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一、中文摘要
我們理論決定共振腔結構相關之非線

性雷射動力學，並在考慮時空偶合以克爾
鎖模雷射腔為例數值模擬確定此理論預
測。我們發現週期二、週期三和週期四將
發生在特殊架構分別具有 G1G2= 1/2, 1/4

(or 3/4) and 
4

22 ±
的條件下。當增加非線

性效應，雷射將發展成渾沌。

關鍵詞：非線性動力學、高斯光、克爾效
應和雷射

Abstract
We determined theoretically that the

nonlinear dynamics of a Gaussian beam is
configuration dependent and is confirmed
numerically in a Kerr-lens mode-locked
cavity in both spatial and temporal domains.
Period doubling, tripling and quadrupling can
occur in the configurations with G1G2= 1/2,

1/4 (or 3/4) and 
4

22 ±
, respectively, and

will become irregular if the nonlinear effect
is further increased.

Keywords: nonlinear dynamics, Guassian
beam, Kerr effect and laser

二、緣由與目的
After the discovery of KLM in

Ti:sapphire laser,1 various numerically and
analytically2-6 theoretical studies were
dedicated to the KLM cavity design.  Since
a femtosecond pulse will simultaneously

undergo self-amplitude (SAM) and self-
phase (SPM) modulations as it propagates
through a Kerr medium.  One may model
this problem by preserving the total pulse
energy at that moment.7-8

Recently, period doubling in a
Ti:sapphire laser had been observed near the
edge of the stable region and explained in
terms of total mode locking9 and a detailed
study about subharmonic oscillations by total
mode locking was reported in Ref. 10.  The
dynamical behavior based on the propagation
of single Gaussian beam had been
numerically investigated11 in which the
regular, quasi-period and chaotic behaviors
were reported in a KLM laser having its
configuration close to the limit of stable
region that was supported by observation of
quasi-period and chaotic behavior in a ring
Ti:sapphire laser.12

According to our previous theoretical
prediction13 based on the Greene’s residue
theorem,14 some specific configurations
within the geometrically stable region15 are
very sensitive to the nonlinear effect.  We
present, in this report, the cavity
configuration dependent dynamical behavior
of the KLM lasers by modeling the nonlinear
dynamics of single Gaussian mode
propagation.  The result is different from
that of totally mode-locking both transverse
and longitudinal modes.

三、理論分析與結果
1. Stability of a general lossless cavity

As described in our last year’s report or
Ref. 15, we have the iterative map of a
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Gaussian beam propagation, with the
complex beam parameter, relating the q-
parameter of the (n+1)-th round-trip to the n-
th as15
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This forms a two-dimensional iterative map.
Here λ the central wavelength, R the phase-
front radius of curvature, w is the spot size of
beam, and the round- trip matrix of the cavity

of interest is 







DC
BA

.  If all of the

elements of ABCD matrix are real (a lossless
cavity), this map belongs to a conservative
one.17  Since the fixed point of the map is
its self-consistent solution, to determine the
characteristics of cavity beam is to discuss
the stability of the fixed point through the
Greene’s residue theorem13 to define the
residue as

( )[ ]JMTrs −= 2
4
1

Re . (3)

Here MJ is the Jacobian matrix of the map
and Tr(MJ) is its trace.  The relation
between residue and the phase shift, θ, of the
map per iteration can be represented as13

( )2sinRe 2 θ=s . (4)
Thus, the residue of a lossless cavity is12

( )2
21 121Re −−= GGs . (5)

Here 2,12,1 ρbaG −= represent the G-
parameters of a general optical cavities,
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 is the transfer matrix of one-way

pass between the two end mirrors, and ρ1 and
ρ2 are the radii of curvature of the two end
mirrors, respectively.

From the residue theorem, the fixed
point is stable as 0<Res<1; whereas, it is
unstable as Res<0 or Res>1.  And from Eq.

(5), we found the region with 0< 21GG <1 is
stable and the regions with 21GG <0 and

21GG >1 are unstable.  This result is the
same as the geometrically stable one.14

Besides the Res=0 and 1 are critical, the
residue theorem proposes that the orbit is
stable for 0<Res<1 except for Res=3/4 and
sometimes 1/2.  These special cases with
Res=0, 1, 3/4 and 1/2 correspond to the low
order resonance where χp=1 having p=1, 2, 3
and 4, respectively.  Here χ is the
eigenvalue of the MJ.  These special
conditions correspond to 21GG =0 or

21GG =1 for Res=0, 21GG =1/2 for Res=1,

21GG =1/4 or 3/4 for Res=3/4 and

21GG =
4

22 ±
 for Res=1/2, respectively.

In Fig. 1, the diagram of stable region is
shown with the dashed curves representing
these critical configurations.

2. Kerr -lens mode-locked cavity
The KLM cavity is the same as in Ref.

20.  Analyzing propagation of Gaussian
beam through that the ABCD law is applied
for linear optical components and the
renormalized q-parameter’s method8,14 is
used in Kerr medium.  Let the reference
plane be where the beam just leaving the end-
mirror.  By cascading the propagation of q-
parameter in a round trip, the complicated
transformation of q-parameter relating the
(n+1)-th to the n-th round trip forms a two-
dimensional iterative map as

( )KwRfw nnwn ;,1 =+ (6)
and

( )KwRfR nnRn ;,1 =+ . (7)
We label the map as ( )nK1n QFQ =+ , where
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n R

w
Q  and n represents the iterative

number.  The Kerr parameter K corresponds
to the nonlinear parameter.
By constraining K to less than 0.4 in
simulation because the steady-state K value
is usually greater than 0.4 in the experimental
results as in Ref. 19.  Because the similar
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dynamical behavior occurs in sagittal and
tangential planes, we will concentrate the
simulations on the sagittal plane only.  The
two adjustable variables are z and r1, where z
is the separation of the two curved mirrors
and r1 the distance between the curved mirror
M2 and the rod endface I.  The z value
mainly determines the geometrically stable
region, and r1 affects the efficiency of Kerr
effect.

Table 1 lists the configurations and z
values corresponding to low order resonance
at K=0 and types of bifurcations.  Since
there are two stable regions, each G1G2 will
have two z values.

When z=113.34mm, the configuration is
near G1G2=1/2, we found period-doubling
bifurcation in spot size when the nonlinear
parameter K increases.  The period-2 fixed
point, 2Q , is the solutions of

( )( ) 022 =− QQFF KK .  It is clear that 2Q
represents the self-consistent Gaussian beam
of two round trips.  The critical K, at which
transition from period one to period doubling
takes place approximately at Kc=0.0008353.
There is only one stable period-1 solution as
K<Kc; whereas, a pair of stable period-2
fixed points exist and the period-1 fixed
point becomes separatrix in phase space as
K>Kc.21

In fact, the Poincare-Birkhoff theorem
tells us that some of period-2 fixed points
survive if a nonlinear term is added to perturb
the critical stable system having Res=1.23

Apparently, this theorem governs the
simulation results that the configurations near
G1G2=1/2 develop to the period doubling as
the existence of nonlinear effect.  Because
the self-focusing causes the equivalent
configuration to change, the configuration
near G1G2=1/2 can also occur period
doubling bifurcation.  The region of the
existence of period doubling is about 60 µm
for z.  And under different z it ranges from
several to tens of millimeters for r1.
Moreover, the intracavity peak power
required to reach period doubling decreases
and becomes smaller than that of the initial

pulse buildup as the configuration
approaches to G1G2=1/2.  From the
experimental result of Ref. 22, the initial
coherent spike of pulse buildup is about 10-
40 ps due to partially phase locking of the
longitudinal modes.  The calculated K of
initial spike for 40 ps is about 0.001 in a
KLM laser with the intracavity average
power Pav=10 W and 100 MHz repetition rate.
It implies that the KLM laser operated at this
configuration can directly build up a period-
doubling pulse train.  Nevertheless, the
region satisfying such a condition is less than
1 µm for z, and Kc rapidly increases to
greater than 0.01 when z is set 10 µm away
from G1G2=1/2.  Thus, it may be not easily
in experiment to observe period doubling
prior to building up period.  Therefore, we
believe that period doubling can be observed
at the configuration near G1G2=1/2.  Indeed,
very recently we have experimentally
confirmed this prediction.

Altering the configuration to nearby
G1G2=1/4 (or 3/4), period-3 bifurcation
happens for Res=3/4 with the average angle
of rotation per period θ=2π/3.  Thus, it is
expected to find the period-3 solution of map
with the evolution of iteration returns to its
initial value after 3 iterations.  The fixed
points of period 3, 3Q , can be obtained from

( )( )( ) 033 =− QQFFF KKK .
Besides the period-3 pulse train can be

observed on oscilloscope, we think that the
far-field pattern may contain two portions:
One has smaller beam size for the solution
having beam waist at M1, the other is an
already divergent spot for the solutions
without matching boundary condition.
Similarly, period 4 exists at the
configurations with G1G2= ( ) 422 ±  for
Res=1/2.  There are two fixed points
matching the curvature of M1 and the other
two are without matching it.  Table. 1
summarizes the dynamical behaviors for
G1G2 and z values.  The character of
nonlinear dynamics depends on the
configuration, in particular, is determined by
the residue even though the z values are
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different.

4. Spatial-temporal analysis of KLM
cavity
A spatial-temporal analysis involving the

spatial and temporal ABCD matrices has
been used to transform a Gaussian pulse
having Gaussian spatial profile to optimize
the optical pulse width in KLM laser.7,8

The Ti:sapphire laser rod has single pass
GVD of 1280 fs2, bandwidth limiting 10 nm
and a pair of the Brewster-angle SF10 prisms
are separated by 40 cm.  The cavity beam
propagates through the apexes of both prisms
with insertion of 3 mm.  A Gaussian
aperture is located at the M1 mirror with
diameter of 2 cm.  A seeded pulse with
initial value (w0,R0,σ0,η0) = (0.7mm,
∞ ,1ps,0), by keeping the total pulse energy
be constant during the propagation, the
evolution of spatial parameter (w, 1/R) at M1.
Note that the constant total energy
assumption is appropriate for Ti:sapphire rod
whose gain recovery time is shorter than the
round trip time.  The evolution of spatial
parameter in portrait diagram looks like three
spirals and jumps among these spirals with
regular order.  Eventually, it converges to
the centers of spirals.  These centers
correspond to the period-3 fixed points,
which are (w, 1/R) = q1(1.46mm, 0.94m-1),
q2(1.35mm, -1.04m-1) and q3(2.71mm, -
0.01m-1).  Apparently, all the fixed points
are no longer matching the curvature of M1

because the introduced Gaussian aperture (a
diffraction loss) makes the system become
dissipative.  Since space and time couple in
the nonlinear medium, the evolution of pulse
width also appears period-3 behavior.  The
pulse width approaches the period-3 solution
with σ1=86.72fs, σ2=80.76fs and
σ3=110.42fs.  Owing to the system
automatically converges to period 3, it
indicates that the period-3 solution is more
stable than the period-1 one even though the
period-1 and period-3 steady-state solutions
exist simultaneously.

Furthermore, we also took into account
the gain guiding in spatial domain by

introducing a complex matrix of Gaussian
duct.25  The result is the same as the
previous one that the system eventually
converges to the period 3, with only faster
convergent rate of adding gain-guiding effect.

5.  Ir regular  behavior
The intensity fluctuation versus number

of measure is shown in Fig. 2 with K=0.4.
For the sake of observing the long-term
evolution, each measure of the intensity
variation is obtained by averaging over 300
iterations then normalized to the average
intensity over all data points.  The regular
evolution appears in Fig. 2(b) with the initial
value (w0, 1/R)=(0.705mm, 0).  Such an
evolution corresponds to regular orbit
showing as the invariant circle in a
conservative map.21  When the initial spot
size varies to w0=0.71mm, the evolution
becomes irregular as shown in Fig. 2(a).
This behavior results from that the nonlinear
perturbation brings about the breakdown of
the separatrix accompanied with creation of
the stochastic layer.  These initial-condition
dependent irregular behaviors belong to the
classical chaos22 which can be predicted from
the residue theorem with Res=3/4.

四、結論
We show a typical cavity configuration

dependent nonlinear dynamics.  From
analyzing the iterative map of a general
cavity by the Greene’s residue theorem, the
specific configurations correspond to the
product of generalized G-parameters equal to

1/2, 1/4 (or 3/4) and 
4

22 ±
 located within

the geometrically stable region.  This result
implies that the nonlinear effects may break
their stability of self-consistent Gaussian
modes derived from linear cold cavity.

When the propagation of fundamental
Gaussian beam in KLM cavity, the numerical
results confirm period doubling, tripling and
quadrupling can be obtained at the above-
mentioned configurations and the irregular
evolution will develop by increasing the
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nonlinear effect.  This research gives a
useful suggestion to implement laser cavities
for studying the nonlinear phenomena of
Gaussian mode in general.

五、自我評估
我們成功地以理論決定共振腔結構相

關之非線性雷射動力學，並在考慮時空偶
合以克爾鎖模雷射腔為例數值模擬確定此
理論預測。我們發現在特殊架構下將發生
週期二、週期三和週期四及渾沌現象。在
實驗上我們也證實 KLM 雷射產生在這些
特殊結構及不但觀察到週期二、週期三和
週期四及渾沌等現象，也發現及了解諧頻
鎖模之機制，正進行數據整理與論文撰寫
中，依計劃進度執行。
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