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1. Introduction 

Mobile embedded devices are battery powered devices and they have limited run-time due to 

the limited battery capacity. Limitation of battery capacity has been a problem since the invention 

of the battery. This limitation has become even a bigger burden for mobile devices especially 

after wireless networking era. To obtain aforementioned benefits through improvements in 

software components, it is necessary to analyze energy characteristics of these components 

preferably in real or close-to-real platforms. Obviously, this requires software designers to collect 

sufficiently detailed data, which represent the energy characteristics of their applications and 

systems, by using a set of proper tools. Being motivated by this need in the last decade, 

researchers have put intensive efforts to build such tools. These tools, hereafter referred to as 

energy profiling tools, basically aim to provide data about resource usage of applications by 

collecting system-level data. Application developers can analyze outputs of energy profiling tools 

to spot the “hot” portions of the code they have written and then optimize them for better 

performance and lower energy consumption. Additionally, they can write and test applications 

that make use of some specific system parameters or user-inputs to conserve energy on specific 

run-time cases, thus applications can become energy-aware. 

The resolution and accuracy of data that these tools provide vary according to the way how 

they instrument the underlying hardware/software infrastructure. Traditionally these tools have 

been categorized into two main groups; simulation-based [7, 8, 9, 10, 11, 12] and 

measurement-based [1, 2, 3, 4, 5, and 6] tools. A few of the existing measurement-based energy 

profiling tools can provide energy consumption of CPU, memory and disk separately for an 

application [2, 4]. These hardware components are among the most energy-hungry ones in a 

typical embedded system, so this design consideration is reasonable. There are some tools that 

include WNIC (Wireless NIC) devices to this list [5]. Although WNICs are considered as typical 

I/O devices like disks in these tools, they are actually not. As known, WNICs are used to transmit 

and receive packets of data via radio waves, not cables. Air as the transmission medium, the 

distance between wireless card(s) and access point(s), channel contentions, noise and many other 

factors can directly or indirectly affect the transmission of packets. This exceptional I/O 

characteristic makes it quite a challenge to obtain a stable and realistic energy consumption figure 

for a specific real-life wireless channel behavior. This challenge may especially restrict 

developers from optimizing for lower energy consumption and turning embedded applications 

into energy-aware ones. To overcome the challenge, an energy profiling tool must provide a 

user-friendly platform that allows developers to test applications repeatedly against these channel 

behaviors.  

Being motivated by this necessity, we attempted to build an energy profiling tool, named 

PowerMemo, which can profile energy consumption of applications while emulating any desired 

set of wireless channel behaviors in a controllable wireless environment. Our contribution to the 

existing energy profiling tools is the hardware/software platform that allows developers to 

emulate these channel behaviors by creating and running wireless field test scenarios, hereafter 

referred to as mobility scripts. 

Results of our experiments demonstrate that the overhead of PowerMemo does not exceed 

1% in most cases. Using PowerMemo, we have been able to reduce energy consumption of an 

email application by 30%. 



  

2. Design and Implementation of PowerMemo 

PowerMemo has the following functionalities: (1) Produces per process energy consumption 

results of CPU and WNIC. Produces per C-code-block energy consumption results of 

CPU(Provided marker IOCTLs must be used to mark the beginning and end of a C-code-block) 

(2) Calculates CPU power rating for each process. (3) Outputs total CPU time spent and number 

of bytes transmitted and received by each process. (4) Emulates a user-defined mobility script by 

controlling wireless channel conditions in an RF-isolated chamber. 

The key design goals for PowerMemo were to provide a low-overhead and sufficiently 

accurate energy profiling tool that can simultaneously profile energy usage and perform WLAN 

field tests, and to have the highest portability and user-friendliness. 

Our first design goal, low-overhead has always been one main criteria for tools that 

instrument the target devices. The opposite of this, high-overhead, has the high risk of causing 

tool to produce erroneous or less accurate results. This design consideration is especially critical 

for embedded devices. Since they have quite limited hardware resources, a high-overhead tool 

may prevent the target applications from running normally, thus causing to produce different 

results from the cases when running without the profiling tool. To achieve the first goal, we 

separated the process of profiling system activities and process of mapping power measurements 

with profiled system activities into two different stages. We also provided a command line 

argument in the user-daemon for users to adjust frequency of periodic file saves. Frequent file I/O 

may cause large overhead at the cases when CPU is highly utilized, so we thought it could be 

beneficial to have the frequency argument. Tool users can pick a proper frequency value that 

minimizes user-daemon overhead. To meet the goal, we also minimized the clock cycles spent in 

each instrumentation function of our kernel module. According to our measurements average 

overhead of PowerMemo does not exceed 1%. 

As the second design goal, kernel portability was considered to be important since our tool 

targeted mobile embedded devices. PowerMemo was designed to produce per process and per 

C-code-block energy consumption results that consist of individual energy results of some most 

energy-hungry hardware components (CPU and WNIC). The existing energy profiling tools 

which provide this level of detailed results instrumented the specific drivers in the kernel. We 

considered that would restrict our tool to be ported to other hardware architectures. Of course it 

would not be impossible, but would require tedious hours of driver code tracing and testing. Such 

as for our WNIC, if we wanted to instrument the driver code, we would not only have to 

understand the internals of physical layer, but also have to deal with the coding style and naming 

conventions that driver developer used. So as a result, we managed to escape driver level 

instrumentation by only modifying the new mac80211 subsystem [13] in the kernel. This 

subsystem provides a framework for the soft-MAC or half-MAC wireless devices. In these type 

of devices, the 802.11 frame management (MLME) is performed by software. This allows for a 

finer control of the hardware, and provides valuable information that was once only available in 

hardware logic or device driver. Because most of the 802.11 devices today are soft-MAC type, 

our tool can be easily used with various types of WNIC devices  

We put our best effort to provide the highest accuracy and user-friendliness possible while 

striving to achieve above design goals. We started the design process by evaluating the existing 



measurement-based energy profiling tools. Our purpose was to identify the most useful 

functionalities of all these tools and combine them with the WLAN field test emulator. 
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Figure 1: Operational overview of PowerMemo. 

 

Figure 2: System architecture of PowerMemo. 

 

As depicted in Figure 2, PowerMemo consists of two different sets of hardware/software 

components; target side components and host side components. At the core of host side 

components is the graphical user interface (GUI), or as we titled “PowerMemo Control Center”. 

The GUI is mainly responsible for collecting power measurement results from DAQ card, 

controlling the signal attenuator to emulate the mobility script that user defined and mapping the 

power measurements with the results of target profiling to calculate the total energy consumption 

for each process and function. The main component at the target side is the kernel module that 



provides the instrumentation functions to collect kernel level data. We have a few instrumentation 

points where we call the relevant functions from this kernel module. These functions basically 

store time of system activities and some other parameters needed. A user-space daemon keeps 

transferring these kernel level data from kernel-space to user-space as files, and at the end of the 

profiling it automatically transfers these files to host side for the mapping process. An operational 

overview of PowerMemo can be seen in Figure 1 and system architecture in Figure 2. 

 

Kernel Module and User Daemon 

To provide a modular interface that eases development and porting efforts, we developed a 

Linux kernel module, “powermemo.ko”, which is a type of character device. Current 

implementation was built against kernel version 2.6.28. This module is the so called “System 

Monitor” that collects information about the system activities of our interest. These 

instrumentation functions basically store the current time that is returned by “do_gettimeofday()” 

and several other kernel parameters like Process ID, size of transmitted/received packet, etc. Our 

user-daemon, “pmemo_client”, is responsible for several tasks. First of all it is responsible for 

transferring profiling results from the allocated kernel-space buffer to user-space. It periodically 

saves these results to files to prevent the limited buffer space from overflowing.  

 

Recording System Activities 

As known, energy is equal to power value multiplied by duration (E=P x ∆t), that’s, energy 

of an activity is a function of duration. In measurement-based energy profilers, while power 

values are obtained from measurement device, duration values (∆t) are generally obtained from 

underlying operating system by recording begin and end time of activities. Since different 

hardware components may be serving different processes at the same time slice, target hardware 

components (in our case, CPU and WNIC) as well as processes must be distinguished during 

profiling process. Then separate energy values of these hardware components and processes for a 

given duration can be calculated by multiplying the power values measured between begin and 

end time by the duration value.  

  

Recording CPU System Activities 

Begin and end time of each process activity in a CPU can be easily obtained by modifying 

the scheduler function of underlying kernel. The scheduler gives each process a time quantum to 

use CPU exclusively. A process may or may not use the whole time quantum, and the interval it 

uses is defined as CPU time slice. A process activity on CPU happens when this time slice is used. 

Therefore we can add the instrumentation functions at the point where the current process is 

scheduled out and a new one is scheduled in. Because this is the exact point where the previous 

time slice ends and new one begins, we can correctly record begin and end time of activities here. 

PIDs (Process ID) of processes which are given the time slices can be simply obtained by reading 

task data structures of these processes. 

 

Recording WNIC System Activities 

To obtain begin and end time of process activities that cause energy consumption in the 

WNIC, we have employed a novel technique that takes advantage of the new mac80211 



subsystem in Linux kernel. This subsystem provides a framework for soft-MAC or half-MAC 

type of WNIC devices. It lies between the kernel’s networking stack and WNIC device drivers 

and provides valuable information that was once only available in hardware logic or device 

drivers. We can get the data bit rate value for each packet transmitted or received from this 

subsystem without modifying any driver code. Most of the modern WNIC devices now employ 

the framework which mac80211 provides, thus our tool can easily adapt to the majority of 

existing WNIC devices without any instrumentation in the device drivers.  

A duration value (∆t) is the key to energy calculation for a system activity, but is not 

sufficient to be able to charge processes correctly for the energy they consume. We also need to 

identify the processes that are responsible for the energy consumed during every set of begin-end 

time. As briefly explained in the previous subsection, achieving this for CPU is as simple as 

reading the task data structure, but generally for I/O components, it is more complicated due to 

the asynchronous nature of I/O operations. When a process writes data to a socket, this data 

travels down through the layers of kernel’s network stack and finally reaches the device driver as 

a packet. At some time during this flow, when we sniff the packet that is forming, the current 

active process may have already been changed by kernel scheduler. If we simply record the 

current PID at this time, we may incorrectly identify the initiator of this system activity. To solve 

this problem for WNIC devices, we have added one more item, PID, to the socket data structure. 

When we record the time values for a packet, we simply access this item through the packet’s 

socket structure. 

 

Power Measurement 

We employed the PCI-6115 data acquisition (DAQ) card from National Instruments as the 

measurement device. This card has 4 analog inputs and a trigger input. There are many different 

types of DAQ cards provided by National Instruments. All these cards support a common API 

that can be used under various programming languages like VB, C, C++ and C#. Although our 

card is a high-end model, any other NI card with 4 analog inputs and 1 trigger input can be used 

with our tool.  

 

Correlating Power Measurements with System Activities 

One important task of PowerMemo Control Center is to map, or correlate, power 

measurements with system activities. After a test is finished, user-daemon transfers profiling 

results to host side. When this transfer ends, energy consumption analyzer module in the control 

center analyzes the result file of CPU system activities to detect the PID and FID (Marker 

Function ID) values that were collected during the test. Later on PID values are charged with 

energy values for both CPU and WNIC activities. As one of PowerMemo’s limitation, FID values 

are charged only with the energy values of CPU activities. Figure 3 illustrates this process. 



 

Figure 3: Mapping power measurements with system activities. 

 

Time Synchronization between Host and Target 

We collect power measurements and system activities at two different devices, and hardware 

clock, thus system clock, of these two devices are not synchronized. We use time values to map 

measurements with activities. Therefore we need to synchronize the clocks for correct mapping. 

There are two common techniques to achieve clock synchronization. The first one is to use 

external trigger mechanism of measurement device like in [1]. Although this technique produces 

acceptable results, it requires one more trigger pin from the measurement device. Because we 

have used the only available trigger pin of our measurement device, we were unable to employ 

this technique. The second well-known technique is to use NTP (Network Time Protocol). An 

NTP server runs in the host PC, and a NTP client in the target mobile device. Right before 

measurement begins, host and target synchronizes system times using NTP service, then 

measurement and profiling can begin. The NTP client periodically connects to NTP server for 

re-synchronization.  

 

Wireless Environment Emulator 

Emulating wireless environment is achieved by using a wireless signal attenuator and a 

RF-shielded chamber. A Wireless LAN (WLAN) channel model is employed to calculate the 

signal attenuation caused by movement of the mobile device under test. Then attenuator is set to 

this attenuation value. Since the mobile device is in a preserved volume that is filled with the 

controlled wireless signal, it gradually senses the attenuation as if it was moving away/close 

from/to wireless AP. We have designed a simple scripting language to allow users to run desired 

scenario for a wireless field test. We call a script written with our language as a mobility script 



since it allows users to define movements of a mobile device. When a user loads a mobility script, 

the control center first parses the script, calculates the distance from the wireless AP, and then 

feeds it to our WLAN channel model. After that the model calculates the signal attenuation for 

the given distance. Finally, this attenuation value is sent to the signal attenuator. Wireless channel 

models are used to simulate the channel conditions. PowerMemo employed the below primitive 

channel model for the current version presented here. We plan to use a more enhanced model in 

the future. 

 

Run Scripts 

Run scripts are used to run the desired benchmarks in target mobile device. For the current 

version of PowerMemo, we have used simple bash scripts at target side. Paths of programs that 

are planned to test are inserted to the “runtest.sh” script. When user clicks the “START” button at 

the control center’s main window, user-daemon is triggered to start benchmarks and profiling. 

After profiling begins, the user-daemon runs this bash script to load the benchmark programs so 

that profiler can record their system activities.  

 

Control Center and Result View 

As the hearth of the tool, PowerMemo Control Center contains several of the most important 

modules like power measurement module, energy consumption analyzer, and wireless 

environment emulator. If wished, users can define and load a mobility script to emulate a wireless 

field test during energy profiling. They can view the actions of an active mobility script. After 

energy analyzing ends, results are listed in a tabular format like in Figure 4. 

 

Figure 4: Main window of PowerMemo control center. 
 

3. A Case Study and Results 



We tested the usefulness of our energy profiling tool by using it to turn a simple email client 

application into an energy-aware and network-aware one. The application (popmaildir) [21] is a 

command line based application and does not have built-in TCP transport mechanism. That’s, it 

needs external programs like netcat or tcpclient to be able to fetch or send emails. In this test case, 

it connects to an email server on internet and receives one email with a 10MB attachment. 

Energy consumption of an application can be reduced by applying numerous techniques, such 

as by optimizing the algorithm to take less time to complete, or to consume less memory, etc. 

Because our tool aims to combine energy profiling with emulation of wireless environment, in 

this case study, we focused on the techniques that make applications aware of external conditions, 

specifically wireless network conditions, that can cause them consume more or less energy. Being 

able to test various optimization techniques and mobility scenarios in terms of energy 

consumption and network behavior, we were able to successfully optimize the email client in a 

way that it can adapt itself to changing wireless channel conditions, hence became an energy and 

network aware application.  

Our optimization method is based on the notion that the energy consumption of an application 

is directly related with the amount of time that application uses CPU or WNIC device for. Such as, 

if the application uses WNIC device for shorter time periods, the device can sleep for longer 

durations, thus can conserve more energy. To use WNIC device for a shorter duration, application 

must transmit or receive data, in our case one email with a 10MB attachment, with the highest 

achievable bit rate, and highest bit rate can be achieved only when wireless signal quality is the 

best. 

Unmodified version of email client does not observe wireless signal level. It immediately begins 

to download the email. On the other hand, modified version of the email client periodically 

observes wireless signal level to receive the email at the highest bit rate possible. If the level is 

below a certain threshold (-82dBm), it sleeps for a while. When it detects the level is above the 

threshold, it begins to download the email at a high bit rate. In total, we ran 20 sets of 

experiments for unmodified and modified versions of email client. Table 1 lists the results of 

these experiments. 

Table 1: Results of case study 

Experiment 

No

CPU 

Energy

WNIC 

Energy

Total Energy 

(Joule)

Experiment 

No

CPU 

Energy

WNIC 

Energy

Total Energy 

(Joule)

1 11.82 12.27 24.09 1 7.9 8.98 16.88

2 10.53 12.1 22.63 2 8.17 8.66 16.83

3 9.97 12.87 22.84 3 7.64 8.34 15.98

4 11.08 13.15 24.23 4 8.68 8.27 16.95

5 11.3 12.76 24.06 5 8.02 9.03 17.05

6 11.04 13.4 24.44 6 8.57 8.6 17.17

7 10.99 13.89 24.88 7 8.3 8.19 16.49

8 10.15 13.62 23.77 8 8.85 8.33 17.18

9 9.93 13.35 23.28 9 8.24 9.17 17.41

10 10.19 13.11 23.3 10 8.54 8.58 17.12

23.752 16.906

Unmodified popmaildir Modified popmaildir

Average Average  

 

As seen in Table 1, we saved in average 30% of energy with the modified email client. At 



each test, the modified email client waited for about 380 seconds before downloading the email. 

The slight differences between each set of experiment in the same column are caused by several 

factors in our tool setup. One main reason is that we used a free email server from internet. Due 

to the server loading, sometimes it may take longer or shorter time to download the email with 

10MB attachment. Depending on the time it takes to download, this may cause grater or smaller 

energy consumption on CPU. Another reason is that we cannot keep transmit bit rate of our 

wireless AP fixed. Transmit bit rate is automatically decided by the AP, and unfortunately we 

cannot modify the setting for this behavior. According to our readings, bit rate dynamically 

changes for each packet received from AP. This dynamic behavior causes a slight fluctuation in 

the total WNIC energy consumption. 

 

4. Summary 

In this project, PowerMemo, which is a measurement-based energy profiling tool with 

software controllable wireless environment was proposed and implemented. We reduced the 

energy consumption of a simple email client application by 30% using PowerMemo. The 

observed overhead of PowerMemo does not exceed 1% in most cases. We believe PowerMemo 

can help its users better understand the relation between energy consumption and wireless 

network conditions, thus enables to develop better energy efficient applications.  

We are going to release PowerMemo source codes through Openfoundry. Meanwhile, we are 

preparing two papers based on this project and will submit them to international journals.  
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