
4 = f(3) = 1, as shown in Fig. 2(4).

Then we update R[1, 3] = R[3, 3] = 0.6Ω. For M5, choosing
j∗ = 3 would add the least number of active frames (i.e.,
f(3) = 4 < f(2) = f(5) = 5 < f(4) = 6 < · · · ). So we
choose j∗ = 3 and set B5,3 = 0.6Ω, B5,4 = 0.1Ω, B5,5 = Ω,
B5,6 = 0.8Ω, TO

5 = j∗ = 3, and TL
5 = f(3) = 4, as shown

in Fig. 2(5). Then update R[1, 3] = R[2, 1] = R[2, 2] = 0 and
R[2, 3] = 0.2Ω.

C. Selecting Tbasic

Clearly, different values of TS
1 will lead to different duty

cycles for MSSs. Here we adopt an exhausted search by setting
TS

1 = 1..D1 and trying to find the sum of the total number of
active frames of all MSSs over a windows of TS

n frames. Then
TS∗

1 leading to the least number of active frames is chosen as
Tbasic.

IV. PERFORMANCE EVALUATION

We have developed a simulator by C++ to verify the
effectiveness of our PMSS scheme. Unless otherwise stated,
the following assumptions are made in our simulation. The
number of MSSs is ranged from 5 to 45. Each MSS Mi has
a data rate τi of 1000 ∼ 3000 bits/frame and delay bound
Di of 10 ∼ 200 frames, where 1000 is the minimum data
rate, 3000 is the maximum data rate, 10 is the minimum delay
bound, and 200 is the maximum delay bound of the MSS. The
available bandwidth per frame of the system is Ω = 80000 bits
(16Mbps) and the length of an OFDM/OFDMA frame is set
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Fig. 2. Example of scheduling Bi,j , T L
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i for five MSSs M1, M2,
M3, M4, and M5.

to 5 ms [14]. We consider two performance metrics: (i) active
ratio: the ratio of active frames for the system and (ii) fail-to-
sleep probability: the ratio of failure to schedule MSSs’ sleep.
We will compare our PMSS against the MMPS-FC (Multi-
ple MSSs Power-saving Scheduler with Fragment Collection)
and MMPS-BF (Multiple MSSs Power-saving Scheduler with
Boundary Free) schemes in [13].

A. Effects of n

In this experiment, we study the effect of n on the active
ratio and fail-to-sleep probability. Fig. 3(a) shows the active
ratio decreases when n increases. Our PMSS almost always
performs the best in all three schemes, except at n = 40,
MMPS-FC performs better than our PMSS. However, when
n = 40, the fail-to-sleep probability of MMPS-FC is almost
100% (Fig. 3(b)). Fig. 3(b) shows the fail-to-sleep probabil-
ity increases when n increases. MMPS-BF and our PMSS
schemes perform the same and the best in the fail-to-sleep
probability. The fail-to-sleep probabilities of the two schemes
is zero when n < 40. For MMPS-FC, it can 100% successfully
schedule MSSs into sleep when n < 25.

B. Effects of Maximum Delay Bound

Then, we investigate the effect of maximum delay bound
on the active ratio by fixing n = 20. Fig. 4 shows the active
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Fig. 3. Effects of number of MSSs on (a) active ratio and (b) fail-to-sleep
probability.
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ratio decreases when the maximum delay bound increases. Our
PMSS performs the best in all three schemes. For the three
schemes, our PMSS benefits the most when the maximum
delay bound is increased from 50 ms to 3000 ms (70%); for
MMPS-FC and MMPS-BF, the improvement is 52% and 47%,
respectively. This is because our scheme can more accurately
capture the traffic characteristics of MSSs.
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probability.

C. Effects of System Bandwidth

In this experiment, we investigate the effect of system
bandwidth on the active ratio and fail-to-sleep probability by
fixing n = 20. Fig. 5(a) shows the active ratio decreases when
system bandwidth increases. Our PMSS outperforms other two
schemes except when the system bandwidth is 8Mbps. When
the system bandwidth is 8Mbps, MMPS-FC performs the best
but its fail-to-sleep probability is much higher (88%) than
other two schemes (about 50%). For the three schemes, our
PMSS benefits the most when system bandwidth is increased
from 8Mbps to 128Mbps (73%); for MMPS-FC and MMPS-
BF, the improvement is 13% and 42%, respectively.

V. CONCLUSIONS

In this paper, we propose a per-MSS sleep scheduling
scheme for multiple MSSs in IEEE 802.16e wireless networks
such that the overall power consumption of the system is
minimized while the QoS of each MSS can be guaranteed.
Compared to the previous work, our approach assigns and
schedules type II PSCs for each MSS by considering each
of their QoS characteristics such that the sleep scheduling
can more accurately capture each MSS’s QoS requirement.

This leads to each MSS can sleep more and the total power
consumption of the system is significantly reduced. Also, the
proposed scheme is easy to implement and compatible to the
standard.
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Abstract

Convergecast is a fundamental operation in wireless sensor networks. Existing con-
vergecast solutions have focused on reducing latency and energy consumption. How-
ever, a good design should be compliant to standards, in addition to considering these
factors. Based on this observation, this paper defines a minimum delay beacon schedul-
ing problem for quick convergecast in ZigBee tree-based wireless sensor networks and
proves that this problem is NP-complete. Our formulation is compliant with the low-
power design of IEEE 802.15.4. We then propose optimal solutions for special cases
and heuristic algorithms for general cases. Simulation results show that the proposed
algorithms can indeed achieve quick convergecast.

Keywords: convergecast, graph theory, IEEE 802.15.4, scheduling, wireless sensor net-
work, ZigBee.

1 Introduction

The rapid progress of wireless communication and embedded micro-sensing MEMS tech-

nologies has made wireless sensor networks (WSNs) possible. A WSN consists of many

inexpensive wireless sensors capable of collecting, storing, processing environmental infor-

mation, and communicating with neighboring nodes. Applications of WSNs include wildlife

monitoring [3, 4], object tracking [16, 18], and dynamic path finding [15, 19].

Recently, several WSN platforms have been developed, such as MICA [6] and Dust

Network [2]. For interoperability among different systems, standards such as ZigBee [24]
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have been developed. In the ZigBee protocol stack, physical and MAC layer protocols are

adopted from the IEEE 802.15.4 standard [13]. ZigBee solves interoperability issues from

the physical layer to the application layer.

ZigBee supports three kinds of networks, namely star, tree, and mesh networks. A Zig-

Bee coordinator is responsible for initializing, maintaining, and controlling the network.

A star network has a coordinator with devices directly connecting to the coordinator. For

tree and mesh networks, devices can communicate with each other in a multihop fashion.

The network is formed by one ZigBee coordinator and multiple ZigBee routers. A device

can join a network as an end devices by the associating with the coordinator or a router.

In a tree network, the coordinator and routers can announce beacons. However, in a mesh

network, regular beacons are not allowed. Beacons are an important mechanism to sup-

port power management. Therefore, the tree topology is preferred, especially when energy

saving is a desirable feature. To support ZigBee beacon-enabled tree networks, the IEEE

802.15 WPAN Task Group 4 further defines a revision of the IEEE 802.15.4 [14] speci-

fication in 2006. One of the major changes is structure of superframes to support power

management. On the contrary, to our understanding, power management is still impossible

for mesh-based ZigBee networks in the current specification. Therefore, we will focus on

tree-based, beacon-enabled ZigBee networks in this work.

Considering that data gathering is a major application of WSNs, convergecast has been

investigated in several works [8, 9, 11, 17, 20, 23]. With the goals of low latency and low

energy consumption, reference [20] shows how to connect sensors as a balanced reporting

tree and how to assign CDMA codes to sensors to diminish interference among sensors, thus

achieving energy efficiency. The work [23] aims to minimize the overall energy consumption

under the constraint that sensed data should be reported within specified time. Dynamic pro-

gramming algorithms are proposed by assuming that sensors can receive multiple packets at

the same time. As can be seen, both [20] and [23] are based on quite strong assumptions on

communication capability of sensor nodes and they do not fit into the ZigBee specification.

In [17], the authors propose an energy-efficient and low-latency MAC, called DMAC. Sen-

sors are connected by a tree and stay in sleep state for most of the time. When sensors change
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to active state, they are first set to the receive mode and then to the transmit mode. DMAC

achieves low-latency by staggering wake-up schedules of sensors at the time instant when

their children switch to the transmit mode. Similar to [17], reference [11] arranges wake-up

schedule of sensors by taking traffic loads into account. Each parent periodically broadcasts

an advertisement containing a set of empty slots. Children nodes request empty slots ac-

cording to their demands. In [9], the authors propose a distributed convergecast scheduling

algorithm. The basic concept is to connect nodes by a spanning tree. Then the algorithm

reduces the tree to multiple lines. For each line, the algorithm schedules nodes’ transmission

times in a bottom-up manner. Reference [8] presents a centralized solution to convergecast.

The algorithm divides nodes into many segments such that the transmission of a node in a

segment does not cause interference to other transmissions in the same segment. The aim is

to increase the degree of parallel transmissions to decrease latencies. Although these results

[8, 9, 11, 17] are designed for quick convergecast, the solutions are not compliant to the Zig-

Bee standard for the following two reasons. Firstly, in these works, nodes’ wake/sleep times

are dynamically changed according to their schedules. However, in a ZigBee beacon-enabled

tree network, nodes’ wake/sleep times must be fixed in the way that each router wakes up

twice in each cycle to receive its children’s packets and to transmit packets to its parent,

respectively. The coordinator (resp., an end device) wakes up once to receive its children’s

packets (resp., to transmit packets to its parent). Secondly, the scheduling of [8, 9, 11, 17] is

transmission-based, while ours are receiving-based. The implication is that the former may

cause a router to be active multiple times per cycle. This is incompatible with the ZigBee

specification.

This paper aims at designing quick convergecast solutions for ZigBee tree-based, beacon-

enabled WSNs. This work is motivated by the following observations. First, we see that

most related works are not compliant to the ZigBee standard. Second, we believe that tree-

based topology is more suitable if power management is a main concern in WSNs. The

network scenario is shown in Fig. 1. The network contains one sink (ZigBee coordinator),

some ZigBee routers, and some ZigBee end devices. Each ZigBee router is responsible

for collecting sensed data from end devices associated with it and relaying incoming data

3
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Figure 1: An example of convergecast in a ZigBee tree-based network.
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to the sink. According to specifications, a ZigBee router can announce a beacon to start a

superframe. Each superframe consists of an active portion followed by an inactive portion.

On receiving its parent router’s beacon, an end device has to wake up for an active portion

to sense the environment and communicate with its coordinator. However, to avoid collision

with its neighbors, a router should shift its active portion by a certain amount. Fig. 1 shows

a possible allocation of active portions for routers A, B, C, and D. The collected sensory

data of A in the k-th superframe can be sent to C in the same superframe. However, because

the active portion of B in the k-th superframe appears after that of C, the collected data of

B in the k-th superframe can only be relayed to C in the (k + 1)-th superframe. The report

delay from B to C is almost the length of one superframe. The delay can be eliminated if

the active portion of B in the k-th superframe appears before that of C. The delay is not

negligible because of the low duty cycle design of IEEE 802.15.4. For example, in 2.4 GHz

PHY, with 1.56% duty cycle, a superframe can be as long as 251.658 seconds (with an active

portion of 3.93 seconds). Clearly, for large-scale WSNs, the convergecast latency could be

significant if the problem is not carefully addressed. The quick convergecast problem is to

schedule the beacons of routers to minimize the convergecast latency. We prove that this

problem is NP-complete by reducing the 3-CNF-SAT problem to it. We show two special

cases of this problem where optimal solutions can be found in polynomial time and propose

two heuristic algorithms for general cases. To the best of our knowledge, this is the first

result that provides convergecast solutions in ZigBee beacon-enabled tree networks.

The rest of this paper is organized as follows. Section 2 briefly introduces IEEE 802.15.4

and ZigBee. The quick convergecast problem is formally defined in Section 3. Section 4

presents our scheduling solutions. Simulation results are given in Section 5. Finally, Sec-

tion 6 concludes this paper.

2 Overview of IEEE 802.15.4 and ZigBee Standards

IEEE 802.15.4 [13] specifies the physical and data link protocols for low-rate wireless per-

sonal area networks (LR-WPAN). In the physical layer, there are three frequency bands with

27 radio channels. Channel 0 ranges from 868.0 MHz to 868.6 MHz, which provides a data
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Figure 2: IEEE 802.15.4 superframe structure.

rate of 20 kbps. Channels 1 to 10 work from 902.0 MHz to 928.0 MHz and each channel

provides a data rate of 40 kbps. Channels 11 to 26 are located from 2.4 GHz to 2.4835 GHz,

each with a data rate of 250 kbps.

IEEE 802.15.4 devices are expected to have limited power, but need to operate for a

longer period of time. Therefore, energy conservation is a critical issue. Devices are clas-

sified as full function devices (FFDs) and reduced function devices (RFDs). IEEE 802.15.4

supports star and peer-to-peer topologies. In each PAN, one device is designated as the co-

ordinator, which is responsible for maintaining the network. A FFD has the capability of

serving as a coordinator or associating with an existing coordinator/router and becoming a

router. A RFD can only associate with a coordinator/router and can not have children.

The ZigBee coordinator defines the superframe structure of a ZigBee network. As shown

in Fig. 2(a), the structure of superframes is controlled by two parameters: beacon order (BO)

and superframe order (SO), which decide the lengths of a superframe and its active potion,

respectively. For a beacon-enabled network, the setting of BO and SO should satisfy the

relationship 0 ≤ SO ≤ BO ≤ 14. (A non-beacon-enabled network should set BO =
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SO = 15 to indicate that superframes do not exist.) Each active portion consists of 16 equal-

length slots, which can be further partitioned into a contention access period (CAP) and a

contention free period (CFP). The CAP may contain the first i slots, and the CFP contains

the rest of the 16−i slots, where 1 ≤ i ≤ 16. Slotted CSMA/CA is used in CAP. FFDs which

require fixed transmission rates can ask for guarantee time slots (GTSs) from the coordinator.

A CFP can support multiple GTSs, and each GTS may contain multiple slots. Note that only

the coordinator can allocate GTSs. After the active portion, devices can go to sleep to save

energy.

In a beacon-enabled star network, a device only needs to be active for 2−(BO−SO) portion

of the time. Changing the value of (BO−SO) allows us to adjust the on-duty time of devices.

However, for a beacon-enabled tree network, routers have to choose different times to start

their active portions to avoid collision. Once the value of (BO−SO) is decided, each router

can choose from 2BO−SO slots as its active portion. In the revised version of IEEE 802.15.4

[14], a router can select one active portion as its outgoing superframe, and based on the active

portion selected by its parent, the active portion is called its incoming superframe (as shown

in Fig. 2(b)). In an outgoing/incoming superframe, a router is expected to transmit/receive

a beacon to/from its child routers/parent router. When choosing a slot, neighboring routers’

active portions (i.e., outgoing superframes) should be shifted away from each other to avoid

interference. This work is motivated by the observation that the specification does not clearly

define how to choose the locations of routers’ active portions such that the convergecast

latency can be reduced. In our work, we consider two kinds of interference between routers.

Two routers have direct interference if they can hear each others’ beacons. Two routers have

indirect interference if they have at least one common neighbor. Both interferences should be

avoided when choosing routers’ active portions. Table 1 lists possible choices of (BO−SO)

combinations.
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Table 1: Relationship of BO − SO, duty cycle, and the number of active portions in a
superframe.

BO − SO 0 1 2 3 4 5 6 7 8 ≥ 9
Duty cycle (%) 100 50 25 12.5 6.25 3.13 1.56 0.78 0.39 ≤ 0.195

Number of active portions (slots) 1 2 4 8 16 32 64 128 256 ≥ 512

3 The Minimum Delay Beacon Scheduling (MDBS)
Problem

This section formally defines the convergecast problem in ZigBee networks. Given a ZigBee

network, we model it by a graph G = (V,E), where V contains all routers and the coordina-

tor and E contains all symmetric communication links between nodes in V . The coordinator

also serves as the sink of the network. End devices can only associate with routers, but are

not included in V . From G, we can construct an interference graph GI = (V,EI), where

edge (i, j) ∈ EI if there are direct/indirect interferences between i and j. There is a duty

cycle requirement α for this network. From α and Table 1, we can determine the most ap-

propriate value of BO − SO. We denote by k = 2BO−SO the number of active portions (or

slots) per beacon interval.

The beacon scheduling problem is to find a slot assignment s(i) for each router i ∈ V ,

where s(i) is an integer and s(i) ∈ [0, k − 1], such that router i’s active portion is in slot s(i)

and s(i) �= s(j) if (i, j) ∈ EI . Here the slot assignment means the position of the outgoing

superframe of each router (the position of the incoming superframe, as clarified earlier, is

determined by the parent of the router). Motivated by Brook’s theorem [21], which proves

that n colors are sufficient to color any graph with a maximum degree of n, we would assume

that k ≥ DI , where DI is the maximum degree of GI .

Given a slot assignment for G, the report latency from node i to node j, where (i, j) ∈ E,

is the number of slots, denoted by dij , that node i has to wait to relay its collected sensory

data to node j, i.e.,

dij = (s(j) − s(i)) mod k. (1)

Note that the report latency from node i to node j (dij) may not by equal to the report latency
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from node j to node i (dji). Therefore, we can convert G into a weighted directed graph

GD = (V,ED) such that each (i, j) ∈ E is translated into two directed edges (i, j) and (j, i)

such that w((i, j)) = dij and w((j, i)) = dji. The report latency for each i ∈ V to the sink

is the sum of report latencies of the links on the shortest path from i to the sink in GD. The

latency of the convergecast, denoted as L(G), is the maximum of all nodes’ report latencies.

Definition 1 Given G = (V,E), G’s interference graph GI = (V,EI), and k available slots,

the Minimum Delay Beacon Scheduling (MDBS) problem is to find an interference-free slot

assignment s(i) for each i ∈ V such that the convergecast latency L(G) is minimized.

To prove that the MDBS problem is NP-complete, we define a decision problem as follows.

Definition 2 Given G = (V,E), G’s interference graph GI = (V,EI), k available slots,

and a delay constraint d, the Bounded Delay Beacon Scheduling (BDBS) problem is to

decide if there exists an interference-free slot assignment s(i) for each i ∈ V such that the

convergecast latency L(G) ≤ d.

Theorem 1 The BDBS problem is NP-complete.

Proof. First, given slot assignments for nodes in V , we can find the report latency of each

i ∈ V by running a shortest path algorithm on GD. We can then check if L(G) ≤ d. Clearly,

this takes polynomial time.

We then prove that the BDBS problem is NP-hard by reducing the 3 conjunctive normal

form satisfiability (3-CNF-SAT) problem to a special case of the BDBS problem in poly-

nomial time. Given any 3-CNF formula C, we will construct the corresponding G and GI .

Then we show that C is satisfiable if and only if there is a slot assignment for each i ∈ V

using no more than k = 3 slots such that L(G) ≤ 4 slots.

Let C = C1 ∧ C2 ∧ · · · ∧ Cm, where clause Cj = xj,1 ∨ xj,2 ∨ xj,3, 1 ≤ j ≤ m,

xj,i ∈ {X1, X2, ..., Xn}, and Xi ∈ {xi, x̄i}, where xi is a binary variable, 1 ≤ i ≤ n. We

first construct G from C as follows:

1. For each clause Cj , j = 1, 2, ...,m, add a vertex Cj in G.
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2. For each literal Xi, i = 1, 2, ..., n, add four vertices xi1, xi2, x̄i1, and x̄i2 in G.

3. Add a vertex t as the sink of G.

4. Add edges (t, xi2) and (t, x̄i2) to G, for i = 1, 2, ..., n.

5. Add edges (xi1, xi2) and (x̄i1, x̄i2) to G, for i = 1, 2, ..., n.

6. For each i = 1, 2, ..., n and each j = 1, 2, ...,m, add an edge (Cj, xi1) (resp., (Cj, x̄i1))

to G if xi (resp., x̄i) appears in Cj .

Then we construct GI as follows.

1. Add all vertices and edges in G into GI .

2. Add edges (xi1, x̄i1) and (xi2, x̄i2) to GI , for i = 1, 2, ..., n.

3. Add edges (Cj, xi2) and (Cj, x̄i2) to GI , for i = 1, 2, ..., n and j = 1, 2, ...,m.

Then we build a one-to-one mapping from each truth assignment of C to a slot assign-

ment of G. We establish the following mapping:

1. Set s(t) = 0.

2. Set s(Cj) = 0, j = 1, 2, ...,m.

3. Set s(xi1) = 1 and s(x̄i2) = 1, i = 1, 2, ..., n, if xi is true; otherwise, set s(xi1) = 2

and s(x̄i2) = 2.

4. Set s(xi2) = 1 and s(x̄i1) = 1, i = 1, 2, ..., n, if x̄i is true; otherwise, set s(xi2) = 2

and s(x̄i1) = 2.

The above reduction can be computed in polynomial time. By the above reduction,

vertices xi1 or x̄i1, i = 1, 2, ..., n, that are assigned to slot 1 (resp. slot 2) will have a report

latency of 2 (resp. 4) and vertices xi2 or x̄i2, i = 1, 2, ..., n, that are assigned to slot 1 (resp.

slot 2) will have a report latency of 2 (resp. 1). Hence, for those vertices xi1, x̄i1, xi2, and

x̄i2, i = 1, 2, ..., n, the longest report latency will be 4.
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Figure 3: An example of reduction from the 3-CNF-SAT to the BDBS problem.

To prove the if part, we need to show that if C is satisfiable, there is a slot assignment

such that k = 3 and L(G) ≤ 4. Since C satisfiable, there must exist an assignment such

that each clause Cj , j = 1, 2, ...,m, is true. If a clause Cj is true, at least one variable in

Cj is true. According to the reduction, Cj can always find an edge (Cj, xi1) or (Cj, x̄i1) with

w((Cj, xi1)) = 1 or w((Cj, x̄i1)) = 1, where i = 1, 2, ..., n. Thus, when C is satisfiable, the

reporting latency for each clause is 3. This achieves L(G) = 4.

For the only if part, if each vertex Cj , j = 1, 2, ...,m, can find at least an edge with

weight 1 to one of xi1 and x̄i1, for i = 1, 2, ..., n, to achieve a report latency of 3, it must be

that each clause has at least one variable to be true. So formula C is satisfiable. Otherwise,

the report latency of Cj , j = 1, 2, ...,m, will be 6. �

For example, given C = (x1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x3) ∧ (x1 ∨ x2 ∨ x̄3), Fig. 3 shows

the corresponding G. The truth assignment (x1, x2, x3) = (T, F, T ) makes C satisfiable.

According to the reduction and the mapping in the above proof, we can obtain the network

G and its slot assignment as shown in Fig. 3 such that L(G) = 4. �
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4 Algorithms for the MDBS Problem

4.1 Optimal Solutions for Special Cases

Optimal solutions can be found for the MDBS problem in polynomial time for regular linear

networks and regular ring networks, as illustrated in Fig. 4. In such networks, each vertex is

connected to one or two adjacent vertices and has an interference relation with each neighbor

within h hops from it, where h ≥ 2. In a regular linear network, we assume that the sink t is

at one end of the network. Clearly, the maximum degree of GI is 2h. We will show that an

optimal solution can be found if the number of slots k ≥ h + 1. The slot assignment can be

done in a bottom-up manner. The bottom node is assigned to slot 0. Then, for each vertex v,

s(v) = (k′ + 1) mod k, where k′ is the slot assigned to v’s child.

Theorem 2 For a regular linear network, if k ≥ h + 1, the above slot assignment achieves

a report latency of |V | − 1, which is optimal.

Proof. Clearly, the slot assignment is interference-free. Also the report latency of |V | − 1 is

clearly the lower bound. �

For a regular ring network, we first partition vertices excluding t into left and right groups

as illustrated in Fig. 4(b) such that the left group consists of the sink node t and � |V |−1
2

	 other

nodes counting counter-clockwise from t, and the right group consists of those 
 |V |−1
2

� nodes

counting clockwise from t. Now we consider the ring as a spanning tree with t as the root

and left and right groups as two linear paths. Assuming that � |V |−1
2

	 ≥ 2h and k ≥ 2h, the

slot assignment works as follows:

1. The bottom node in the left group is assigned to slot 0.

2. All other nodes in the left group are assigned with slots in a bottom-up manner. For

each node i in the left group, we let s(i) = (j + 1) mod k, where j is the slot of i’s

child.

3. Nodes in the right group are assigned with slots in a top-down manner. For each node

i in the right group, we let s(i) = (j − c) mod k, where j is the slot assigned to i’s
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Figure 4: Examples of optimal slot assignments for regular linear and ring networks (h = 2).
Dotted lines mean interference relations.

parent and c is the smallest constant (1 ≤ c ≤ k) that ensures that s(i) is not used by

any of its interference neighbors that have been assigned with slots.

It is not hard to prove the slot assignment is interference-free because nodes receives

slots sequentially and we have avoided using the same slots among interfering neighbors.

Although this is a greedy approach, we show that c is equal to 1 in step 3 in most of the cases

except when two special nodes are visited. This gives an asymptotically optimal algorithm,

as proved in the following theorem.

Theorem 3 For a regular ring network, assuming that k ≥ 2h and � |V |−1
2

	 ≥ 2h, the above

slot assignment achieves a report latency L(G) = � |V |−1
2

	 + h, which is optimal within a

factor of 1.5.

Proof. We first identify three nodes on the ring (refer to Fig. 4(b)):

• l1: the bottom node in the left group.

• r1: the first node in the right group.
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• r2: the node that is h hops from l1 counting counterclockwise.

The report latency of each node can be analyzed as follows. The parent of node x is

denoted by par(x).

A1. For each node i in the left group except the sink t, the latency from i to par(i) is 1.

A2. The latency from r1 to t is h.

A3. For each node i next to r1 in the right group but before r2 (counting clockwise), the

latency from i to par(i) is 1.

A4. The latency from r2 to par(r2) is 1 if the ring size is even; otherwise, the latency is 2.

A5. For each node i in the right group that is a descendant of r2, the report latency from i to

par(i) is 1.

It is not hard to prove that A1, A2, and A3 are true. To see A4 and A5, we make the

following observations. The function pari(x) is to apply i times the par() function on node

x. Note that par0(x) means x itself.

O1. When the ring size is even, the equality s(pari−1(l1)) = s(pari(r2)) holds for i =

1, 2, ..., � |V |−1
2

	 − h − 1. More specifically, this means that (i) l1 and par(r2) will

receive the same slot, (ii) par(l1) and par2(r2) will receive the same slot, etc. This can

be proved by induction by showing that the i-th descendant of t in the right group will

be assigned the same slot as the (h + i − 1)-th descendant of t in the left group (the

induction can go in a top-down manner). This property implies that when assigning

a slot to r2 in step 3, c = 1 in case that the ring size is even. Further, r2 and its

descendants will be sequentially assigned to slots k−1, k−2, ..., k−h, which implies

that c = 1 when doing the assignments in step 3. So properties A4 and A5 hold for the

case of an even ring.

O2. When the ring size is odd, the equality s(pari(l1)) = s(pari(r2)) holds for i = 1, 2, ...,

� |V |−1
2

	 − h. This means that (i) par(l1) and par(r2) will receive the same slot, and
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(ii) par2(l1) and par2(r2) will receive the same slot, etc. Again, this can be proved by

induction as in O1. This property implies that c = 2 when assigning a slot to r2 in step

3, and c = 1 when assigning slots to descendants of r2. So properties A4 and A5 hold

for the case of an odd ring.

The equality of slot assignments pointed out in O1 and O2 is illustrated in Fig. 4(b)

by those numbers in gray nodes. In summary, the report latency of the left group is � |V |−1
2

	.
When the ring size is even, the report latency of the right group is the number of nodes in this

group, |V |
2

, plus the extra latency h− 1 incurred at r1. So L(G) = |V |
2

+h− 1 = � |V |−1
2

	+h.

When the ring size is odd, the report latency of right group is the number of nodes in this

group, |V |−1
2

, plus the extra latency h − 1 incurred at r1 and the extra latency 1 incurred at

r2. So L(G) = � |V |−1
2

	 + h.

A lower bound on the report latency of this problem is the maximum number of nodes in

each group excluding t. Applying � |V |−1
2

	 as a lower bound and using the fact that � |V |−1
2

	 ≥
2h, L(G) will be smaller than 1.5 × � |V |−1

2
	, which implies the algorithm is optimal within

a factor of 1.5. Note that the condition � |V |−1
2

	 ≥ 2h is to guarantee that t will not locate

within h hops from r2. Otherwise, the observation O2 will not hold. �

4.2 A Centralized Tree-Based Assignment Scheme

Given G = (V,E), GI = (V,EI), and k, we propose a centralized slot assignment heuristic

algorithm. Our algorithm is composed of the following three phases:

phase 1. From G, we first construct a BFS tree T rooted at sink t.

phase 2. We traverse vertices of T in a bottom-up manner. For these vertices in depth d,

we first sort them according to their degrees in GI in a descending order. Then we

sequentially traverse these vertices in that order. For each vertex v in depth d visited,

we compute a temporary slot number t(v) for v as follows.

1. If v is a leaf node, we set t(v) to the minimal non-negative integer l such that for

each vertex u that has been visited and (u, v) ∈ EI , (t(u) mod k) �= l.
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2. If v is an in-tree node, let m be the maximum of the numbers that have been

assigned to v’s children, i.e., m = max{t(child(v))}, where child(v) is the set

of v’s children. We then set t(v) to the minimal non-negative integer l > m such

that for each vertex u that has been visited and (u, v) ∈ EI , (t(u) mod k) �= (l

mod k).

After every vertex v is visited, we make the assignment s(v) = t(v) mod k.

phase 3. In this phase, vertices are traversed sequentially from t in a top-down manner.

When each vertex v is visited, we try to greedily find a new slot l such that (s(par(v))−
l) mod k < (s(par(v)) − s(v)) mod k, such that l �= s(u) for each (u, v) ∈ EI , if

possible. Then we reassign s(v) = l.

Note that in phase 2, a node with a higher degree means that it has more interference

neighbors, implying that it has less slots to use. Therefore, it has to be assigned to a slot

earlier. Also note that, the number t(v) is not a modulus number. However, in step 2 of

phase 2, we did check that if t(v) is converted to a slot number, no interference will occur.

Intuitively, this is a temporary slot assignment that will incur the least latency to v’s children.

At the end, t(v) is converted to a slot assignment s(v). Phase 3 is a greedy approach to further

reduce the report latency of routers. For example, Fig. 5(a) shows the slot assignment after

phase 2. Fig. 5(b) indicates that B, C, and D can find another slots and their report latencies

are decreased. This phase can reduce L(G) in some cases.
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The computational complexity of this algorithm is analyzed below. In phase 1, the com-

plexity of constructing a BFS tree is O(|V | + |E|). In phase 2, the cost of sorting is at most

O(|V |2) and the computational cost to compute t(v) for each vertex v is bounded by O(kDI),

where DI is the degree of GI . So the time complexity of phase 2 is O(|V |2+kDI |V |). Phase

3 performs a similar procedure as phase 2, so its time complexity is also O(kDI |V |). Overall,

the time complexity is O(|V |2 + kDI |V |).

4.3 A Distributed Assignment Scheme

In this section, we propose a distributed slot assignment algorithm. Each node has to com-

pute its direct as well as indirect interference neighbors in a distributed manner. To achieve

this, we will refer to the heterogeneity approach in [22], which adopts power control to

achieve this goal. Assuming routers’ default transmission range is r, interference neigh-

bors must locate within range 2r. From time-to-time, each router will boost its transmission

power to double its default transmission range and send HELLO packets to its neighbor

routers. Each HELLO packet further contains sender’s 1) depth1, 2) the location of outgoing

superframe (i.e., slot), and 3) number of interference neighbors. Note that all other pack-

ets are transmitted by the default power level. When booting up, each router will broadcast

HELLO packets claiming that its depth and slot are NULL. After joining the network and

choosing a slot, the HELLO packets will carry the node’s depth and slot information. The

algorithm is triggered by the sink t setting s(t) = k − 1 and then broadcasting its beacon. A

router v �= t that receives a beacon will decide its slot as follows.

1. Node v sends an association request to the beacon sender.

2. If v fails to associate with the beacon sender, it stops the procedure and waits for other

beacons.

3. If v successfully associates with a parent node par(v), it computes the smallest positive

integer l such that (s(par(v))− l) mod k �= s(u) for all (u, v) ∈ EI and s(u) �= NULL.

Then v chooses s(v) = (s(par(v)) − l) mod k as its slot.

1The depth of a node is the length of the tree path from the root to the node. The root node is at depth zero.
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4. Then, v broadcasts HELLOs including its slot assignment s(v) for a time period twait.

If it finds that s(v) = s(u) for any (u, v) ∈ EI , v has to change to a new slot if one of

the following rules is satisfied and goes back to step 3.

(a) Node u has more interference neighbors than v.

(b) Node u and v have the same number of interference neighbors but the depth of u

is lower than v, i.e. u is closer to the sink than v.

(c) Node u and v have the same number of interference neighbors and they are at the

same depth but the u’s ID is smaller than v’s.

5. After twait, v can finalize its slot selection and broadcast its beacons.

In this distributed algorithm, slots are assigned to routers, ideally, in a top-down manner.

However, due to transmission latency, some routers at lower levels may find slots earlier

than those at higher levels. Also note that the time twait is to avoid possible collision on slot

assignments due to packet loss.

5 Simulation Results

This section presents our simulation results. We first assume that the size of sensory data

is negligible and that all routers generate reports at the same time, and compare the per-

formances of different convergecast algorithms. Then we simulate more realistic scenarios

where the size of sensory data is not negligible and routers need to generate reports peri-

odically or passively driven by events randomly appearing in certain regions in the sensing

field. More specifically, sensors generate reports according to certain application specifica-

tions. Devices all run ZigBee and IEEE 802.15.4 protocols to communicate with each other.

Routers can aggregate child sensors’ reports and report to their parents directly. Each router

has a fix-size buffer. When a router’s buffer overflows, this router will not accept further in-

coming frames. We also measure the goodput of the network, which is defined as the ratio of

sensors’ reports successfully received by the sink. Some parameters used in our simulation

are listed in Table 2.
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Table 2: Simulation parameters.
Parameter Value

length of a frame’s header and tail 18 Bytes
length of a sensor’s report 16 Bytes
beacon length 18 Bytes
maximum length of a frame 127 Bytes
bit rate 250k bps
symbol rate 62.5k symbols/s
aBaseSuperframeDuration 960 symbols
aUnitBackoffPeriod 20 symbols
aCCATime 8 symbols
macMinBE 3
aMaxBE 5
macMaxCSMABackoffs 4
maximum number of retransmissions 3

5.1 Comparison of Different Convergecast Algorithms

We compare the proposed slot assignment algorithms against a random slot assignment (de-

noted by RAN) scheme and a greedy slot assignment (denoted by GDY) scheme. In RAN,

the slot assignment starts from the sink and each router, after associating with a parent router,

simply chooses any slot which has not been used by any of its interference neighbors. In

GDY, routers are given a sequence number in a top-down manner. The sink sets its slot to

k − 1. Then the slot assignment continues in sequence. For a node i, it will try to find a slot

s(i) = s(j) − l mod k, where j is the predecessor of i and l is the smallest integer letting

s(i) is the slot which does not assign to any of i’s interference neighbors. In the simulations,

routers are randomly distributed in a circular region of a radius r and a sink is placed in

the center. Our centralized tree-based scheme and distributed slot assignment scheme are

denoted as CTB and DSA, respectively. We compare the report latency L(G) (in terms of

slots).

Fig. 6 shows some slot assignment results of CTB and DSA when r = 35 m and k = 64.

Devices are randomly distributed. The transmission range of routers is set to 20 m. In this

case, CTB performs better than DSA.

Next, we observe the impact of different r, CR (number of routers), and TR (transmission
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Figure 6: Slot assignment examples by CTB and DSA.

distance). Fig. 7(a) shows the impact of r when k = 64, TR = 25 m, and CR = 3× (r/10)2.

CTB performs the best. DSA performs slightly worse than CTB, but still significantly outper-

forms RAN and GDY. It can be seen that RAN and GRY could result in very long converge-

cast latency. Both CTB and DSA are quite insensitive to the network size. But this is not the

case for RAN and GDY. Fig. 7(b) shows the impact of TR when CR = 300, r = 100 m, and

k = 64. Since a larger transmission range implies higher interference among routers, the

report latencies of CTB and DSA will increase linearly as TR increases. The report latency

of RAN also increases when TR = 17 ∼ 21 m because of the increased interference. After

TR ≥ 22 m, the latency of RAN decreases because that the network diameter is reduced.

Basically, GDY behaves the same as CTB and DSA. But when the transmission range is

larger, the report latency slightly becomes small.

Fig. 7(c) shows the impact of CR when r = 100 m, TR = 20 m, and k = 128. As a

larger CR means a higher network density and thus more interference, the report latencies of

CTB and DSA increase as CR increases. Since the network diameter is bounded, the report

latency of RAN is also bounded. GDY is sensitive to the number of routers when there are

less routers. This is because that each router can own a slot and the report latency increases

proportionally to the number of routers. With r = 100 m, CR = 300, and TR = 20 m,

Fig. 7(d) shows the impact of routers’ duty cycle. Note that a lower duty cycle means a

larger number of available slots. Interestingly, we see that the report latencies of CTB, DSA,
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and GDY are independent of the number of slots. Contrarily, with a random assignment,

RAN even incurs a higher report latency as there are more freedom in slot selection.

5.2 Periodical Reporting Scenarios

Next, we assume that sensors are instructed to report their data in a periodically manner. We

set r = 100 m, TR = 20 m, and CR = 300 with 6000 randomly placed sensors associated

to these routers, and we further restrict a router can accept at most 30 sensors. BO − SO is

fixed to six, so k = 2BO−SO = 64. Since the earlier simulations show that CTB and DSA

perform quite close, we will use only CTB to assign routers’ slots. Sensors are required to

generate a report every 251.66 second (the length of one beacon interval when BO = 14).

We set the buffer size of each router is 10 KB.2 We allocate two mini-slots for each child

router of the sink as the GTS slot. 3

Since (BO−SO) is fixed, a small BO implies a smaller slot size (and thus a smaller unit

size of L(G)). So, a smaller slot size seemingly implies higher contention among sensors

if they all intend to report to their parents simultaneously. In fact, a smaller BO does not

hurt the overall reporting times of sensors if we can properly divide sensors into groups. For

example, in Fig. 8, when BO = 14, all sensors of a router can report in every superframe.

When BO = 13, if we divide sensors into two groups, then they can report alternately in

odd and even superframes. Similarly, when BO = 12, four groups of sensors can report

alternately. Since the length of superframes are reduced proportionally, the report intervals

of sensors actually remain the same in these cases. In the following experiments, we groups

sensors according to their parents’ IDs. A sensor belongs to group m if the modulus of its

parent’s ID is m.

Fig. 9 shows the theoretical and actual report latencies under different BOs. Note that a

report may be delayed due to buffer constraint. As can be seen, the actual latency does not

always favor a smaller BO. Our results show that BO = 10 ∼ 12 performs better. Fig. 9(b)

shows the goodput of sensory reports, channel utilization at the sink, and the number of

2Currently, there are some platforms which are equipped with larger RAMs. For example, Jennic JN5121
[5] has a 96KB RAM and CC2420DBK [1] has a 32KB RAM.

3There are sixteen mini-slots per active portion (slot).
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Figure 9: Simulations considering buffer limitation and contention effects: (a) theoretical v.s.
actual report latencies and (b) goodput, channel utilization, and number of dropped frames.

dropped frames at the sink. When BO = 14, although there is no frames being dropped at

the sink, the goodput is still low. This is because a lot of collisions happen inside the network,

causing many sensory reports being dropped at intermediate levels (a frame is dropped after

exceeding its retransmission limit). Fig. 10 shows a log of the numbers of frames received

by a sink’s child router when BO = 14. We can see that more than half of the active portion

is wasted. Overall, BO = 10 produces the best goodput and a shorter report latency.

Some previous works can be also integrated in this periodical reporting scenario, such as

the adaptive GTS allocation mechanism in [12] and the aggregation algorithms for WSNs in
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Figure 11: Simulations considering data compression: (a) theoretical v.s. actual report laten-
cies and (b) goodput, channel utilization, and number of dropped frames.

[7][10]. Fig. 11 shows an experiment that routers can compress reports from sensors with a

rate cr when BO = 10. If a router receives n reports and each report’s size is 16 Bytes (as in

Table 2), it can compress the size to 16 × n × (1 − cr). The report latencies decrease when

the cr becomes larger. By compressing the report data, the goodput can up to 98% and the

report can arrive to the sink more quickly.

5.3 Event-Driven Reporting Scenarios

In the following, we assume that sensors’ reporting activities are triggered by events occurred

at random locations in the network with a rate λ. The sensing range of each sensors is 3
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Figure 12: Simulation results of event-driven scenarios: (a) theoretical v.s. actual report
latencies and (b) goodput.

meters and each event is a disk of a radius of 5 meters. A sensor can detect an event if its

sensing range overlaps with the disk of that event. Each router has an 1 KB buffer. When a

sensor detects an event, it only tries to report that event once. All other settings are the same

as those in Section 5.2.

Fig. 12 shows the simulation results when λ = 1/5s, 1/15s, and 1/30s. From Fig. 12(a),

we can observe that when BO is small, the report latency can not achieve to the theoretical

value. This is because that an active portion is too small to accommodate all reports from

sensors, thus lengthening the report latency. When BO becomes larger, the theoretical and

actual curves would meet. However, the good put will degrade, as shown in Fig. 12(b). This

is because reports are likely to be dropped due to buffer overflow. How to determine a proper

BO, which can contain most of the reports and guarantee low latency, is an important design

issue for such scenarios.

6 Conclusions

In this paper, we have defined a new minimum delay beacon scheduling (MDBS) problem

for convergecast with the restrictions that the beacon scheduling must be compliant to the

ZigBee standard. We prove the MDBS problem is NP-complete and propose optimal so-
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lutions for special cases and two heuristic algorithms for general cases. Simulation results

indicate the performance of our heuristic algorithms decrease only when the number of in-

terference neighbors is increased. Compared to the random slot assignment and greedy slot

assignment scheme, our heuristic algorithms can effectively schedule the ZigBee routers’

beacon times to achieve quick convergecast. In the future, it deserves to consider extending

this work to an asynchronous sleep scheduling to support energy-efficient convergecast in

ZigBee mesh networks.
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ABSTRACT
Convergecast is a fundamental operation in wireless sensor net-
works. Existing convergecast solutions have focused on reducing
latency and energy consumption. However, a good design should
be compliant to standards, in addition to considering these factors.
Based on this observation, this paper defines aminimum delay bea-
con scheduling problemfor quick convergecast in ZigBee/IEEE
802.15.4 tree-based wireless sensor networks and proves that this
problem is NP-complete. Our formulation is also compliant with
the low-power design of IEEE 802.15.4. We then propose opti-
mal solutions for special cases and heuristic algorithms for general
cases. Simulation results show that the proposed algorithms can
indeed achieve quick convergecast.

Categories and Subject Descriptors
C.2.1 [[Computer-Communication Networks]: Network Archi-
tecture and Design—Distributed networks, Wireless communica-
tion; G.2.2 [Discrete Mathematics]: Graph Theory

General Terms
Algorithms, Design, Theory.

Keywords
convergecast, graph theory, IEEE 802.15.4, scheduling, wireless
sensor network, ZigBee

1. INTRODUCTION
The rapid progress of wireless communication and embedded

micro-sensing MEMS technologies has madewireless sensor net-
works (WSNs)possible. A WSN consists of many inexpensive
wireless sensors capable of collecting, storing, processing environ-
mental information, and communicating with neighboring nodes.
Applications of WSNs include wildlife monitoring [1, 3], object
tracking [9, 11], and dynamic path finding [8, 12].

∗Corresponding author.
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personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
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Recently, many WSN platforms have been developed, such as
MICA [4] and Dust Network [2]. For interoperability among differ-
ent systems, standards such as ZigBee/IEEE 802.15.4 [5, 7] proto-
cols have been developed. ZigBee/IEEE 802.15.4 specifies a global
standard on physical, MAC, and network layers for WSNs requir-
ing high reliability, low cost, low power, scalability, and low data
rate.

Considering that data gathering is a major application of WSNs,
convergecasthas been investigated in several works [6, 10, 13, 16].
With the goals of low latency and low energy consumption, refer-
ence [13] shows how to connect sensors as a balanced reporting
tree and how to assign CDMA codes to sensors to diminish in-
terference among sensors, thus achieving energy efficiency. The
work [16] aims to minimize the overall energy consumption under
the constraint that sensed data should be reported within specified
time. Dynamic programming algorithms are proposed by assuming
that sensors can receive multiple packets at the same time. As can
be seen, both [13] and [16] are based on quite strong assumptions
on communication capability of sensor nodes. In [10], the authors
propose an energy efficient and low latency MAC, calledDMAC.
Sensors are connected by a tree and stay in sleep mode for most of
the time. When waking up, sensors are first set to the receive mode
and then to the transmit mode.DMAC achieves low-latency by
staggering wake-up schedules of sensors at the time instant when
their children switch to the transmit mode. Similar to [10], ref-
erence [6] arranges wake-up schedule of sensors by taking traffic
loads into account. Each parent periodically broadcasts an adver-
tisement containing a set of empty slots. Children nodes request
empty slots according to their demands. Although these results [6,
10] are designed for quick convergecast, the solutions are not com-
pliant to ZigBee/IEEE 802.15.4 standards.

This paper aims at designing efficient convergecast solutions for
WSNs that are compliant with the ZigBee/IEEE 802.15.4 stan-
dards. Assuming a tree topology, Fig. 1 shows the problem sce-
nario. The network contains onesink (ZigBee coordinator), some
full function devices(ZigBee routers), and somereduced function
devices(ZigBee end devices). Each ZigBee router is responsible
for collecting sensed data from end devices associated with it and
relaying incoming data to the sink. According to specifications, a
ZigBee router can announce a beacon to start a superframe. Each
superframe consists of anactive portionfollowed by aninactive
portion. On receiving its parent router’s beacon, an end device
has also to wake up for an active portion to sense the environment
and communicate with its coordinator. However, to avoid collision
with its neighbors, a router should shift its active portion by a cer-
tain amount. Fig. 1 shows a possible allocation of active portions
for routers A, B, C, and D. Assuming that routers relay packets in
contention-freeguarantee time slots (GTSs), the collected sensory
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Figure 1: An example of convergecast in a ZigBee/IEEE 802.15.4 tree-based network.

data of A in thek-th superframe can be sent to C via the GTS of C
in thek-th superframe. However, because the active portion of B
in thek-th superframe appears after that of C, the collected data of
B in thek-th superframe can only be relayed to C along the GTS of
C in the (k + 1)-th superframe. The delay can be eliminated if the
active portion of B in thek-th superframe appears before that of C.
The delay is not negligible because of the low duty cycle design of
IEEE 802.15.4. For example, in 2.4 GHz PHY, with 1.56% duty
cycle, a superframe can be up to 251.658 seconds (with an active
portion of 3.93 seconds). Clearly, for large-scale WSNs, the con-
vergecast latency could be significant. The purpose of this paper is
to solve the beacon scheduling problem to minimize the converge-
cast latency. We prove that this problem is NP-complete by reduc-
ing it to the 3-CNF-SAT problem. We show two special cases of
this problem where optimal solutions can be found in polynomial
time and propose some heuristic algorithms for general cases.

The rest of this paper is organized as follows. Section 2 briefly
introduces IEEE 802.15.4 and ZigBee. The convergecast problem
is formally defined in Section 3. Section 4 presents our converge-
cast algorithms. Simulation results are given in Section 5. Finally,
Section 6 concludes this paper.

2. OVERVIEW OF IEEE 802.15.4 AND
ZIGBEE STANDARDS

IEEE 802.15.4 [7] specifies the physical and data link protocols
for low-rate wireless personal area networks (LR-WPAN). In the
physical layer, there are three frequency bands with 27 radio chan-
nels. Channel 0 ranges from 868.0 MHz to 868.6 MHz, which
provides a data rate of 20 kbps. Channels 1 to 10 work from 902.0

MHz to 928.0 MHz and each channel provides a data rate of 40
kbps. Channels 11 to 26 are located from 2.4 GHz to 2.4835 GHz,
each with a data rate of 250 kbps.

IEEE 802.15.4 devices are expected to have limited power, but
need to operate for a longer period of time. Therefore, energy
conservation is a critical issue. Devices are classified asfull func-
tion devices(FFDs) andreduced function devices(RFDs). IEEE
802.15.4 supports star and peer-to-peer topologies. In each PAN,
one device is designated as thecoordinator, which is responsible
for maintaining the network. A FFD has the capability of becom-
ing a coordinator or associating with an existing coordinator. A
RFD can only associate with a coordinator.

ZigBee defines the communication protocols above IEEE 802.15.4.
In its version 1.0, star, tree, and mesh topologies are supported. A
ZigBee coordinator is responsible for initializing, maintaining, and
controlling the network. In a star network, devices must directly
connect to the coordinator. For tree and mesh networks, devices
can communicate with each other in a multihop fashion. The net-
work backbone is formed by one ZigBee coordinator and multiple
ZigBee routers (which must be 802.15.4 FFDs). RFDs can only
join the network as end devices by associating with the ZigBee co-
ordinator or ZigBee routers. In a tree network, the coordinator and
routers can announce beacons. However, in a mesh network, regu-
lar beacons are not allowed. Beacons are an important mechanism
to support power management. Therefore, the tree topology is pre-
ferred, especially when energy saving is a desired feature.

The ZigBee coordinator defines the superframe structure of a
network. As shown in Fig. 2, the structure of superframes is con-
trolled by two parameters:beacon order(BO) andsuperframe or-
der (SO), which decide the length of a superframe and its active



Table 1: Relationship ofBO − SO, duty cycle, and the number of active portions in a superframe.
BO − SO 0 1 2 3 4 5 6 7 8 9 ≥ 10

Duty cycle (%) 100 50 25 12.5 6.25 3.13 1.56 0.78 0.39 0.195< 0.1
Number of active portions (slots) 1 2 4 8 16 32 64 128 256 512≥ 1024
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Figure 2: IEEE 804.15.4 superframe structure.

potion, respectively. For a beacon-enabled network, the setting of
BO and SO should satisfy the relationship0 ≤ SO ≤ BO ≤ 14.
A non-beacon-enabled network should setBO = SO = 15 to in-
dicate that superframes do not exist. Each active portion consists
of 16 equal-length slots and can be further partitioned into acon-
tention access period(CAP) and acontention free period(CFP).
The CAP may contain the firsti slots and the rest of the16 − i
slots belong to the CFP, where1 ≤ i ≤ 16. Slotted CSMA/CA is
used in CAP. FFDs which require fixed transmission rates can ask
for guarantee time slots (GTSs)from the coordinator. A CFP can
support multiple GTSs, and each GTS may contain multiple slots.
After the active portion, devices can go to sleep to save energy.

Since a device only needs to be active for2−(BO−SO) portion of
the time, changing the value of(BO−SO) allows us to adjust the
on-duty time of devices. In a beacon-enabled network, routers do
not have to choose the same time to start their active portions (and
thus their superframes). Once the value of(BO− SO) is decided,
each router can choose one of the2BO−SO slots to send its beacon
and start its active portion. Neighboring routers’ active portions
should be shifted away from each other to avoid interference. This
work is motivated by the observation that the specification does not
clearly define how to choose locations of routers’ active portions to
reduce convergecast latency. In our work, we consider two kinds of
interference between routers. Two routers havedirect interference
if they can hear each others’s beacons. Two routers haveindirect
interferenceif they have at least one common neighbor. Both inter-
ferences should be avoided when choosing routers’ active portions.
Table 1 lists possible choices of(BO − SO) combinations.

3. THE MINIMUM DELAY BEACON
SCHEDULING (MDBS) PROBLEM

This section formally defines the convergecast problem in Zig-
Bee network. Given a ZigBee network, we model it by a graph
G = (V, E), whereV contains all routers and the coordinator and
E contains all symmetric communication links between nodes in
V . The coordinator also serves as the sink of the network. End
devices can only associate with routers, but are not included inV .
From G, we can construct aninterference graphGI = (V, EI),
where edge(i, j) ∈ EI if there are direct/indirect interferences be-
tweeni andj. Also, there is a duty cycle requirementα for this
network. Fromα and Table 1, we can determine the most appro-
priate value ofBO−SO. We denote byk = 2BO−SO the number
of active portions (or slots) per superframe. The beacon schedul-

ing problem is to find a slot assignments(i) for each routeri ∈ V ,
wheres(i) is an integer ands(i) ∈ [0, k−1], such that routeri’s ac-
tive portion is in slots(i) ands(i) 6= s(j) if (i, j) ∈ EI . Motivated
by Brook’s theorem [14], which proves thatn colors are sufficient
to color any graph with a maximum degree ofn, we would assume
thatk ≥ DI , whereDI is the maximum degree ofGI .

Given a slot assignment forG, the report latency from nodei to
nodej, where(i, j) ∈ E, is the number of slots, denoted bydij ,
that nodei has to wait to relay its collected sensory data to nodej,
i.e.,

dij = (s(j)− s(i)) modk. (1)

Note that the report latency from nodei to nodej (dij) may not by
equal to the report latency from nodej to nodei (dji). Therefore,
we can convertG into a weighted directed graphGD = (V, ED)
such that each(i, j) ∈ E is translated into two directed edges(i, j)
and(j, i) such thatw((i, j)) = dij andw((j, i)) = dji. The report
latency for eachi ∈ V to the sink is the sum of report latencies of
the links on the shortest path fromi to the sink inGD. The latency
of the convergecast, denoted asL(G), is the maximum of all nodes’
report latencies.

DEFINITION 1. Given G = (V, E), G’s interference graph
GI = (V, EI), andk available slots, theMinimum Delay Beacon
Scheduling (MDBS) problemis to find an interference-free slot as-
signments(i) for eachi ∈ V such that the convergecast latency
L(G) is minimized.

To prove that the MDBS problem is NP-complete, we define a de-
cision problem as follows.

DEFINITION 2. Given G = (V, E), G’s interference graph
GI = (V, EI), k available slots, and a delay constraintd, the
Bounded Delay Beacon Scheduling (BDBS) problemis to decide
if there exists an interference-free slot assignment for eachi ∈ V
such that the convergecast latencyL(G) ≤ d.

THEOREM 1. The BDBS problem is NP-complete.

PROOF. First, given slot assignments for nodes inV , we can
find the report latency of eachi ∈ V by running a shortest path
algorithm onGD. We can then check ifL(G) ≤ d. Clearly, this
takes polynomial time.

We then prove that the BDBS problem is NP-hard by reducing
the 3 conjunctive normal form satisfiability (3-CNF-SAT) problem
to a special case of the BDBS problem in polynomial time. Given
any 3-CNF formulaC, we will construct the correspondingG and
GI . Then we show thatC is satisfiableif and only if there is a slot
assignment for eachi ∈ V using no more thank = 3 slots such
thatL(G) ≤ 4 slots.

LetC = C1∧C2∧···∧Cm, where clauseCj = xj,1∨xj,2∨xj,3,
1 ≤ j ≤ m, xj,i ∈ {X1, X2, ..., Xn}, andXi ∈ {xi, x̄i}, where
xi is a binary variable,1 ≤ i ≤ n. We first constructG from C as
follows:

1. For each clauseCj , j = 1, 2, ..., m, add a vertexCj in G.

2. For each literalXi, i = 1, 2, ..., n, add four verticesxi1, xi2,
x̄i1, andx̄i2 in G.
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Figure 3: An example of reduction from the 3-CNF-SAT to the
BDBS problem.

3. Add a vertext as the sink ofG.

4. Add edges(t, xi2) and(t, x̄i2) to G, for i = 1, 2, ..., n.

5. Add edges(xi1, xi2) and(x̄i1, x̄i2) to G, for i = 1, 2, ..., n.

6. For eachi = 1, 2, ..., n and eachj = 1, 2, ..., m, add an edge
(Cj , xi1) (resp.,(Cj , x̄i1)) to G if xi (resp.,x̄i) appears in
Cj .

Then we constructGI as follows.

1. Add all vertices and edges inG into GI .

2. Add edges(xi1, x̄i1) and(xi2, x̄i2) toGI , for i = 1, 2, ..., n.

3. Add edges(Cj , xi2) and(Cj , x̄i2) to GI , for i = 1, 2, ..., n
andj = 1, 2, ..., m.

Then we build a one-to-one mapping from each truth assignment
of C to a slot assignment ofG. We establish the following map-
ping:

1. Sets(t) = 0.

2. Sets(Cj) = 0, j = 1, 2, ..., m.

3. Sets(xi1) = 1 ands(x̄i2) = 1, i = 1, 2, ..., n, if xi is true;
otherwise, sets(xi1) = 2 ands(x̄i2) = 2.

4. Sets(xi2) = 1 ands(x̄i1) = 1, i = 1, 2, ..., n, if x̄i is true;
otherwise, sets(xi2) = 2 ands(x̄i1) = 2.

The above reduction can be computed in polynomial time. By
the above reduction, verticesxi1 or x̄i1, i = 1, 2, ..., n, that are
assigned to slot 1 (resp. slot 2) will have a report latency of 2 (resp.
4) and verticesxi2 or x̄i2, i = 1, 2, ..., n, that are assigned to slot
1 (resp. slot 2) will have a report latency of 2 (resp. 1). Hence,
for those verticesxi1, x̄i1, xi2, andx̄i2, i = 1, 2, ..., n, the longest
report latency will be 4.

To prove theif part, we need to show that ifC is satisfiable,
there is a slot assignment such thatk = 3 andL(G) ≤ 4. SinceC
satisfiable, there must exist an assignment such that each clauseCj ,
j = 1, 2, ..., m, is true. If a clauseCj is true, at least one variable in
Cj is true. According to the reduction,Cj can always find an edge
(Cj , xi1) or (Cj , x̄i1) with w((Cj , xi1)) = 1 or w((Cj , x̄i1)) = 1,
wherei = 1, 2, ..., n. Thus, whenC is satisfiable, the reporting
latency for each clause is 3. This achievesL(G) = 4.

For theonly if part, if each vertexCj , j = 1, 2, ..., m, can find at
least an edge with weight 1 to one ofxi1 andx̄i1, for i = 1, 2, ..., n,
to achieve a report latency of 3, it must be that each clause has at
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Figure 4: Examples of optimal slot assignments for regular lin-
ear and ring networks (h = 2). Dotted lines mean interference
relations.

least one variable to be true. So formulaC is satisfiable. Otherwise,
the report latency ofCj , j = 1, 2, ..., m, will be 6.

For example, givenC = (x1∨ x̄2∨ x̄3)∧(x̄1∨ x̄2∨x3)∧(x1∨
x2 ∨ x̄3), Fig. 3 shows the correspondingG. The truth assignment
(x1, x2, x3) = (T, F, T ) makesC satisfiable. According to the
reduction and the mapping in the above proof, we can obtain the
network G and its slot assignment as shown in Fig. 3 such that
L(G) = 4.

4. ALGORITHMS FOR THE MDBS
PROBLEM

4.1 Optimal Solutions for Special Cases
Optimal solutions can be found for the MDBS problem in poly-

nomial time for regular linear networks and regular ring networks,
as illustrated in Fig. 4. In such networks, each vertex is connected
to one or two adjacent vertices and has an interference relation with
each neighbor withinh hops from it, whereh ≥ 2. In a regular lin-
ear network, we assume that the sinkt is at one end of the network.
Clearly, the maximum degree ofGI is2h. We will show that an op-
timal solution can be found if the number of slotsk ≥ h + 1. The
slot assignment can be done in a bottom-up manner. The bottom
node is assigned to slot 0. Then, for each vertexv, s(v) = (k′+1)
modk, wherek′ is the slot assigned tov’s child.

THEOREM 2. For a regular linear network, ifk ≥ h + 1, the
above slot assignment achieves a report latency of|V | − 1, which
is optimal.

PROOF. Clearly, the slot assignment is interference-free. Also
the report latency of|V | − 1 is clearly the lower bound.

For a regular ring network, we first partition vertices excludingt
into left and right groups as illustrated in Fig. 4(b) such that the left
group consists of the sink nodet andb |V |−1

2
c other nodes count-

ing counter-clockwise fromt, and the right group consists of those
d |V |−1

2
e nodes counting clockwise fromt. Now we consider the

ring as a spanning tree witht as the root and left and right groups
as two linear paths. Assuming thatb |V |−1

2
c ≥ 2h andk ≥ 2h, the

slot assignment works as follows:

1. The bottom node in the left group is assigned to slot 0.



2. All other nodes in the left group are assigned with slots in a
bottom-up manner. For each nodei in the left group, we let
s(i) = (j + 1) modk, wherej is the slot ofi’s child.

3. Nodes in the right group are assigned with slots in a top-
down manner. For each nodei in the right group, we let
s(i) = (j − c) mod k, wherej is the slot assigned toi’s
parent andc is the smallest constant (1 ≤ c ≤ k) that ensures
thats(i) is not used by any of its interference neighbors that
have been assigned with slots.

It is not hard to prove the slot assignment is interference-free
because nodes receives slots sequentially and we have avoided us-
ing the same slots among interfering neighbors. Although this is a
greedy approach, we show thatc is equal to 1 in step 3 in most of
the cases except when two special nodes are visited. This gives an
asymptotically optimal algorithm, as proved in the following theo-
rem.

THEOREM 3. For a regular ring network, assuming thatk ≥
2h andb |V |−1

2
c ≥ 2h, the above slot assignment achieves a report

latencyL(G) = b |V |−1
2

c + h, which is optimal within a factor of
1.5.

PROOF. We first identify three nodes on the ring (refer to Fig. 4(b)):

• l1: the last node in the left group.

• r1: the first node in the right group.

• r2: the node that ish hops froml1 counting clockwise.

The report latency of each node can be analyzed as follows. The
parent of nodex is denoted bypar(x).

A1. For each nodei in the left group except the sinkt, the latency
from i to par(i) is 1.

A2. The latency fromr1 to t is h.

A3. For each nodei next to r1 in the right group but beforer2

(counting clockwise), the latency fromi to par(i) is 1.

A4. The latency fromr2 to par(r2) is 1 if the ring size is even;
otherwise, the latency is 2.

A5. For each nodei in the right group that is a descendant ofr2,
the report latency fromi to par(i) is 1.

It is not hard to prove that A1, A2, and A3 are true. To see A4
and A5, we make the following observations. The functionpari(x)
is to applyi times thepar() function on nodex. Note thatpar0(x)
meansx itself.

O1. When the ring size is even, the equalitys(pari−1(l1)) =

s(pari(r2)) holds fori = 1, 2, ..., b |V |−1
2

c − h − 1. More
specifically, this means that (i)l1 andpar(r2) will receive
the same slot, (ii)par(l1) andpar2(r2) will receive the same
slot, etc. This can be proved by induction by showing that
the i-th descendant oft in the right group will be assigned
the same slot as the (h + i − 1)-th descendant oft in the
left group (the induction can go in a top-down manner). This
property implies that when assigning a slot tor2 in step 3,
c = 1 in case that the ring size is even. Further, the descen-
dant ofr2 will be sequentially assigned to slotsk− 1, k− 2,
..., k − h, which implies thatc = 1 when doing the assign-
ments in step 3. So properties A4 and A5 hold for the case
of an even ring.

O2. When the ring size is odd, the equalitys(pari(l1)) = s(pari(r2))

holds for i = 1, 2, ..., b |V |−1
2

c − h. This means that (i)
par(l1) andpar(r2) will receive the same slot, and (ii)par2(l1)
andpar2(r2) will receive the same slot, etc. Again, this can
be proved by induction as in O1. This property implies that
c = 2 when assigning a slot tor2 in step 3, andc = 1 when
assigning slots to descendants ofr2. So propertiesA4 and
A5 hold for the case of an odd ring.

The equality of slot assignments pointed out in O1 and O2 is
illustrated in Fig. 4(b) by those numbers in gray nodes. In summary,
the report latency of the left group isb |V |−1

2
c. When the ring size

is even, the report latency of the right group is the number of nodes
in this group, |V |

2
, plus the extra latencyh − 1 incurred atr1. So

L(G) = |V |
2

+h−1 = b |V |−1
2

c+h. When the ring size is odd, the
report latency of right group is the number of nodes in this group,
|V |−1

2
, plus the extra latencyh − 1 incurred atr1 and the extra

latency 1 incurred atr2. SoL(G) = b |V |−1
2

c+ h.
A lower bound on the report latency of this problem is the maxi-

mum number of nodes in each group excludingt. Applyingb |V |−1
2

c
as a lower bound and using the fact thatb |V |−1

2
c ≥ 2h, the algo-

rithm is optimal within a factor of 1.5. Note that the condition
b |V |−1

2
c ≥ 2h is to guarantee thatt will not locate withinh hops

from r2. Otherwise, the observation O2 will not hold.

4.2 A Centralized Tree-Based Assignment
Given G = (V, E), GI = (V, EI), andk, we propose a cen-

tralized slot assignment heuristic algorithm. Our algorithm is com-
posed of the following three phases:

phase 1. FromG, we first construct a BFS treeT rooted at sinkt.

phase 2. We traverse vertices ofT in a bottom-up manner. For
each vertexv visited, we first compute a temporary slot num-
bert(v) for v as follows.

1. If v is a leaf node, we sett(v) to the minimal non-
negative integerl such that for each vertexu that has
been visited and(u, v) ∈ EI , (t(u) modk) 6= l.

2. If v is an in-tree node, letm be the maximum of the
numbers that have been assigned tov’s children, i.e.,
m = max{t(child(v))}, wherechild(v) is the set
of v’s children. We then sett(v) to the minimal non-
negative integerl such that for each vertexu that has
been visited and(u, v) ∈ EI , (t(u) modk) 6= (l mod
k).

After every vertexv is visited, we make the assignments(v) =
t(v) modk.

phase 3. In this phase, vertices are traversed sequentially fromt in
a top-down manner. When each vertexv is visited, we try to
greedily find a new slotl such that (s(par(v)) − l) mod k
< (s(par(v)) − s(v)) mod k, such thatl 6= s(u) for each
(u, v) ∈ EI , if possible. Then we reassigns(v) = l.

Note that in phase 2, the numbert(v) is not a modulus number.
However, we will check that ift(v) is converted to a slot number,
no interference will occur. Intuitively, this is a temporary slot as-
signment that will incur the least latency tov’s children. At the end,
t(v) is converted to a slot assignments(v). Phase 3 is a greedy ap-
proach to further reduceL(G). For example, Fig. 5(a) shows the
slot assignment after phase 2, which induces aL(G) of 6. Fig. 5(b)
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Figure 5: (a) Slot assignment after phase 2. (b) Slot compacting
by phase 3.

indicates that C and D can find another slots andL(G) is decreased
to 3.

The computational complexity of this algorithm is analyzed be-
low. In phase 1, the complexity of constructing a BFS tree is
O(|V |+ |E|). In phase 2, the computational cost to computet(v)
for each vertexv is bounded byO(kDI), whereDI is the degree
of GI . So the time complexity of phase 2 isO(kDI |V |). Phase 3
performs a similar procedure as phase 2, so its time complexity is
alsoO(kDI |V |). Overall, the time complexity isO(kDI |V |).
4.3 A Distributed Slot Assignment

In the following, we propose a distributed slot assignment al-
gorithm. Each node has to compute its direct as well as indirect
interference neighbors in a distributed manner. To achieve this, we
will refer to theheterogeneityapproach in [15]. From time-to-time,
each router will boost its transmission power to double its default
transmission range and exchanges HELLO packets, containing its
slot information with its interference neighbors. Note that all other
packets are transmitted by the default power level. When booting
up, each router will broadcast HELLO packets claiming that its cur-
rent slot isNULL. After receiving a slot the HELLO packets will
carry the node’s slot assignment. The algorithm is triggered by the
sink t settings(t) = 0 and then broadcasting its beacon. A router
v 6= t that receives a beacon will find itself a slot as follows.

1. Nodev sends an association request to the beacon sender.

2. If v fails to associate with the beacon sender, it stops the
procedure and waits for other beacons.

3. If v successfully associates with a parent nodepar(v), it
computes the smallest positive integerl such that(s(par(v))−
l) mod k 6= s(u) for all (u, v) ∈ EI ands(u) 6= NULL.
Thenv choosess(v) = (s(par(v))− l) modk as its slot.

4. Then,v broadcasts HELLOs including its slot assignment
s(v) for a time periodtwait. If it finds thats(v) = s(u) for
any(u, v) ∈ EI such thatu’s ID is larger thanv’s ID, thenv
has to choose another slot assignment and going back to step
3.

5. After twait, v can finalize its slot selection and broadcast its
beacons.

In this distributed algorithm, slots are assigned to routers, ideally,
in a top-down manner. However, due to transmission latency, some
routers at lower levels may find slots earlier than those at higher
levels. Also note that step 4 is to correct possible collision on slot
assignments due to packet loss.

5. SIMULATION RESULTS
We compare the proposed slot assignment algorithms against a

random slot assignment (RAN) scheme. The slot assignment starts
from the sink and each router, after associating with a parent router,
simply chooses any slot which has not been used by any of its in-
terference neighbors. In the following simulations, routers are ran-
domly distributed in a square region and a sink is placed in the
center of the network. Each router can have at most 7 children.
Our centralized tree-based scheme and distributed slot assignment
scheme are denoted as CTB and DSA, respectively. We compare
the report latencyL(G) (in unit of active portions).

In the following two simulations, we setk = 64. Fig. 6(a) shows
the results when the transmission range of routers is set to 25 meters
and(n/10)2 routers are generated in ann×n square region, where
n ranges from60m to 240m. CTB always performs the best. DSA
performs slight worse than CTB, but still significantly outperforms
RAN. It can be seen that a random slot assignment could result
in very long convergecast latency. Both CTB and DSA are quite
insensitive to the network size. But this is not the case for RAN.
Next, we simulate a200m× 200m network and place 400 routers
in it. Fig. 6(b) shows the results when we vary the transmission
range. Since a larger transmission range implies higher interference
among routers, the report latencies of CTB and DSA will increase
slightly as the transmission range increases. However, RAN will
benefit from a larger transmission range because it is more sensitive
to the network diameter than other factors.

Next, with a network size of200m × 200m and a router trans-
mission range of 20m, andk = 128, we vary the number of routers
in the network. As Fig. 6(c) shows, when there are more and more
routers, the report latencies of CTB and DSA will sightly increase
because the interference among routers will increase. But the report
latency of RAN will drop first, and then increase slightly as there
are more routers. This is because more routers will decrease the
network diameter first, but since we limit the number of children
per router to 7, the network diameter can not keep on decreasing
after a certain number of routers. In Fig. 6(d), we fix the number of
routers to 400 and vary routers’ duty cycle. Note that a lower duty
cycle means a larger number of available slots. Interestingly, we
see that the report latencies of CTB and DSA are independent of
the number of slots. Contrarily, with a random assignment, RAN
even incurs a higher report latency as there are more freedom in
slot selection.

6. CONCLUSIONS
In this paper, we have defined a new minimum delay beacon

scheduling (MDBS) problem for convergecast with the restrictions
that the beacon scheduling must be compliant to the ZigBee/IEEE
802.15.4 standards. We prove the MDBS problem is NP-complete
and propose optimal solutions for special cases and two heuristic
algorithms for general cases. Simulation results indicate the perfor-
mance of our heuristic algorithms decrease only when the number
of interference neighbors is increased. Compared to the random
slot assignment scheme, our heuristic algorithms can effectively
schedule the ZigBee routers’ beacon times to achieve quick con-
vergecast.
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Figure 6: Simulation results on the average report latencies under different configurations.
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