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The increasing number of roadway accidents has led researchers to focus on
accident-prone scenarios to get a clearer picture of the accident occurrences through
accident chain. However, such scenarios explain the conditions and mechanism of a
collision rather than its true cause. Based on previous research on accident chain and
driving behavior, this research further analyze individual drivers’ mental process for
better explore the nature and causality of accidents. In the first stage of this research,
the framework of mental workload was constructed. The contributions of human,
vehicle, roadway geometry and environment to mental workload were also discussed.
In this stage, issue of task demand in mental workload analysis is addressed to clarify
drivers’ mental behavior while facing multiple and parallel activities. Noting that
driving is a continuous process of information collection, drivers need to allocate
attention to different objects to perceive useful information. Malfunction of attention
allocation can lead to incomplete information perception and higher accident risk.
Modeling drivers’ attention allocation in different conditions is a major step in
identifying the external information drivers perceive and react to. The purpose of this
research is to propose the framework of attention allocation model and address the
critical contributing factors. Three major types of contributors, perceived risk,
orientation reaction and driving information perception, are proposed to construct the
attention allocation model. In the next stage of research, field data collection and
parameter calibration will be conducted. On the basis of this model, attention
allocation policy under different condition can be clarified. Moreover, the net safety

impact of providing information to drivers can be obtained.
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Abstract: Past road safety studies have mostly focused on the identification of scenarios
involving high accident risk. However, risky scenarios can only describe accident outcomes
rather than the real causality. Discussion of driver’s cognitive interaction while driving is a
necessity for deeper exploration about the nature of accident. To comprehend the entire
structure of mental workload, this research proposes a research framework for studying
mental models that incorporates task demand and motivated capability. Understanding the
contributing factors of mental model and the individual difference in task demand and
motivated capability can help evaluate the mental workload. In addition, integrating mental
model with accident chain analysis enables exploring information net effect on mental
workload. Thus, optimized information can hopefully be defined and provided to drivers in
different scenarios without causing additional risk of accidents.

Key Words: mental workload, information, task demand, motivated capability

1. INTRODUCTION

Accident predictability has long been controversial. Bortkiewicz, usually considered the
pioneer of modern accident research, said in an 1898 study that accidents are random and thus
inexplicable (Elvik, 2006). However, the development of modern analysis techniques has
inspired various attempts to explore the causality of accidents. Numerous contributing factors
have been found critical to roadway safety. For example, rear-end accidents increased with
the number of signal phases and width of traffic island (Chin and Quddus, 2003).
Demographic characteristics such as age and gender also have been extensively studied
(Chang and Yeh, 2007; Clarke et al., 1998a; Clarke ef al., 1998b). That is, in addition to the
contributing factors which are closest to accident, certain remote factors also have been
seriously considered (Verschuur and Hurts, 2008; Wong and Chung, 2007a; 2007b). Recent
research has further claimed that accidents should be analyzed from a chain perspective. For
example, personality traits can be treated as prior-to-driving factors that affect risky driving
behavior (Wong et al., 2009). Therefore, to understand not only the process through which
crashes occur but also possible means of avoidance, an in-depth study of accident is vital.

Most previous studies of roadway accident were based on aggregated accident information.
Accident chain analysis can extract accident scenarios with specific patterns. For example,
Wong and Chung (2007a) found that young and inexperienced student drivers had an
increased likelihood of being involved in oft-road accidents on roads with speed limits
between 51 and 79 kph under normal driving conditions. The scenario above explained the
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conditions in which drivers have increased risk of being involved in accidents, and possibly
the mechanism through which such accidents occur. However, an unanswered question
remains, namely the reasons accidents occur under specific conditions. The reality is that for
each accident under certain conditions, there are numerous young and inexperienced student
drivers who drive under identical conditions without experiencing accidents. The question
thus arises of why different individuals react differently to identical conditions, resulting in
different outcomes. Answers to these questions still are implicit. Obviously, aggregated data
are inadequate for answering the above questions; instead it is necessary to closely examine
individual driver actions.

The most important element in accident causation is well known to be the driver, who makes
the decisions that control the vehicle. To explain the mechanisms of accident causation from a
driver’s perspective, Elvik (2006) proposed four universal laws of accident causation,
including the laws of learning, rare events, complexity and cognitive capacity. Each law not
only represents phenomena associated with accidents, but also reflects critical cognitive
factors that are inherent in driving process and important to the causality of driving safety.

Thus, a driver’s mental process must be analyzed to comprehend how accidents occur. In
particular, elements in an accident prone scenario extracted from accident chain analysis and
tasks under such driving environments are the most interesting. The scenario requires the
driver to perform tasks that induce mental workload and mental resource consumption. Once
the mental workload reaches an unacceptable level, driving safety may suffer. That is,
scenarios involving high accident risk extracted from accident chain analysis indicate that
driver’s mental workload could be in a critical condition.

Regarding the driving tasks, advanced in-vehicle instruments further complicate the issue.
Distraction by in-vehicle instruments may create additional task activities and thus decrease
the spare capacity available for driving tasks (Horberry et al, 2006a). Although some
instruments, such as navigation systems, can help drivers allocate mental resources in
advance by providing real-time information (Fuller, 2005; Verway, 2000), such devices also
can increase workload and threaten safety during information acquisition. An in-depth
discussion of the mental process involved in driving can help understand the impact of
information on mental workload and clarify the net safety effect of ITS systems.

Workload, defined as the resources consumed in achieving a certain level of performance in
tasks with specific activities and driver’s capability (Hart and Staveland, 1988), is a critical
indicator of driving safety. Drivers can be assumed to be more likely to encounter risky
situations if the workload incurred from tasks exceeds a critical level. The workload
mentioned includes physical and mental concepts. Since driving is not strength intensive,
physical impairment does not seem to degrade driving performance (Elvik, 2006).
DiDomenico and Nussbaum (2008) also suggested that no significant interaction exists
between physical and mental workload. Consequently, this study focuses only on the mental
workload issues.

Mental workload is a multifaceted issue that is critical to road safety. To understand the nature
of accidents and mental workload, this study discusses issues of accident chain from the
perspective of individual mental process. Section 2 analyzes the driving process from a
mental perspective and identifies the critical issues to be addressed in this study. In section 3,
following a critical review of related studies, a research framework is established for
examining mental workload. Section 4 then discusses the issue of optimum mental workload
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and strategies for dealing with different levels of mental workload. Subsequently, section 5
discusses the impact of ITS safety techniques on mental workload. Finally, an issue
discussion and concluding remarks are presented.

2. DRIVING MENTAL PROCESS

Considering the interaction among mental workload related factors, a conceptual framework
for driving mental process is illustrated in Figure 1. The mental process of driving broadly
comprises three main stages, including task activity formation, interaction between task
activities and motivated capability, and maneuvering against mental workload level.

|
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|
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. |
Goal Setting : R SIS o h
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Figure 1 Conceptual framework of driving mental process

Forming driving task activities is event oriented. Here events, such as incoming phone call or
traffic flows becoming congested, refer to everything that happens within the driving process
that would influence the driver’s behavior. To react against the events, task activities that
rely on a hierarchy of goals set by the drivers are imposed and ideally must be properly
undertaken. Goal setting comprises strategic, tactical and operational levels. Different levels
of goal setting make different contributions to task activity triggered from the event and
external factors. The strategic level of goal setting comprises knowledge based on cognitive
processes which occur mostly in the pre-driving stage and are considered as remote factors
affecting driving safety. The decisions, including route choice, departing and expected arrival
time, or transportation mode, consist of the basic driving scenario and tasks. As for the
tactical and operational levels of goal setting, both regard event recognition and related
actions contribute substantially to driving behavior and task activity (de Waard, 1996;
Gregersen, 2005).

Task activity denotes the tasks that ideally would properly be performed by drivers to achieve
their goals. However, not every task activity is undertaken owing to differences in vehicle
control ability and situational awareness. Thus, only the task activity perceived and executed
by drivers in a certain limited time interval, otherwise defined as task demand, consumes
mental resources while driving. Notably, task demand or activity alone can not exhibit
characteristics of mental workload. Drivers' motivated capability must also be taken into
account. As shown in Figure 1, the main part of the driving mental process is the mental
workload model. In which, mental workload is induced via the interaction between motivated
capability and task demand.
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Activities which are not perceived by drivers will not cause any task demand right at the
moment. However, the gap between required task activities and the actual tasks undertaken
afterwards increases the likelihood of unexpected events occurring. A larger gap indicates that
drivers may be unaware that more additional work is required to achieve safe driving. Some
unperceived events may immediately create other additional unexpected tasks, thus further
increasing task activity and task demand. As a consequence, an accident could unfortunately
occur.

3. FRAMEWORK OF MENTAL WORKLOAD MODEL
3.1 Mental Workload Model

The mental workload model comprises the linkage between perceived task demand and
motivated capability of drivers. Hoger ef al. (2005) defined the mental workload model as
schemas of dynamic systems or scenarios that include understanding of system components,
as well as their interaction and time-dependent changes. Driver capabilities and perceived
task activities vary according to conditions. Even in the same situation, different drivers may
react differently, leading to different levels of mental workload. Figure 2 illustrates the mental
workload model.

Capacity

/ Motivated

Capability

-~

Workload unit

Task Demand

v

Time

Source: Jex (1988)
Figure 2 Concept of mental workload model

As mentioned, each accident scenario represents a series of task activities. Even facing the
same scenario, drivers with different characteristics (for example, risk-taking drivers versus
average drivers) may make very different decisions, thus inducing different task demand. On
the other hand, motivated capability represents the supply of mental resource in a specific
condition. Due to the unique characteristics of each driver, they can have very different
capabilities. External factors also may contribute to the heterogeneous nature of motivated
driving capability. Briefly speaking, perceived task demand and motivated capability may
differ with the driver’s characteristics and other external factors.

Mental workload, shown in Figure 2, is assessed by the difference between task demand and
motivated capability, which also is known as the workload margin (Jex, 1988). The level of
mental workload will vary inversely proportionally with the margin (Fuller, 2005). The same
task demand may have different margins under different motivated situation. Therefore,
taking tasks as the only indicator of workload cannot fully describe the mental workload
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involved in driving. For example, point A in Figure 2 is critical in the low motivated
capability condition but comparatively safe in the high motivated capability condition. An
easy task can end up being difficult for drivers if their motivated capabilities are extremely
low.

Macro accident data analyses can reveal the scenarios with high accident risk. However, the
real causality remains unclear without deeper discussion of the differences in the reactions
and behavior of individual drivers while driving. This section briefly discusses task demand,
capability and mental workload model. Task demand and capability are claimed to be
inconstant due to the differences in driver personal characteristics and external influences.
Additionally, the transformation process from workload margin to mental workload may
differ among drivers. Even given the same level of mental workload, dissimilarity in
sensitivity to mental workload also cause drivers to react differently.

Up to this point, this research has highlighted the multidimensional characteristic of the
mental workload model. The key, however, will lie on a series of work on task demand,
motivated capability and mental workload. Thus, it appears that improving road safety is
challenging, but opportunities exist to do so either through reducing task demand or
increasing motivated capability via advanced technology and innovative strategies.

3.2 Task Demand

First, the two terms of task activity and task demand must be clearly clarified. Regardless of
the individual differences in situational awareness or other driving skills, task activity is an
event-oriented and task-centered measurement determined by the number of simultaneous
tasks that must be undertaken to realize series of goals set by drivers when facing a specific
event. Task activity is triggered by expected and unexpected events. Considering the
influence of external factors and the goals set by drivers, each event creates certain task
activities that would be performed. Task demand, on the other hand, is human-centered and is
defined as the total amount of task units executed by drivers per unit of time. Clearly, the
timing to execute a task is critical for task demand analyses. Unlike event-oriented task
activity, task demand will be affected by the personality characteristics and situational
awareness of individuals. Different drivers with different traits may make different decisions
and suffer different task demands in relation to the same task activity. Restated, task activity
denotes the tasks drivers should properly undertake while task demand comprises the tasks
that drivers choose to and do undertake in a certain limiting time.

For example, when approaching a work zone, a driver is likely to change his/her lane.
Activities against the event include decelerating, looking in the mirror, making a turn signal
and turning the wheel. To novice and inexperience drivers, they might skip the activity of
looking in the mirror and turning the wheel quickly. On the other hand, to those experienced
drivers, they might undertake every necessary activity and change his/her lane under a
permitted traffic condition.

Task activities that have not been perceived by drivers do not cause task demand but do
increase the likelihood of unexpected events that might create more serious problems. As
indicated by Elvik (2006), rare and unexpected events may increase the accident risk. If
drivers can accurately predict potential events in advance, tasks could be well allocated and
task activity per unit of time can be maintained at a reasonably low level. On the contrary,
unexpected events mostly occur comparatively quickly. Although the total task activity
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remains the same, the sharp increase in task activity per unit of time sometimes makes drivers
unable to maintain safety. As the example of approaching a work zone, drivers who do not
look in the mirrors seem to have less task demand. But if it follows with a confliction with
vehicles in the adjacent lane, the ignorance can result in a sharp increase of task demand. This
also suggested that permitted time for executing tasks is crucial for task demand and can have
substantially meaning in driver’s mental resource allocation.

Figure 3 illustrates a framework for task demand analyses. Accident data provide valuable
information for analyzing task activity and task demand. Although accident data analyses do
not illuminate cognitive activities associated with driving, extraction of accident prone
scenarios still provides crucial clues to identify conditions in which excessive task activities
must be undertaken under a certain level of capability, thus impacting driver ability to drive
safely.
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Figure 3 Research framework of driving task demand

Basically, task demand results from two task categories -- primary tasks and secondary tasks.
Primary driving tasks, which are generally defined as tasks undertaken by drivers to maintain
safety, can be divided into two types, controlling vehicles and preventing potential conflicts.
Factors influencing driving tasks include vehicle design, traffic, road condition, distraction
and external environmental factors which can influence driving task complexity and the
difficulty of achieving goals. Many studies related to primary tasks have focused on analyzing
accident prone scenario. For example, rear-end accidents generally occur in intersection areas
since intersections require drivers to react and act in response to signal changes, particularly
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on the roads with more complex geometric design (Chin and Quddus, 2003; Mitra et al.,
2002; Wang and Abdel-Aty, 2006). In such a scenario, higher level of road design can
enhance safety by making it easier for drivers to control vehicles (Horberry et al., 2006b).
However, better designs also encourage drivers to drive faster or take risks, thus increasing
task activities (Chang and Yeh, 2007; Chin and Quddus, 2003). As a result, the driver’s task
demand can exceed his/her limit. Furthermore, traffic complexity is another important
consideration. Recent works have found that drivers must allocate more mental resources to
maintaining safety when driving under complex traffic conditions (de Waard et al., 2008; Liu
and Lee, 2005; Verway, 2000). Elvik (2006) also found that the more information drivers must
process and the more decisions they must make, the greater the potential risk they endure
while driving.

Secondary task refers to all non-driving activities, including in-vehicle distraction, external
distraction and information acquisition. Undertaking secondary tasks causes distraction that
shifts mental resource away from primary tasks. Among these issues, in-vehicle distraction,
especially cell phone communications, has attracted heavy attention from researchers.
Numerous studies have proposed that cell phone usage, or other in-vehicle instruments,
increase task activities and decrease a driver’s ability to react to emergencies (Caird ef al.,
2008; Horberry et al., 2006a; Liu and Lee, 2005; Nunes and Recarte, 2002; Patten et al.,
2004). External clutter such as advertising billboards, roadside buildings or surrounding
traffic flow also were found critical to driver performance (Horberry et al., 2006a).
Furthermore, information provided to drivers also may cause distraction and increase task
activities even when that information can help driver better pre-plan the allocation of mental
resources and prevent danger arising from uncertainty.

A contributing factor analysis only deals with driver mental overload scenarios. Further
exploration of these factors and associated scenarios are helpful for understanding how
drivers encounter problems. Nevertheless, the most important elements in driving task activity
analyses involve the behavior which drivers adopt to control their vehicles. Indeed, different
behaviors might result in different task activities, thus, task demand and accident risk
outcome. Young and male drivers are believed to exhibit more aggressive behaviors and
violation when driving (Clarke et al., 1998a; Chang and Yeh, 2007). Furthermore, male
motorcyclists were found more likely to violate traffic regulations (Chang and Yeh, 2007).
However, factors such as gender and age have no causal implications for driving behaviors.
Instead, those observable factors reflect inherent psychological factors, such as personality
traits, which can influence situational awareness or goal setting. Wong et al. (2009) suggested
that personality traits of young motorcyclists, including sensation seeking, impatience and
complaisance, can influence the occurrence of risky riding behavior. Riders who are
impulsive or engage in seeking excitement have a higher acceptance of unsafe riding, and
thus are exposed to more risky behaviors generating extra task activities. This phenomenon
implies task activity, and thus task demand varies according to driver personality and
characteristics.

3.3 Motivated Capability

Motivated capability indicates the maximum number of simultaneous task units that drivers
can perform correctly during a unit of time. The law of cognitive capability proposed by Elvik
(2006) suggested that capability impairment would increase accident likelihood. Figure 4
shows the framework for research on driver capabilities. As indicated, the main contributors
to capability fall under physical and psychological conditions.
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Figure 4 Framework for research on driver motivated capabilities

Drivers’ physical condition forms the baseline capability, which is termed capacity. Drivers
cannot increase capacity by adjusting their physical condition while driving. That is, capacity
determines the mental resources limit that drivers can utilize. In discussing physical
conditions, age is considered to strongly affect capacity when executing multiple and
simultaneous activities (Liu and Lee, 2005; Hancock et al., 2003). Owing to the degradation
of physical conditions, such as consciousness, useful field of view (UFOV) or reaction time
against urgent situation, senior drivers face significant changes in driving skill, reaction and,
most importantly, cognitive capacity. Degradation of capacity may prevent senior drivers
from identifying potential accident risk (Bayam et al, 2005; Clarke et al., 1999).
Furthermore, use of alcohol and drugs and fatigue also can decrease a driver’s capacity and
thus increase the risk of getting into an accident. Lowering the driver blood alcohol limit and
enforcing stricter drink-and-drive laws contribute to the reduction of accidents (Bernat ef al.,
2004; Rios et al., 2006; Ulmer et al., 2000). Striker laws on blood alcohol limits and license
renewal policies can help keep physically incapacitated drivers off the road.

Other important elements affecting a driver’s capability are the driver’s psychological
condition and his/her response to task demand. A driver’s psychological condition can be
considered as an adjustment factor to determine how much mental resources can be utilized in
driving under a given capacity. With regards to psychological conditions, a driver’s subjective
perceptions toward driving make critical contributions. The more self-confident and in control
a driver feels, the easier it is for them to allocate mental resources and maintain their
capabilities at a reasonable level. Driving under conditions where a gap exists between
expectations and real traffic environment makes a driver depressed and stressed. Hill and
Boyle (2007) indicated that drivers, especially female and senior drivers, who feel stressed
while driving can be assumed to have reduced driving capabilities. Laws of learning and rare
events proposed by Elvik (2006) also state that accident rate decreases with increasing
exposure and driving experience, since positive experience accumulation and training can
help drivers predict and control driving uncertainties. Furthermore, the acquisition of
information about journeys including traffic conditions, weather and routing assistance can
help drivers understand the situations they may encounter on their journey, and increase their
confidence.
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From the accident chain perspective, the greatest contributors to capability occur during the
prior-to-driving stage. However, Fuller (2005) claimed that task demand, which is mostly
affected by factors in the driving stage, interacts with psychological conditions and further
influences level of capability. For example, a driver may pay more attention when driving on
rainy days. The interaction between task demand and capability, thus, must be clarified to
clearly identify the nature of mental workload.

Compared to research on task demand, few efforts had been devoted to issues involving
motivated capability. Most studies have only adopted simple measures of driver capability,
such as driver age. This section proposes a concept of capacity that incorporates
psychological adjustment. Capacity determines the upper limit of capability. Drivers can try
to optimize the utilization of driving capability by adjusting psychological related factors to
improve control while driving. Individual drivers may have different physical and
psychological characteristics, resulting in different interaction between capacity and
capability, where capacity level is fixed and cannot be adjusted (Friswell and Williamson,
2008). Additionally, similar to task demand, motivated capability also is a dynamic system
that is affected by a driver’s unique characteristics in terms of information acquisition,
experience and motivation along the trip. Taking age effect as an example, young drivers, in
average, are in better physical conditions which give them more capacity while driving.
Meanwhile, young drivers may be inexperienced and thus unable to effectively utilize their
capacity. Obviously, a single simple measurement such as age or gender cannot properly
explain the phenomena, and deeper discussions are necessary.

4. OPTIMUM MENTAL WORKLOAD

The previous sections discussed induction of mental workload and its influence on driving.
Based on the interaction between capability and task demand, drivers suffer a certain mental
workload and must react properly to prevent hazardous situations. These vehicle maneuvering
manifests the explicit mental process under the influence of perceived mental workload. The
risk of mental overload has been widely discussed. However, existence of mental workload
does not inevitably negatively impact driving performance and safety. Instead, the concept of
optimum mental workload is worthy of consideration.

Drivers attempt to maintain optimum conditions while driving, including optimum speed,
stress and mental workload (Hill and Boyle, 2007; Horberry ef al., 2006b; Recarte and Nunes,
2002; Oron-Gilad et al., 2008). When drivers become unable to optimize their mental
workload, corrective action would be taken. According to the mental workload model,
strategies for maintaining optimum mental workload fall into two broad categories: task
demand and motivated capability adjustment.

Compensation strategies can be adopted when mental workload exceeds the optimum level.
For instance, from task demand analyses, several studies have indicated that drivers try to
reduce secondary tasks like ending a cell phone conversation to devote greater attention to
driving (DiDomenico and Nussbaum, 2008; Tornros and Bolling, 2006). Adjusting driving
behavior is another means of compensating for insufficient mental resources. For example,
drivers can increase headway (de Waard et al., 2007; Horberry et al., 2006a) to reallocate
mental resources and decrease task demand. Moreover, speed adjustment offers another
means of managing mental workload. Recarte and Nunes (2002) claimed that drivers adjust
speed based on their selected optimum velocity. Generally, drivers can decrease task demands
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by decelerating whenever their speed exceeds the optimum condition (Caird et al., 2008; de
Waard et al., 2007; Liu and Lee, 2005). Sometimes, drivers accelerate to reduce external
clutter and workload (Recarte and Nunes, 2002). In the case of psychological adjustment,
drivers may concentrate more on driving and allocate more resources to the activity once they
find their driving performance deteriorated (Fuller, 2005).

On the other hand, when a driver’s mental workload is lower than the optimum level, he/she
may suffer passive fatigue and boredom (Fuller, 2005; Gershon et al., 2009; Pattyn et al.,
2008; Oron-Gilad et al., 2008). Conditions of boredom and passive fatigue increase reaction
time and possibly further increase lapses and errors. When drivers drive continuously in such
low mental workload conditions, their capabilities are reduced and, moreover, they become
insensitive to this degradation. Under such situation, any sudden increase in task demand can
be dangerous. To prevent risks associated with low mental workload, drivers should attempt
to maintain a certain level of mental workload while driving by listening to music or keeping
a conversation with others in the vehicle to maintain alertness (Fuller, 2005; Oron-Gilad et
al., 2008).

Decision-making and acting to optimize mental workload are the key factors of road safety.
However, drivers sometimes fail to accurately estimate their mental workload and
underestimate potential risks. Taking cell phone usage for example, talking on a cell phone
increases one’s reaction time, requiring drivers to maintain a longer headway or decrease their
speed to stay on the safer side. However, studies have found that drivers using hands-free cell
phones do not adopt compensation strategies despite suffering the same degradation in
reaction time as drivers using conventional cell phones, thus increasing accident risk (Caird et
al., 2008; Liu and Lee, 2005; Nunes and Recarte, 2002; Patten et al., 2004; Toérnros and
Bolling, 2006). Therefore, it is worth considering ways to help drivers manage their mental
workload by providing adequate information or assistance via ITS safety systems, such as
screening out phone calls when one’s mental workload is high (Nunes and Recarte, 2002;
Piechulla et al., 2003).

5. IMPACT OF INFORMATION ON DRIVING SAFETY

The aim of providing information to drivers is to help drivers drive more safely and easily,
and most important, to help drivers optimize their mental workload. Improvements in ITS
safety technology make it easier for drivers to obtain real-time traffic information. However,
different information affects drivers differently. It is important to understand the
characteristics of information and its impact on driving safety. Furthermore, to understand the
net effect of information provided on mental workload, the contribution of information on
capability and task demand must be clarified and discussed.

One of the important goals of providing information to drivers is to improve the driver’s
understanding of traffic situations and their influences on driving. From a user perspective,
drivers note that providing more information can support decision-making and thus reduce
task demand (Brookhuis and de Waard, 1999; Creaser et al., 2007). Gathering real-time
information, including weather, traffic flow conditions, or accident prone site, reduces drivers’
uncertainty and allows them to pre-allocate their mental resources to deal with future traffic
conditions. Thus, a driver’s active reactions increase and passive reactions, especially those
uncomfortable ones, decrease. Several studies have indicated that such active reactions to
traffic conditions can effectively decrease mental workload (Fuller, 2005; Verway, 2000).
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Information also is intended to help drivers maintain optimal mental workload. As mentioned,
once the mental workload exceeds the critical level, drivers will select compensation
strategies to alter the interaction between task demand and capability. However, drivers
sometimes misestimate potential risks in certain conditions and make wrong decisions . As
indicated, drivers may underestimate the potential risk and end up not reducing their speed or
increasing headway when using hands-free phones (Caird et al., 2008; Liu and Lee, 2005;
Nunes and Recarte, 2002; Patten et al., 2004; Tornros and Bolling, 2006). A mechanism for
in-vehicle cell phone management has been proposed to screen out incoming calls when one’s
mental workload exceeds a certain level (Nunes and Recarte, 2002; Piechulla ef al., 2003). On
the other hand, if the mental workload is far below the optimum level and there is a risk of
passive fatigue, external stimuli such as music or radio should be provided to increase task
demands and hence driver alertness (Fuller, 2005; Pattyn et al., 2008; Oron-Gilad et al.,
2008).

While information is generally beneficial, improper use of it can gain negative effects. Only
providing the proper information to right driver at the proper time and place can exert positive
effects and reduce accident risk (Wong and Chung, 2007a). Complex laws proposed by Elvik
(2006) state that accident risks are increased with the information drivers must attend to
during a given unit of time. Moreover, side effects of information should also be considered.
Drivers influenced by multiple sources of information likely are to be distracted and miss
critical information. Therefore, information overload will not help drivers and may even cause
serious problems by distracting them. Figure 5 illustrates the impact of information provision
on each element of the mental model. The dashed box represents the contribution of
information during each stage. To prevent negative effects resulting from interference of ITS
systems or other sources, analyses of information optimization and allocation is crucial for
future ITS development and application (Verway, 2000).
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As shown in Figure 5, information can contribute to mental workload in each stage of driving
and can simultaneously exert positive and negative effects. Furthermore, differences in the
reactions of individual drivers to external stimulation, information customization and
personalization must be considered. The success in doing so depends on a workable mental
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workload model. Individual capability and reaction to task demand changes in response to
certain information under specific conditions should be evaluated. Consequently, via the
proposed research framework, information prioritization hopefully can be conducted and
effectively provided for each scenario, thus helping drivers select the most appropriate
strategy.

6. ISSUE DISCUSSION

Analyzing accidents from the perspective of the individual mental model can help clarify the
nature of accident causation and the interactions involved in the cognition associated with
driving. This study presents a research framework for a mental model that incorporates task
demand and capability to measure mental workload. However, several issues are worthy of
consideration.

The first issue is overall mental model formulation. Most studies have focused on the
interaction between task demand and mental workload. By giving a series of primary tasks
and secondary tasks to drivers, researchers are able to observe changes in overall mental
workload towards task activities (Caird et al., 2008; de Waard et al., 2008; Horberry et al.,
2006a; 2006b; Liu and Lee, 2005; Verway, 2000). However, the level of mental workload is
based on the difference between task demand and driver capability (Fuller, 2005). Neglecting
the contribution of capability might bias the interpretation of mental workload. Several
studies have discussed the effect of gender and age on the basis that they possibly reflect a
driver’s capability (Caird et al., 2008; Fuller, 2005; Hancock et al., 2003; Liu and Lee, 2005;
Makishita and Matsunaga, 2008), but few have discussed the capability motivated in different
situations and personality characteristics.

The second one is measurement. To clarify the interaction between capability and task
demand, measuring and quantifying each element is important. However, no index of task
demand equivalent can be adopted to evaluate task demand intensity. The same difficulty
occurs when measuring driver capabilities or determining the threshold of optimum workload.
Moreover, capability is dynamic and varies with changes in driving task activities. Though
“capability” is used here, in reality drivers may have multiple capabilities, each of which can
be influenced by different task demands. Identifying and clarifying task demand and
capability is a major challenge and also a critical step in constructing the mental workload
model.

The subsequent difficulty in developing a mental model lies in measuring mental workload.
Since the workload is difficult to directly observe and quantify, latent variables were used as
measurements. The most commonly adopted approaches can be broadly divided into three
categories: subjective self-report questionnaire (Hart and Staveland, 1988; Horberry et al.,
2006a), physiology measurement (de Waard et al., 2008; Hill and Boyle, 2007) and driving
performance (Tornros et al., 2006; Vashitz et al., 2008). However, sensitivity of each
measurement may vary with the situations. Horberry et al. (2006a) found that performance
difference is not significant in low mental workload conditions despite subjective
questionnaires showing that drivers had been influenced by tasks. Considering differences in
measurement characteristics, an integrated indicator incorporating each methodology should
be considered (Jung and Jung, 2001; Miyake, 2001).
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The fourth is model structure. The inverse proportion relation between workload margin and
mental workload indicates that a two-stage model structure deserves considerations. When the
workload margin is comparatively high, driving task turns out more like an automated
behavior and drivers do not have to allocate too many resources on driving and have a larger
buffer to perform other secondary tasks. Previous studies also revealed that differences in
secondary tasks or task complexity do not make any difference in mental workload under
simple scenarios (Horberry et al., 2006a; Liu and Lee, 2005; Matthews et al., 2003). Once the
task demand exceeds the threshold, mental workload begins to increase with increasing task
demand.

Finally, according to Figure 3 and Figure 4, the mental workload model is designed to identify
the causative links between disaggregate information and accident occurrence. However,
mental workload overload is not necessarily linked to accidents. Instead, the issue of mental
workload should be considered a critical element in the accident chain. Accident occurrence
relies on interaction among drivers, the environment and other road users. The relationship
between mental workload model and accident model requires further exploration.

7. CONCLUDING REMARKS

Mental model is a critical element for clarifying the nature of traffic accidents. Previous
studies mostly focused on the interaction between contributing factors and the occurrence of
accidents. However, accident prone scenario can only explain what accidents occur and the
mechanisms through which they occur, but not why they occur. Since drivers perceive
external stimuli and control vehicles, understanding the characteristics of driver mental
process is crucial for clarifying the question of “why drivers fail to maintain safety under
certain circumstances.” To fill the gap, developing a research framework is an important step
towards the development of a workable mental model to gain insight of accident causality.

Review of the related literature reveals several difficulties in assessing mental workload.
First, task demand and motivated capability, which can be seen as the demand and supply of
mental resource, represent the two major components of the mental workload model.
Focusing on either task or capability only cannot reveal the nature of driving mental process.
Second, considering the complexity of real driving environments, drivers perceive multiple
events simultaneously while driving. Single factors such as driving speed, headway or
distraction level do not reflect the true situation. Meanwhile, task demand and motivated
capability are considered a dynamic system which varies according to driving conditions.
Without a further understanding of state transit that may affect mental workload, the nature of
driving mental process can not be clarified.

Issues of mental workload models still require further discussion and study. Identifying the
cognitive interaction of drivers while driving is a necessity for understanding accident
causality. Therefore, this study proposed a research framework that incorporates task demand
and capability to identify mental workload. Furthermore, drivers have increasing access to
information. The provision of large quantities of poor quality information, however, can
create serious problems of information overload and distraction. Applying the mental
workload model in accident chain analyses enables the discussion of the net effect of
information on mental workload. Optimized information hopefully can be defined and
provided to drivers in different scenarios without causing additional risk of accidents.
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ABSTRACT

The increasing number of roadway accidents has led researchers to focus on accident-prone
scenarios to get a clearer picture of the accident occurrences through accident chain.
However, such scenarios explain the conditions and mechanism of a collision rather than its
true cause. To fill the gap between occurrence and causality, analyzing individual drivers’
attention allocation processes is vital for clarifying the nature of accidents. Noting that driving
is a continuous process of information collection, drivers need to allocate attention to
different objects to perceive useful information. Attention misallocation can be seen as the
missing link between an accident-prone scenario and the occurrence of an accident.
Modeling drivers’ attention allocation in different conditions is a major step in identifying the
external information drivers perceive and react to. The purpose of this research is to analyze
the process of driving attention allocation through the divided attention model. Moreover, the
concept of the vehicle driver's domain is proposed. By identifying the risk level of threats to
safety in each type of vehicle driver's domain, the central allocation policy of attention
resources can be identified.

INTRODUCTION

To enhance the understanding of accidents, researchers have worked on mining aggregated
accident data to extract accident patterns. Numerous contributing factors, including the
demographic characteristics of the driver (Chang and Yeh, 2007; Clarke et al., 1998), vehicle
(Albertsson, 2005; Chang and Yeh, 2006), road geometry (Chin and Quddus, 2003; Mitra et
al., 2002; Wang and Abdel-Aty, 2006), and environmental conditions (Eisenberg, 2004; Keay
and Simmonds, 2006), have been found critical to roadway safety. Despite the significant
effect of single factors, recent research has further claimed that accidents should be
analyzed from a chain perspective in which remote factors also may contribute to their
occurrence (Verschuur and Hurts, 2008; Wong and Chung, 2007a; 2007b; Wong et al.,
2010).

Exploring accident chains provides valuable clues that indicate accident-prone scenarios in
which drivers usually have a higher risk of being involved in a dangerous situation. Such
accident-prone scenarios explain mostly the conditions in which drivers face higher risks of
being involved in an accident, and possibly the mechanism through which such accidents
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occur. However, an unanswered question remains, namely, why accidents occur under
specific conditions. In fact, different drivers react differently in identical situations. While most
drivers can still drive safely in a high accident risk scenario, but some fail to maintain safety,
resulting in dangerous situations. The question thus arises: How do different reactions to
identical conditions result in various outcomes. Answers to the question rely on the
understanding of drivers — the decision-maker of a running vehicle.

Research conducted in different countries has suggested that human factors are the most
important contributor to accident occurrence (Chen et al., 2005; Horberry et al., 2006a;
Dahlen et al., 2005; FMCSA, 2009; Liu and Lee, 2005; Makishita and Matsunaga, 2008;
Reed-Jones et al., 2008; Ulleberg and Rundmo, 2003). In Taiwan, for example, 85 percent of
fatal accidents in 2008 resulted from human-related factors (such as traffic violations and
aggressive behavior). Among those factors, “failed to note road conditions,” which can be
considered as attention misallocation and failure of risk awareness, accounted for 22 percent
of human-related fatal roadway accidents (MOTC, 2009). Research conducted in the United
States also found that distraction and inattention of a driver are the most important human-
related causes in accidents (FMCSA, 2009).

In fact, the frequent occurrence of failing to note road conditions represents distraction and
misallocation of attention. Attention misallocation can be seen as the missing link between
accident-prone scenarios and accident occurrence within the concept of an accident chain.
Driving in an accident-prone scenario may not necessarily result in an accident, provided that
the driver’s attention is well allocated. Attention misallocation in such scenarios will sharply
increase the likelihood of an accident.

Noting that driving is a continuous process of information collection, comprehension,
decision-making, and execution, collecting complete information is the key factor in safe
driving. Driving-related information includes speed, the existence and attributes of other
vehicles, roadway geometry, route information, signs, and traffic signals. Acquisition of
incomplete or useless information will lead to insufficient comprehension of the current
driving environment, misjudgment, and possibly accidents. To drive safely, drivers are forced
to pay attention to multiple information sources in order to make correct driving decisions.
Therefore, attention allocation issues arise.

Attention is consciousness and perception with focalization and concentration toward stimuli
(Zomeren and Brouwer, 1994). The attention model proposed by Kahnement (1973) claimed
that one’s mental resources are limited. Therefore, attention must be divided and given to
different activities. The concept of divided attention is based on the idea of mental effort,
which describes how demanding an activity might be. From a driver’s point of view, (s)he has
a central processor of attention allocation policy to allocate mental resources and attention
under the limit of attention capacity. Problems of divided attention may degrade the ability to
detect potential threats while driving (Creaser et al., 2007; de Waard et al., 2009; Laberge et
al., 2006; Marmeleira et al., 2009).

Driving distractions can be defined as attention misallocation and the shifting of attention
from driving tasks to other stimuli activated by objects or events (FMCSA, 2009). Shifting
attention away from road conditions and driving tasks may increase the time required to
perceive and react to external stimuli, and thus increase accident risks (Neyens and Boyle,
2007). In-vehicle distraction caused by undertaking secondary tasks, especially cell phone
communication, has attracted much attention from researchers. Numerous studies have
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proposed that using in-vehicle instruments, such as cell phones, navigation systems, or in-
vehicle information systems, increases the amount of task activity and decreases drivers’
ability to react to emergencies (Caird et al., 2008; Horberry et al., 2006a; Liu and Lee, 2005;
Nunes and Recarte, 2002; Patten et al., 2004). Furthermore, external clutter such as
advertising billboards, roadside buildings, or traffic flow were also found to be critical to
driving performance (Horberry et al., 2006a). In addition to the degradation of risk perception,
driving distractions can also be seen as misallocation of mental resources. Maintaining
attentive focus on road conditions and vehicle operation is the primary task of driving.
Undertaking secondary tasks can cause distraction and increase the mental workload.
Furthermore, driving information provided to drivers may also cause distraction and increase
mental tasks while driving. Providing driving information is intended to help driver better plan
the allocation of mental resources and prevent dangers arising from uncertainty. From a user
perspective, drivers note that providing more information can support decision-making and
thus reduce task demands (Brookhuis and de Waard, 1999; Creaser et al., 2007). Gathering
real-time information, such as that regarding weather, traffic flow conditions, or accident-
prone sites, reduces drivers’ uncertainty and allows them to pre-allocate their mental
resources to deal with future traffic conditions (Fuller, 2005; Vashitz et al., 2008; Verway,
2000). However, its improper use of information can yield negative effects. Complex laws
proposed by Elvik (2006) state that accident risks increase with the amount of information
drivers must attend to during a given period of time. Providing only the proper information to
the right driver at the appropriate time and place can exert positive effects and reduce
accident risk (Vashitz et al., 2008; Wong and Chung, 2007a). The side effects of information
should also be considered. Drivers influenced by multiple sources of information are likely to
be distracted and miss critical information (Liang et al., 2007; Vashitz et al., 2008).

As stated, attention misallocation can be seen as the missing link between accident-prone
scenarios and accident occurrence within the concept of accident chains. To model drivers’
attention allocation and distraction, the concept of the vehicle driver's domain is proposed in
this research. Modeling attention allocation and subsequent behavior through the vehicle
driver's domain is a major step in identifying the external information drivers perceive and
react to. As a consequence, the effect of information on perception, driver behavior, and
mental workload can be further clarified. Moreover, the connection between accident risks
attributed to distraction and drivers’ mental processes could be established.

An attention allocation model and its application to driving are introduced in section 2. In
section 3, the concept of the vehicle driver's domain is proposed. Section 4 then proposes a
model framework of driving attention allocation. Finally, discussion and concluding remarks
are presented.

ELEMENTS IN ATTENTION ALLOCATION

The divided attention model (Kahnement, 1973) stats that several activities can be focused
on and carried out at the same time, provided that their total effort is below the limit of
available capacity. Four attributes of attention are mentioned. First, attention capacity is
limited and varies from time to time. Available mental resource vary with the arousal level
based on the physiology characteristics.. Second, the amount of attention or mental
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resources allocated is based on the demand level of current activities. The more demanding
an activity is, the more attention would be allocated to it. Third, attention is divisible. Fourth,
attention is selective and controllable. A central policy exists for allocating attention to
selected objects or activities. The framework of the divided attention model is illustrated in
Figure 1.

Arousal

) Available Capacity
Enduring
Dispositions
Allocation Policy
Momentary
Intentions

Evaluation of
Demand on
Capacity

T

Possible Activities

Response

Source: Kahnement (1973)
Figure 1 — Model of divided attention

Four major elements are used to determine attention allocation policy in the model of divided
attention: arousal, enduring dispositions, momentary intentions, and evaluation of demand on
capacity. Arousal refers to factors such as physical condition, fatigue, or nervous tension that
may activate the maximum attention capacity. An adequate level of arousal must be
maintained. Under-arousal causes low attention capacity, whereas over-arousal impairs the
ability to discriminate relevant objects from irrelevant objects. Enduring dispositions and
momentary intentions reflect the characteristics of the external environment and behavioral
intentions. Enduring dispositions represent state changes in the environment, such as
deceleration of the vehicle ahead, and reflect involuntary attention. Momentary intentions, in
contrast, represent the intended attention allocation at that instant, such as searching for
information using an in-vehicle information system. Finally, the feed back of attention
allocation would continue to evaluate and adjust the arousal level and revise the allocation
policy to fit the current situation.

To obtain complete information for driving, drivers need to allocate attention on multiple
objects not only on the road but also off-the road. For example, if a driver focuses only on
traffic conditions in an adjacent lane and is not aware that the vehicle ahead is decelerating
while changing lanes, an unexpected headway decrease may shorten the available time for
the driver to react properly and increase the risk of collision with the vehicle ahead. This
accident chain may describe a rear-end collision while changing lanes. However, the key
points of accident risk in such a situation are the failure of divided attention and the driver’s
attention misallocation. Thus, the concept of divided attention is useful for analyzing driving
safety.

Previous research has indicated that the capacity for divided attention is critical for situational
awareness, especially for senior drivers (Creaser et al., 2007; de Waard et al., 2009;
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Laberge et al., 2006; Marmeleira et al., 2009). Experiments on the influence of driving
distraction on safety have also been conducted (Caird et al., 2008; Horberry et al., 2006a; Liu
and Lee, 2005; Nunes and Recarte, 2002; Patten et al., 2004). However, little numerical
evidence has been provided for the mechanism that determines how drivers shift attention
among different areas, objects on the road, and information sources. To better comprehend
how drivers allocate attention to multiple threats and information sources, the model of
divided attention is adopted to dissect the process of driving and information perception.
Meanwhile, the vehicle driver's domain is proposed as a tool for representing the
complicated interaction of objects in a real driving environment.

VEHICLE DRIVER'S DOMAIN

The vehicle driver's domain is proposed to simplify the complex interaction of multiple threats
to safety by setting three virtual boundaries, which form three domains, around subject
vehicles. It helps to identify the location and characteristics of threats to safety. Threats
inside different domains under different driving conditions reflect different meanings to drivers
and draw different levels of attention. In this section, the role of the vehicle domain in mental
processes and attention allocation in driving is introduced. Then, the characteristics and
measurement of each domain are explained.

Definition of Vehicle Driver’s Domain

The vehicle driver's domain is the area within a specific distance around the subject vehicle.
It is a driver's conceptual area in which external objects may appear to interact with the
subject vehicle and degrade driving safety. Such threats to safety include other vehicles,
fixed objects, curbs, and pedestrians. The concept of the vehicle driver's domain is important
for situational awareness, risk perception, and decision making regarding threats to safety
while driving. This distinct area contains the information that drivers are able to perceive,
collect, and process. To prevent collisions, drivers must allocate attention inside the vehicle
driver's domain and seek complete information. As shown as Figure 2, drivers generally set
three boundaries, forming three kinds of vehicle driver's domains: the distant area in which
drivers can perceive external stimuli, the area in which the driver is preparing to make a
maneuver, and the relatively close area where driver must secure to prevent traffic conflict
within limited time. These domains are named the perception domain, reaction domain, and
critical domain, respectively. The content of these three domains can attract the driver’s
attention and effect traffic safety differently.

Perception Domain

Figure 2 - Concept of vehicle driver's domain
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A vehicle can be seen as a system containing subsystems with different functions to ensure
safe driving. Each subsystem will vary the conditions of the three vehicle driver's domains.
The person behind the wheel is one of the most important components within the vehicle
system. Objects located in different domains should activate different reactions and behavior
from the driver owing to their varying risk levels. Figure 3 shows the mental process of
driving and the role of the vehicle driver's domain in this process.

Revise Contents in

rrent Contents insi ) .
Current Contents inside Vehicle Driver's

Vehicle Driver's Domains h
Domains
Vehicle Driver's Revise Vehicle
Threats to Safety Domain ] Driver's Domain Event
[
\ \ \ |
v v v v \
Distraction Crmca_ll Reacthn Percept_|on Assign Threal§ to |
Domain Domain Domain Each Domain
\ [ [ \
Attention Allocation
i Intention
Perceived Information
Maneuver Selection
i Tasks
Maneuver Activation
Predicted Trajectory of Predicted Trajectory of
Other Vehicles Subject Vehicle
‘ L ‘ Performance

Conflict Resolution

Figure 3 — Driving mental process and vehicle driver's domain

Driving can be divided into four mental stages: event occurrence, intention, tasks, and
performance. Drivers first perceive objects, which can be seen as the current content inside
the vehicle driver's domain. Each object perceived is evaluated as a threat to safety on which
attention should be focused. These threats are immediately mapped onto the three
conceptual vehicle driver’s domains. In facing those threats, drivers, if not distracted, must
allocate attention to collect information necessary for driving safely.

The second stage is attention allocation to threats to safety. As described in the model of
divided attention (Kahnement, 1973), drivers can focus on multiple threats on the road and
allocate different levels of attention to different objects. The more demanding the objects are,
the more attention they would be allocated. In this research, drivers are assumed to allocate
more attention to objects or areas with a high level of accident risk to minimize the expected
negative impact on safety. However, not all objects inside the vehicle driver's domains will be
observed and considered as threats to safety. Some may be ignored due to drivers’

12" WCTR, July 11-15, 2010 — Lisbon, Portugal

6



WONG, Jinn-Tsai; HUANG, Shih-Hsuan

inattention. Some may be attended to and observed but seen as potential threats that pose
no immediate danger of collision. On the other hand, non-driving tasks may cause distraction,
shifting attention away from primary driving tasks.

Based on observation of threats to safety in different domains in a real-time driving
environment and the driver's perception of their importance, maneuvers are selected and
executed. After undertaking the selected maneuvers, a new driving state, including speed,
location, and trajectory, is realized. Therefore, the vehicle driver's domain may need to be
revised. Meanwhile, threats on the road are also changing continuously. The current
contents of the vehicle driver's domain should be revised to iterate the attention allocation
process.

Threats in different vehicle driver's domains require different tasks to resolve them. To model
driving behavior based on attention allocation, it is important to define and explore the
characteristics of each vehicle driver’'s domain. Then, the threats to safety that drivers really
see and care about can be further clarified.

Measurement of Vehicle Driver's Domains

The concept of the vehicle driver's domain is of major importance in situational awareness,
decision making, and preventing collision. The size and shape of each domain are important
for defining their distinctive areas. In the following sections, the definition and measurement
of each domain are explained. Also, threats to safety that may be of concerns to drivers are
identified. Finally, based on threats to safety in each domain, the process of attention
allocation within the domains is introduced.

Perception Domain

The perception domain reflects the respectively far area in which a driver has plenty of time
to perceive stimuli from the external environment. Inside this area, moving objects are
identified and evaluated as potential threats to safety. In other words, this domain contains all
the information available from all the objects on the road to which the driver can attend. Once
a driver perceives the existence of certain objects inside the perception domain, mental
resources are consumed to evaluate the risk level of the threat to driving safety. After
perceiving potential threats, drivers continue tracking the movement and predicting possible
interactions between threats and the subject vehicle. However, no immediate technical tasks,
such as changing speed or direction, are made when objects are located in perception
domain but outside the reaction domain. Most tasks undertaken with respect to threats inside
the perception domain are non-technical, reflecting the mental activities of perceiving,
comprehending, and projecting information. The important factors in the perception domain
are shown in Figure 4.
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Figure 4 —Important factors of perception domain

The farthest distance of the perception boundary, which defines the size of the perception
domain, refers to the sight distance under certain speed and environmental conditions. The
maximum sight distance depends on the driver’s visual capability, which is related mostly to
his or her physical capabilities. For example, senior drivers have been indicated as having
serious degradation of eyesight (Bayam et al., 2005; Clarke et al., 1999). The external driving
environment also affects the available sight distance. For example, the sight distance while
driving on a rainy night without streetlight is much shorter than that on a sunny day.
Moreover, blockages caused by buildings and roadway geometry block driver's eyesight and
shorten the sight distance.

The shape of the perception domain represents the directions in which a driver can see and
allocate attention. It can be defined by the extent of the vision field, which is influenced by the
driver's physical condition and the vehicle’s ergonomics. Peripheral vision is one
characteristic of the useful field of view (UFOV) that affects the visual field span. Although
peripheral vision can extend 90 degrees to the right and left sides, only the center of the
visual field is clear enough to capture stationary objects on the road (Roess et al., 2004).
Moreover, a driver's peripheral vision reaches a limitation as the speed of the vehicle
increases. Also, a driver's musculoskeletal condition restricts the visual field’s span. Drivers
with muscle disorders and other physical disabilities may find it difficult in turning the head to
increase peripheral vision. Vehicle ergonomics design is another critical factor that restricts
the visual field. Rear-view mirrors allow drivers to detect and observe traffic conditions
behind the vehicle, where drivers cannot observe and pay attention directly. However, blind
spots may still exist and may pose risks to driving safety.

Critical Domain

The critical domain represents a safety boundary; drivers must secure this area and prevent
objects from entering it. Objects inside the critical domain are seen as the occurrence of
accidents. Although drivers can still allocate attention to threats inside the critical domain, yet,
accidents are not preventable. If the threats to safety are close to the critical boundary or
inside the critical domain, immediate technical tasks must be performed. The important
factors in the critical domain are shown in Figure 5.
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Figure 5 —Important factors of critical domain

Reaction capability is the key factor determining the size of the critical domain. Factors
contributing to reaction capability include the driver's reaction time and the vehicle’s
deceleration performance. Those two factors determine the minimum stopping distance in
response to external stimuli. When the distance between the subject vehicle and a
threatening object is shorter than the stopping distance, an accident cannot be prevented. In
regarding to the size of a critical domain, the driver's reaction time is rather important.
Fatigue and alcohol or drug usage may degrade one’s reaction capability by increasing the
reaction time. Regardless of a driver's physical characteristics, task difficulty may influence
the reaction time as well. Characteristics of technical tasks, such as complexity or difficulty in
performing them, are reflected in the reaction capability and the critical domain. Drivers may
take more time to notice an emergency situation, make decisions, and take action if they
must perform more maneuvers.

The shape of the critical domain is determined by event characteristics and the maneuvers
chosen based on the driver's intentions. It indicates the direction and location at which
threats may appear and lessen driving safety. In other words, the shape of the critical domain
indicates the area drivers should focus on to prevent collisions. It depends on the predicted
potential conflicts of vehicle trajectories. Each event occurrence and task creates different
potential conflicts in different locations on the road, making differently shaped critical
domains. Figure 6, for example, shows three different maneuvers: driving in the current lane,
changing lanes, and turning right. Each creates a unique potential conflict and critical domain.
When driving without changing lanes, as in Figure 6 (A), the critical domain contains only the
area in front of the vehicle to prevent collisions with the vehicle ahead, and limited space in
adjacent lanes to prevent other vehicles from entering the current trajectory. However, when
drivers decide to change lanes, as in Figure 6 (B), the critical domain extends to the adjacent
lane to prevent collision with vehicles ahead and behind. Thus, attention should still be
allocated to the current driving lane to maintain a safety gap with the vehicle ahead while
awaiting a time to change lanes. In the case of a right turn when approaching an intersection,
the critical domain may extend in the direction perpendicular to the direction of travel. Drivers
have to secure the area and prevent pedestrians and other moving objects from entering the
critical domain.
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Figure 6 — Critical domain under different maneuvers

Reaction Domain

The reaction domain is the area in which potential threats are determined to be threats to
safety that drivers must pay close attention to and in which drivers must react to any stimuli
appearing. Typically, the reaction domain is located between the perception and critical
domains. When a potential safety threats crosses the boundary of the reaction domain (the
reaction boundary), drivers determine that those objects are threats to safety and allocate
more attention to them. Drivers may make certain maneuvers to prevent collision. Both
technical and non-technical tasks are necessary when handling threats inside the reaction
domain. The important factors in the reaction domain are shown in Figure 7.
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Figure 7 — Important Factors of Reaction Domain

The reaction domain is mostly affected by the individual driver's characteristics. The size of
the reaction domain depends on where the driver locates the reaction boundary for activating
reactions to safety threats. The selection of the reaction boundary depends on the driver's
skill and situational awareness. Laws of learning and rare events proposed by Elvik (2006)
stated that the accident rate decreases with increasing exposure and driving experience,
since positive experience accumulation and training can help drivers predict and control
uncertainties. In other words, experienced drivers likely are able to make a better decision
when facing safety threats. Additionally, previous research has found that experience,
personality, attitude, and other psychological factors play a role in one’s driving behavior
(Chang and Yeh, 2007; Taubman-Ben-Ari et al., 2004; Ulleberg and Rundmo, 2003; Wong et
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al., 2009a; 2010). With different behavioral intentions, drivers may make different decisions
and react differently in the reaction domain. This suggests that individual drivers’
characteristics should be considered.

The driver's sense of control also contributes to the selection of reaction boundary. For
instance, having road information, such as traffic conditions, weather information, and routing
assistance, at hand can help drivers understand the situations they may encounter and
increase their confidence. The more self-confident and in control drivers feel, the easier it is
for them to allocate attention and maintain their driving performance at a reasonable level.
On the contrary, driving under conditions where a gap exists between expectations and the
real traffic environment stresses and discourages a driver. Research has stated that stress
can influence a driver's capability and cause attention misallocation cause attention
misallocation (Hill and Boyle, 2007).

The shape of the reaction domain is closely related to the conditions of the critical domain; it
is similar to the critical domain but different in size. Like the size of the reaction domain, its
shape relies on the driver's skill and situational awareness. It reflects a driver's behavioral
intention and determines a driver’s attention allocation policy regarding objects and quality of
decision making.

DRIVING ATTENTION ALLOCATION

This section discusses the threats inside each domain and the interaction between threats
and the subject vehicle. The driving attention allocation process can be divided into two parts.
First, threats to safety in each domain are identified. The risk level of the threats can be seen
as a combined index of enduring dispositions and momentary intention while driving. The risk
level also reflects the demand of each object for attention allocation. Second, the attention
allocation policy, which is represented as the probability of a specific domain being focused
on by drivers, is determined based on the risk level of threats to safety in different domains.

Threats to Safety

Threats in this study can be defined as possible dangers that may harm driving safety. To
identify the attention allocation process while driving, it is important to determine the kind of
threat that may influence safety and to what extent. The risk level of threats to safety is
adopted to represent the criticalness of threats is in different maneuvers and driving
environments.

Risk is evaluated on the basis of three factors. The first is the distance between a subject
vehicle and a threat. In this research, the location of a specific threat can be represented by
the domain to which it belongs. The second factor is the traffic flow in which drivers are
driving. When facing different traffic flow conditions, drivers may allocate attention to different
domains. Three levels of traffic are considered: free flow, synchronized flow, and congested
flow. The third factor is the interaction between the subject vehicle and the threat. It relies on
the relative locations of the vehicle and the threat and the maneuvers adopted by the
vehicle’s driver. Provided that the maneuvers decrease the headway, they can be considered
as raising the risk of conflict, requiring more attention from drivers. Characterizing threats
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using these three factors can help identify the interactions of the subject vehicle and other
objects on the road. Furthermore, it can help describe the actual driving environment and
capture critical attributes that can influence driving safety.

The risk level of threats to safety caused by interactions between a subject vehicle and other
vehicles under different traffic flow conditions are summarized in Tables 1 to 3. Assuming
that only interactions within driving lanes are discussed, four maneuvers (maintaining speed,
accelerating, decelerating, and changing lanes) may be undertaken by the subject vehicle
(Vehicle S) and the threat (Vehicle A). Seven scenarios representing the relative locations of
two objects and reflecting different driving maneuvers and types of potential conflicts are
illustrated.

The first and second scenarios indicate the potential threat of rear-end conflicts with vehicles
in the same lane. In the first scenario, Vehicle S follows other vehicles, and in the second,
the Vehicle S drives in front of other vehicles. If drivers stay on the same lane without
changes, they must pay attention to threats located on the lane they are on to prevent rear-
end accidents. However, drivers should pay attention to vehicles running in the adjacent lane
that may pose a risk of side impact if they change lanes. The third and fourth scenarios
represent the potential threat of side impact from the front and the rear in the adjacent lane.
The fifth and sixth scenarios denote a threat located in a second adjacent lane. If a driver
intends to change lanes, vehicles in the adjacent lane (the third and fourth scenarios) and the
second adjacent lane (the fifth and sixth scenarios) are considered as safety threats. The
seventh scenario refers to a fixed object on the road.

Table 1 summarizes the risk level of threats to safety when driving in the free flow condition.
In this condition, by definition, drivers can adjust speed without being influenced by other
vehicles. In other words, no other vehicle appears inside the reaction and critical domains, in
which the driver would initiate reaction against external stimuli. The closest vehicle that could
affect driving safety in free flow traffic is located in the perception domain. Thus, only threats
in front of the subject vehicle would affect driving safety, including the vehicles ahead in the
same lane (as in the first scenario) and vehicles in the adjacent lane that may cause risk if
they change lanes (as in the third and fifth scenarios). The risk level is comparatively low,
since any threats are still far away and outside the reaction domain. However, if the headway
is decreasing, the threats to safety could enter the reaction domain; the risk level would
increase, and the threat will draw more of the driver’'s attention. Meanwhile, due to the
narrow span of a driver’s vision when driving in free flow traffic condition, drivers would not
only attend to the vehicle ahead but also those behind and on adjacent lane Compared to
other vehicles on the roads, the risk level of fixed roadside objects is more significant for safe
driving. Drivers would perceive more risk in roadside object located in the reaction and
critical domains, especially roadside curbs on curving lanes, which may necessitate a
technical task of wheel-turning.
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Table 1 — Risk level of threats to safety in free flow

Subject Vehicle Driving in Free Flow

Maneuver Undertaken by
Subject Vehicle

Perception Reaction
Domain Domain

Critical
Domain

Maneuver Undertaken by
Vehicle A

Related Location

of Threats Maneuver

Decelerate
Change Lane
Maintain Speed
Accelerate
Decelerate
Change Lane
Maintain Speed
Accelerate

Decelerate

Change Lane

Maintain Speed

[Tl |

Accelerate

@

Decelerate

Change Lane

||+ || Maintain Speed

v |Z|r || Accelerate

.
|

Maintain Speed

([all ] Accelerate

@

Decelerate

Change Lane

Maintain Speed

Accelerate

©)

Decelerate

Change Lane

Maintain Speed

Not Applicable

Accelerate

4)

Decelerate

Change Lane

Maintain Speed

Accelerate

®)

Decelerate

Change Lane

Maintain Speed

Accelerate

(6)

Decelerate

Change Lane

Not Applicable

Curb with
Curvature

Curb on straight

(7) Fixed Objects Lane

Parked Vehicle
Heading Out

Risk Level
Vehicle S: Subject Vehicle - :No Risk
L : Low
M : Medium
H : High

Vehicle A: Threat to Safety
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Table 2 summarizes the risk level of threats to safety when driving under a synchronized flow.
In this condition, speed adjustment is influenced by other vehicles since there are threats
exist inside the reaction and critical domains. Objects inside the reaction domain would be
considered as posing a higher risk than those inside the perception domain. Furthermore,
threats in all three domains would attract drivers’ attention. Although drivers look at the near
side of the road, objects inside the perception domain will occasionally draw their attention,
even though the threats in this area pose less risk than those in the reaction and critical
domains.
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Table 2 — Risk level of threats to safety in synchronized flow

Maneuver Undertaken
by Subject Vehicle

Maneuver Undertaken
by Vehicle A

Subject Vehicle Driving in Synchronized Flow

Perception
Domain

Reaction
Domain

Critical
Domain

Related Location

of Threats Maneuver
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—
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Table 3 summarizes the risk level of threats to safety when driving under a congested traffic
flow condition. Under such a condition, the headway between vehicles is small, so drivers
must accelerate and decelerate frequently. The area to which drivers can allocate attention is
limited. Most of the time, drivers can focus only on the vehicles ahead that are located near
the critical boundary to prevent accidents (as in the first scenario). Although vehicles appear
in the perception and reaction domains, they do not produce safety-critical information that a
driver must perceive. Moreover, considering that the gap between two vehicles is very small,
drivers may not worry about vehicles in adjacent lanes, since there is apparently no available
space for changing lanes. A driver would typically pay attention to traffic in adjacent lanes
only when Vehicle S or a vehicle in an adjacent lane is signaling a lane change (as in the

third and fourth scenarios).
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Table 3 — Risk level of threats to safety in congested flow
Subject Vehicle Driving in Congested Flow
Perception Reaction Critical
Domain Domain Domain

Maneuver Undertaken
by Subject Vehicle

Maneuver Undertaken
by Vehicle A

Maintain Speed
Accelerate
Decelerate
Change Lane
Maintain Speed
Accelerate
Decelerate
Change Lane

Related Location

of Threats Maneuver

— Maintain Speed -
LT ] [ATl ] Accelerate - T -1 -1 -1T-1-71T-
Decelerate - - - - - - - R
Change Lane - - - - - - - R
= Maintain Speed - - - - - - - - - R -
1Om LS Accelerate - - - - - - - - - R R
Decelerate - - - - - - - - R - R
Change Lane - - - - - - - - - - R

Maintain Speed - - - - - - - ™
o] Accelerate - - - - - R - L
LAl | Decelerate - - T

Change Lane - - - - - - - LInlTawM™m
M
H
L

@

Z|x|Z || Maintain Speed

Z|T|(Z|xT| Accelerate
—|Z|~|Z] Decelerate
I|xT|~|<Z]| Change Lane

@

©)

S— Maintain Speed - - - - - - -
@ s ] Accelerate P I N N [ R
{([aT] | Decelerate PN N T N I I
Change Lane - - - - - - -
s Maintain Speed -l -r-1r-r-r-1r-r-r-r-1-1-
Accelerate - - - - - - - R - R R _
Decelerate - - - - - - - R R - R C
— Change Lane - - - - - - - - B R - R
s Maintain Speed - - - - - - - - - R - B
Accelerate - - - - - - - R - R R _
— Decelerate - - - - - - - R - - R -
Change Lane - - - - - - - - B R - R

Curb with
Curvature

(7) Fixed Objects Curb on straight A R N AR A A E R R
Lane

Parked Vehicle
Heading Out

The risk level of threats to safety is a subjective index since drivers make decisions based
their subjective perception towards the driving environment. This index may be influenced by
differences in the driver’s individual characteristics. The heterogeneity of the driving
population may result in different perceived risk levels with identical threats. The issue of
heterogeneity, although not considered in this study, should be seriously addressed and
analyzed in the future. Nevertheless, the risk level summarized in this section is an important
index to help clarify the process of driving attention allocation and provides a framework for
identifying the location and possible risk level of threats in different domains. This research
only summarized the concept and the general condition of risk level that driver might
perceive in certain traffic flow condition. Field data collection is necessary in future studies.

Y EY [l

®)

(6)

N N T I e e A

Attention Allocation in Vehicle Driver’'s Domains

The real driving environment can be seen as a dynamic system containing multiple time-
dependent safety threats. Drivers should keep switching their attentive focus between
different threats. However, owing to differences in behavioral intention, traffic conditions, and
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other heterogeneities in the external environment, the duration and sequence of focusing on
a specific object while driving and the driver's subsequent behavior vary with the situation. It
is important to identify whether drivers allocate enough attention to critical objects that may
threaten safety. Misallocating attention may cause failure to perceive critical information and
inability to react to possible dangers in time. To analyze the attention shifting process and
behavior, this research proposes a driving attention allocation model for analyzing transitions
in a driver’s attentive focus.

The divided attention model suggests four attributes. First, the available mental resources
are limited and vary with the driver's arousal level. Second, the allocation of mental
resources and attention is based on the risk levels of threats. Objects with higher risk level
demand more attention from the driver. Third, attentional resources are divisible. As long as
the attention required is below the capacity limit, the attention can be divided and allocated to
different foci, including threats to safety and other distractions. Fourth, a central attention
allocation policy exists for controlling and selecting the attentive focus. Due to their training,
experience, and intentions, different drivers may have different allocation strategies and
allocate different levels of attention in collecting different information.

The framework of driving attention allocation is shown in Figure 8. Driving status can be
represented by enduring disposition and momentary intention. The enduring disposition
reflects the characteristics of all objects in the environment that would remain for a period of
time. In this research, it is characterized by traffic flow conditions and other vehicles’ relative
locations, distances, and maneuvers. Momentary intention denotes the driver’'s intention to
undertake a certain behavior. This research considered four possible behaviors: maintaining
speed, acceleration, deceleration, and changing lanes. Events occur if the enduring
disposition is interrupted, or if a driver actively changes his or her intention to undertake
certain maneuvers. By determining the driving status in terms of the enduring disposition and
momentary intention, threats to safety are identified and assigned to different domains based
on the characteristics of the vehicle driver’s domain.

The risk level in each domain, which is the summation of the risk level of each threat to
safety inside the domain, is the input of the attention allocation policy. It is considered to be
the combined index of enduring disposition and momentary intention. Threats to safety may
vary with traffic flow conditions, the objects inside the domains, and driving maneuvers. Rpp,
Rrp, and Rcp represent the risk level of threats to safety in the perception, reaction, and
critical domains, respectively. As introduced in Table 1 to Table 3, the risk level varies with
the characteristics of the vehicle driver's domain and the interaction between the subject
vehicle and threats in each domain. More significant threats inside a specific domain will
attract more attention to maintain safety.

The core of the driving attention allocation model is the allocation policy, which refers to the
strategy of allocating mental resources. Drivers might attend to five major attentive focuses:
the three vehicle driver's domains and two distraction domains. To collect complete
information, drivers would tend to switch their attentive focus between different on-road, off-
road, or in-vehicle areas. The contents of each of the vehicle driver's subdomains provide
information for use in driving maneuvers and accident prevention. Some content may be
treated as threats to safety that require more attention. On the other hand, distractions are
information induced by off-road or in-vehicle stimuli. Two types of distraction are possible.
The first is information about driving, including driving speed information on the dashboard,
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route information on navigation systems, and regulation information on off-road signs.
Collecting such driving-related information would help enhance the understanding of traffic
conditions and control of driving activities. The second type of distraction is non-driving-
related information including cell phone conversations, music from the radio, or interesting
off-road objects. Such non-driving distractions may degrade safety by shifting attention away
from driving tasks. However, it also provides positive effects, such as entertainment or
maintaining a minimum workload to prevent passive fatigue.

Driving Status

Enduring Disposition Momentary Intention

 Traffic Flow Condition o Driver Intention
o State of Other Vehicles | # Behavior
- Related Location
- Distance
- Maneuver

[ ¢ J

Threats to Safety

l

Risk Evaluation Vehicle Driver's Domain

Rpp : Risk Level of Threats in Perception Domain | ® Perception Domain (PD) ¢
Rrp : Risk Level of Threats in Reaction Domain e Reaction Domain (RD)
Rep : Risk Level of Threats in Critical Domain o Critical Domain (CD)

l l

Probability of Attention Allocation

»® Min (1-Ppp) Rep +(1-Pro) Rro + (1-Pco) Rep «— Arousal / Attention Capacity
o Max PpUp+ Py U
® Ppp+ Prp+ Pop+ Pp+ Pia=1

% Py Prep Prp Pecop
A

Non-driving Dr|V|ng Perception Reaction Critical
N . Information . . X
Distraction . Domain Domain Domain

Acquisition

v

Behavior Activation

Figure 8 — Framework of driving attention allocation model

The allocation policy depends on the driver’'s intention, the risk level of threats to safety in
different traffic flow conditions, and the driver’s attention capacity. The demands on attention
in each area differ with traffic conditions and driving environment. For example, while driving
in free flow traffic, the risk level of threats to safety is comparatively low. Speed information
on the dashboard must be collected by drivers to prevent speeding. In contrast, in congested
flow, speed information is no longer necessary, since all vehicles are driving slowly in a traffic
jam. This case indicates that the definition of complete information is unique to the situation.
It is important to identify the required information that drivers should collect in different
conditions.

The probability of allocating attention to the perception, reaction, and critical domains (Ppp.
Pro and Pcp, respectively) can be obtained by minimizing the expected total risk of not
paying attention to a specific domain. Additionally, a driver would also consider the utility
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derived from time spent on distractions. Despite allocating attention to the three domains on
the road, distractions are also important domains that may consume attention capacity and
mental resources. In this research, the probability of non-driving distractions (Pp) and the
probability of driving information acquisition (P,x) represent the proportion of time spent on
distractions and on driving tasks, respectively. The existence of and increase in distraction
probability would decrease the total probability of allocating attention to driving tasks,
compromising driving safety. However, drivers would still try to maximize the utility from
distractions (Up and U,s). To identify the effect of distractions such as in-vehicle information
systems or cell phone usage while driving, it is important to clarify the effect of distractions in
the model of driving attention allocation.

The driving attention allocation model proposed in this research is a domain-based analysis,
not an approach based on individual threats. The probability obtained through the framework
in Figure 8 represents the proportion of time a driver spends on each domain (including the
two types of distraction) in a relatively short period of time regarding one specific event. The
state of the vehicle driver's domain, which is represented in size and shape, and the contents
of each sub-domain, will be revised with changes in the driving environment, event, and
driver's intention. This research does not address attention allocation to each threat inside
the three vehicle domains. Threat-based attention allocation can be seen as the second level
of the attention allocation model. Strategies of choosing attentive focus for individual threats
can still be obtained by minimizing the risk inside the domain selected in the previous stage.
However, the sequence of attentive focus transitions and the interaction between threats
should be addressed in a disaggregate attention allocation analysis.

CONCLUDING REMARKS

Although widespread concern about accident-prone scenarios exists, the nature of accidents
is still implicit without further exploration of the mental process of driving. To clarify the role of
drivers in the accident chain and to better understand the missing link between accident-
prone scenarios and accident occurrence, the issue of attention should be addressed. Based
on the divided attention model, this research proposed a driving attention allocation model for
identifying the mechanisms of allocating mental resources among different driving activities.
Moreover, considering the complexity of a real driving environment in which too many objects
may provide information for drivers to collect, the concept of the vehicle driver's domain is
proposed to classify the threats to safety into three domains. Applying the attention allocation
model in accident chain analyses enables discussion of complete information collection. This
research is the first step in elucidating the driver's mental processes. Aspects of driving
attention allocation still require further discussion and study.

In this attention allocation model, the probability of attention allocation is obtained by
minimizing the risk level of threats to safety. However, a driver's true attention allocation will
not agree completely with the optimized results. In fact, different drivers with unique driving
experience, behavioral intentions, and personality may have varying probabilities of attention
allocation. For example, novice drivers may give more attention to objects on the road, while
experienced drivers may have spare mental resources allocated to external information
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collection. The effect of heterogeneity in individual characteristics on attention allocation
must be identified.

Moreover, this research focuses only on the allocation policy for identifying the amount of
mental resources consumed by specific activities. This model treats the maximum attention
capacity as an exogenous factor. Arousal is defined as the contributing factor that
determines the available mental resources. It has been suggested that the effect of arousal
on attention allocation is U-shaped (Kahnement, 1973). Over-arousal and under-arousal will
not activate adequate attention capacity and will degrade driving safety. The issue of arousal
and attention capacity under different physiological conditions must be addressed.

Another issue that needs more discussion is the connection between tasks and attention
allocation policy. It is assumed that drivers must collect complete information to maintain
safety. However, different conditions of traffic flow, driving environment, information
availability, and the driver's behavioral intention may cause different levels of distraction in
information collection. The importance of the interaction between threats and events is vital
when undertaking attention allocation analysis on the basis of individual threats.

REFERENCE

Albertsson, P.; Falkmer, T. (2005). Is There a Pattern in European Bus and Coach Incidents?
A literature analysis with special focus on injury causation and injury mechanisms,
Accid. Anal. Prev., 37 (2). 225-233

Bayam, E.; Liebowitz, J.; Agresti, W. (2005). Older Drivers and Accidents: A Meta Analysis
and Data Mining Application on Traffic Accident Data, Expert Syst. Appl., 29 (3). 598-
629.

Brookhuis, K.; de Waard, D. (1999). Limiting Speed towards an Intelligent Speed Adapter
(ISA). Transp. Res. Pt. F-Traffic Psychol. Behav., 2 (2). 81-90.

Caird, J. K.; Willness, C. R.; Steel, P.; Scialfa, C. (2008). A Meta-Analysis of the Effects of
Cell Phones on Driver Performance, Accid. Anal. Prev., 40 (4), 1282-1293.

Creaser, J. |.; Rakauskas, M. E.; Ward, N. J.; Laberge, J. C.; Donath, M. (2007). Concept
Evaluation of Intersection Decision Support (IDS) System Interfaces to Support
Drivers’ Gap Acceptance Decisions at Rural Stop-Controlled Intersections, Transp.
Res. Pt. F-Traffic Psychol. Behav., 10 (3), 208-228.

Chang, H. -L.; Yeh, T. -H. (2006). Risk Factors to Driver Fatalities in Single-vehicle
Crashes : Comparisons between Non-motorcycle Drivers and Motorcyclists, J.
Transp. Eng.-ASCE, 132 (3), 227-236.

Chang, H.-L.; Yeh, T.-H. (2007). Motorcyclist Accident Involvement by Age, Gender, and
Risky Behaviors in Taipei, Taiwan, Transp. Res. Pt. F-Traffic Psychol. Behav., 10 (2),
109-122.

Clarke D. D.; Forsyth R.; Wright R. (1998). Machine Learning in Road Accident Research:
Decision Trees Describing Road Accidents During Cross Flow Turns, Ergonomics, 41
(7), 1060-1079.

Clarke D. D.; Forsyth R.; Wright R. (1999). Junction Road Accidents during Cross-Flow
Turns: A Sequence Analysis of Police Files, Accid. Anal. Prev., 30 (2), 223-234.

12" WCTR, July 11-15, 2010 — Lisbon, Portugal

19



WONG, Jinn-Tsai; HUANG, Shih-Hsuan

Chen, W. -H.; Lin, C. -Y; Doong, J. -L. (2005). Effects of Interface Workload of In-Vehicle
Information Systems on Driving Safety, Transp. Res. Record, 1937, 73-78.

Chin, H. C.; Quddus, M. A. (2003). Applying the Random Effect Negative Binomial Model to
Examine Traffic Accident Occurrence at Signalized Intersections, Accid. Anal. Prev.,
35 (2), 253-259.

Dahlen, E. R.; Martin, R. C.; Ragan, K.; Kuhlman, M. M. (2005). Driving Anger, Sensation
Seeking, Impulsiveness, and Boredom Proneness in the Prediction of Unsafe Driving,
Accid. Anal. Prev., 37 (2), 371-348.

de Waard, D.; Dijksterhuis, C.; Brookhuis, K.A. (2009). Merging into Heavy Motorway Traffic
by Young and Elderly Drivers, Accid. Anal. Prev., 41 (3), 588-597.

Eisenberg, D. (2004). The Mixed Effects of Precipitation on Traffic Crashes, Accid. Anal.
Prev., 36 (4), 637-647

Elvik, R. (2006). Laws of Accident Causation, Accid. Anal. Prev., 38 (4), 742-747.

FMCSA (2009). Driver Distraction in Commercial Operations Vehicle, Washington, D.C..

Fuller, R. (2005). Towards a General Theory of Driver Behaviour, Accid. Anal. Prev., 37 (3),
461-472.

Hill, J. D.; Boyle, L. N. (2007). Driver Stress as Influenced by Driving Maneuvers and
Roadway Conditions, Transp. Res. Pt. F-Traffic Psychol. Behav., 10 (3), 177-186.

Horberry, T.; Anderson, J.; Regan, M. A.; Triggs, T. J.; Brown, J. (2006a). Driver Distraction:
the Effects of Concurrent In-Vehicle Tasks, Road Environment Complexity and Age
on Driving Performance, Accid. Anal. Prev., 38 (1), 185-191.

Kahnemen, D. (1973). Attention and Effort, Prentice-Hall Inc, New Jersey.

Keay, K.; Simmonds, I. (2006). Road Accidents and Rainfall in a Large Australian City, Accid.
Anal. Prev., 38 (3), 445-454.

Laberge, J. C.; Creaser, J. |.; Rakauskas, M. E.; Ward, N. J. (2007). Design of an
Intersection Decision Support (IDS) Interface to Reduce Crashes at Rural Stop-
controlled Intersections, Transp. Res. Pt. C-Emerg. Technol., 14 (1), 39-56.

Liang, Y.; Reyes, M. L.; Lee, J. D. (2007). Real-Time Detection of Driver Cognitive
Distraction Using Support Vector Machines, IEEE Trans. Intell. Transp. Syst., 8 (2),
340-350.

Liu, B. -S.; Lee, Y. -H. (2005). In-Vehicle Workload Assessment: Effects of Traffic Situations
and Cellular Telephone Use, J. Saf. Res., 37 (1), 99-105.

Makishita, H.; Matsunaga, K. (2008). Differences of Drivers’ Reaction Times According to
Age and Mental Workload, Accid. Anal. Prev., 40 (2), 567-575.

Marmeleira, J. F.; Godinho, M. B.; Fernandes, O. M. (2009). The Effects of an Exercise
Program on Several Abilities Associated with Driving Performance in Older Adults,
Accid. Anal. Prev., 41 (1), 90-97.

Mitra, S.; Chin, H. C.; Quddus, M. A. (2002). Study of Intersection Accidents by Maneuver
Type, Transp. Res. Record, 1784, 43-50.

MOTC (2009). Monthly Statistics of Transportation and Communications, Retrieved
November 12, 2009, website: http://www.motc.gov.tw/mocwebGIP/wSite/ct?xItem
=4882&ctNode=213&mp=2.

Neyens, D. M.; Boyle L. (2007). The Effect of Distractions on the Crash Types of Teenage
Drivers, Accid. Anal. Prev., 39 (1), 206-212.

12" WCTR, July 11-15, 2010 — Lisbon, Portugal

20



WONG, Jinn-Tsai; HUANG, Shih-Hsuan

Nunes, L.; Recarte, M. A. (2002). Cognitive Demands of Hands-Free-Phone Conversation
While Driving, Transp. Res. Pt. F-Traffic Psychol. Behav., 5 (2), 133-144.

Patten, C. J. D.; Kircher, A.; Ostlund, J.; Nilsson, L. (2004). Using Mobile Telephones:
Cognitive Workload and Attention Resource Allocation, Accid. Anal. Prev., 36 (3),
341-350.

Reed-Jones, J.; Trick, L. M.; Matthews, M. (2008) Testing Assumptions Implicit in the Use of
the 15-Second Rule as an Early Predictor of Whether an In-Vehicle Device Produces
Unacceptable Levels of Distraction, Accid. Anal. Prev., 40 (2), 628-634.

Roess, R. P.; Prassas, E.S.; McShane, W. R. (2004). Traffic Engineering, Pearson Prentice
Hall, New Jersey.

Taubman-Ben-Ari, O.; Mikulincer, M.; Gillath, O. (2004). The Multidimensional Driving Style
Inventory—Scale Construct and Validation, Accid. Anal. Prev., 36 (3), 323-332.
Ulleberg, P.; Rundmo, T. (2003). Personality, Attitudes and Risk Perception as Predictors of

Risky Driving Behavior among Young Drivers, Saf. Sci., 41 (5), 427-443.

Vashitz, G.; Shinar, D.; Blum, Y. (2008). In-Vehicle Information Systems to Improve Traffic
Safety in Road Tunnels, Transp. Res. Pt. F-Traffic Psychol. Behav., 11 (1), 61-74.

Verschuur, W. L. G.; Hurts, K. (2008). Modeling Safe and Unsafe Driving Behaviour, Accid.
Anal. Prev., 40 (2), 644-656.

Verway, W. B. (2000). On-Line Driver Workload Estimation. Effects of Road Situation and
Age on Secondary Task Measures, Ergonomics, 43 (2), 187-209.

Wang, X.; Abdel-Aty, M. (2003). Applying the Random Effect Negative Binomial Model to
Examine Traffic Accident Occurrence at Signalized Intersections, Accid. Anal. Prev.,
35 (2), 253-259.

Wong, J. -T.; Chung, Y. -S. (2007a). Rough Set Approach for Accident Chains Exploration,
Accid. Anal. Prev., 39 (3), 629-637.

Wong, J. -T.; Chung, Y. -S. (2007b). Accident Analysis and Prevention from the Chain
Perspective, Journal of the Eastern Asia Society for Transportation, 7, 2844-2859.

Wong, J. -T.; Chung, Y. -S.; Huang, S. -H. (2010). Determinants behind Young Motorcyclists’
Risky Riding Behavior, Accid. Anal. Prev., 42 (1), 275-281.

Zomeren, A. H.; Brouwer, W. H. (1994). Clinical Neuropsychology of Attention, Oxford
University Press Inc, New York.

12" WCTR, July 11-15, 2010 — Lisbon, Portugal

21





