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Abstract

We determined theoreticaly that the
nonlinear dynamics of a Gaussian beam is
configuration dependent and is confirmed
numerically in a Kerr-lens mode-locked
cavity in both spatial and temporal domains.
Period doubling, tripling and quadrupling can
occur in the configurations with G;G,= 1/2,
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will become irregular if the nonlinear effect
is further increased.
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After the discovery of KLM in
Ti:sapphire laser,' various numericaly and
analytically”® theoretical  studies were
dedicated to the KLM cavity design. Since
a femtosecond pulse will simultaneously
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undergo self-amplitude (SAM) and self-
phase (SPM) modulations as it propagates
through a Kerr medium. One may model
this problem by preserving the total pulse
energy at that moment.”®

Recently, period doubling in a
Ti:sapphire laser had been observed near the
edge of the stable region and explained in
terms of total mode locking® and a detailed
study about subharmonic oscillations by total
mode locking was reported in Ref. 10. The
dynamical behavior based on the propagation
of single Gaussan beam had been
numericaly investigated in which the
regular, quasi-period and chaotic behaviors
were reported in a KLM laser having its
configuration close to the limit of stable
region that was supported by observation of
quasi-period and chaotic behavior in a ring
Ti:sapphire laser.?

According to our previous theoretical
prediction’® based on the Greene's residue
theorem,”* some specific configurations
within the geometrically stable region™ are
very sensitive to the nonlinear effect. We
present, in this report, the -cavity
configuration dependent dynamical behavior
of the KLM lasers by modeling the nonlinear
dynamics of single Gaussian mode
propagation. The result is different from
that of totally mode-locking both transverse
and longitudinal modes.

1. Stability of a general lossless cavity
As described in our last year's report or

Ref. 15, we have the iterative map of a



Gaussian beam propagation, with the
complex beam parameter, relating the g-
parameter of the (n+1)-th round-trip to the n-
th as™

w,., = f,(w,, R)
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and
R = fo(W, R))
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This forms a two-dimensional iterative map.
Here | the centra wavelength, R the phase-
front radius of curvature, w is the spot size of
beam, and the round- trip matrix of the cavity
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elements of ABCD matrix are rea (alossless
cavity), this map belongs to a conservative
one!” Since the fixed point of the map is
its self-consistent solution, to determine the
characteristics of cavity beam is to discuss
the stability of the fixed point through the
Greene's residue theorem™ to define the

residue as
Res=%[2- Tr(M,)]. 3)

Here M; is the Jacobian matrix of the map
and Tr(My) is its trace. The reation
between residue and the phase shift, g, of the
map per iteration can be represented as™

Res=sin?(g/2). (4)
Thus, the residue of alossless cavity is™
Res=1- (2GG, - 1)°. (5)

Here G, =a- b/r ,represent the G-

parameters of a genera optical cavities,
7 b\
ga E is the transfer matrix of one-way
& dy
pass between the two end mirrors, and r ; and
r, are the radii of curvature of the two end
mirrors, respectively.

From the residue theorem, the fixed
point is stable as O<Res<l; wheress, it is
unstable as Res<0 or Res>1. And from Eq.

(5), we found the region with 0<G,G,<1 is
stable and the regions with GG,<0 and
G,G,>1 are unstable. This result is the
same as the geometricdly stable one'*
Besides the Res=0 and 1 are critical, the
residue theorem proposes that the orbit is
stable for O<Res<1 except for Res=3/4 and
sometimes 1/2. These special cases with
Res=0, 1, 3/4 and 1/2 correspond to the low
order resonance where cP=1 having p=1, 2, 3

and 4, respectively. Here ¢ is the
eigenvalue of the M. These specia
conditions correspond to GG,=0 or

G.G,=1 for Res=0, G G,=1/2 for Res=1,
GG,=1/4 or 34 for Res=3/4 and
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GG—— for Res=1/2, respectively.

In Fig. 1, the diagram of stable region is
shown with the dashed curves representing
these critical configurations.

2. Kerr-lensmode-locked cavity

The KLM cavity is the same as in Ref.
20. Analyzing propagation of Gaussian
beam through that the ABCD law is applied
for linear optical components and the
renormalized g-parameter's method®* is
used in Kerr medium. Let the reference
plane be where the beam just leaving the end-
mirror. By cascading the propagation of g-
parameter in a round trip, the complicated
transformation of g-parameter relating the
(n+1)-th to the n-th round trip forms a two-
dimensional iterative map as

= f,(R, w,:K) (6)
and
n+1 f (Rn’ Wn; K) (7)
We label the map asQ,,, = F,.(Q,), where
éw,u N
Q,=¢, g ad n represents the iterative
éRnU

number. The Kerr parameter K corresponds
to the nonlinear parameter.

By constraining K to less than 0.4 in
simulation because the steady-state K value
isusually greater than 0.4 in the experimental
results as in Ref. 19. Because the similar



dynamical behavior occurs in sagittal and
tangential planes, we will concentrate the
simulations on the sagittal plane only. The
two adjustable variables are z and r1, where z
is the separation of the two curved mirrors
and r; the distance between the curved mirror
M, and the rod endface I. The z vaue
mainly determines the geometrically stable
region, and r; affects the efficiency of Kerr
effect.

Table 1 lists the configurations and z
values corresponding to low order resonance
a K=0 and types of bifurcations. Since
there are two stable regions, each G;G, will
have two z values.

When z=113.34mm, the configuration is
near G;G,=1/2, we found period-doubling
bifurcation in spot size when the nonlinear
parameter K increases. The period-2 fixed
point, Q,, is the solutions of

F.(F.(Q,)- @, =0. It is dear that Q,
represents the self-consistent Gaussian beam
of two round trips. The critical K, at which
transition from period one to period doubling
takes place approximately at K =0.0008353.
There is only one stable period-1 solution as
K<K whereas, a pair of stable period-2
fixed points exist and the period-1 fixed
point becomes separatrix in phase space as
K>Ke. 2

In fact, the Poincare-Birkhoff theorem
tells us that some of period-2 fixed points
survive if anonlinear term is added to perturb
the critical stable system having Res=1.%
Apparently, this theorem governs the
simulation results that the configurations near
G1G,=1/2 develop to the period doubling as
the existence of nonlinear effect. Because
the sef-focusing causes the equivalent
configuration to change, the configuration
near G;G,=1/2 can aso occur period
doubling bifurcation. The region of the
existence of period doubling is about 60 mm
for z. And under different z it ranges from
severa to tens of millimeters for ri.
Moreover, the intracavity peak power
required to reach period doubling decreases
and becomes smaller than that of the initial

pulse buildup as the configuration
approaches to G;G,=1/2. From the
experimental result of Ref. 22, the initial
coherent spike of pulse buildup is about 10-
40 ps due to partidly phase locking of the
longitudina modes. The calculated K of
initial spike for 40 ps is about 0.001 in a
KLM laser with the intracavity average
power P,,=10 W and 100 MHz repetition rate.
It implies that the KLM laser operated at this
configuration can directly build up a period-
doubling pulse train.  Nevertheless, the
region satisfying such a condition is less than
1 nmm for z, and K. rapidly increases to
greater than 0.01 when z is set 10 mm away
from G,G,=1/2. Thus, it may be not easily
in experiment to observe period doubling
prior to building up period. Therefore, we
believe that period doubling can be observed
at the configuration near G1G,=1/2. Indeed,
very recently we have experimentally
confirmed this prediction.

Altering the configuration to nearby
G1G,=1/4 (or 3/4), period-3 bifurcation
happens for Res=3/4 with the average angle
of rotation per period q=2p/3. Thus, it is
expected to find the period-3 solution of map
with the evolution of iteration returns to its
initial value after 3 iterations. The fixed
points of period 3, Q,, can be obtained from

FK(FK(FK(Q3)))' 03 =0.

Besides the period-3 pulse train can be
observed on oscilloscope, we think that the
far-field pattern may contain two portions:
One has smaller beam size for the solution
having beam waist at M, the other is an
aready divergent spot for the solutions
without matching boundary condition.
Similarly, period 4 exists a the
configurations with G1G,= (21 ﬁ)/4 for
Res=1/2. There are two fixed points
matching the curvature of M; and the other
two are without matching it. Table. 1
summarizes the dynamical behaviors for
GiG; and z vaues. The character of
nonlinear dynamics depends on the
configuration, in particular, is determined by
the residue even though the z values are



different.
4. Spatial-temporal analysis of KLM
cavity
A spatial-temporal analysis involving the
gpatial and temporal ABCD matrices has
been used to transform a Gaussian pulse
having Gaussian spatial profile to optimize
the optica pulse width in KLM laser.”®
The Ti:sapphire laser rod has single pass
GVD of 1280 f<?, bandwidth limiting 10 nm
and a pair of the Brewster-angle SF10 prisms
are separated by 40 cm. The cavity beam
propagates through the apexes of both prisms
with insertion of 3 mm. A Gaussian
aperture is located at the M; mirror with
diameter of 2 cm. A seeded pulse with
initial  value (wo,Ro,S0,hg) = (0.7mm,
¥ ,1ps,0), by keeping the total pulse energy
be constant during the propagation, the
evolution of spatial parameter (w, 1/R) at M.
Note that the constant total energy
assumption is appropriate for Ti:sapphire rod
whose gain recovery time is shorter than the
round trip time. The evolution of spatia
parameter in portrait diagram looks like three
spirals and jumps among these spirals with
regular order. Eventualy, it converges to
the centers of spirals.  These centers
correspond to the period-3 fixed points,
which are (w, UR) = gi(1.46mm, 0.94m™%),
02(1.35mm, -1.04m™) and gg(2.71mm, -
0.01m™). Apparently, al the fixed points
are no longer matching the curvature of My
because the introduced Gaussian aperture (a
diffraction loss) makes the system become
dissipative. Since space and time couple in
the nonlinear medium, the evolution of pulse
width also appears period-3 behavior. The
pulse width approaches the period-3 solution
with $1=86.72fs, $,=80.76fs and
$3=110.42fs. Owing to the system
automatically converges to period 3, it
indicates that the period-3 solution is more
stable than the period-1 one even though the
period-1 and period-3 steady-state solutions
exist ssimultaneoudly.
Furthermore, we also took into account
the gain guiding in spatial domain by

introducing a complex matrix of Gaussian
duct®® The result is the same as the
previous one that the system eventualy
converges to the period 3, with only faster
convergent rate of adding gain-guiding effect.

5. Irregular behavior

The intensity fluctuation versus number
of measure is shown in Fig. 2 with K=0.4.
For the sake of observing the long-term
evolution, each measure of the intensity
variation is obtained by averaging over 300
iterations then normalized to the average
intensity over all data points. The regular
evolution appears in Fig. 2(b) with the initial
value (wp, /R)=(0.705mm, 0). Such an
evolution corresponds to regular orbit
showing as the invariant circle in a
conservative map.**  When the initial spot
size varies to wp=0.71mm, the evolution
becomes irregular as shown in Fig. 2(a).
This behavior results from that the nonlinear
perturbation brings about the breakdown of
the separatrix accompanied with creation of
the stochastic layer. These initial-condition
dependent irregular behaviors belong to the
classical chaos? which can be predicted from
the residue theorem with Res=3/4.

We show a typical cavity configuration
dependent nonlinear dynamics. From
analyzing the iterative map of a genera
cavity by the Greene's residue theorem, the
specific configurations correspond to the
product of generalized G-parameters equal to

2+4/2
4

1/2, 1/4 (or 3/4) and located within

the geometrically stable region. This result
implies that the nonlinear effects may break
their stability of self-consistent Gaussian
modes derived from linear cold cavity.

When the propagation of fundamental
Gaussian beam in KLM cavity, the numerical
results confirm period doubling, tripling and
quadrupling can be obtained at the above-
mentioned configurations and the irregular
evolution will develop by increasing the



nonlinear effect.

for studying the nonlinear phenomena of
Gaussian mode in general.
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