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Abstract

The study of chaotic system has found wide applications in physics, chemistry, biology,
physiology, and various engineerings. Nonlinear Mathieu system, Duffing system, and van der
Pol system all are paradigmatic important chaotic systems. Ikeda system and Mackey-Glass
system are paradigmatic important electro-optical and physiological time delay systems. In this

project, the study is extended to two kinds of double Mathieu system, double Duffing system,
VIII



double van der Pol system, double Ikeda system, and double Mackey-Glass system by suitable

coupling. For these paradigmatic and important systems, the study will be extended and

deepened.

Chaos synchronizations are applied in various regions, such as secure communication,
neural networks, self-organization, physical systems, ecological systems and engineering systems,
etc. In this project, three new types of chaos synchronization with theoretical and practical
importance are studied: 1. pure error stability synchronization, to improve the present defective
method in which the maximum values of state variables appeared in error dynamics must be
preliminarily calculated by simulations; 2. pragmatical adaptive generalized synchronization, to
correct the absence of proof of that estimated parameters approach the unknown parameters; 3.
different initial condition synchronization. By the traditional theory of chaos, the chaotic motions
are very sensitive to initial conditions and separate each other exponentially. However, we
discover that for two identical double Ikeda systems, lag synchronization, etc can be found for
different initial condition, and for two identical double Mackey-Glass systems, various temporary
lag synchronizations can be found for different initial conditions. These phenomina are
contradictory to traditional theory. These should be studied seriously. The main parts of our study
are:

1. The study of chaos of two kinds of double Mathieu system. By phase portraits, bifurcation
diagrams, power spectra, Lyapunov exponents, fractal dimensions, the various chaotic
behaviors of these systems will be studied.

2. By pure error stability theory and elaborate Lyapunov functions, the pure error generalized
synchronization method is given, proved and illustrated by two kinds of double Mathieu
systems.

3. The study of chaos of double Duffing system and double van der Pol system. By phase
portraits, bifurcation diagrams, power spectra, Lyapunov exponents, the various chaotic
behaviors of these systems will be studied. The regions and shapes of the strange attractors,
hyperchaotic behaviors and fractal dimensions will also be studied.

4. By pragmatical stability theory, the pragmatical adaptive synchronization of the above
systems will be obtained. That the estimated parameters approach the unknown parameters
are rigorously proved and illustrated by simulation for double Duffing systems and double
van der Pol systems.

The study of chaos of double Ikeda system and double Mackey-Glass system.

Discover the rule of the initial conditions, for which the double Ikeda systems appear to be in
lag-synchronization, anticipated-synchronization, lag-anti-synchronization or anticipated-anti-
synchronization, while the double Mackey-Glass systems appear to be in temporary ones. We

will try to explain these phenomina.

key words: pure error stability generalized synchronization, pragmatical synchronization,
different initial condition synchronization, double Mathieu system, double Duffing system,

double van der Pol system, double Ikeda system, double Mackey-Glass system
IX
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Chapter 1

Introduction

Chaotic phenomena have been observed in physics, chemistry, physiology, and many
disciplines [1-3]. In contrast with the famous chaotic systems, such as Lorenz system, Duffing
system, and Rdssler system, nonlinear Mathieu system is less mentioned [4-9]. However,
nonlinear Mathieu system is important and can be applied in analysis of the resonant micro
electro mechanical systems [10-12]. In this report, the new autonomous and new nonautonomous
chaotic systems constructed by mutual linear coupling of two non-identical nonlinear damped
Mathieu systems are studied.

Chaos synchronization has been widely applied in secure communication [13, 14],
biological systems [15, 16], and many other fields [17, 18]. The generalized synchronization is a
complex type of chaos synchronization and gives rise to extensive investigations recently [19-26].
The mixed error dynamics and the plain square sum Lyapunov function are currently applied in
studying the generalized synchronization, but there are some shortcomings and restrictions in
them. The auxiliary numerical simulation is unavoidable for current mixed error dynamics in
which master state variables and slave state variables are presented while their maximum values
must be determined by simulation [27-31]. However, the pure error dynamics can be analyzed

theoretically without additional numerical simulation. Besides, monotonous and self-limited

. 1 . . .
square sum Lyapunov function, V'(e) = EeT e, is always used in most literatures [32-37], but the

Lyapunov function can be chosen in a variety of elaborate and ingenious forms for different
systems. Restricting Lyapunov function to square sum makes a long river brooklike, deeply
weakens the powerfulness of Lyapunov direct method. Instead of current plain square sum
Lyapunov function, the elaborate Lyapunov function is applied in this report. A systematic

method of designing Lyapunov function is proposed based on the Lyapunov direct method [38].
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The generalized synchronization is achieved for both new autonomous and nonautonomous
chaotic systems by applying this technique.

Since Hertz [39] distinguished nonholonomic system from holonomic system in 1894, the
study of nonholonomic system [40, 41] has been developed over one hundred years. A great
number of studies in this field are connected with the extension of the developed analytical
methods for holonomic system and for the systems with nonholonomic constraints. At present the
dynamics of nonholonomic system has many applications in the problems of modern technology,
such as the pursuit problems, the motion of automobiles, landing devices of airplanes, railway
wheels, etc. However, the complete study of chaos in nonholonomic systems remains deficient.
As far as we know, the only studies the chaos of nonholonomic system with an external
constraint is Ref. [42], in which the chaotic phenomena of rattleback dynamics are studied. But in
this , only Poincaré maps are given. As it is well-known, the only Poincaré map can not identify
the existence of chaos reliably.

The moving target pursuit problem [43] is a typical example of nonholonomic system. In
this report, chaos of nonholonomic systems with external nonholonomic constraint for two types
of pursuit problems, a straightly oscillating target, and a circularly rotating target, is studied by
applying the fundamental nonholonomic form of Lagrange’s equations [44, 45]. Moreover, chaos
of nonholonomic system with external nonlinear nonholonomic constraint, the magnitude of
velocity keeping constant, is studied in this report by applying the nonlinear nonholonomic form
of Lagrange’s equations. All numerical criteria of chaos, i.e. the most reliable Lyapunov
exponents [46], phase portraits, Poincaré maps and bifurcation diagrams are firstly wholly given
to identify the existence of chaos of nonholonomic and nonlinear nonholonomic systems.
Furthermore, it is found that the Feigenbaum number rule [47] still holds for nonlinear
nonholonomic system.

There are various types of synchronization, such as complete synchronization [48],
generalized synchronization [49], phase synchronization [50], lag synchronization [51], and so on.

Among these types of synchronization, generalized synchronization is one of the most interesting
11



topics. Generalized synchronization refers to a functional relation between the state vectors of

master and slave, i.e. y=F(x,¢), where x and y are the state vectors of master and slave. In
the work of Ref. [52], the generalized synchronization is extended to a more general form,
y =F(x,y,?), where the “slave” y is not a traditional pure slave obeying the “master” x

completely but plays a role to determine the final desired state of the “slave”. Since the “slave”

y plays an “interwined” role, this type of synchronization is called “symplectic

synchronization™'

, the master is called “partner A”, and the slave is called “partner B”. In this
report, we propose two types of new chaos synchronization, “non-simultaneous symplectic
synchronization” and “double symplectic synchronization”.

We propose the “non-simultaneous symplectic synchronization”, y(¢)=F(x(7),y(?),?),
where 7 is a given function of time ¢, so-called variable scale time. The synchronization is
achieved at “different time” for “partner A” x(r) and “partner B” y(#), therefore we call this
type of synchronization “non-simultaneous symplectic synchronization”. When 7=¢,
non-simultaneous symplectic synchronization reduces to symplectic synchronization. When
applying the non-simultaneous symplectic synchronization in secret communication, since the
functional relation of the non-simultaneous symplectic synchronization is more complex than that
of the traditional generalized synchronization, and cracking the variable scale time 7 is an extra
task for the attackers in addition to cracking the system model and cracking the functional
relation, the message is harder to be detected by applying the non-simultaneous symplectic
synchronization than by applying traditional generalized synchronization. Therefore, the
non-simultaneous symplectic synchronization may be applied to increase the security of secret
communication. In order to achieve non-simultaneous symplectic synchronization, nonlinear
control [53] and adaptive control are applied. In the work of Ref. [53], the induced matrix norm

and the Lipschitz constant are obtained by auxiliary numerical simulation. However, they can be

estimated theoretically by using the property of induced matrix norms [54a] and by applying

" The term “symplectic” comes from the Greek for “interwined”. H. Weyl first introduced the term in 1939 in his book

“The Classical Groups” (p. 165 in both the first edition, 1939, and second edition, 1946, Princeton University Press).
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adaptive control. Furthermore, in our case, non-simultaneous symplectic synchronization, the
complexity of the functional relation F(x(7),y(¢),¢) is greater than that studied in Ref. [53], thus
the Lipschitz constant may be enormous. However, by applying adaptive control, the estimated
Lipschitz constant is much less than the Lipschitz constant obtained by applying nonlinear
control. This result in the reduction of the gain of the controller, i.e. the cost of controller is
reduced. The proposed scheme is effective and feasible for both autonomous and nonautonomous
chaotic systems, whether the dimensions of x(7) and y(¢) systems are the same or not.

The “double symplectic synchronization”, G(x,y)=F(x,y,?), is proposed. Since the
symplectic functions are presented at both the right hand side and the left hand side of the
equality, it is called “double symplectic synchronization”. It is an extension of symplectic
synchronization, y =F(x,y,f). When G(x,y)=y, the double symplectic synchronization is
reduced to the symplectic synchronization. Due to the complexity of the form of the double
symplectic synchronization, it may be applied to increase the security of secret communication.
The double symplectic synchronization is obtained by applying active control. A scheme of
synchronization is derived based on Barbalat’s lemma [54b], and it is effective and feasible for
both autonomous and nonautonomous chaotic systems.

The idea of fractional calculus has been known since the development of the regular
calculus, with the first reference probably being associated with correspondence between Leibniz
and L’Hospital in 1695, where the meaning of derivative of order one half was discussed [55-58].
Although fractional calculus has a 300-year-old history, its applications to physics and
engineering are just a recent focus of interest [88-92]. It was found that many systems in
interdisciplinary fields can be described by the fractional differential equations, such as
viscoelastic systems, dielectric polarization [59], electrode electrolyte polarization [60], and
electromagnetic waves [61]. More recently, many investigations are devoted to the control [62-66]
and dynamics [67-79] of fractional order dynamical systems. In [67], it is shown that the
fractional order Chua’s circuit of order as low as 2.7 can produce a chaotic attractor. In [68], it is

shown that nonautonomous Duffing systems of order less than 2 can still behave in a chaotic
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manner. In [69], chaotic behaviors of the fractional order “jerk” model is studied, in which
chaotic attractor can be obtained with the system order as low as 2.1, and in [70] chaos control of
this fractional order chaotic system is investigated. In [71], the fractional order Wien bridge
oscillator is studied, where it is shown that limit cycle can be generated for any fractional order,
with a proper value of the amplifier gain.

In 1990, the idea of synchronizing two identical chaotic systems with different initial
conditions was introduced by Pecora and Carroll [92]. Since then, there has been particular
interest in chaotic synchronization, due to many potential applications in secure communication,
biological science, chemical reaction, social science, and many other fields. The concept of
synchronization has been extended to the scope, such as complete synchronization (CS), phase
synchronization (PS), lag synchronization (LS), anticipated synchronization (AS), and
generalized synchronization (GS), etc [57-61, 91-109, 114-120]. However most of
synchronizations can only be realized under the condition that there exists coupling between two
chaotic systems. Sometimes, it is difficult even impossible to couple two chaotic systems such
as in physical and electrical systems. In comparison with coupled chaotic systems,
synchronization between the uncoupled chaotic systems has many advantages [99-100, 109-114].
In this report, synchronization of two double Duffing systems whose corresponding parameters
are driven by a chaotic signal of a third system is analyzed. The chaos synchronizations of two
uncoupled double Duffing systems are obtained by replacing their corresponding parameters by
the same function of chaotic state variables of a third chaotic system. It is noted that whether CS
or AS appears depends on the initial conditions. Besides, CS and AS are also characterized by
great sensitivity to initial conditions and on the strengths of the substituting chaotic variable. It
is found that CS or AS alternatively occurs under certain conditions [59-61, 68, 73]

Then we focus on the synchronization and antisynchronization of two identical double
Duffing systems whose corresponding parameters are replaced by a white noise, a Rayleigh
noise, a Rician noise or a uniform noise respectively. It is noted that whether CS or AS appears

depends on the driving strength [57, 60, 73-74, 120-121].
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In practice, some or all of the system parameters are uncertain. Moreover, these parameters
change from time to time. Many researchers solve this problem by adaptive synchronization
[122-127]. In current scheme of adaptive synchronization, traditional Lyapunov asymptotical
stability theorem and Babalat lemma are used to prove the errors of synchronizing states
approach zero. But the question that why the estimated parameters also approach the uncertain
values, has still remained without answer. By the pragmatical asymptotical stability theorem
[128-129] and an assumption of equal probability for ergodic initial conditions, the answer can
be given.

Among many kinds of synchronizations, the generalized synchronization is investigated
[130-142]. It means there exists a given functional relationship between the states of the master
and that of the slave y = G(x), where x, y are the states vector of master system and slave
system respectively. In this report, a special kind of generalized synchronizations
y=G(x)=x+F(t) is studied, where F(¢) is a given vector function of time which may take
various forms, either regular or chaotic function of time. When F(¢#)=0, it reduces to a
complete synchronization [143-144]. As a numerical example, two identical double Duffing
chaotic systems [145] and a double van der Pol chaotic system [146-147] are used as master
system, slave system, and goal system, respectively. The goal system gives chaotic F(¢). Next,
the robustness of the generalized synchronization is also studied [148-154].

The contents of this report are as follows. Chapter 2 contains the dynamics of new
autonomous and nonautonomous chaotic systems. The system models are described and the
numerical results of regular and chaotic behaviors are presented. In Chapter 3, generalized
synchronization of new chaotic systems is achieved by applying pure error dynamics and
elaborate Lyapunov function. The methods of designing Lyapunov function are presented, and
both new autonomous and new nonautonomous chaotic systems are illustrated in examples. By
applying pure error dynamics and elaborate nondiagonal Lyapunov function, nonlinear
generalized synchronization of new chaotic systems is obtained in Chapter 4. We propose the

methods of designing Lyapunov function, and illustrate them by both new autonomous and new
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nonautonomous chaotic systems in examples. In Chapter 5, the dynamics of nonholonomic
systems is studied by applying the fundamental nonholonomic form of Lagrange’s equations.
Two types of external nonholonomic constraints are studied for moving target pursuit problems:
a straightly oscillating target and a circularly rotating target. Numerical results show that chaos
exists in each case. By applying the nonlinear nonholonomic form of Lagrange’s equations, the
dynamics of nonlinear nonholonomic system is studied in Chapter 6. We investigate external
nonlinear nonholonomic constraint: the magnitude of velocity keeping constant. Chaos is proved
to exist in each case by numerical results. Furthermore, Feigenbaum number rule still holds for
nonlinear nonholonomic system. In Chapter 7, the non-simultaneous symplectic synchronization
is proposed, and it is achieved by applying adaptive control. The synchronization scheme is
presented, and chaotic systems with the same or different dimensions are illustrated in examples.
We investigate the double symplectic synchronization by applying active control in Chapter 8.
The synchronization scheme is derived, and both autonomous and nonautonomous chaotic
systems are illustrated in examples. In Chapter 9 the fractional derivative and its approximation
are introduced. And then gives the dynamic equation of double Duffing system. The system
under study is described both in its integer and fractional forms. Numerical simulation results
are presented. In Chapter 10, a brief description of synchronization scheme based on the
substitution of the strengths of the mutual coupling term of two identical chaotic double Duffing
systems by the chaotic variable of a third double Duffing system are presented. And numerical
simulations are given for illustration. It is found that one can obtain CS or AS by adjusting the
driving strength and initial conditions. In Chapter 11, chaos synchronization and
antisynchronization are obtained by replacing two corresponding parameters of two uncoupled
identical double Duffing chaotic dynamical systems by a white noise, a Rayleigh noise, a Rician
noise or a uniform noise respectively. It is found that one can obtain CS or AS by adjusting the
driving strength. In Chapter 12, theoretical analyses of the pragmatical asymptotical stability are
quoted. Adaptive controllers are designed for the pragmatical generalized synchronization of

two double Duffing chaotic oscillators with a double van der Pol chaotic system as a goal
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system. High robustness of the generalized synchronization is also obtained in Chapter 12. In
Chapter 13, chaotic behaviors of a fractional order double van der Pol system are studied by
phase portraits and Poincaré maps. It is found that chaos exists in this system with order from
3.9 down to 0.4 much less than the number of states of the system. Linear transfer function
approximations of the fractional integrator block are calculated for a set of fractional orders in
[ 0.1, 0.9 ] based on frequency domain arguments. In Chapter 14, the variable of a third double
van der Pol system substituted for the strength of two corresponding mutual coupling term of
two identical chaotic double van der Pol system, give rise to their complete synchronization (CS)
or anti-synchronization (AS). Numerical simulations show that either CS or AS depends on
initial conditions and on the strengths of the substituted variable. In Chapter 15, we focus on the
synchronization and antisynchronization of two identical double Duffing systems whose
corresponding parameters are replaced by a white noise, a Rayleigh noise, a Rician noise or a
uniform noise respectively. It is noted that whether CS or AS appear depends on the driving
strength. In Chapter 16, based on a pragmatical theorem of asymptotical stability using the
concept of probability, an adaptive control law is derived such that it can be proved strictly that
the zero solution of error dynamics and of parameter dynamics is asymptotically stable.
Numerical results are given for a chaotic double van der Pol system controlled to a double
Duffing system. In Chapter 17, chaos in new integral and fractional order double Ikeda delay
systems is studied. A double Ikeda delay system consists of two traditional Ikeda delay systems
which are coupled together. Numerical simulations display the chaotic behaviors of the integral
and fractional order delay systems by phase portraits, Poincaré maps and bifurcation diagrams.
In Chapter 18, the chaotic behaviors of double Ikeda systems are obtained by replacing the
original constant delay time by a function of chaotic state variable of a second chaotic double
Ikeda system. The method is named delay time excited chaos synchronization which can be
successfully obtained for some cases. Numerical simulations are illustrated by phase portraits.
Phase portrait is expressed by numerical analysis. In Chapter 19, it is discovered that lag

synchronization and lag anti-synchronization appear for two identical double Ikeda systems,
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without any control scheme or coupling terms, but with different initial conditions. In Chapter
20, the chaotic behaviors of double Ikeda systems are obtained by replacing the parameters by
different chaotic state variables of a third chaotic double Ikeda system. The method is named
parameter excited method for synchronization which will be successfully used for uncoupled
synchronization. Numerical simulations are illustrated by phase portraits and time histories. In
Chapter 21, a new double Mackey-Glass delay system, which consists of two coupled
Mackey-Glass systems, is studied. Numerical simulations display the chaotic behaviors of the
integral and fractional order delay systems by phase portraits and bifurcation diagrams. In
Chapter 22, a control method called parameter excited method is applied to control a double
Mackey-Glass chaotic system and to synchronize two uncoupled double Mackey-Glass systems.
By replacing a parameter of the chaotic system by a noise signal, its chaotic motion can be
eliminated. By replacing the corresponding parameters of two identical chaotic systems by a
noise signal, these two chaotic systems with different initial conditions can be synchronized. For
some chaotic systems, such as physical and electrical systems, which are difficult or even
impossible to couple, this method is effective and potential in practice. In Chapter 23, it is
discovered that TLS, TAS and TALS, TAAS appear for two identical double Mackey-Glass
systems, without any control scheme or coupling terms, but with different initial conditions. In
Chapter 24, the lag synchronization of two uncoupled double Mackey-Glass systems is achieved
via the parameter excited method. This method is accomplished by replacing the corresponding
parameters of the systems with two lag noise signals. By means of the difference of the timing
between two replacements for the first system and the second system, the lag synchronization
can be obtained. The parameter of the first system is substituted by a noise at ¢ = Osec, and the
parameter of the second system is substituted by the noise at ¢ =dsec. In other words, the
control schemes do not work synchronously for these two systems. Parameter excited method is
effective and potential in practice for some chaotic systems which are difficult or even
impossible to be coupled. Temporary lag synchronization, partial lag synchronization, chaos

control and robustness of lag synchronization are also obtained by this method. Finally, the
18



conclusions of the whole report are drawn in Chapter 25.
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Chapter 2

Regular and Chaotic Dynamics of New Chaotic Systems

The nonlinear Mathieu system [1-6] is important and can be applied in analysis of the
resonant micro electro mechanical systems [7-9]. In this Chapter, we propose new autonomous
and new nonautonomous chaotic systems constructed by mutual linear coupling of two
non-identical nonlinear damped Mathieu systems.

Consider two non-identical nonlinear damped Mathieu systems [5, 6] described by

% = x,, @.1)
X, =—a(l+sinwt)x, — (1+sin a)t)xl3 —ax,, .
X, =X,,

L =X, (2.2)

%, =—(1+sinwt)x, —a(l+sin wt)x; — ax,,

where a and @ are constants.

A new autonomous chaotic system can be constructed by mutual linear coupling of two
non-identical nonlinear damped Mathieu systems, Eq. (2.1) and Eq. (2.2). The term sinw¢ of
one Mathieu system is replaced by one state of the other Mathieu system, and linear coupling
terms are added to each other:

X = X5,

%, =—a(l+x,)x, —(1+x,)x’ —ax, + bx;,,

(2.3)

X, =X,
%, =—(1+x,)x, —a(l+x,)x] —ax, +bx,.

The parameters in simulation are a=0.5,b=1~1.254, and the initial condition is
x,(0)=0.1, x,(0)=0.1, x;(0) =0.2, x,(0) = 0.2. The phase portraits, Poincaré maps, bifurcation
diagram, and Lyapunov exponents of the new autonomous chaotic system are shown in Fig.
2.1-2.3. It can be observed that the motion is period 1 for b =1.1, period 4 for b =1.243, and

period 8 for » =1.246. For b =1.24, the motion is chaotic.
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A new nonautonomous chaotic system can also be constructed by mutual linear coupling of
two non-identical nonlinear damped Mathieu systems, Eq. (2.1) and Eq. (2.2). The terms sin ot

of each Mathieu system are preserved, and linear coupling terms are added to each other:

X, = X5,

X%, = —a(1+sin ot)x, — (1+sin wt)x; — ax, + bx;, (2.4)

X, =X,
%, =—(1+sinwt)x, —a(l+sin wt)x; — ax, + bx,.

The parameters in simulation are a=0.5,6=09~1, =1, and the initial condition is
x,(0)=0.1, x,(0)=0.1, x;(0) =0.2, x,(0) = 0.2. The phase portraits, Poincaré maps, bifurcation
diagram, and Lyapunov exponents of the new nonautonomous chaotic system are shown in Fig.
2.4-2.6. It can be observed that the motion is period 1 for »=0.9, period 2 for »=0.93, and

period 4 for 5 =0.934. For b =1, the motion is chaotic.
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Fig. 2.1 Phase portraits and Poincaré maps of the new autonomous chaotic system: (a) period 1
for b=1.1, (b) period 4 for b=1.243, (c) period 8 for b =1.246, (d) chaotic for b =1.24.
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Fig. 2.2 Bifurcation diagram of the new autonomous chaotic system.
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Fig. 2.3 Lyapunov exponents of the new autonomous chaotic system, where the sum of Lyapunov

exponents is represented as a doted line at -1.
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Fig. 2.4 Phase portraits and Poincaré maps of the new nonautonomous chaotic system: (a) period
1 for b=0.9, (b) period 2 for b=0.93, (c) period 4 for b =0.934, (d) chaotic for b=1.
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Fig 2.5 Bifurcation diagram of the new nonautonomous chaotic system.
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Fig. 2.6 Lyapunov exponents of the new nonautonomous chaotic system, where the sum of

Lyapunov exponents is represented as a doted line at -1.
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Chapter 3

Generalized Synchronization of New Chaotic Systems by Pure Error

Dynamics and Elaborate Lyapunov Function

3.1 Preliminaries

In this Chapter, the generalized synchronization is studied by applying pure error dynamics
and elaborate Lyapunov function. The pure error dynamics can be analyzed theoretically without
auxiliary numerical simulation, whereas the aid of additional numerical simulation is unavoidable
for current mixed error dynamics in which master state variables and slave state variables are
presented while their maximum values must be determined by simulation [1-5]. Besides, the

elaborate Lyapunov function is applied rather than current plain square sum Lyapunov function,

1 S . .
Ve)= EeT e, which is currently used [6-11] for convenience. However, Lyapunov function can

be chosen in a variety of forms for different systems. Restricting Lyapunov function to square
sum makes a long river brooklike, deeply weakens the powerfulness of Lyapunov direct method.
Based on Lyapunov direct method [12], the generalized synchronization is achieved and a

systematic method of designing Lyapunov function is proposed.

3.2 Design of Lyapunov Function

Consider the master and slave nonlinear dynamic systems described by
K =1(,%), 3.1
y=1(y)+u(,x,y), (3.2)

where X,y € R" are master and slave state vectors, f:R, xR" — R" is a nonlinear vector
function, and u: R, xR" xR" — R" is controller vector.

Generalized synchronization means that there is a functional relation y = g(¢,x) between
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master and slave states as time goes to infinity, where g:R, xR" — R" is a continuously
differentiable vector function. Define e =y —g(¢,x) as generalized synchronization error vector,

and the error dynamics can be obtained:

6=y -§(1.%)
_ . Ogtx) . og(tx)
-y ox . ot (3-3)
~1(, )—Mm >—6g(—’t) u(t.x,y).

Based on Lyapunov direct method [12], the scheme of generalized synchronization and the
procedure of designing Lyapunov function are described as follows:

Step 1. Construct a Lyapunov function

Vite)= %eTA(t)e = %ﬂ“(t)el2 +%/122 (1)es +++— /1 ()e?, (3.4)

nn

where A(¢)=[A,(t)]e R™" is an unknown continuously differentiable positive definite diagonal

matrix to be designed. Its derivative is

V(t,e)=e" A(t)e+ %eTA(t)e
= A’ll (t)elél + 2’22 (t)eZeZ tet /Inn (t)enen (3 '5)
1. 1. )
+§/7n(f)€12 + 5/122 (1)e; +-- +E/1,m (De..

Step 2. Eq. (3.5) can be rewritten in the following form:

V(t e)= G(/lll’/,{ll)el +G (izzaﬁzz)ez ++ G, ( nn’/ln)ej
HH (Ao A XX, Ve, 0, D + A ey
HLH, (A A Xm0 X, Vs o5 1, 1) + Aty Je,
+- +[Hn(2’ll’ oAy X X, Vi Vs D + A1, e,

(3.6)

where G,(4;,4,) and H, (A, s A, X, X, .V, ¥,,t)  (i=12,---,n) are continuous

differentiable functions, u, (i=12,---,n) are controllers to be determined.

Step 3. Eq. (3.6) may be classified as two general forms: (1) All G, (4, /li) depend on A, (¢)

i ®
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and /il.l.(t),(Z) Some of G, (4 /;ij) depend on 4, (¢) and /i/‘./.(t),the remaining Gk(/ikk,/;tkk)

vk
depend only on A, (¢).

Form (1): All G,(4,,4,) dependon A, (f) and A ().

Step 4. Design the controllers u; such that
Hi(/lll’“.’/lnn’xl’“.’xn’yl’.“’yn’t)+/1iiui:0 (i:1’2’“'7n)’ (37)
1.e. current mixed error dynamics has been replaced by pure error dynamics. By Eq. (3.7), we

design the controllers u; such that A, (i=1,2,---,n) are linear function of each other with

positive coefficients.

Step 5. Design A,,(¢), 4, (¢),--,4,,(t) such that

Vt20, 0<A,,<A@®<A,, (i=L2--,n), (3.8)
where A,,, A, arepositive constants, and
V20, G(A,1)<0 (i=1,2,--,n), (3.9)

then the Lyapunov function can be obtained and the generalized synchronization is achieved
according to Lyapunov direct method.

Form (2): Some of G, (4 /"tjj) depend on A,(#) and /;t]j(t) , and the remaining

J/

G, (A, A,) dependonlyon A, (7).

Step 4. Assume

Vk, A4, =1, (3.10)
Vi, H (A, A,X, %,V V) + 4, (Ou, =—e,, (3.11)
Vo H (s Ay X a2, Vs D)+ 2 (O, =0, (3.12)

i.e. current mixed error dynamics has been replaced by pure error dynamics, and appropriately
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design the controllers u, (i=1,2,---,n) and A4,(z) such that

Vi20, 0<4,,<4,0)<4,,, (3.13)
where 4, ., 4, are positive constants, and

Vi20, G,(4;,4,)<0, (3.14)

then the Lyapunov function can be obtained and the generalized synchronization is achieved

according to Lyapunov direct method.

3.3 Example for New Autonomous Chaotic Systems

In the following two Sections, the functional relation between master and slave states is
yv,i=gtx)=al)x,+p(t) (=1.2,---,n).

The new autonomous chaotic system is constructed by mutual linear coupling of two
non-identical nonlinear damped Mathieu systems, and the master and slave new autonomous

chaotic systems can be described by

X, =X,

):cz =—a(l+x,)x, —(1+ x,)x. —ax, +bx;, (3.15)
X3 =Xy,

%, =—(+x,)x, —a(l+x,)x] —ax, +bx,,

n=y,+u,

= a4y )n (1 70 v by (3.16)
V3 =Yy T,

Vi =—(1+y,)y, _a(1+J’2)J’33 —ay,+by, +u,.

The parameters in simulation are a =0.5, b=1.24, and the initial condition is x,(0)=0.1,
x,(0)=0.1, x,0)=0.2, x,(0)=02, »(0)=03, »,(00=03, »,0)=04, y,(0)0=04.
The phase portraits of the master new autonomous chaotic system are shown in Fig. 3.1.

Let e, =y, —a(t)x, — p(t) (i=1,---,4), then the error dynamics can be obtained:
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=e,—a(t)x, + B{t)- f(t) +u,,
é2 =—ae, —ae, +be, —a(y,y, —a(t)xx,)—[(1+ )y —a@)(1+x,)x]
—a(t)x, +(b—2a) () - f(t) +u,,
=e,—a(t)x, + p(t)— B(t)+ u,,
e'4 =—e, —ae, +be, — (y,y, —a(t)x,x;) —a[(1+ y,)yi —a(t)(1+x,)x; ]
—a(t)x, +(b—a-1)B@)- f(t) +u,.

(3.17)

Step 1. Construct a Lyapunov function
1. 1 2, 1 2, 1 2, 1 2
Vite) = Ee A(t)e = 5/111 (e, +5/122 (1)e; + 5233 (Dey + 5144(’?)64 . (3.18)

Its derivative is

V(t,e) = /?“(t)e1 +4,()ee +— /122 (t)e2 + 4, ()e,e,
1 (3.19)
+ E ﬂ33 (t)e3 + A (t)ese, + E 244 (t)ef + A (Degé,.

Step 2. Eq. (3.19) can be rewritten in the following form

V(t,e) = (;1(/111’/1-11)612 +G2(/122’j'22)622 +G3(233’/133)332 +G4(ﬂ44,/i44)ef
+[H1(ﬂ11;"'5144;)61,"',x4,y1,"';y4;t)+i]]”]]e]
HH, (A Ay X0 X0, Yioeeos Van ) + Aoyt Je, (3.20)
HH (Ao Aags Xm0 X, Vi, Vs 1) + Ayl e
HH (A5 Ay X X0 Voo Vo t) + A1, Jey,

where

Gl(ﬂﬂ’ﬂ'ﬂ) :%ju(t)_jﬂ(t)a Gz(ﬂzz’izz) =lﬂ'22(l‘)—aﬂ,22(t),

G3(ﬂa3’/i33):%j33(t)_ﬂ33(t) G, (Ay, /144)— /1440) aly (1),

H, (A0 = A4 (O[-a@)x, +,3(f)—ﬂ(t)+el]+b/144(t)e4,

H, (Ao, 0) = 4, (0)e, + Ay (D=ae, = a(y,y, —a(Ox,x) = (1+ y,) 1
—a(t)(1+x,)x%) = a(0)x, +(b=2a) f(1) - B0,

Hy (A, 0) = bAy (e, + Ay (D[=a(0)x, + f(1) = B(D) + & ],

H,(Ayso,0) = Ay (e + Ay (D[ =€, = (1,35 — (D)%) = a((1+ ,)y;
—a()(1+x,)x7) = &(6)x, +(b—a—~1)S(6) - f(0)].

(3.21)
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Step 3. Since all G,(4, li) depend on A,(t) and /i,.i(t) (i=1,---,4), Eq. (3.20) can be

1

classified as form (1).

Step 4. Design the controllers

U, = -y, —by, +(a(t)+a()x, +ba(t)x, + bB(t) + B),
u, =a(y,y, —a()xx) + 1+ y,)y —a@)(1+x,)x;
+a(t)x, —(b=2a) (1) + B(1),
u, = by, — y, +(a(t) + a(0)x, +ba(t)x, +bAE) + B(), (3.22)

u, = y,, —at)x,x, +al+y,)y; —a()(1+x,)x;
£ (1= Dy, ~ 1= Yays, + a)x, —b-a-Hpw) + ),
a a a

such that
H, (A A X X Vs V) + 4, (Ou, =0 (i=1,---,4), (3.23)
and A, (i=1,---,4) are linear function of each other with positive coefficients:

IO=2us®, A= 22,00 DO = 2y 0. (3.24)

Now, the mixed error dynamics is replaced by pure error dynamics:

V(t, e)= Gl(z‘ll’ﬂ.’ll)elz +G, (2,22,/122)622 +G, (1333/133 )832 +G, (2“443244)62 . (3.25)

Step S. Design

/111( = ,9/122()_ 133()_ > 44() (3-26)
( ( e’) +e”

such that

Vt20, 0<A4,, (@) :l <A4,@O)=<A,,0=1

Vi>0, O</122(t)— < (0 2y ()=

m

(3.27)

Q|’—‘Q|>—‘

V20, 0<4 33(t)— <ﬂ‘33(t)</1M33(t)_

Vi>0, 0<i44(t)— <A ()< Ay =1,

40



b

V20 Gl A) =3 A0 202

: 1 —2a+(1-2a)e™ -1
Vi>0, G An)==A,(t)—al,(t)= = <0,
2(/?22 22) > 22( ) 22( ) 2a(1+e_t)2 (l+e_t)2
(3.28)
VI20, Gy hy)=a Ay () A= st = 2
S ReTEa g U 2a(l+ey (I+e')yY
: 1 —2a+(1-2a)e”’ -1
V20, G,(Ay,Ay)=—A,)—,0) = = <0
4( 44 44) > 44() 44() 2(1+e—t)2 2(1+e_t)2
then the Lyapunov function can be obtained
Vite) = ! — elz+ ! — e22+ ! - e32+ ! - ef, (3.29)
2(1+e™) 2a(1+e™) 2a(1+e™) 2(1+e™)
and
V(t,e)z 2+e ) 1 , 2+e ) 1 ) (3.30)

- e — e, — e, — e;.

20+e)? " (l+e")? 7 (I+e’)? 7 2(+e’)?
Since Lyapunov global asymptotical stability theorem 1is satisfied, the global generalized
synchronization is achieved. a(¢) =sinwt, S(t)=coswt, w=1 are chosen in simulation, and

the results are shown in Fig. 3.2-3.3.

3.4 Example for New Nonautonomous Chaotic Systems

The new nonautonomous chaotic system is constructed by mutual linear coupling of two
non-identical nonlinear damped Mathieu systems, and the master and slave new nonautonomous

chaotic systems can be described by

):Cz =—a(l+sin wt)x, — (1+sin wt)x, — ax, + bx;, (3.31)
X, =X,

x, =—(1+sinwt)x, —a(l+sinwi)x; —ax, + bx,,

Y=y, tu,

):/2 = —a(l+sinot)y, —(1+sinwr)y; —ay, +by, +u,, (3.32)
V3 =Yy T,

Y, =—(l+sin ) yy —a(l +sin ) y; —ay, +by, +u,,
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The parameters in simulation are a =0.5, b=1, =1, and the initial condition is x,(0) =0.1,

,(0)=0.1, x,(0)=02, x,(00=02, y,(0)=03, »,(0)=0.3,

»,(00=04, y,(0)=04.

The phase portraits of the master new nonautonomous chaotic system are shown in Fig. 3.4.

Let e, =y, —a(t)x, - p(¢t) (i=1,---,4), then the error dynamics can be obtained:

= e, —a(0)x, + B - B +uy,
é, =—a(l+sinwt)e, —ae, + be, — (1+sinwt)(y; —a(t)x)) —a(t)x,
+(—a(l+sinwt)—a+b)B(t) - f(t) +u,,
= e, —a0)x, + B0~ B0+,

é, =—(1+sin wt)e, —ae, + be, —a(l+sin wt)(y; —a(t)x;) - a(t)x,

+(=(1+sinwt)—a+b)B(t) - f(t) +u,,

Step 1. Construct a Lyapunov function

1 1 1 1 1
Vite) :EeTA(t)e:E/qﬂ(t)elz +Eﬂ“22(t)e22 +Eﬁ33(t)eaz +5144(t)e§-

Its derivative is

V(t,e) = /?“(t)e1 +4,()ee +— /122 (t)e2 + 4, ()e,e,

+ E ﬂ33 (t)e32 + A5 (t)ese, + E Ay (t)ef + A (Degé,.

Step 2. Eq. (3.35) can be rewritten in the following form

V(t e)=G (111’/111)61 +G, (4, )ez +G (233’/133)63 +G, (A, 4)65

HLH (A ey Aags Xm0 X 1ot 5 Vo ) + Ayt ey

HH, (A Ay X0 X0, Yiseees Vao ) + Aoyt Je,
H[H (Ao Ay Xm0 X, Vi, Vs 1) + Ayl e
HH (A5 Ay X X0 Voo Vo t) + A1, Jey,

where
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Gl(/lll’ﬂ"ll) :%2:11(1% Gz(ﬂzzaizz) :%/izz(t)_aﬂzz(t)a

G3(ﬂ33’/i33) = %%30)’ G4(/144a/i44) = %/1440)_‘1/1440)’

H,(Ay,++,0) = A, (O[=a(D)x, + B(1) = )]+ by, (e,

H, (A1) = A, (0)e, + Ay, (1)[—a(l +sin wt)e, — (1+sin wt)(y; —a(f)x])
—a(t)x, + (—a(l+sinwt) —a+b) A1) - f()],

Hy(Ayys+50) = b2y (e, + Ay (D[ = (1)x, + B(6) = B(@)],

H,(A,,1) = Ay (D)e, + Ay, (O)[—(1+ sin wt)e, — a(l+sin wt)(y: —a(t)x])
—a(t)x, +(~(1+sinwt) —a+b) f(t) - f(1)].

(3.37)

Step 3. Since some of G, (4 /"tjj) depend on A,(#) and /iy.(t) (j=2,4), the remaining

Ji?
G, (A, A, ) dependonlyon A, (f) (k=1,3),Eq.(3.37) can be classified as form (2).

Step 4. Assume

hO=L A0 (3.38)
Hl(ﬂ'll’.”’/144"x1"'"x4’yl’”'ay47t)+ﬂ’11(t)u1 =—ela
H3(ﬂ113'"7144,)6'1,"-,x4,y1,~--’y4’t)+ﬂ,33(l‘)u3 :_833

Hy (A Aggs Xt X Viso o5 Vyu 1) + Ay (O, =0,
H (A Ay X3 X Vyso ooy Viu 1) + Ay (O, =0,

(3.39)

(3.40)

and appropriately design the controllers u, (i=1,---,4) and A,,(¢), 4,(?)

b . ba(t) bp(1)
—————y,+(a@®)+a@)x + -
2 +sin wt v, +a() )= 2 +sin wt *4 2 +sin wt

u, =—ay, +ac(t)x, + a(t)x, + (1+sin oot)(yl3 - a(t)xf)
+(asinwt+3a-b) (1) + B(2),
b ba(t) 4t bp(1)

——y, Ht(a)+a()x;, +
2+sina)ty2 (@® ()=, 2+sinwt © 2+sinwt

+ B(0),

U ==

(3.41)

+B(0),

Uy =—);
u, ==y, +a(t)x; +a(t)x, + a(l+sin wt)(y; —a(t)x;)
+(sinwt+a—b+2)B(t)+ L),

1 1

Ay (1) = “Qisnon’ A (1) =

Y (3.42)
2 +sin wt

such that
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V20, 0<4,, :is%z(ﬂﬁﬂmzz :é,

| (3.43)
vVt>20, 0<A4,,, =3 SO A, =1,
. 1.
Vi20, G,(4,,4,)= Eﬂzz (1) —aiy, (1)
_ —(4a+2asinwt+wcoswt)  —(2+sint+cost) <0
2a(2 +sin wt)® (2 +sint)? ’
| (3.44)
Vt20, G,(Ay,Ay)= 5144 (t)—al, (1)
_ —(4a+2asinwt+wcoswt)  —(2+sint+cost) <0
2(2 +sin wt)’ 2(2+sint)’ '
Now, the mixed error dynamics is replaced by pure error dynamics:
V(t,e):[Gl(ﬂ“,/?.“)—/Ll]elz+G2(/122,ﬂ.,22)622 (3.45)
+ [G3 (//{’33 > 1’33) - /133 ]ef + G4 (1’44 H //1’44)64% ‘
Then the Lyapunov function can be obtained
1 2 1 2 2 1 2
Vite)=—e +———e, +—e; +———¢,, (3.46)
2 2a(2 +sin wt) 2 2(2+sinwt)
and
V(t,e) _ —612 3 2+sint+cost , o 2+sint+cost , (3.47)

e, —e e
(2+sint)> > 7 2(2+sint)
Since Lyapunov global asymptotical stability theorem is satisfied, the global generalized

synchronization is achieved. «(¢) =sinwt, [(t)=coswt, w=1 are chosen in simulation, and

the results are shown in Fig. 3.5-3.6.
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Fig. 3.2 Phase portraits of x, to y, (i=1,---,4) for Section 3.3 when the generalized

synchronization is obtained.
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Fig. 3.4 Phase portraits of the master new nonautonomous chaotic system.
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5

Fig. 3.5 Phase portraits of x;

synchronization is obtained.

1 1 1 1 1 | 1 | 1

1] 5 10 15 20 28 30 35 40 45 50
1 1 1 1 | 1 | 1

0 4 10 15 20 28 30 35 40 45 a0
1 1 1 1 | 1 | 1

0 4 10 15 20 28 30 35 40 45 a0
1 1 1 1 | 1 | 1

0 5 10 15 20 25 30 35 40 45 50

Fig. 3.6 Time histories of the state errors for Section 3.4.
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Chapter 4

Nonlinear Generalized Synchronization of New Chaotic Systems by
Pure Error Dynamics and Elaborate Nondiagonal Lyapunov

Function

4.1 Preliminaries

By applying pure error dynamics and elaborate nondiagonal Lyapunov function, the
nonlinear generalized synchronization is studied in this Chapter. In stead of current plain square
sum Lyapunov function [1-6], the elaborate nondiagonal Lyapunov function is applied in this
study. A systematic method of designing Lyapunov function is proposed based on Lyapunov
direct method [7], and the nonlinear generalized synchronization is achieved by applying this

technique.

4.2 Design of Lyapunov Function

Consider the master and slave nonlinear dynamic systems described by
x =f(¢,x), 4.1)
y=1(y)+u(x,y), (4.2)

where X,y € R" are master and slave state vectors, f:R, xR" — R" is a nonlinear vector
function, and u: R, xR" xR" — R" is controller vector.

Generalized synchronization means that there is a functional relation y =g(x) between

master and slave states as time goes to infinity, where g:R" — R" is a continuously

differentiable nonlinear vector function. Define e=y—-g(x) as generalized synchronization

error vector, and the error dynamics can be obtained:

L. .dg(x) . dg(x

e=y-800 =y~ 2E0 5 1,y)- B¢ 3 ru(rxy). (43)
dx dx
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Eq. (4.3) can be rewritten in the following form:
e=p(t,e)+q(t,x,y)+u(,x,y), (4.4)

where p:R xR" > R" and q:R,xR"xR" — R" are continuous vector functions represent

the error variable terms and the state variable terms in the error dynamics respectively.
In order to transform current mixed error dynamics into pure error dynamics, the controller

vector is chosen as
u(taxay):_q(toxay)+v(t:e): (45)

where v:R xR" — R" isa continuous vector function.
Now the pure error dynamics can be obtained:
ézp(t,e)+v(t,e), (46)

Based on Lyapunov direct method [7], the scheme of nonlinear generalized synchronization and
the procedure of designing elaborate nondiagonal Lyapunov function are described as follows:
Step 1. Construct a Lyapunov function

V(te)= Z%e{ A, (t),
- (4.7)

1 1 1 1
= [52110)612 + 4,66 +§/122(t)e22]+“'+[52’nn(t)e§ +4.e.€ +§ﬂ11(t)e12]a

ei . en /11'1' (t) /Iii-%-l .
where e, = @i=L2,---,n-1) , e, = , A1) = (i=12,---,n-1) ,
1 = i A (0

A (t A
(1) nl } , and Ai(t)eRM (i=12,---,n) are unknown continuously

A”(t):|: ﬂ“nl &](t)

differentiable positive definite matrices to be designed and A,(f), A (¢) are nondiagonal.

According to Sylvester’s criterion, A (¢#) have to be chosen that

VE20, A,()>0,A,(0A,., (022, >0 (i=12--n-1),

(4.8)
2, (0> 0,2, (DA, (0 =23 >0 (i=n),
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and
VE>0, 0<A,.<A()<A, (@(=12,--,n), (4.9)

where A ., A, are positive constants.

Step 2. The derivative of Lyapunov function is

Vit.6)= LI A 0e +e A, ()

i=1

=[4,(Dee + 4,8, + A4yee, + 4, (He,e, +%Z11([)e12 + %222 (t)ezz] (4.10)

+[A (Dee +A ée +Aeé+A (1)ee %z,m (t)e’ +%2ﬂ(z)ef],

Eq. (4.10) can be rewritten in the following form:

V(t:0) = F (s s Ay o5 Ay e}
o+ F( nn’ﬂ'll’“ Y RTINS ) o
+G (A Ay Ao nl’t)eleZ
+4 G, (A, nnaﬂhza 5 As0)e, e,
+QAV + A4, +4,0,)e
+o+ QALY F AV A, LV, e

nnn n?

4.11)

where (A dysrems Ay Aoy Aot (i=12,---,n) , G (A5 Ay Aigs e

nl’

) n(n—1) . : . . .
(j=12,---,m, sz) are continuous differentiable functions, and v, (i=12,---,n)
are controllers to be determined.

Step 3. Appropriately design the controllers v, such that Eq. (4.11) can be reduced to

V.(t’e):ﬁy(/ill’ﬂ'll’. nn’/llZ’ “ /’Lnl’t)elz
+- +F( nn’ﬂ'll’. nn’ﬂ’IZ’ . nl’ 3

(4.12)
+G1(/1119" nn’Z'IZ’ " nl’t)e]eZ
+.”+Gm(/1|1’”"2’nn’ﬂ'12’ . nl’t)e

Where 11’/111’ nn’ﬁ"IZ’ . nl’ (121929311) and éj(ﬂ'llﬂn nn’/q"IZ’ . nl’

(j=L2,---,m, m= @) are continuous differentiable functions.

Step 4. Assume
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Vs G(As s Aoms gsr s s ) =0, (4.13)

then the relationship between 4, can be obtained.

Step 5. Use the results of Step 4 to check if

Vi20, E(A, AL A Ay A, )<0 (i=1,2,--,n). (4.14)

> nn?>

Step 6. If Eq. (4.14) can be satisfied, the conditions derived from Eq. (4.14) can be obtained. If

Eq. (4.14) can not be satisfied, i.e.

VtZO’ ﬁ}(/i/j’/lll’.”’lnn’ﬂ’IZ’.“’/lnl’t)ZO’

Iy (4.15)
F}c(/lkkﬂﬂ'llﬂn"ﬂ“nn9/112’“"/1n19t)<09

return to Step 3 and modify the controllers v, by addition of ke, where k; are constant

gains to be determined. Repeat Step 4 and Step 5, then the conditions guarantee the validity of Eq.

(4.14) can be assured.

Step 7. Appropriately design &, and 4,(z) such that each condition derived from the above

procedure holds. Finally the elaborate nondiagonal Lyapunov function can be obtained and the

generalized synchronization is achieved according to Lyapunov direct method.

4.3 Example for New Autonomous Chaotic Systems

In the following two Sections, the nonlinear functional relation between master and slave
states is y, =g, (x,)=ax +px,+y (i=1,2,---,n). The master and slave new autonomous

chaotic systems can be described by Eq.(3.15) and Eq. (3.16), respectively. The parameters and

the initial conditions of the master and slave systems are the same as shown in Section 3.3.

Let e =y, —ax’—px,—y (i=1,---,4), then the error dynamics can be obtained:

e=p(e)+q(x,y)+u(xy), (4.16)
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where

pe)=[p(e) pe) e p@©],
axy)=[a(xy) &y &y &y,
p,(e)=e,, p,(e)=—ae —ae,+be,, p,(e)=e,, p,(e)=—e,—ae,+be,
q,(x,y) = ax22 —2axx,+y,
q,(x,y) =—a(ax] —ax; —bx;)—a(y,y, — fx,x) +(b—2a)y
_[(1+y4)J’13 —ﬂ(l+x4)xf]+2ax2[a(l+x4)xl +(1+x4)x13 _bx3]’
q,(X,y) = ax; —2ax.,x, +7,
4,(x,y) =—a(x; —ax; —bx})— (1,3, = Bx,x;) + (b—a—1)y
—a[(1+ yz)y33 - p(1+ xz)x33] +2ax,[(1+x,)x; +a(l+ xz)x33 —bx,].

(4.17)

In order to transform current mixed error dynamics into pure error dynamics, the controller

vector is chosen as

u(x,y) = —q(x,y)+ v(e). (4.18)
Now the pure error dynamics can be obtained:

e=p(e)+v(e). (4.19)

Step 1. Construct a Lyapunov function

4
Ve)= Z%e?Aiei
i=1

| . | . (4.20)
= [5/111612 +4,¢6, +Eﬂzze22]+"'+[§/144ej + A€ +Eﬂ11e12]’

€ | .. € A A |, Ay Ay
where e, = i=1---,3),e,= A = @=L---,3), A, = , and
€ € Ao Aisiis Ay Ay

A, (i=1,---,4) are unknown continuously differentiable positive definite nondiagonal matrices

to be designed. According to Sylvester’s criterion, A, have to be chosen that

/111 >0, /111/122 _/1122 >0,
A >0, Ay Ay — A5, >0,
/133 > 0: 2’33144 _2324 > 0:
/144 >0, 244111 _1421 >0.

(4.21)
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Step 2. The derivative of Lyapunov function is

4
Vie)=) &/ Ag,
i-1

=[A,e6 +A,¢e, + 4,66, + Ape.e,]
+o+[Aee, + A 8.0 + A6 + A6€]

Eq. (4.22) can be rewritten in the following form:

V(e)=171(ﬂ11," Aggr Ay 141)612+Fz(ﬂ11a" Aggs gy 141)622
+F (A A Aigs s 141)832+FL(/111,---,/144,/712,-~- 41)65
+G (Ao Ay s A ey + Gy (Ao Ay Ao Ay e
+G (A Ay Ao A ee, + Gy (A Ay Ay, Ay eses
+G5(A s Ay Ay A esey + G (Ao, Ay, Ay Ay ese,
+ QAW+ A, F A4, v)e + (24, + A v+ A,0)e,
+ (2405 + Ay + vy ey + (A, + Ay + Ayvse,,

where

E(Ala"'aﬁﬂ]):_aﬂn—i_b’up }72(311,"',/141)=212—2a/122,
F;(ﬂ“llfn 41):[)2“23_2'349 F(ﬂll,"',ﬁ41)=ﬂ34—2aﬂ44,

G (Ao Ay) =24, —at, =2ak,, G,(A,,,4,)=DbA,—ak, +bA,
G3(2119"'=/141):2bﬂ’44 a/1419 G4(2117"'9ﬂ41):2b2'22 —al

232

Gi(Ay s ) =y + Ay, Go(Ay,e, Ay) =24, —ady, — 24,

Step 3. Design the controllers
v=—e, V,=ae, V,=—¢, V,=¢€,
such that Eq. (4.23) can be reduced to

V(@)= F (A s Aags Ao 2a)€ + Fy (Ao, Aggs A5 Ay )63
(s Aags A5 A €+ Fy (oo, A Ao, ) )6
+ G (A A Aogs s )88, + G (A Ags Ay Ay €105
+ G (A s Aagn s 2 )€€, + Gy (Ao oy A o5 Ay )58
+ G (A Aags g3 20 )08, + G (Ao ey Ay A3 Ay )34

where
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41>

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)



ﬁ;(im"'v/lu):bﬂuv FA‘z(ﬂ’ll"“’ﬂ“M):_zaﬂ’ZZ’
F;(ﬂ“,---,ﬂm):b;ﬁ%, F4(/111""J“41):_2a/144’

Gi(Ayyes ) ==aky,  Gy(Ayyee, ) = by, + by, (4.27)
63(111"'3/141) =2bA,, —aly,, 64(/111""’/141) =2bA,, —ak,,

és(ﬂ’ll"“’/lm):oa 66(111,"',/1141):—61234.

Step 4. Assume

Vi, G (A, A,)=0, (4.28)

then the relationship between 4, can be obtained:

b b
Ay, =0, Ay :Zﬂaza Ay =0, Ay, :Z&M . (4.29)

Step 5. Use the results of Step 4 to check if
E(A2,) <0 (i=1,---,4). (4.30)
It can be obtained that

131(2115"',141)217/141 >0, ﬁz(ﬂqp'”’ﬂm) =—2aﬂ,22 <0,

. . (4.31)
Fi(A, 5 Ay) =bAy >0, F(A, -, 4,)=—2al,, <O0.
Step 6. Since Eq. (4.30) is not satisfied, i.e.
E (A 2) 20 (j=1,3),

j(ﬂ'll i) (J ) 432)

I:ﬁ/c(Ala”"/ﬁt41)<0 (k=2,4),
return to Step 3 and modify the controllers v, and v, by addition of ke and ke,
respectively, where k, and k, are constant gains to be determined. Because V has been

modified, Eq. (4.27) becomes
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E(Ay, s Ay) =bA, +2k A, Fy (A, A,) =—-2ak,,

Ey(Ayys s Ag) = Ay + 2k Ay, E(Ayyse Ay) = =24,

G (A Ay) =k —a) Ay, Gy(Ayyeey Ay) = b, +bAy,, (4.33)
Gy( Ay Ay =2b Ay + (k=) Ay Gy(Ayyseees Ayy) = 2620, + (ks — a) Ao,

Gy (A Aa) =0, Gy Agy) = (ks —a) Ay

Repeat Step 4 and Step 5, then the relationship between 4; becomes

a—k
Ay =0, Ay = 3 2235 Ay =0, Ay :7]141: (4.34)
and Eq. (4.30) can be satisfied if
—2k 2k
blﬂ'm /123< b3/133' (4.35)

Step 7. The conditions derived from the above procedure can be summed up as follows:

A,=0,4,=0, (4.36)
2 a—k =2k,
Ay >0, Ay >0, A Ay =44 >0, 4, = 2 — A Ay < b — s (4.37)
k3 2k3
/122 > 0’ /13)3 > 0’ /122/1&3 /123 > 0 /122 /123’ /1 b /133 : (438)
Design
k,=-a, k,=-a,
a’ a’
Alzb,/lzzzg,ﬂ%:b,&m:%, (4.39)

a
/112 =0,/123 :Eaﬂm :0=ﬂ41:_a

N R

such that each condition holds. Then the elaborate nondiagonal Lyapunov function can be

obtained
Clz a az a
Ve)= 2—bez2 +Eeze3 +be32 +2—bef 4—56461 +be12 , (4.40)
and
3ab a’ 3ab a’
V( )——— 2—765—765—765. (441)
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Since Lyapunov global asymptotical stability theorem is satisfied, the global generalized

synchronization is achieved. ¢ =1, =2, y=3 are chosen in simulation, and the results are

shown in Fig. 4.1-4.2.

4.4 Example for New Nonautonomous Chaotic Systems

The master and slave new nonautonomous chaotic systems can be described by Eq. (3.31)
and Eq. (3.32), respectively. The parameters and the initial conditions of the master and slave

systems are the same as shown in Section 3.4.

Let e =y, —ax’—px,—y (i=1,---,4), then the error dynamics can be obtained:

e=p(t,e)+q(tx,y)+u(,xy), (4.42)
where

T
H

p(t.e)=[p(r,e) p,(t.e) ps(t,e) p,(te)]

qt.x,y) =[q,(.x,y) ¢, (.Xy) ¢;ExY) q,¢xy)]
p(t.e)=e,, p,(t,e)=—a(l+sinwt)e —ae, +be;,

T
H

pi(t,e)=e,, p,(t,e)=—(1+sinwt)e, —ae, +be,
q,(t,x,y) = ax, —2axx, +7,
q,(t,x,y) = —ala(l+sin wt)x; — ax; —bx; ]+ 2a(1+sin wt)xx, (4.43)
+2afa(l+sin wt)x,x, —bx,x;]— (1+sin wt)(y; — fx;)
—yla(l+sinwt)+a-Db],
q,(t,x,y) = ax; —2ax,x, +7,
q,(t,x,y) = —a[(1+sin wt)x] — ax; —bx] ]+ 2aa(l +sin ot)x; x,
+2a[(1+sin wt)x,x, —bx,x,]— a(l +sin wt)(y; — fx;)
—y[1+sinwt+a—>b].

In order to transform current mixed error dynamics into pure error dynamics, the controller

vector is chosen as
U(t, X, y) = _q(ta X, Y)+ V(e) . (444)
Now the pure error dynamics can be obtained:
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é=p(t,e)+v(e). (4.45)

Step 1. Construct a Lyapunov function

Vite)= e A, (e,

l
2

/’iﬂ(t)el + 4,66+ /122(1,‘)62 ]+ +[ 44(2‘)65 + A€ +%ﬂ11(t)612],

|: e :| ) |:e4} |:ﬂ’ii(t) //lii+1 } .
where e, = (i=1,--,3) , e, = , A= (i=1---,3) ,
e

(4.46)

l\)l»—* EM‘“

ﬂ”iHl 2’[+1i+1 (t)

A, A
A 4(;):[ ‘2() /114(11‘)} , and A,(#) (i=1,---,4) are unknown continuously differentiable
41 1

positive definite nondiagonal matrices to be designed. According to Sylvester’s criterion, A (¢)

have to be chosen that

4,(2) >0, ﬂql(t)/izz(t)_ﬂfz >0,
ﬂzz(t) > 0, 222(1‘)233(1)—1223 > 0,

) (4.47)
A3 (£) > 0, Ay () Ay (1) = 434 > 0,
144(2‘) >0, 144(2‘)/111(2‘) - 2“421 >0,
and
O< //i’mll - /11 (t) < /’LMII’
0<ﬁ“ 22_}’22(t)</1M22’ (448)
O < //i’m33 - 2’33(t) < /’LM33’
0<A, S, )< Ay,
where A4 ., A, (i=1L---,4) are positive constants.
Step 2. The derivative of Lyapunov function is
X 4
Vit,e)= Zé[TA[(t)ei
i=1
) . ) .1 |
=[4, (e + Ayée, + Apee, + Ay, (1)eye, + E;l’ll(t)elz + 5/122 (H)e;] (4.49)

) ) ) o1 |
-+ [A,(Dee, + A, 6,6 + 4,66, + 4, (D)eé, +§/144 (t)ef +Elll(t)ef].

Eq. (4.49) can be rewritten in the following form:
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V(t,e)=Fl(/?'11,/?11,-- Aggs Ay 241’1‘)@12"'[7'2(2225/111’" Agas st 14150622

+F;(i33=/111=" Agar A5 /141=t)832+5(244a/111a"' /1447112?"’2“41’1)65

+G (Ao Ay Ay Ay )€y + Gy (Ao, Ay Ao, Ay e
+G (A Ay A A )ee, + Gu(Ay e Ay Ay Ay 1 esey
+ G5 (A Ay A Ay )esey + G (Ao, Ay Ay, Ay ese
+ QAW+ Ay, + Agv)e + 24y, + Ay + 4,0 e,

+ (24, + Ay, + vy )es + (A, v, + A4 + A4 ey,

where

1:1(/1-115""1‘):/111_a(1+smwt)ﬂ12+b/141a Fz(/izza"' t):/izz_zaﬂ“zz*'ﬂqza
Fy(Ayyy e ost) = Ay + DAy, —(I4sin@t) Ay, Fy(Ayyr o5 ) = Ay =204 + Aoy
G (4, 1) =24, —aA, —2a(l+sinwt)4,,,

G, (A4, -, t)=bA, —a(l+sinwt)A,;, +bA,, —(1+sinwt)4,,,
Gy(Ay, 1) =2bA,, —alk,, G,(4,,,t)=2bA,, —al

23>

G4, )=+ A, Gy(Ay,-,) =24, —al, —2(1+sinwt)A,,.
Step 3. Design the controllers

v, =ae, Vv,=-be,—ae, v,=ae, v,=-be —e,,

such that Eq. (4.50) can be reduced to

V(t,€) = B (A1s Ay s ags Az s D6+ B (Ao ooy Aggs g5 2y s 1)
t Fy (s oo s Ao Ao+ s Aan €+ Fy (g Ay A Ay A €5
+ G (A A Augo s Ay )85 + Go( Ay Ay Ay Ay )18
+ G (A s Ay Ao os Ay 1)ee, + Gy (Ao Ay Ao Ay s )€,
+ G (A Ags gy Ay )€, + G (Ao Ay Ay Ay s 158,

where

E(Ay, ) =4, +2ak, —aQ+sinot)d,, Fy(dy,,0)= Ay —2al, +,,
Ey(Ayyyees1) = Ay +2ak, — (2 +sin or) Ay, 5(244,---,t):i44—2a/144+/134,
G (A1) =24, —2a(1+sin o) Ay,

G,(Ayyse 1) = —a(2+sin wt) A, — (2+sin wt) A,

Gy (A1) =0, Gy(Ay,+,0) =0,

G(Ay, )= Ay + Ay Go(Ayyse 1) =22 —2(2+sinwt) A,

Step 4. Assume
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(4.51)

(4.52)

(4.53)
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Vi, G, (A, .1)=0, (4.55)
then the relationship between 4, can be obtained:

Ay =aQ+sino)d,, A, =0, A,=Q+sinoni,, A,=0. (4.56)

Step 5. Use the results of Step 4 to check if

Vi20, F(4,,0<0 (i=1-,4). (4.57)

Assume

Ay=Cy A= Ai=c, Ay=—2—, (4.58)
a(2+sin wt) 2 +sin wt

where ¢, and c, are positive constants to be designed. Eq. (4.57) can be satisfied if the

following conditions hold:

E(A,++,1) =2ac, —a(2+sinwt) A, <0,
—2¢, ¢, CoS wf (4.59)

Ey(Ay,,0) = — + A, <0,
(A ) 2+sinwt  a(2+sinwt)’ ha

Ey(Ay,-,1) = 2ac, —(2+sin or) A, <0,

~ —2ac c, @ Cos wt (4.60)
F(Ay, )= 2 ___2 + A, <0.
+(u ) 2+sinwt  (2+sinwr)’ &

However, both results of Eq. (4.59) and Eq. (4.60) show the contradiction: I:“l <0 and 13“2 <0
can not hold in the same time, neither can }7“3 <0 and ]:“4 < 0. To simplify the following work,

assume only ﬁz <0 and 13“4 <0 can hold.

Step 6. Since Eq. (4.57) is not satisfied, i.e.

V20, F(A4,,A)20 (j=13),

. 4.61)
F}((ﬂ”,”-,ﬂm) <0 (k = 2,4),

return to Step 3 and modify the controllers v, and v, by addition of ke and ke,

respectively, where &, and k, are constant gains to be determined. Because V has been
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modified, Eq. (4.54) becomes

E(Ay, )= Ay +2(a+k) A, —a2+sin o)A,
Ey (A, 0) = Aoy = 2a0, + Ay,
Fy(Ay, 1) = Ay + 2(a+ k) Ay — (2 +sin o) Ay,
E,(Ayseoost) = Ay =200, + Aoy,

. (4.62)
G,(A,, 1) =24, + kA, —2a(l+sinwt)A,,,
G, (A, +>1) = —a(2+sin @) Ay, — (2 +sin ),
GS(Z,“,---,t)zkll“, GA4(ﬂ11""’t):k3ﬁ“23’
G (s ost) = Ay + Aty Go(Ayysreest) = 205 + ki Ay —2(2+sin o) Ay,
Repeat Step 4 and Step 5, then the relationship between 4, becomes
. kl . k3

/111=a(2+sma)t)/122—3/112, Ay =0, /133:(2+51na)t)/144—?234, A, =0. (4.63)
Assume

k, c k c

=¢——c¢;, A,=——"1——, =c,——=2>c,, Ay=—-"2—,

hi=a 277 7 aQ+sinar) A =6 2 M 24sinor (4.64)
Ay =6, Ay =cy,

where c,,c,,c;,c, are constants to be designed, and ¢, c, are positive numbers. Eq. (4.57) can

be satisfied if

2(a+k)e, < (k! +ak, +2a+asin ot)c;,

(4a+2asin @t + wcosot)c, > a(2+sinwt)’c,,

: (4.65)
2(a+ky)e, < (ki +ak, +2+sinwt)c,,
(4a+2asin ot + wcoswt)c, > (2+sinwt)’c,.
Step 7. The conditions derived from the above procedure can be summed up as follows:
Ay, =0, A4, =0, (4.66)
k,
¢ >0, ¢ >Elc3,
2(a+k)c, < (k! +ak, +2a+asinwt)c,, (4.67)

(4a+2asin @t + wcosot)c, > a(2+sinwt)’c,,

(2¢, —k,c;)c, > ci(4a+2asin o),
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k3

¢, >0, ¢,>—=c¢,

2(a+ky)e, < (ki +ak,+2+sinot)c,, (4.68)
(4a+2asin ot + wcoswt)c, > (2+sinwt)’c,,

(2¢c, —k,c,)e, > c; (4+2sin o).
Design

kl = —0.4, k3 = —0.4, /123 = 0, /141 = 0>

20
¢ =20,c,=9 = =9, 1, =218, = 4.69
! ’ A A Az a(2 +sin wt) ( )
50
¢, =50,c, =11 =>4, =1, 4,;, =522, 4, =—,
2+ sin wt

such that each condition can be satisfied. Then the elaborate nondiagonal Lyapunov function can

be obtained

V(t, e) = 218@12 +981€2 +2—9€22 + 52283% +1 16384 + 50 ej (470)
a(2+sinwt) 2+ sin wt
and
. .,
V(1,€) = —(4.64+ 4.5sin 1)ef — T2+ 45! +40cost=9sin 7,
(2+sin¢?)
4.71)

56+6sint+50cost—llsin2te2
(2+sin?)? v

—(11.56+11sin¢)el —

Since Lyapunov global asymptotical stability theorem is satisfied, the global generalized

synchronization is achieved. =1, =2, y=3 are chosen in simulation, and the results are

shown in Fig. 4.3-4.4.
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Chapter 12
Highly Robust Pragmatical Generalized Synchronization of Double

Duffing Systems with Uncertain Parameters via Adaptive Control

12.1 Preliminaries
A scheme is proposed to achieve generalized synchronization for two chaotic systems with
uncertain parameters. By the pragmatical asymptotical stability theorem [1-2] using the concept
of probability, we can prove strictly that the common null solution of error dynamics and of

parameter dynamics is actually asymptotically stable.

12.2 Pragmatical Generalized Synchronization Scheme by Adaptive Control
There are two identical nonlinear dynamical systems, and the master system controls the
slave system. The master system is given by
x=Ax+ f(x,B) (12.1)

where x=[x,x,,---x,]" € R" denotes a state vector, 4 is an nxn uncertain constant

coefficient matrix, f is a nonlinear vector function, and B is a vector of uncertain constant
coefficients in f.

The slave system is given by

y=Ay+ f(y.B)+u(t) (12.2)

A~

where y =[y,,7,,--¥,]" € R" denotes a state vector, A4 is an nxn estimated coefficient

A

matrix, B is a vector of estimated coefficients in £, and u(t) = [u,(t),u,(¢),--u,(t)]" € R" s

a control input vector.
Our goal is to design a controller u(¢) so that the state vector of the slave system (12.2)

asymptotically approaches the state vector of the master system (12.1) plus a given chaotic
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vector function F(t)=[F,(¢),F,(t),--F,(t)]" . This is a special kind of generalized

synchronization:
y=G(x)=x+F(@). (12.3)
The synchronization is accomplished when #-—> oo, the limit of the error vector

T

e(t) =[e,,e,,--e, ] approaches zero:

lime=0 (12.4)
t—o0

where
e=x—y+F(@). (12.5)

From Eq. (12.5) we have

e=x—y+F() (12.6)
é=Ax—Ay+ f(x,B)— f(»,B)+ F(t) —u(?). (12.7)

A Lyapunov function V(e, ZC,EC) is chosen as a positive definite function

V(e,A.,B)=—e"e+—A"A +—BB, (12.8)

N | —
N |~
N |~

~ A

where 4=A-A4, B=B-B, ZC and EC are two column matrices whose elements are all the

elements of matrix A and of matrix B, respectively.

Its derivative along any solution of the differential equation system consisting of Eq. (12.7)

and update parameter differential equations for ZC and EC is
V(e A,B)=e[Ax— Ay + Bf (x)— Bf () + E(t)—u(0)] + 4.4 + B.B, (12.9)
where u(?), ZC and fSC are chosen so that ¥ = e’ Ce, C is a diagonal negative definite matrix,

and V is a negative semi-definite function of e and parameter differences ZC and EC. In

current scheme of adaptive synchronization [3-5], traditional Lyapunov asymptotical stability
theorem and Babalat lemma are used to prove the error vector approaches zero, as time

approaches infinity. But the question, why the estimated parameters also approach to the
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uncertain parameters, remains no answer. By pragmatical asymptotical stability theorem, the
question can be answered strictly.

The stability for many problems in real dynamical systems is actual asymptotical stability,
although may not be mathematical asymptotical stability. The mathematical asymptotical
stability demands that trajectories from all initial states in the neighborhood of zero solution
must approach the origin as ¢ — oo. If there are only a small part or even a few of the initial
states from which the trajectories do not approach the origin as ¢ — o, the zero solution is not
mathematically asymptotically stable. However, when the probability of occurrence of an event
is zero, it means the event does not occur actually. If the probability of occurrence of the event
that the trajectries from the initial states are that they do not approach zero when ¢ — oo, is zero,
the stability of zero solution is actual asymptotical stability though it is not mathematical
asymptotical stability. In order to analyze the asymptotical stability of the equilibrium point of
such systems, the pragmatical asymptotical stability theorem is used.

Let X and Y be two manifolds of dimensions m and n(m < n), respectively, and ¢ be a
differentiable map from X to Y, then ¢(X) is a subset of Lebesque measure 0 of ¥ . For an

autonomous system

dx

Ezf(xl,x2,~-~xn) (12.10)

where x=[x,,x,,---x,]" is a state vector, the function f =[f,,f,,"--f,]" is defined on

Dc R" and ||x|| <H>0.Let x=0 be an equilibrium point for the system (12.10). Then

f(0)=0 (12.11)
Definition : The equilibrium point for the system (12.11) is pragmatically asymptotically
stable provided that with initial points on C which is a subset of Lebesque measure 0 of D, the
behaviors of the corresponding trajectories cannot be determined, while with initial points on
D—C, the corresponding trajectories behave as that agree with traditional asymptotical

stability.
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Theorem : Let V =[x,,x,,--x,]" : D — R, be positive definite and analytic on D, such

that the derivative of ¥ through Eq. (12.10), V is negative semi-definite.

Let X be the m-manifold consisted of point set for which Vx#0, V(x)=0 and D is a
n-manifold. If m+1<n, then the equilibrium point of the system is pragmatically
asymptotically stable.

Proof :Since every point of X can be passed by a trajectory of Eq. (12.10), which is one
dimensional, the collection of these trajectories, C, is a (m +1)-manifold [6-7]. If (m+1) <n,
then the collection C is a subset of Lebesque measure 0 of D. By the above definition, the
equilibrium point of the system is pragmatically asymptotically stable.

If an initial point is ergodicly chosen in D, the probability of that the initial point falls on
the collection C is zero. Here, equal probability is assumed for every point chosen as an initial
point in the neighborhood of the equilibrium point. Hence, the event that the initial point is
chosen from collection C does not occur actually. Therefore, under the equal probability
assumption, pragmatical asymptotical stability becomes actual asymptotical stability. When the
initial point falls on D—C, V(x) <0, the corresponding trajectories behave as that agree with
traditional asymptotical stability because by the existence and uniqueness of the solution of
initial-value problem, these trajectories never meet C.

In Eq. (12.8) V is a positive definite function of n variables, i.e. p error state variables and
n—p=m differences between unknown and estimated parameters, while V =e’Ce is a
negative semi-definite function of n variables. Since the number of error state variables is
always more than one, p>1, (m+1)<n is always satisfied, by pragmatical asymptotical
stability theorem we have

lime =0 (12.12)

t—o0
and the estimated parameters approach the uncertain parameters. The pargmatical generalized
synchronizations is obtained. Therefore, the equilibrium point of the system is pragmatically

asymptotically stable. Under the equal probability assumption, it is actually asymptotically
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stable for both error state variables and parameter variables.

12.3 Numerical Results of Pragmatical Generalized Chaos Synchronization of
Two Double Duffing systems by Adaptive Control
12.3.1 Two double Duffing systems with double van der Pol system as goal system

The chaotic states of a goal system, a double van der Pol chaotic system, used as F(¢). For

a double Duffing system [8], the following differential equations are used as master system:

o

"’

d.

e B —ax, —bx, —cx,” +dx,

dt (12.13)
e _

da

d.

% =—fx, - g%, _hx33 + kx,

It consists of two Duffing systems in which two external excitations are replaced by two
coupling terms. It is an autonomous system with four states where a, b, ¢, d, e, g, h, and k are
constant unknown parameters of the systems. The chaotic phase portraits for double Duffing
system and double van der Pol system are shown in Fig.12.1

In  numerical simulation, we take a=0.05b=1c=3,d="7,f=0.0005¢g=1

,h=3andk = -7 . The slave system is described by

Wy _
da
d . ~ . ~
% =—ay, —by, _cy13 +dy,
(12.14)
P _,
a
d .. .
%:_ﬁﬁ — 83 _hy33 +hy,

A

where a, Z;, c, d , J} , &, hand k are estimated parameters.

In order to lead (y,,y,,7;,v,) to (x, +F,(#),x, + F,(t),x; + F;(¢),x, + F,(¢)), we add u;,

uy, u3, and uy4 to each equation of Eq. (12.14), respectively:
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dy,

L=y +u

dt Y2 1

dy R - R A

—%=—dy, - by, —cy13 +dy; +u,

dt (12.15)
dt 4 TU;

dy ~ R ~ ~

7::_]3’4 —8); _hy33 +hky, +u,

Subtracting Eq. (12.15) from Eq. (12.13), we obtain an error dynamics. The initial values

of the master system and the slave system are taken as x,(0)=2, x,(0)=5,
x(0)=1, x,(0)=3,»,(0)=2.1,y,(0)=4.9,y,(0)=0.9and y,(0)=3.1, respectively.

The goal system for generalized synchronization is a double van der Pol chaotic system

[9-10].
4,
a7’
d
% _ —z, +a,(1-byz] )z, + ¢5z,
P (12.16)
dz,
— =z
da
d
% =-z;+a,(1-b,z5)z, +¢,2,

where 613:0.2, b3:1, Cc3= -0.01, a4=-2,b4=1, 0420.3, 21(0):3, 22(0)24, Z3(O):3, and Z4(O):4. We

have

lime, =lim(x, —y, +z,)=0 i=1,2,3,4 (12.17)
t—©

t—
where é=x—-y+z,and

€ =X, —y, U tz

. 3 A N A 3 3 .
e, =—ax, —bx, —cx;” +dx; +ay, +by, +cy, —dy, —u, +z,

. ) (12.18)
€, =X, — YV, — Uy +Z,

. 3 7 ~ ro3 r .

e, =—fx, —gxy —hxy thkx, + fy, + g +hyy —ky, —u, + 2,

where e =x, -y +z, e,=x,—-y,+z,, e;=x;-y;+z;,and e, =x, -y, +z,.
Choose a Lyapunov function in the form of a positive definite function:
1 e o~

V:E(elz+ezz+e32+e42+a2+b2+cz+d2+f2+g2+h2+k2) (12.19)
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where @=(a-a) , b=(b-b),T=(-6 ,d=d-d), f=(f-f), &=(g-9),

A

Z:(h—ﬁ), l;:(k—lg)and a, l;, c, aA’, f, g, hand k are estimates of uncertain

parameters a, b, ¢, d, f, g, hand k respectively. Its time derivative is

V=e(x,—y,—u +z,)

+e,[—ax, —bx, —cx, +dx, +ay, +l;y1 +éy] —c;’yz_ —-u,

—z, +a,(1-b,z} )z, +¢,z,]

tey(x, —y, —u; +2z,) (12.20)
+e,[—fx, —gx; _hx33 + kx, +fAy4 + 8y, +};y33 _]%Vl — Uy

—z,+a,(1-b,z3)z, +c,z,]

FG(=b)+ B (b + T (=) + d (=d) + J (=) + B(=&)+ T (=h)+ k (=F)

Choose
U, =x,—y,+z,+e
uy, =a(y, —x,)+b(y, _xl)+é(yl3 _x13)+d(x3 —Y3)
+[-z,+a,(01-b,z0)z, +c,z, ] +e,(1-G*> +b* +C* +d*) (12.21)
U, =X, =y, +z,+e
uy = [y =x)+ &5 =) + h(yy” —x7) +k(x, = )
+[-z, +a,(1-b,z0)z, Jrc4zl]+e4(l—]~”2 + 82 4h 4k
d=-a=x,e, —de,
B ——b=xe —be,
¢=—C= x e, —Ce,
c? = —aA’ =—x,e, —de
L. T (12.22)
f=—f=xe,-fe,
g=-g=x¢,—ge,
imchexle, — e,
Fokoxe —Fe
The initial values of estimate for uncertain parameters are

4(0)=b(0)=¢(0)=d(0)= f(0)=(0)=h(0)=k(0)=0. Substituting Eq. (12.21) and Eq. (12.22)
into Eq. (12.20), we obtain
V=—e —822 —832 —642 <0 (12.23)
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which is negative semi-definite function of el,ez,e3,e4,c7,5 ,5,67 ,j?,gjz ,l: . The Lyapunov

asymptotical stability theorem is not satisfied. We cannot obtain that the common origin of error
dynamics (12.18) and parameter dynamics (12.22) is asymptotically stable. Now, D is an

8-manifold, »=8 and the number of error state variables p=4. When e;=e;=e;=e4=0 and
5,5,5,67 ,f,gﬁ,/? take  arbitrary values, V=0 , so X is 4-manifold,
m=n—p=8-4=4.m+1<n is satisfied. By pragmatical asymptotical stability theorem,

error vector e approaches zero and the estimated parameters also approach the uncertain

parameters. The pragmatical generalized synchronization is obtained.

~ ~

The equilibrium point e =e,=¢, =¢, —G=b=C=d=f=g=h=k=0 s
pragmatically asymptotically stable. Under the assumption of equal probability, it is actually

asymptotically stable. State errors versus time and the estimates of uncertain parameters are

shown in Fig. 12.2.

12.3.2 Robustness of the above generalized synchronization

For a double Duffing system, the following differential equations are used as master

system:

o

"’

d.
e —ax, —bx, —cx,;” +dx; + Af,

dt (12.24)
@y

da

dx4 3
E:—fx4 —gx, —hx; +kx, + Af,

A slave system is described by
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dy,

L=y +u

dt Y 1

dy, A 2 A3, g

—==-ay, —by, —c¢y,” +dy, +u, +Af,

dt (12.25)
di 4 TU3

dy, _ . p3 7

;:_ﬁﬁ_g%_hys +hy +u, + A,

They are two double Duffing systems with disturbance Af,(z,x,y,z)and Af,(t,x,y,z)

respectively.

In  simulation, the parameters of the master system in chosen as
a=0.05b=1L,c=3,d=7,f=0.0005,g =1,h=3,k=-7. The initial values of the master
system and the slave system are taken as x;(0)=2, x2(0)=5, x3(0)=1, x4(0)=3, y1(0)=2.1, 1,(0)=4.9,
v3(0)=0.9, and y4(0)=3.1, respectively.

Let

Afl(t?x:y) = a(xi — Vi +Zi)rl(tvx)
Afz(tax’y) = a(xi Vi +Z[)F2(t’y)

where I'(¢,x) is the Gaussian noise and I,(#,y) is the Rayleigh noise, « is the strength

i=2,4 (12.26)

constant. Since both disturbances are the products of chaos and noise, they are highly

perturbative.

The goal system for generalized synchronization is a double Van der Pol chaotic

LS
7’
d.
% -z, +a,(1 —b3212 )z, + ¢z,
12.27
- (12.27)
—_— =7z
d
d.
% —z,+a,(1-b,z})z, +c,z,
dt
We demand
lime, =lim(x, =y, +z,) =0, i=1,2,3,4
[—>0 t—>0
then
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e=x—-y+z,
and
€ =X, —y, —u +z
. 3 A N A 3 3 .
é, =—ax, —bx, —cx;” +dx, +ay, +by, +cy,” —dy, —u, + (A, —Af,)+ Z,
€3 =X, — Yy~ U3+ 2,

&y =—f, —gx, —hx] ke + fo, + 8y +hy,” —ky, —u, + (A, — Af,) + 2,

(12.28)

wheree, =x, -y, +z,, e,=x,-y,+2,, e;=X;—y,+z;, and e, =x, -y, +z,. Choose a

Lyapunov function in the form of a positive definite function:

V=%(€lz+€22+€32+€42+52+52+52+52+?2+§2+}72+;2) (1229)

where @=(a-a) , b=(b-b),T=(-¢ ,d=d-d), f=(f-f), &=(g-9),

A

Z:(h—ﬁ), l;:(k—lg)and a, l;, c, aA’, f, g, hand k are estimates of uncertain
parameters a, b, ¢, d, f, g, hand k respectively.

Its time derivative is

V=el(x,—y,—u +z,)

+e,[—ax, —bx, —cx13 +dx, +ay, Jrl;yl +éyl3 —aA’y3 —-u,

—z, +a,(1-b,z} )z, +¢,z,]

+ey(x, —y, —us +z,) (12.30)
+e,[—fr, —gx, _hx33 +hx, + fy, + gy, +hy33 —ky, —u,

— 2z +a4(1—b4232)z4 +c,2,]

+ (A +b(~B)+E(=0)+d (—d) + F(—f) + 8(=&) + h (—h) + k (—k)

Choose

U =% =y, tz,+e

u, =a(y, _x2)+[;(y1 _x1)+é(y13 _x13)+62(x3 - ¥s)

+[-z,+a,(0-b,z})z, +c,z,]+e,(1-G*> +b* +C* +d?) (12.31)
U, =x, -y, +z,+e,

Uy :]}(y4 _x4)+§(y3 _x3)+};(J/33 _x33)+]€(x1 -»)

+[-z, +a,(0-b,z)z, +c,z ) +e,(1- [+ 82 +h2+k?)
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=—a=x,e, —de,

Q-

F = fexe _Fe,
c=—C= x’e, —Ce,
d=—-d=—xe,—de
L. o (12.32)
J==1=x4e, - fe,
g =—&=xe, - ge,
o hexie, e,
Fo b xe Fe.

The initial values of estimate for uncertain parameters are &(0)=I;(O) =é(0)=c§(0)

= £(0)=g(0)=h(0)=k(0)=0.

Substituting Eq. (12.31) and Eq. (12.32) into Eq. (12.30), we obtain

V=—e'-e’—e —e, <0 (12.33)
which is negative semi-definite function of el,ez,e3,e4,c7,5 ,5,67 ,j?,gjz ,l: . The Lyapunov

asymptotical stability theorem is not satisfied. We cannot obtain that the common origin of error
dynamics (12.28) and parameter dynamics (12.32) is asymptotically stable. Now, D is an

8-manifold, »=8 and the number of error state variables p=4. When e;=e,=e;= e4=0 and

m+1<n is satisfied. By pragmatical asymptotical stability theorem, when a =0~12, the
error vector e approaches zero and the estimated parameters also approach the uncertain

parameters. The pragmatical generalized synchronization is obtained.

~ ~

The equilibrium point e =e,=e,=e,=d=b=Cc=d=f=g=h=k=0 is
pragmatically asymptotically stable. Under the assumption of equal probability, it is actually

asymptotically stable. State errors versus time and the estimates of uncertain parameters with

a =11are shown in Fig.12.3. From Fig.12.3, the robustness of the generalized synchronization
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is very satisfactory when o <11. i.e. when there are strong highly perturbative disturbances.

The robustness obtained is very high.
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Fig 12.1 (a) The chaotic phase portrait for the double Duffing system,
(b) The chaotic phase portrait for the double van der Pol system.
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Chapter 14
Chaos-excited Synchronization of Uncopuled Double

Van der Pol systems

14.1 Preliminaries

Chaos synchronization is an important problem in nonlinear science. Since the discovery of
chaos synchronization by Pecora and Carroll [1], there have been tremendous interests in
studying the synchronization of various chaotic systems [2—16]. Most of synchronizations can
only realize when there exist various couplings between two chaotic systems. A major drawback
of these approaches is that they, to some extent, require mutually coupled structures. In practice,
such as in physical and electrical systems, sometimes it is difficult even impossible to couple two
chaotic systems. In comparison with coupled chaotic systems, synchronization between the
uncoupled chaotic systems has many advantages [17,18]. In this Chapter, the variable of a third
double van der Pol system substituted for the strength of two corresponding mutual coupling term
of two identical chaotic double van der Pol system, give rise to their complete synchronization
(CS) or anti-synchronization (AS). Numerical simulations show that either CS or AS depends on

initial conditions and on the strengths of the substituted variable.

14.2 Synchronization between uncoupled double van der Pol system
A van der Pol [19-21] oscillator driven by a periodic excitation is considered. The equation

of motion can be written as:
¥+ @ox +ax(x>—-1)—-bsin ot =0 (14.1)

where ¢, a, b are constant parameters and b sin w ¢ is an external excitation . In Eq.
(14.1), the linear term stands for a conservative harmonic force which determines the intrinsic
oscillation frequency. The self-sustaining mechanism which is responsible for the perpetual
oscillation rests on the nonlinear term. Energy exchange with the external agent depends on the
magnitude of displacement [x| and on the sign of velocity x. During a complete cycle of
oscillation, the energy is dissipated if displacement x(t) is large than one, and that energy is fed-in
if [x] < 1. The time-dependent term stands for the external driving force with amplitude b and

frequency o .Eq. (14.1) can be rewritten as two first order equations:

X=y
14.2
y=-px+a(l-x*)y+ bsin ot (142)

The double van der Pol system studied in this Chapter consists of two van der Pol systems with
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mutual coupling terms instead of two external excitations:

dxi
P
dy
dr
du
dr

% =—w+e(l- fin*)vi+dx

4!

=—xi+b(l—cx*)yi+am
(14.3)

=Vi

where au, dx; are mutual coupling terms. Whena=0.04 ,b=0.2,c=12,d=-03,e=2,f=1,
chaos of the system are illustrated by Lyapunov exponent diagram (Fig.14.1) and phase portrait
(Fig.14.2).

Take system (14.3) as master system, the slave system is

dx>
—_— 2

dt 4

dy> 2
o —x2+b(1—cx2")y2+au

14.4

duz ( )
—=wm

dt

dvz 2
— =—w2+e(l— fu2")v2+dx2

dt

A third double van der Pol system is given:
dxs
—_— 3
dt 4
% =—x3+b(1—cx3’) y3+aus
14.5

dus ( )
— =W

dt

dvs 2
s —us+e(l— fus”)vs+dxs

Substituting kxs or ky; for both a in system (14.3) and system (14.4), respectively. and
giving suitable values for k and initial conditions, we obtain that two system (14.3) and system

(14.4) are either synchronized or anti-synchronized.

14.3 Numerical simulations

Matlab method is used to all of the simulations with time step 0.01. The parameters of two
systems (14.3) and system (14.4) are givenas a=0.04,b=0.2,c=12,d=-03,e=2,f=1to
ensure the chaotic behavior. To verify CS and AS, it is convenient to introduce the following
coordinate transformation: E;= (x; + x2) and e;= (X; — X») and the same transformation for y, u

and v variables. Therefore, the new coordinate systems (E;, E, Es E4) and (e, e, €3, e4) represent
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the sum and difference motions of the original coordinate system, respectively. We can easily see
that the (e, e2, €3, e4) subspace represents the CS case, and the (E;, E,, Es, E4) subspace for the AS

one.

Choice A

Take kx; instead of both a in system (14.3) and system (14.4), and take (x;, y1, u, vi)=(3, 4,
3, 4), (X2, ¥2, Uz, v2) = (-3, 4, -3, 4) as the initial conditions of system (14.3) and system (14.4).
For Fig. 14.3, k =1 and for Fig. 14.4, k =0.9. Fig. 14.3 and Fig. 14.4 show the time-series of AS
(case (a)) and CS (case (b)) phenomena for different k, respectively. These simulation results
indicate that the final state develops to CS or AS, depending sensitively on k in spite of the
identical initial conditions in both cases. For Fig. 14.3, e4 (CS), E; (AS), E; (AS), converge to
zero, while the other coordinates remain chaotic. For Fig. 14.4, on the other hand, only E; (AS)
converges to zero.

Depending on the initial conditions both AS and CS can also be observed. To study how
these phenomena depend upon the initial conditions, we change the initial conditions for fixed k.
The results are shown in Figs. 14.5 and 14.6. Fig. 14.5 (a) shows that the differences e; =y; —y»
and e;=u; —u; tend to zero. In Fig. 14.5 (b), the sum E4=v; + v, tends to zero. Comparing Fig.
14.3 with Fig. 14.5, one can find that they have different behaviors. The only reason lies in the
different initial conditions. Similar result also exists by comparing Fig. 14.4 with Fig. 14.6. But
we have not observed the intermittent synchronization and AS states as declared in Ref. [22].

The simulation results are shown in Fig. 14.7 for different value of k. The solid circle “e”
and triangle “A” correspond to CS where parameter values k leads to synchronized behavior.
While white circle “o” and triangle “A” indicate AS. The blank space means no exist AS or CS.
We can see that the system (14.3) and system (14.4) tend to either AS or CS by using
combination of different value of k and initial values. However, as we can see from Fig. 14.7,
both cases agree well with the fact that the system goes to either synchronized state or
anti-synchronized state depending on initial values and on k. When k = 0.8 ~ 0.82, neither

synchronization nor anti-synchronization is found.

Choice B

Take kx; instead of both a in system (14.3) and system (14.4), and take (x1, y1, ui, vi) =(3, 4,
3, 4), (X2, y2, Uz, v2) = (-3, 4, 3, 4) as the initial conditions of system (14.3) and system (14.4). For
Fig. 14.8, k= 0.97 and for Fig. 14.9, k = 1.02. Fig. 14.8 and Fig. 14.9 show the time-series of AS
(case (c)) and CS (case (d)) phenomena for different k, respectively. These simulation results
indicate that the final state develops to CS or AS, depending sensitively on k in spite of the
identical initial conditions in both cases. For Fig. 14.8, e, (CS), e3 (CS), E4 (AS), converge to zero,
while the other coordinates remain chaotic. For the Fig. 14.9, on the other hand, e, (CS), e; (CS),
E4 (AS) also converge to zero.

Depending on the initial conditions, both AS and CS can also be observed. To study how

these phenomena depend upon the initial conditions, we change the initial conditions for fixed k.
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The results are shown in Figs. 14.10 and 14.11. Fig. 14.10 (a) shows that the difference es=v; — v
tends to zero. In Fig. 14.10 (b), the sums E,=y, +y,, Es=u; + u, tend to zero. Comparing Fig.
14.8 with Fig. 14.10 one can find that they have different behaviors. The only reason lies in the
different initial conditions. Similar result also exists by comparing Fig. 14.9 with Fig. 14.11. But
we have not observed the intermittent synchronization and AS states as declared in Ref. [22].
The simulation results are shown in Fig. 14.12 for different value of k. The solid circle “e”
and triangle “A” correspond to CS where parameter values k leads to synchronized behavior.
While white circle “o” and triangle “A” indicate AS. The blank space means no exist AS or CS.
We can see that the system (14.3) and system (14.4) tend to either AS or CS by using
combination of different value of k and initial values. However, as we can see from Fig. 14.12,
both cases agree well with the fact that the system goes to either synchronized state or
anti-synchronized state depending on initial values and on k. When k =0.9 ~0.96 and 1.04 ~ 1.10,

neither synchronization nor anti-synchronization is found.

85



0.05 T T T T T T T T T T

-0.05 - B

L1 E B

02F B

025+ B

-035F B

Fig. 14.1. Lyapunov exponent diagram of the double van der Pol system for ¢ between 1.0 and
3.0

a=0.04 b=02 =12 d=03,e=2 =1

08 5 T T T T T T T T T
st 1 ar 1
5l J
naf _
S5l J
naf — W |
-~ of p Y -
02+ | -1F 4
a2t i
04t ]
At i
06} 1 4 |
g . . . . . . ‘ 5 . . . . . . . . .
08 06 04 02 [ 02 04 06 08 25 2 45 4 05 0 05 1 15 2 25
4 u
Fig. 14.2. Phase portraits of the double van der Pol system
AAAmA2AAN , 3434003434
10 T T T ' '
O AN A AN AN AAAPAA W O
5 W ANV AN
2 . . . .
P . . . .
il 500 7000 1500 2000 2500 ] iy (1170 10 210 200
B O oo
5 , . L | -0 L . . \
ot 500 1000 1500 2000 2500 a <1l JII0 D 2D 2500
g 0 o M’M -
0 , , . . 2 , ‘ . .
ED A0 1000 1600 2000 2600 1DD A00 1000 1500 2000 2500
30 b o o
& . . . . m h ! ! !
0 500 000 1500 2000 200 o &0 1000 1800 2000 2600

(2) : (b) :

Fig. 14.3. CS and AS for initial condition(xz, y2, Uz, v2)= (-3, 4, -3, 4) and k=1,
(a) €1,€2,C3, ¢4 (b) El, Ez, E3, E4.

86



3434and34.3.4 . 3434and3 4,34

10 T T T T ! ' ' !
T O MO AN m

- ‘ ‘ . ‘ 2 L ‘ ‘ .

: 500 7000 1500 2000 2500 ] iy (1170 10 210 2500
= oo

4 . . . -10 ! . ! !

1ol 500 1000 1500 2000 2500 a <1l JII0 D 2D 2500
3 0 mo

A0 , , . . 2 . . . .

ED A00 1000 1600 2000 2600 1] A00 1000 1500 2000 2500
3 DM

5 . . L . ) ! f

0 500 1000 1500 2000 2500 il 500 1000 1500 2000 2500

(2) : (b) :

(a)

Fig. 14.4. AS for initial condition (X2, y2, U2, v2) = (-3, 4, -3, 4) and k=0.9,
(a) €1,€2,C3, ¢4 (b) El, Ez, E3, E4.

34,3 4and3 4,34 343 4and343-4

2 T T 10 T T T
50 T ARV
P . ‘ ‘ . . ‘ . ‘ .
® A00 1000 1500 2000 2500 1} 500 1000 1500 2000 2500
G0 u
. . ‘ ‘ . ) ‘ . ‘ .
1] A00 1000 1500 2000 2500 0 500 1000 1500 2000 2600
2 T T T T
R — i
1] A00 1000 1500 2000 2500 o 500 1000 1500 2000 2600
T T 5 T T T T
3 o s
a A00 1000 1500 2000 2500 1} 500 1000 1500 2000 2600

t (b) 1
Fig. 14.5. CS and AS for initial condition (X2, y2, Uz, v2) = (3, -4, 3, -4) and k=1,
(a) €1,€2,C3, ¢4 (b) El, Ez, E3, E4.

34,3 4and3 4,34 343 4and3-43-4

2 . ; . -
w0 L O RN YA AR
2 L L L L 10 L L L L
® iy (1170 10 210 2500 D 500 1000 1500 2000 2500
o 0 o0
-0 L L L L 5 L L L L
0 500 1000 1500 2000 2500 hi 500 000 1500 2000 2500
T T T T 10 T T T T
20 @ oo
3 . . . . " . L .
1] A00 1000 1500 2000 2500 1] 500 1000 1500 2000 2500
3 1 0 o
i 500 1000 1500 2000 2500 i 500 1000 1500 2000 2600

t (b) t
Fig. 14.6. CS for initial condition(xa, y2, Uz, v2) = (3, -4, 3, -4) and k=0.9,
(a) €1,€2,C3, €4 (b) El, Ez, E3, E4.

87



OOO0OO0OO0OO0OO0OO0OOOLOOOOLOOOOOO
@® :casca:CS
(O :casea:AS
A :caseb:CS
/\ :caseb:AS
A A A A AAAAAAAAAAAAAANANAN

JANWANWAN

0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.0 1.01

k

Fig. 14.7. CS or AS vs. the k for different initial conditions,
case a: (X1, y1, u1, vi) = (3,4, 3, 4) and (X2, y2, 2, v2) = (-3, 4, -3, 4)
case b: (x1, y1, u, vi) = (3,4, 3, 4) and (x2, y2, U, v2) = (3, -4, 3, -4)

343 4and3 4,34

10 343 4and 3,434
5
5 0
=
T O
a0 . . . .
i 500 1000 1500 2000 2500 = . . \ .
2 L 500 1000 1500 2000 2500
S WU TR
] i i g oo
5 . . L .
0 500 1000 1500 2000 2500 -10 . . . .
5 s 500 1000 1500 2000 2500
3 nw 9 o
5 ‘ ‘ . ‘ - ‘ ‘ . ‘
12 500 1000 1500 2000 2500 'WD =0 000 500 000 00
’ Dm i DM
10 L I L L 10 L L L L
i 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

(a) ‘ (b) ‘

Fig. 14.8. CS and AS for initial condition(xa, y2, Uz, v2) = (-3, 4, 3, 4) and k=0.97,
(a) €1,€2,€3, C4 (b) El, Ez, Eg, E4.

3434and-3 434 343 4and-343.4

10 5
I e ——— T 0 AL A M AN

" . ‘ ‘ . . ‘ . ‘ .

2D A00 1000 1500 2000 2500 WDD 500 1000 1500 2000 2500
0 @ o S

. . ‘ ‘ . " ‘ . ‘ .

5El 500 1000 1500 2000 2500 WDD 500 1000 1500 2000 2500
3 o o

. . ‘ ‘ . " ‘ . ‘ .

mEl 500 1000 1500 2000 2500 WDD 500 1000 1500 2000 2500
T 0 i D)* T

0 ! : | " ‘ . ‘ .

500 1000 1500 2000 2500 0 500 1000 1500 2000 25800

(@) : (b) :
Fig. 14.9. CS and AS for initial condition (X2, y2, Uz, v2) = (-3, 4, 3, 4) and k=1.02,
(a) €1,€2,€3, C4 (b) El, Ez, Eg, E4.

88



343 dand3 4,3 -4

3,43 dand3 434

& 10
= 0 w O
5 1 | ! ! a0 . . . .
. 00 1000 1500 2000 2500 i 00 1000 1500 2000 2500
T oop o ur# o
-10 L L L L 2 L L L L
mﬂ SQD WDPD WSPD EDPD 2500 i 500 1000 1500 2000 2500
2 0 o DM
-0 L L L L 5 L L L L
i 500 1000 1500 2000 2500 D 200 1000 1500 2000 2500
3 W 3 o
a0 . . . \ a0 B f h !
i 500 1000 1500 2000 2500 i 500 1000 1500 2000 2500

(a) : (b) :
Fig. 14.10. CS and AS for initial condition (X2, y2, U2, v2) = (3, -4, -3, -4) and k=0.97,
(a) €1,€2,C3, ¢4 (b) El, Ez, E3, E4.

343 dand3 434 3434and3-4-3-4
5 o o 10 - - -
= 0 o 0
5 L L L L 10 L L L I
"o 500 1000 1500 2000 2500 QU 500 1000 1500 2000 2500
10 . - . .
o ol i oo
10 . . . \ 2 . . , .
500 1000 1500 2000 2500 5EI 500 1000 1500 2000 2500
10
Qo0 i W
-0 5

s L L L L L L L
1] 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

ed
3 o B
.3}_
E4
a o

(a) 500 1000 : 1500 2000 2500 (b) 0 500 1000 1500 2000 2500
Fig. 14.11. CS and AS for initial condition (X2, y2, Uz, v2) = (3, -4, -3, -4) and k=1.02,

(a) €1,€2,C3, ¢4 (b) El, Ez, E3, E4.

L N 00
O O ORONO.

:casec: CS
:case c: AS
:cased: CS
:cased: AS

>p» O @

A A A A A
AN A VANWANWAN

0.900.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10
k

Fig. 14.12. CS or AS vs. the k for different initial conditions,
case c: (x1, y1, u, vi) = (3,4, 3, 4) and (x2, y2, U2, v2) = (-3, 4, 3, 4)
casc d: (Xla YIa ug, Vi ) = (3’ 45 3, 4) and (X25 Y2, Uy, V2) = (33 _45 _39 _4)

89



Reference

[1] Pecora L.M., Carroll T.L., Synchronization in chaotic systems, Phys Rev Lett, Volume: 64,
(1990), pp. 821--824

[2] Ge, ZM., Yu, T.C., and Chen, Y.S., “Chaos synchronization of a horizontal platform system”,
Journal of Sound and Vibration 731-49, 2003.

[3] Ge, ZM., Lin, T.N., “Chaos, chaos control and synchronization of electro-mechanical
gyrostat system”, Journal of Sound and Vibration Vol. 259; No.3, 2003.

[4] Ge, Z.M., Chen, Y.S., “Synchronization of unidirectional coupled chaotic systems via partial
stability”, Chaos, Solitons and Fractals Vol. 21; 101-11, 2004.

[5] Ge, Z.M., Chen, C.C., “Phase synchronization of coupled chaotic multiple time scales
systems”, Chaos, Solitons and Fractals Vol. 20; 639-47, 2004.

[6] Ge, Z.M., Lin, C.C. and Chen, Y.S., “Chaos, chaos control and synchronization of vibromrter
system”, Journal of Mechanical Engineering Science Vol. 218; 1001-20, 2004.

[7] Chen, H.K., Lin, T.N. and Chen, J.H., “The stability of chaos synchronization of the Japanese
attractors and its application”, Japanese Journal of Applied Physics Vol. 42; No. 12, 7603-10,
2003.

[8] Ge, ZM. and Leu, W.Y., “Chaos synchronization and parameter identification for
loudspeaker system” Chaos, Solitons and Fractals Vol. 21; 1231-47, 2004.

[9] Ge, ZM. and Chang, C.M., “Chaos synchronization and parameter identification for single
time scale brushless DC motor”, Chaos, Solitons and Fractals Vol. 20; 889-903, 2004.

[10] Ge, Z.M. and Lee, J.K., “Chaos synchronization and parameter identification for gyroscope
system”, Applied Mathematics and Computation, Vol. 63; 667-82, 2004.

[11] Ge, Z.M. and Cheng, J.W., “Chaos synchronization and parameter identification of three
time scales brushless DC motor”, Chaos, Solitons and Fractals Vol. 24; 597-616, 2005.

[12] Ge, Z.M. and Wu, H.W., “Chaos synchronization and chaos anticontrol of a suspended track
with moving loads”, Journal of Sound and Vibration Vol. 270; 685-712, 2004.

[13] Ge, Z.M. and Yu, C.Y. and Chen, Y.S., “Chaos synchronization and chaos anticontrol of a
rotational supported simple pendulum”, JSME International Journal, Series C,Vol. 47; No. 1,
233-41, 2004.

[14] Ge, Z.M., Cheng, J.W. and Chen ,Y.S., “Chaos anticontrol and synchronization of three time
scales brushless DC motor system”, Chaos, Solitons and Fractals Vol. 22; 1165-82, 2004.

[15] Ge, Z.M. and Lee, C.I., “Anticontrol and synchronization of chaos for an autonomous
rotational machine system with a hexagonal centrifugal governor”, Chaos, Solitons and
Fractals Vol. 282; 635-48, 2005.

[16] Ge, ZM. and Lee, C.I., “Control, anticontrol and synchronization of chaos for an
autonomous rotational machine system with time-delay”, Chaos, Solitons and Fractals Vol.
23; 1855-64, 2005.

[17] Yang S.P., Niu H.Y., Tian G., et al. Synchronization chaos by driving parameter, Acta Phys.

90



Sin., Volume: 50, (2001),pp.619--623
[18] Dai D., Ma X.K., Chaos synchronization by using intermittent parametric adaptive control

method, Phys. Lett. A, Volume: 288, (2001), pp. 23--28

[19] Van der Pol, B. “On relaxation oscillations”, Philosophical Magazine 2, 978-92, 1926.

[20] Van der Pol, B. and van der Mark, J. “Frequency demultiplication”, Nature 120, 363-4, 1927.

[21] Van der Pol, B. and van der Mark, J. “The heartbeat considered as a relaxation oscillation
and an electrical model of the heart”, Philosophical Magazine 6, 763-75, 1928.

[22] Kim C.-M., Rim S., Kye W.-H., Ryu J.-W., Park Y.-J., Anti-synchronization of chaotic
oscillators, Phys. Lett. A, Volume: 320, (2003), pp. 39--46

91



Chapter 22
Chaos Control and Synchronization of Double
Mackey-Glass System by Noise Excitation of

Parameters

22.1 Preliminaries

In recent years, chaos control and chaos synchronization have been received a great deal of
interests among scientists from various fields. The chaotic system performances are often desired
to be avoided and to be controlled to achieve some specific behavior. In 1990, Ott et al. [1]
utilizeed small time-dependent perturbations of an available system parameter to convert a
chaotic attractor to any one of a large number of possible attracting time-periodic motions. In [2]
a linear feedback controller is designed to control the Chen system. An algorithm for suppressing
the chaotic oscillation in non-linear systems with singular Jacobian matrices has been developed
based on the Lyapunov—Krasovskii method by Kuang et al. [3]. Linear feedback control and
adaptive control algorithm are used to control chaos effectively in [4]. Many different techniques
and methods have been proposed to achieve chaos control, which include sliding method control,
impulsive control method, linear feedback control, nonlinear feedback control and H_ control
method etc.

Since the pioneering work was given by Pecorra and Carroll [5], chaos synchronization
[6-12] has become an important topic in physical engineering sciences. Many effective control
schemes have been developed in a variety of fields, such as parameters adaptive control [13-21],
observer based control [22, 23], variable structure control [24, 25], active control [26-35],
nonlinear control [36-38] and so on. The applications of chaos synchronization are implemented
extensively in secure communications, chemical, physical, and biological systems and neural

networks.
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In this , a control method called parameter excited method [39] is applied to control a double
Mackey-Glass chaotic system and to synchronize two uncoupled double Mackey-Glass systems.
By replacing a parameter of the chaotic system by a noise signal, its chaotic motion can be
eliminated. By replacing the corresponding parameters of two identical chaotic systems by a
noise signal, these two chaotic systems with different initial conditions can be synchronized. For
some chaotic systems, such as physical and electrical systems, which are difficult or even

impossible to couple, this method is effective and potential in practice [40].

22.2 Chaos control and synchronization for uncoupled double Mackey-Glass
system by parameter excited method

We consider a double Mackey-Glass system as follow:

) bx
X = ———rx,
1+x; 2.1)
. bx,. '
X, = —rx, — X,
n
I+x;,

where x,, x,are state variables and x, =x,(t—7), (i=12), 7 isatimedelay,and b, r, n
are constant parameter. Eq. (22.1) is a generalized system of a classical system established by
Mackey and Glass [41]. It is a model of blood production of patient with leukemia.

We keep the delay time fixed at 20 second (7 = 20) and the parameters are taken as b=0.2,
r=0.1, n=10. The initial values are given as (x,,,X,,)=(0.1,0.1). With these data, the
equilibrium point (0,0,0) of Eq. (22.1) is unstable and leads to chaotic motion. The bifurcation
diagram is shown in Fig. 22.1 [42]. By replacing a parameter by a noise signal, the chaotic
motion can be eliminated and the equilibrium point becomes asymptotically stable.

Next, a second identical double Mackey-Glass system is given by

b
Y = 1+ylrn =1
Yie 22.2)
V, = 2% —7y, =y
oy

where the parameters and time delay 7 are the same as Eq. (22.1) but with different initial
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values (4, 7,) =(0.2,0.2). We use the parameter excited method to synchronize these two
identical double Mackey-Glass chaotic systems with different initial conditions. By replacing the
corresponding parameters of these two chaotic systems by a noise signal, the synchronizations are

achieved successfully in major cases.

22.3 Numerical simulations of chaos control

In Sections 22.3 and 22.4, the numerical simulations which carried out by Simulink
environment of MATLAB are presented. The corresponding parameter is replaced by Gaussian
noise, Rayleigh noise, Rician noise and uniform noise respectively and the noise strength is
adjustable. With suitable noise strengths, the chaotic motions of double Mackey-Glass system can

be eliminated, and the motions converge to zero.

22.3.1 Gaussian noise

The noise that has a probability density function (PDF) of the normal distribution

1 ~(x-p)* /25
= 22.3
f(x) Toro e (22.3)

is called Gaussian distributed noise, where x is the mean and o’ is the variance of the
random variable. The Simulink Communication toolbox provides the Gaussian noise generator
block. In our case, we take the mean as 0 and the variance as 1. Therefore, x is a constant
vector and K is a constant matrix.

Parameter b and parameter r of Eq. (22.1) are substituted respectively by p,F, where
F, is Gaussian noise and p, is the noise strength. When b is replaced, the chaotic behavior is
suppressed and the system is asymptotically stable at the origin as p, < 0.6. Fig 22.2 shows the
time histories of the variables x, and x, with noise strength p, =0.5. When r is replaced,
the trajectories gradually increase unbounded when p, >0.5 and chaotic behavior cannot

eliminated with any noise strength.
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22.3.2 Rayleigh noise

The probability density function of Rayleigh distributed noise is

2
f(x) = %exl{zéj x=20 (22.4)
0 x<0
where o is known as the fading envelope of the Rayleigh distribution. The Simulink
Communication toolbox provides the Rayleigh noise generator block. We specify o =1 in the
case.

Parameter » of Eq. (22.1) is substituted by p,F, where F, is Rayleigh noise and p, is
the noise strength. The chaotic motion of the system can be eliminated when p, >0.165. In
other words, noise excitation of parameters makes the double Mackey-Glass system
asymptotically stable at the origin. The time histories of the variables x, and x, with noise

strength 0.2 are shown in Fig. 22.3.

22.3.3 Rician noise

The probability density function of Rician distributed noise is

2 2
iz[om—fexp—x +;n x>0
f(x)=10 c 20 (22.5)

0 x<0

where o 1is the standard deviation of the Gaussian distribution that underlies the Rician

distribution noise, /,, is the modified Oth-order Bessel function of the first kind given by

I,(y) = i [er=ar (22.6)

And m is defined as m’=m; +m, where m, and m, are the mean values of two

independent Gaussian components. The Simulink Communication toolbox provides the Rician
noise generator block. We assign that o =1 and K-factor 2 in the case, which the K-factor has a
definition as a form of K =m*/20” .
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Parameter r of Eq. (22.1) is substituted by p,F, where F, is Rician noise and p, is
the noise strength. The chaotic motion of the system can be eliminated as p, > 0.08. Numerical

simulation, illustrated in Fig. 22.4, shows that the motion is asymptotically stabilized to the

equilibrium point (0,0,0) by the noise excitation method with noise strength p, =0.1.

22.3.4Uniform noise

The probability density function of Uniform distributed noise is

o
F=ld—e Vesx=d (22.7)

0 otherwise

The mean value of this density function x and its variance o are given as follow:

ﬂ:c;d (22.8)
_ 2
U%:MI;) (22.9)

The Simulink Communication toolbox provides the Rician noise generator block. We specity
lower bound ¢ =0 and upper bound d =1 in the case.

Parameter r of Eq. (22.1) is substituted by p,F, where F, is uniform noise and p, is
the noise strength. When p, > 0.4, the chaotic motion can be eliminated and the system is
asymptotically stable at the origin. Fig. 22.5 illustrates the time histories of the states of the

system with noise strength p, =0.5.

22.4 Numerical simulations of chaos synchronizations

In this section, we use the parameter excited method by replacing the corresponding
parameters by Gaussian noise, Rayleigh noise, Rician noise and uniform noise respectively, to
synchronize two uncoupled double Mackey-Glass systems. The system parameter » and r are
substituted by noise respectively and the noise strength is variable. The error states which are

defined as e, =x,—y,, (i=1,2) will converge to zero as ¢t —co when the strength is chosen

properly. The results of simulations show that the synchronizations are successfully achieved via
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parameter excited method in major cases.

22.4.1 Gaussian noise

We replace two corresponding parameters b and two corresponding parameters r of the
system (22.1) and (22.2) by p,F, respectively where F, is Gaussian noise and p, is the noise
strength. When b is replaced, the trajectory of the states converge to zero with p, < 0.6. When
the strength is increased, the error states oscillate. However, in a small range of 0.61~0.625, the
systems show temporary chaos synchronization [43]. Fig.22.6 shows error e,,e, and the time
histories of the state variables with noise strength p, = 0.625. As r is replaced, the trajectory of
the states gradually increase unbounded when the strength is larger than 0.5. In other words,
Gaussian noise excitation can be used only when the noise strength p, <0.5 to synchronize two
identical double Mackey-Glass systems with different initial conditions. Fig.22.7 shows error

e,e, and the time histories of the state variables with noise strength p, = 0.05.

22.4.2 Rayleigh noise

We replace two corresponding parameters b and two corresponding parameters r of the
system (22.1) and (22.2) by p,F, respectively where F, is Rayleigh noise and p, is the
noise strength. The synchronizations are successfully achieved in both cases. When b is
replaced, we assume that the noise strength

p, =025, i=12,.,50 (22.10)
Fig.22.8 shows the result of the simulation. We find that the synchronizations of two double
Mackey-Glass systems are achieved with major noise strength, but failed with minor cases.
Fig.22.9 and Fig.22.10 show the error states and the phase portraits of the systems with p, =0.5
and p, =9.25. The error states approach to zero in the former case, but not in the latter case.
However, if we choose the strength appropriately, the chaos synchronizations are accomplished.

When two corresponding » are substituted, only a small interval of the noise strength

0.105< p, £0.16 leads to synchronization. Error e, e, and the phase portraits of the systems
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with p, =0.16 are shown in Fig. 22.11. Besides, in a small range of 0.08~0.1, the systems show
temporary chaos synchronization. Fig.22.12 shows error e;,e, and the time histories of the state
variables with noise strength p, =0.08. For the values of p,other than these ranges, chaos

synchronization cannot be obtained.

22.4.3 Rician noise

We replace two corresponding parameter b and two corresponding parameters » of the
system (22.1) and (22.2) with p,F, respectively where F, is Rician noise and p, is the noise
strength. In the case of b, we assume that the noise strength

p, =025, i=12,.50 (22.11)
As shown in Fig. 22.12, the Rician noise is more effective than Rayleigh noise. In the range of
0.25 < p, <12.5, the synchronization is achieved except p, takes 1.25, 4.75, 11.25, 12 and
12.25. Fig. 22.14 shows the error states and the phase portraits of the systems with noise strength
p;=95.

In the case of 7, synchronization is obtained only when 0.06 < p, <0.08. Error e, e,
and the phase portraits of the systems with noise strength p, =0.07 are given in Fig. 22.15. The
error states oscillate when p, <0.06 and the state variables of the system converge to zero as

P, > 0.08. Chaos synchronization cannot obtain for the values of p, other than 0.105~0.16.

22.4.4 Uniform noise

We replace two corresponding parameters b and two corresponding parameters » of the
system (22.1) and (22.2) by p,F, respectively where F, is uniform noise and p, is the noise
strength. In the case of b, we assume that the noise strength

p, =025, i=12,.,50 (22.13)

As shown in Fig. 22.16, the synchronization is achieved except for a few p, in the range of
0.25< p, <12.5. Fig. 22.17 shows the error states and the phase portraits of the systems with

noise strength p, =10.25.
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In the case of r, synchronization is obtained only when 0.26 < p, <0.4. Error e, e,
and the phase portraits of the systems with noise strength p, =0.27 are given in Fig. 22.18. The
error states oscillate while p, <0.26 and the states of the system converge to zero as p, >0.4.

Two systems cannot be synchronized with the values of the noise strength other than 0.26~0.4.
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Fig.22.1 The bifurcation diagram for Double Mackey-Glass system.
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Fig.22.2 The time histories of x, (red) and x, (blue) of the double Mackey-Glass system when

parameter b is substituted by a Gaussian noise with noise strength p, =0.5.
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Fig.22.3 The time histories of x, (red)and x, (blue) of the double Mackey-Glass system when

parameter b is substituted by a Rayleigh noise with noise strength p, =0.2.
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Fig.22.4 The time histories of x, (red)and x, (blue) of the double Mackey-Glass system when

parameter b 1is substituted by a Rician noise with noise strength p; =0.1.
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Fig.22.5 The time histories of x, (red)and x, (blue) of the double Mackey-Glass system when

parameter b is substituted by a uniform noise with noise strength p, =0.5.
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Fig.22.6 The error states and the time histories of x,,y, (red) and x,,y, (blue) of the double

Mackey-Glass systems when two corresponding parameters » are substituted by a Gaussian

noise with noise strength p, =0.625.
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Fig.22.7 The error states and the time histories of x,,y, (red) and x,,y, (blue) of the double

Mackey-Glass systems when two corresponding parameters » are substituted by a Gaussian

noise with noise strength p, =0.05.
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Fig.22.8 Two corresponding parameters b are substituted by a Rayleigh noise with

different noise strengths.
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Fig.22.9 The error states and the phase portraits of the double Mackey-Glass systems when two

corresponding parameters b are substituted by a Rayleigh noise with noise strength p, =0.5.
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Fig.22.10 The error states and the phase portraits of the double Mackey-Glass systems when two

corresponding parameters b are substituted by a Rayleigh noise with noise strength p, =9.25.
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Fig.22.11 The error states and the phase portraits of the double Mackey-Glass systems which two

corresponding parameters » are substituted by a Rayleigh noise with noise strength p, =0.16.
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Mackey-Glass systems when two corresponding parameters » are substituted by a Rayleigh
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Fig.22.13 Two corresponding parameters b are substituted by a Rician noise with different
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Fig.22.14 The error states and the phase portraits of the double Mackey-Glass systems when two

corresponding parameters b are substituted by a Rician noise with noise strength p; =5.
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Fig.22.15 The error states and the phase portraits of the double Mackey-Glass systems when two

corresponding parameters r are substituted by a Rician noise with noise strength p, =0.07.

Uniform noise

L 2 * oo o L 2
No chaos
synchronization
G 00000 0 6 00 9000000000000 0000000000000 90000000
Chaos
synchronization

0123456 78910111213

Noise strength

Fig.22.16 Two corresponding parameters b are substituted by a Rician noise with different

noise strengths.
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Fig.22.17 The error states and the phase portraits of the double Mackey-Glass systems when two

corresponding parameters b are substituted by a uniform noise with noise strength p, =10.25.
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Fig.22.18 The error states and the phase portraits of the double Mackey-Glass systems when two

corresponding parameters » are substituted by a uniform noise with noise strength p, =0.27.
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Chapter 23
Temporary Lag and Anticipated Synchronization and
Anti-synchronization of Uncoupled Time-delayed

Chaotic Systems

23.1 Preliminaries

Since the pioneering work was investigated by Pecorra and Carroll [1], Chaos
synchronization [2-8] has become an important topic in engineering science. Many effective
control schemes have been developed in a variety of fields, such as parameters adaptive control
[9-17], observer based control [18, 19], variable structure control [20, 21], active control [22-26],
anti-control [27-33], nonlinear control [34-36] and so on. The applications of chaos
synchronization are implemented extensively including secure communications, chemical,
physical, and biological systems and neural networks.

Recently, the concept of synchronization has been extended to the scope, such as generalized,

lag, anticipating, phase and anti-synchronization. The basic synchronization called complete

synchronization is that the state vectors of the first system x(¢) is equal to the state vectors of
the second system y(¢): y(¢)=x(¢). The lag synchronization [37] is that the state vector of the
second system y delay that of driver systemx: y(¢)=x(¢—T)with positive 7. If T is
negative, we have anticipated synchronization. If the synchronizations are temporary and
intermittent, they are called temporary lag synchronization (TLS) and temporary anticipated
synchronization (TAS). Lag anti-synchronization [38] means y(¢)=-x(¢t—7). When T is
negative, we have anticipated anti-synchronization. If they are temporary and intermittent, they
are called temporary lag anti-synchronization (TLAS) and temporary anticipated
anti-synchronization (TAAS) [39].

It is discovered that TLS, TAS and TALS, TAAS appear for two identical double
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Mackey-Glass systems, without any control scheme or coupling terms, but with different initial

conditions.

23.2 Temporary lag and anticipated synchronization and temporary lag and
anticipated anti-synchronization

Consider the first time-delay chaotic system
x=f(x,x,,t) (23.1)
and second time-delay chaotic system

y=1 Wy, (23.2)

where x,y € R" are n-dimensional state vectors,x = x(f—7) are corresponding time-delay

state vectors, and f:R" — R" defines a vector function in n-dimensional space. The error are

defined as e = x(¢—T)— y(¢) . If the following conditions hold, the systems are in temporary lag

synchronization.

& =Xy Y = 0, i=12,....,p<n, j=12,...m for tr, <t< tr, (23.3)
where x;, y, are the state vectors of the system, T, is the time which x; lag behind y, in

the j-th intervals. When 7, is negative, we have temporary anticipated synchronization.

In the case of anti-synchronization, the states of the systems which have opposite signs, the

error e=x(t—T)+ y(¢t) will converge to zero. Therefore, we can say the temporary lag
anti-synchronization is achieved when the following conditions are satisfied:

e=x,+y,=0, i=12,..,p<n, j=12,....m for Ly SE<tr (23.4)
where x;, y, are the state vectors of the system, T, is the time which x, lag behind y, in

the j-th intervals. When T, is negative, we have temporary anticipated anti-synchronization.

23.3 The lag and anticipated synchronization of two identical double
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Mackey-Glass systems
We consider two double Mackey-Glass systems which consist of two coupled Mackey-Glass

equations [40]:

X, = bx,, —rx
1 n 1
1+ x]
, (23.5)
X, = xzfn —rx, — X,
I+x3,
and
b
Y= ylrn =
1+ylr
, (23.6)
oy
¥, =1+2n —ry, =Y

The system is a model of blood production of patients with leukemia. The variables x,, x, are

the concentration of the mature blood cells in the blood, and x, , x,, are presented the request

of the cells which is made after 7 seconds, i.e. x;, =x,(f—7),(i=12). The time delay 7
indicates the difference between the time of cellular production in the bone marrow and of the
release of mature cells into the blood. According to the observations, the time 7 is large in the
patients with leukemia and the concentration of the blood cells becomes oscillatory.

In our study, we keep the delay time fixed in 20 second (7 =20) and the parameters are
shown as follow:5=0.2, r=0.1, and n=10. The system is chaotic in foregoing conditions as
shown in Fig. 23.1 [41]. All the numerical simulations are implemented by Matlab. The initial
conditions we choose are constant, i.e. the variable x(¢+¢) maintains a constant for
allg e (—7,0).

Fig.23.2 shows the time histories of double Mackey-Glass system with initial conditions

(X,05Xy) = (0.001, 0.001), (¥,5,75) = (0.0015, 0.0015) respectively. Because the similar

characteristics exist for x,, y, andfor x,, y,,we only draw the time histories of x,, y, (Fig.

23.2 (a)~(f)) and the time histories of error, e, = Xir = Wi (Fig. 23.2 (g)~(1)). From Fig. 23.2, the

temporary lag and anticipated synchronizations appear intermittently. Lag synchronizations are

more than anticipated synchronization. In Table I, we marshal the length of the temporary lag

114



(anticipated) synchronization and the lag (anticipated) of x, to y,, which are varied in each
intervals. There are four lag synchronous intervals and two anticipated synchronous intervals
between 30000 seconds. Notice that the longest interval occur at the first interval, about 1200
seconds. Others are hundreds seconds long.

We also find the trend of decreasing the length of the temporary synchronization with
increasing initial conditions. As the initial values increase, the time intervals for temporary lag or
anticipated synchronization decrease. Table II show the lengths of the first time interval where the
initial values are varied from 0.00001 to 0.1, L, and L, indicate the length of first temporary
synchronization of x,, », andof x,, y,,respectively. From the curve fitting presented in Fig.

23.2 and Fig. 23.3, the relations between L,, L, and x,,, x,, are obtained as follow:

L, =-229.93In(x,,) —262.06 (23.7)
and
L, =-229.88In(x,,)—261.58 (23.8)

They are essentially identical.

Table I. The length of temporary lag (anticipated) synchronization and the lag (anticipated) of x,,

X, 0y, »,-
XMy X35 Y2
length of lag of length of
lag of
temporary x, to temporary
time intervals (sec) time intervals (sec) x, to
synchronization b4 synchronization
y, (sec)
(sec) (sec) (sec)
1 0—1187 1187 17 0—1194 1194 17
2 8730—9215 485 37 8740—9360 620 38
3 | 14630— 15000 370 -8 14640—15010 370 -8
4 | 18103—18611 508 77 18111 — 18658 547 77
5 | 19387—19983 596 55 19390 — 19990 600 55
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6 | 28580—29010 430 -7 | 28530—28980 450 -6

Table II. The lengths of the first time intervals of TLS and TAS where the initial values are varied

from 0.00001 to 0.1.

Initial conditions L L
(X19 = X205 V1o = Vo)

(107,1.5x107) 2593 2593
(5x107,7.5x107) 1759 1759
(107*,1.5x107") 1683 1683
(5x107*,7.5x107") 1806 1806
(107,1.5x107) 1187 1186
(5x107,7.5x107) 843 843
(0.01,0.015) 1031 1033
(0.05,0.075) 382 382
(0.1,0.15) 231 231

23.4 The lag and anticipated anti-synchronization of two identical double
Mackey-Glass systems

In this section, we add one, two, three or four minus sign to the initial conditions, TLS and
TLAS occur alternatively.

Table III shows the results of the simulations. There are interesting phenomena. The minus
sign makes the original time history inverse but with same magnitude, i.e. two time histories are
symmetric to the abscissa. From Case 1~4, it is found that the inverse effect only appears when
the initial condition x,, or y, 1snegative. On the contrary, it does not work for x,, and y,,.
The trajectories of x; and x, are upside down as x,, is negative, and the trajectories of y,
and y, show the similar characteristics with negative y,. In these two cases, the lag
anti-synchronizations exist. Because the negative initial conditions x,,, »,, have no influence
on the systems, there are still lag synchronizations in Case 2 and 4. Case 5~9 show the results
where there are two negative initial conditions at the same time. In Case 5 and 7, only the
inverses of x, and x, occur, so two systems are in lag anti-synchronization. Case 6 and 9
maintain lag synchronization because both trajectories are opposite in the former case and no
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inversion exists in the latter case. Case 8 shows the lag anti-synchronization where the trajectory
of y, and y, isreversed. Finally, the simulations where there are three and four negative initial
values, are presented respectively. It is easy to know that Case 10 is the same as Case 6 and Case
11 and Case 1 are quite alike.

According to the symmetric relations between cases with negative initial conditions and the
original cases, the lengths of the lag anti-synchronizations and the lags of x, to y, are all
invariant, just as that in Table I which is listed in Section 23.2.

Table III. The time histories of double Mackey-Glass system with negative initial values.

Initial conditions

Case X, :blue,y, : red X, : blue,y, : red
(X105%20)5( V105 V20) : : ? ?
11 » \ \
. (0.001,0.001), ; \ \ )
(0.0015,0.0015) o | 0
0.2 / 12
Lag synchronization Lag synchronization

N

Tt | -

o
@

1 (~0.001,0.001), : :
(0.0015,0.0015) : W |
: | 4 WM
Lag anti-synchronization Lag anti-synchronization
, (0.001,-0.001), . ‘
(0.0015,0.0015) "

0 200 400 600 800 1000 1200

Lag synchronization Lag synchronization
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(0.001,0.001),
(~0.0015,0.0015)

Lag anti-synchronization

Lag anti-synchronization

(0.001,0.001),
(0.0015,-0.0015)

| ‘ | \ ' ‘h
U

0 400 600 800 1000 1200 1400

\\#\ M\ it

8
10
| W
121
20 a0 6

0 800 1000 1200 1400 1600

TW

Lag synchronization

Lag synchronization
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(0.0015,0.0015)
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N
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Lag anti-synchronization

Lag anti-synchronization
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(~0.0015,0.0015)

\

200 400 600 800 1000 1200 1400

|
J

200 400 600 800 1000 1200 1400

Lag synchronization

Lag synchronization
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The time histories and the error dynamics e with initial conditions

(05 V10) = (=0.001,0.001), (x,,1,) =1(0.0015,0.0015) are shown in Fig. 23.4. Comparing with
Fig. 23.1, nothing is changed except the inverse of x, and y,.
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Fig.23.1 The phase portraits and the bifurcation diagram for Double Macky-Glass system.
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Fig.23.2 (a)~(f) The time histories of x, (blue) and y, (red) and (g)~(l) error e, = X7, = Wi of

double Mackey-Glass systems with initial conditions (x,,,x,,)= (0.001, 0.001), (¥,5,V5)=
(0.0015, 0.0015).
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Fig.23.3 The curve fitting of initial condition x, to the length of temporary lag or anticipated
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Chapter 24
Robust Chaos Lag Synchronization and Chaos Control
of Double Mackey-Glass System by Noise Excitation of

Parameters

24.1 Preliminaries

In the past few decades, chaos synchronization has attracted a great deal of attention in
various fields [1-7] since the pioneering work was given by Pecorra and Carroll [8]. Due to its
potential applications in secure communication [9,10], chemical and biological systems [11] and
so on, many control schemes or strategies are proposed, which include adaptive control [12-19],
impulsive control [20,21], nonlinear control [22-24], active control [25-30], backstepping design
approach [31,32], etc.

There are different regimes of synchronization in interacting chaotic systems: complete
synchronization, lag synchronization [33], anticipated synchronization [34], generalized
synchronization [35], and phase synchronization [36], etc. In this , the lag synchronization of two
uncoupled double Mackey-Glass systems is achieved via the parameter excited method [37]. This
method is accomplished by replacing the corresponding parameters of the systems with two lag
noise signals. By means of the difference of the timing between two replacements for the first
system and the second system, the lag synchronization can be obtained. The parameter of the first
system is substituted by a noise at 7=0sec, and the parameter of the second system is
substituted by the noise at #=dsec. In other words, the control schemes do not work
synchronously for these two systems. Parameter excited method is effective and potential in
practice for some chaotic systems which are difficult or even impossible to be coupled [38].
Temporary lag synchronization, partial lag synchronization, chaos control and robustness of lag

synchronization are also obtained by this method.
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24.2 Lag synchronization of double Mackey-Glass system by parameter
excited method

We consider a double Mackey-Glass system described by

X, = bx”n —hXx
1+ x/, 24.1)
X, = st — 15X, —kx, |
1+x)

and a second identical double Mackey-Glass system described by

by,
Vi Iﬁ—ﬁyl

A i (24.2)
Vs :%_Gyz_kyl

+y2r

where x,, x,, y,, y, are state variables and x, =x,(t-7), y, =y, (t—-7) (=1L2), 7 is a
time delay, and b, r, r,, n, k are constant parameters. Double Mackey-Glass system is a
generalized system of a well-known blood production model established by Mackey and Glass [39].
For the patient with leukemia, the concentration of the blood can vary chaotically because of the
excessively large time delay 7.

The parameters and the time delay of Eq. (24.1) and (24.2) are chosen as follows: 5=0.2,
n=r=0.1, n=10, k=1and 7 =20. The initial values are given as (x,,,X,,)=(0.1,0.1) and
(Y105 V20) =(0.2,0.2) . Both systems are chaotic in foregoing conditions [40] as shown in Fig. 24.1.
The lag synchronization is obtained by using the control scheme called parameter excited method.
The designated parameter is replaced by a noise signal, but there exist a time difference between
two replacements for the first system and for the second system. The illustrations will show that the

system (24.1) and system (24.2) are in lag synchronization.

24.3 Numerical simulation results of lag synchronizations
All simulations are carried out by Simulink environment of MATLAB. By replacing the

corresponding parameter b, 1, r, or k by a Rayleigh noise signal respectively, lag

128



synchronizations of two uncoupled double Mackey-Glass systems can be achieved with

appropriate noise strengths. The probability density function of Rayleigh distributed noise is

2
f(x) = %exl{zéj x=20 (24.3)
0 x<0

where o is known as the fading envelope of the Rayleigh distribution. The Simulink
Communication toolbox provides the Rayleigh noise generator block. We specify o =1 in the
case. Errors are defined as e (¢) = x,(¢)—y,(¢t+d), e,(t)=x,(t)—y,(t+d), where d is the lag
of the states of the second system lag behind the states of the first system and also the time
difference of the control schemes acting on these two systems. In our study, d is kept a constant,
d=30. e, and e, will converge to zero as ¢ — oo and the lag synchronization is obtained.

Firstly, two corresponding parameters b of systems (24.1) and (24.2) are replaced by pN
where N is a Rayleigh noise and p is the noise strength. In this case, we take the noise
strength

p=025, i=12,..50 (24.4)
The simulation results are shown in Fig. 24.2. It is found that the lag synchronization is
successfully achieved with most noise strengths. Fig. 24.3 shows the error states e, e, and the
time histories of x,y,(i=12) with noise strength p=11. Lag synchronization is
accomplished when ¢>4000sec. It is noted that some lag synchronizations need more time
(>30000sec). For instance, in Fig. 24.4, when the noise strength is taken as p =8.5, the error
states converge to zero at ¢ > 37500sec.

Then the corresponding parameters 7 and 7, are replaced by a Rayleigh noise signal
pN where p is the noise strength. When the noise strength is in the range of
0.105 < p <0.16, the lag synchronization is obtained. Error e,, e, and the time histories of the
state variables with noise strength p =0.15 are given in Fig. 24.5. As p >0.165, the state
variables of the system (24.1) and (24.2) approach zero and Fig. 24.6 shows the time histories of
x;, ¥, (i =12) with noise strength p =0.165. Its important to point out that parameter excited
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method is an effective chaos control method which controls the chaotic states of systems (24.1)
and (24.2) to zero. No lag synchronization is found in the rest range of the noise strength.

Next, we replace two corresponding parameters 7 and k of the systems (24.1) and (24.2)
by pN where N isa Rayleigh noise and p is the noise strength. As the noise strength in the
range of 0.02 < p <0.05 and0.105< p <0.16, the lag synchronization can be accomplished.
Fig. 24.7 and Fig. 24.8 show the error states and the time histories of the states variables of two
systems with noise strengths p =0.03 and p =0.12respectively. When the noise strength p is
taken between two foregoing ranges, 0.05< p <0.105, a phenomenon called temporary lag
synchronization (TLS) is found [41]. Fig. 24.9 shows the error states and the time histories of the
state variables with p =0.103. When the noise strength decreases as p <0.01, the error state
e, converge to zero and the lag synchronization for x, and y, is achieved. However, the error
state e, is chaotic and the lag synchronization for x, and y,can not be obtained. This
phenomenon is called partial lag synchronization. The error states e,,e, and the time histories of
x,,», are shown in Fig. 24.10. When the noise strength increases to p > 0.16, the trajectories of
X,,y, approach to zero and the difference between x, and y,is chaotic. The error states
e,,e, and the time histories of x,,y, are shown in Fig. 24.11.

In order to verify the robustness of lag synchronization, a small disturbance &(x, —y,)cost

is added in two double Mackey-Glass systems:

X, = lbx”n —nx, +&(x, —y,)cost
_+_
A r (24.5)
) X,
X, = T —px, —kx
2 1+ ;T 272 1
and
Vi :%_’ﬂyl +&(x, — y,)cost
A “ (24.6)
Vs :Lrn_rzyz —ky,
1+y21'

where & is a small number which is taken as 10~. The lag synchronization is accomplished as

well via the parameter excited method. In the case of replacing b, Fig. 24.12 and Fig. 24.13
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show the error states and the time histories of the state variables of systems (24.5) and (24.6) with

different noise strengths. One can find that the error states approach to zero in the case with

p =8.5 and the lag synchronization is obtain temporarily in the case with p =5.25 which is
defined as temporary lag synchronization (TLS). In the cases of replacing 7, and 7.k, Fig.
24.14 and 24.15 indicate that the error states practically approach zero which imply that lag

synchronization by parameter excited method is robust in the presence of small disturbances.
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Fig. 24.1 The phase portrait and the bifurcation diagram for Double Mackey-Glass system.
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Chapter 25

Conclusions

In this report, the generalized synchronization of new chaotic systems by pure error
dynamics and elaborate Lyapunov function, chaos of nonholonomic systems, non-simultaneous
symplectic synchronization of different chaotic systems with variable scale time, double
symplectic synchronization of different chaotic systems, chaos and chaos synchronization of
double Duffing system, chaos and chaos synchronization of double van der Pol system, chaos and
chaos synchronization of double Ikeda system, chaos and chaos synchronization of double Macky
Glass system, are studied.

Chapter 2 contains the dynamics of new autonomous and new nonautonomous chaotic
systems. The system model and the numerical results of regular and chaotic phenomena are
presented.

In Chapter 3, the generalized synchronization is studied by applying pure error dynamics
and elaborate Lyapunov function. In Chapter 4, by applying pure error dynamics and elaborate
nondiagonal Lyapunov function, the nonlinear generalized synchronization is achieved. The
methods give rigorous theories for generalized synchronization and nonlinear generalized
synchronization and greatly extend the use of various forms of Lyapunov function while current
method only gives semi-simulation theory for generalized synchronization, in which the
maximum values of state variables must be given by simulation, and monotonous square sum
Lyapunov function is used. By the systematic procedures, the complexity of designing suitable
elaborate Lyapunov function and elaborate nondiagonal Lyapunov function is reduced greatly.
The proposed methods are effectively applied to both new autonomous and new nonautonomous
chaotic systems.

Complete identification of chaos in nonholonomic systems and nonlinear nonholonomic

systems 1is firstly presented in Chapter 5 and Chapter 6. The scope of chaos study has been
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extended to nonholonomic systems and nonlinear nonholonomic system. By applying the
fundamental nonholonomic form of Lagrange’s equations, the chaos of two nonholonomic
moving target pursuit systems is studied in Chapter 5, in which nonholonomic pursuit system
with a straightly oscillating target and nonholonomic pursuit system with a circularly rotating
target are investigated. In Chapter 6, chaos of nonlinear nonholonomic problem, the magnitude of
velocity keeping constant, is studied by applying the nonlinear nonholonomic form of Lagrange’s
equations. Complete identification of chaotic phenomena is obtained in nonlinear nonholonomic
system by Lyapunov exponents, phase portraits, Poincaré maps, and bifurcation diagrams.
Futhermore, the Feigenbaum number rule still holds for nonlinear nonholonomic system.

In Chapter 7, the non-simultaneous symplectic synchronization with variable scale time,
y(t) =F(x(7),y(?),t), is studied. By applying adaptive control, the non-simultaneous symplectic
synchronization is achieved and the estimated Lipschitz constant is much less than the Lipschitz
constant obtained by applying nonlinear control. This result in the reduction of the gain of the
controller, i.e. the cost of controller is reduced. The simulation results show that the proposed
scheme is feasible for both autonomous and nonautonomous chaotic systems, whether the
dimensions of x(zr) and y(¢#) are the same or not. Furthermore, when applying the
non-simultaneous symplectic synchronization in secret communication, since the functional
relation of the non-simultaneous symplectic synchronization is more complex than that of
traditional generalized synchronization, and cracking the variable scale time 7 is an extra task
for the attackers in addition to cracking the system model and cracking the functional relation, the
non-simultaneous symplectic synchronization may be applied to increase the security of secret
communication.

In Chapter 8, the double symplectic synchronization, G(x,y) =F(x,y,?), is studied. It is an
extension of symplectic synchronization, y =F(x,y,?). By applying active control, the double
symplectic synchronization is achieved. By simulation results, it is shown that the proposed
scheme is effective and feasible for both autonomous and nonautonomous chaotic systems.

Furthermore, the double symplectic synchronization may be applied to increase the security of
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secret communication due to the complexity of its synchronization form.

In Chapter 9, we have studied the chaos in the integral order and fractional order double
Dufting system by phase portraits, Poincaré maps and bifurcation diagrams. The total orders of
the system for the existence of chaos are 0.1 to 0.7 and 1.

In Chapter 10, parameter excited chaos synchronizations of two identical double Duffing
systems are studied by adjusting the strengths of the substituting state variables. Numerical
simulations are illustrated for CS or AS of which the occurrence depends on initial conditions and
driving strength. Besides, alternative CS and AS is also discovered with same initial conditions
and same driving strengths.

In Chapter 11, synchronization and antisynchronization scheme based on the substitution of
the corresponding parameters in two identical chaotic double Duffing systems by a white noise, a
Rayleigh noise, a Rician noise or a uniform noise respectively. For the white noise case, neither
CS and AS are found. For the Rayleigh noise case, CS and AS are obtained for different noise
strengths. For the Rician noise case and the uniform noise case, only AS is obtained. Numerical
simulations show that whether CS or AS occurs is sensitive to the noise strength.

In Chapter 12, a new scheme to achieve the pragmatical generalized synchronization of
adaptive control via the pragmatical asymptotical stability theorem is gavien. By the procedure of
the proposed scheme, two double Duffing systems and a double van der Pol system are used as
master system, slave system, and goal system, respectively. The validity of this approach is
verified theoretically and numerically. Based on pragmatical asymptotical stability theorem, using
this theorem, we can obtain the generalized synchronization of chaotic systems and prove that the
estimated parameters approach the uncertain values.

In Chapter 13, chaos in double van der Pol system and in its fractional order systems is
studied. It is found that with reducing the total derivative order ¢, + 5, +a, + 3, the ranges of

the chaotic phase portraits of the system decrease and its shape changes differently for different

choices of parameters. Twenty-one chaotic cases for 0.4<(a, +f, +a,+,)<4.0 are studied,
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and the lowest total order for chaos existence in the system is found to be 0.4. Thirty nonchaotic
cases are found.

In Chapter 14, the variable with adjustable strength of a third double van der Pol system
substituted for the strength of two corresponding mutual coupling terms of two uncoupled
identical chaotic double van der Pol system, gives rise to their synchronization or
anti-synchronization. Both CS and AS can be achived by adjusting the strength of the substituted
variable and the initial conditions.

In Chapter 15, complete synchronization and antisynchronization scheme based on the
substitution of two same parameters in two identical chaotic double van der Pol systems by a
white noise, a Rayleigh noise respectively. For the white noise case and Rayleigh noise case, CS
and AS are obtained for different noise strengths and initial conditions. Numerical simulations
show that whether CS or AS occurs is sensitive to the noise strength.

In Chapter 16, controling chaotic systems to different systems is studied by new pragmatical
adaptive control method. The pragmatical asymptotical stability theorem fills the vacancy
between the actual asymptotical stability and mathematical asymptotical stability, the conditions
of the Lyapunov function for pragmatical asymptotical stability are lower than that for traditional
asymptotical stability. By using this theorem, with the same conditions for Lyapunov function,
V>0, V<0, as that in current scheme of adaptive chaos control, we not only obtain the
adaptive control of chaotic systems but so prove that the estimated parameters approach the
uncertain values. Traditional chaos control is limited for the same system. This method enlarges
the function of chaos control. We can control a chaotic system to a given chaotic system. The
method also downhill simplex the controllers and reduce their cost.

In Chapter 17, the chaos in integral and fractional order double Ikeda systems with total
order of derivatives from 2 to 0.2 are studied by phase portraits, Poincaré maps and bifurcation
diagrams. It is found that chaos exists in all cases.

In Chapter 18, the chaotic behaviors of double Ikeda systems are obtained by replacing their

delay time by a function of chaotic state variables of a second chaotic system. It is found that
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chaos exists for Case 1, 3, 5, 6. The chaotization of a double Ikeda system is studied by using a
function of state variable of a second identical system to replace a parameter of the first system. It
is found that in Case 9, 10, 11, chaotization exists.

In Chapter 19, lag or anticipated synchronization and the lag or anticipated
anti-synchronization of two double Ikeda systems with different initial conditions are discovered.
There are two situations in all possible initial conditions. Cases 1~8 are the lag or anticipated
synchronizations. Cases 9~16 are the lag or anticipated anti-synchronizations.

In Chapter 20, robust lag chaos synchronization, lag quasi-synchronization and chaos
control of two uncoupled double Ikeda system, are achieved by replacing the corresponding
parameters of two systems by different chaotic state variables of a third chaotic system.
Robustness of synchronization is studied by addition of various noises. The results are
satisfactory.

In Chapter 21, first, we introduce the definition and approximation of fractional order
operator briefly. Then the double Mackey-Glass delay systems in integral and fractional forms
are described. We find the chaos which exists in the integral system and in fractional systems
with orders 0.9, 0.8, 0.1 by phase portraits and the bifurcation diagrams.

In Chapter 22, we apply the parameter excited method to control the double Mackey-Glass
system and to synchronize two uncoupled double Mackey-Glass systems. By replacing the
corresponding parameters of chaotic system with noise, chaos control and chaos synchronization
can be accomplished. This method is effective to synchronize two systems, for which coupling
method of synchronization is difficult or even impossible. Finally, numerical simulations show
the proposed method is effective to suppress the chaotic behavior and drag the trajectories to the
origin. Also, chaos synchronizations are successfully achieved in many cases with Rayleigh noise
Rician noise, and uniform noise respectively.

In Chapter 23, temporary lag or anticipated synchronization and the lag or anticipated
anti-synchronization of double Mackey-Glass systems with small and similar initial conditions

are discovered. For the first interval of TLS, when all initial values are positive, temporary lag
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synchronizations are found. The trajectory will be reversed if the initial condition of x, or y, is
negative. In these cases, the lag or anticipated anti-synchronization exists. From the results of
simulation, we find six temporary lag (anticipated) synchronization intervals in 30000seconds.
Although the numerical simulations of temporary lag and anticipated synchronization and
anti-synchronization are showed in this . However, the theoretical analysis and its applications
should be open for further work in the future.

In Chapter 24, the parameter excited method is applied to synchronize two uncoupled double
Mackey-Glass systems. By replacing the corresponding parameters with a Rayleigh noise and
choose the appropriate noise strength, the lag synchronization can be successfully obtained.
Temporary lag synchronization, partial lag synchronization, chaos control and robustness of lag
synchronization are also obtained. The abundance of various phenomena fully exhibits the

potential application of this method.
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Abstract

By applying pure error dynamics and elaborate nondiagonal Lyapunov function, the nonlinear generalized synchro-
nization i studied in this paper. Instead of current mixed error dynamics in which master state variables and save state
variables are presented, the nonlinear gensralized synchronization can be obtained by pure error dynamics without au-
ifiary numerical simulation. The eliborate nondiagonal Lyapunoy function is applied rather than curent monotonous
square sum Lyapunov function deeply weakening the powerfulness of Lyapunov direct method. Both d
nonautenomeus double Mathiew systems are used as examples with numerical simulatians,

© 2007 Eleevier Ltd. All rights reserved

1. Introduction

In secure communication (1.2), biologisal systems [3.4], and many other filds 525 haas synchronization has been
widely used. Generalized synchronization is a complex type of ch and gives rise inves-
tigations recently [26-33], By applying pure errar dynamics and elaborate nondiagonal Lyapunay function, the nonlin-
car generalized synchronization is studied in this paper.

The auxiliary numerical simulation is unavoidable for current mixed error dynamsics in which master state variables
and dave state variables are presented while their maximum values must be determined by smulation [34-38], However,
the pure error dynamics can be analyzed theoretically without additional numerical simulation. Besides, monotonons
and selfdimited square sum Lyapunow function, Fle) = keTe, is currently used [39-44), but Lyapunay function can be
chosen in avariety of dlaborate and ingenions forms for different systems. Restricting Lyapunov function to square sum
makes a long river bracklike, deeply weakens the pawerfulness of Lyapunov direct method. Insead of current plain
square sum Lyapumov function, the elaborate nendiagonal Lyapunoy function is applied in this paper.
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such that each condition can be satisfied. Then the claborate nondiagonal Lyapunov function can be abtained
0

¥ir, €) = 2182 + 9 2 453 % 4 11 1.62)
e e o Hat e (3.62)
and
44+ dsin 1+ 0cos 1= Isin' £
ity €) = — (4.64 + 4.5 5in r]e{-Mﬁ
(b3 sln.‘\
Gsint

‘(Jcml—ﬂsm)ré

— (1156 = 1 sinfe} -
L lic] (2 +sing)

Sinee Lyapunov glabal asymptotical stability theorem is satisfied, the global gcmralm synchronization is achieved
@=1, fi=2,y=3arechosen in simulation, and the results are shown in Fig. 4.

4. Conclusions.

The nonlinear generalized synchronization is studied by applying pure error dynamics and elaborate nandiaganal
Lyapunoy function. This method gives a rigorous theory for generalized synchronization and greatly extends the use
of various forms of Lyapunov function, while current method gives semi-simulation theory for generalized synchroni-
zation, which must get the maximum values of state variables by simulation, and use monotonous square sum Lyapu-
nov function. By the systematic procedure, the complexity of designing suitable elaborate nondisgonal Lyapunoy
function is reduced greatly. The proposed method is effectively applied to both autonomons and nonautonomons dou-
ble Mathieu systems.
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The generalized synchronization is studied by applying pure emror dynamics and claborate
Lyapunce function in thispaper, Generalized synchronization canbe obtained by pure error
dynamics without suziliary numerical simulation, instzad of current mixed error dynamics
in which master state variables and slave state variables are presenced The elaborat:
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1. Inroduction

Chaos synchronization has been applied in secure communicarion [1.2]. biological systems [3.4]. and many other
fields [5-25], One of the intricate types of chaos synchronizarion isgeneralized synchronization, which has been extensively
imvestigated recenty [26-33]. The generalized synchronization is studied by applying pure error dynamics and elabarare
Lyapunov funcrion in this paper,

The pure error dynamics can be analyzed theoretically withour awdiliary numerical simulation, whereas the aid af
additional numerical simularion is unavoidable for current mixed ermor dynamics in which master state variables and slave
statevariables are presented. while their maximumvalues must be determined by simulation [34-38], Besides, the elaborate
Lyapunov function is applied rather than current plain square sum Lyapunov function, V(e = LeTe, which is cumently
usad for convenience, However, the Lyapunov funcrion can be chasen in a variety of forms for different sy stems, Restricting
Lyapunov funcrion to square sum makesa long river brook-like, and grearty weakens the poweer of Lyapunov direct merhod.

Based on the Lyapunav direct methad [39], generalized synchranization is achieved and a systemaric method of designing
Iyapunov funcrion is proposed, The technigue is successtully applied o both auronomous and nonauronomous double
Mathieu sy stems, This paper is organized as follows, In Section 2, the method of designing Lyapunov function is presented,
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ARTICLE INFO ABSTRACT

ro— A new pragmatical adaptive contral methad for different chactie systems is propased. Tra
Pragmatical sdgutive comtral ditional chaos contral i limited to decrease chaos of one chaotic sysiem. This methad
Donsle van der Fol ystem enlarges the effective scope of chaos control We can control & chaotic system, &8 2 1w
Do Dusfing system

chaatic double van der Pol system. to a given chaotic or reguli system, e 3 tew chantic
double Duffing system ar to 2 damped Smyle hamonic system. By 3 pragnatical theorem
af ssymptotical sizbility based an an asumption of equal probability of inicil point, an
adaglive control Law is derived such that it can be proved strictly hat the comman zero
solution of error dynamics and of parameter dynamics is sympEorically stable. Numerical
simulations ate given i shaw the ellectiveness of the proposed scheme:

& 2008 Elsevier Inc All rights reserved

Uncongpled] chaatic system

1. Introduction

Since chaos control was firstly used by Oft et al. [1] it has been stodied extensively. Many contro] methods have
een employed to control chaos |2-6]. Simple linear feedback control vias proposed [7-9]. Time delay feedback cantral
[ 1013, sliding mode control [14-17], backstepping method [18] and adaptive control [ 19-22 | were widely used. However,
traditional adaptive chaos control is limired ta control the chactic motion of ane chatic system ta regular motionor to fived
peint. Proposed pragmatical adaptive control method h L. We can control a chastic system to
2 Eiven simple unchaotic system or to.a mone complex chaotic system. In current scheme o adaptive contrel of chaoeke mo-
tian [23-25]. traditional Lyapunoy stability theorem and Babalat lemma are used to prove the ermor vector approaches zero.
as time approaches infinity. But the guestion, why the estimated or given parameters also approach to the uncertain or goal
parameters, remains no answer. By a pragmatical theorem of asymptatical stability [ 2931 | based on an assumption of equal
probability of initial pints, an adaptive control law is derived such that it can be proved strictly that the common zero soh-
tian of error dynamics and of parameter dynamicsis asymptotically stable. Numerical results are given for a chaotic double
wan der Pal system to be controlled to achaotic double Duffing system and to 2 regular damped simple harmanic system.

“This paper is organized as follows: In Section 2. a pragmatical adaptive cantrol scheme is given. In Section 3 numerical
results of chaos control are given. A chaotic double van der Pol system is controlled to a chastic double Duffing system
and to a regular damped simple harmonic system. Finally, conclusions are given in Section 4.

2. Pragmatical adaptive control scheme

Consider the following chaotic system
Fie,A) +uit), m

+ Commapendng sufior.
.l e Tmgee me eduutw (M. Ce)

se2 fromt mattes © 2008 Elsevier Inc. All ights reserved.
Ao 101016 3me 200805011

12 Z-M. G2, C-M, A Nom near Any i ) -

4. Concl

ons

The generalized synchronization is studied by applying pure error dynamics and elaborare Lyapuncy function in this
paper. By classification of the forms of V'ir. €}, the complexity of designing suitable Lyapunay function is reduced greaty.
The proposed method is effectively applied 1o both autonomous and nonauronomous double Marhieu systems,
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1381 L Sotne, W i Appled Nonlnear Conce remdceia, 1091

140] ZM.Ge.X ¥ Chuos i ancaliocar camped systom and
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systams, Char acal

[T p—— symEhrnizaon of ineegral and fractional arder MM-resanarcy fysw, Machemarical Metods, Fiysical
s o S jence and Techinology |(2008) 236-265,

Pease - M. Ge.C-M, Charg, eems by pure ervar tyapun
o, Noni 3T AR (2008, 001101015, US40
sz 2-M. e ol Applisd Mt bematics and G ation 20 (2008) $13-522

Eq. (30 is the parameter dynamics. Substituting Eqs. (29) and (30} into Eq (28] we abtain
V=B B B_B<o0

wehich is negative semi-definite function of Fs, Ex. Fs. Ex. The lyapunov asymptatical stability thearem is not satisfied. We
cannot obtain that the common arigin of error dynamics (36) and parameter dynamics (27] is asymptotically stable
Now, D is an S-manifold, n=12 and the number of ermr state variables p=4 When E,=Fy=Fy=Fi=0 and
Fyoly.By o BediFroBr Ry, i, take arbitrary values, ¥ — 0. so X is 4-manifold, m=n— p=12—4= & m+ 1 <nis satisfied.
By pragmatical asymptotical stability theorem. eror vector e approaches zer and the estimated parameters also approach
the uncertain parameters. The pragmatical generalized synchronization is cbiained. Under the assumption of equal
probability. it is actually asymptetically stable. This means that the chaos contral for different systems, from a double
van der Pol system to a exponentially damped-simple harmanic system, can be achieved. The simulation results are shown
in Figs. 5 and 6.

4. Conclusions

To contl chaotic systems to different systems is study by new prazmatical adaptive control method. The pragmatical
asymptotical stability theorem fills the vacancy between the actual asymptotical stability and mathematical asymptotical
stability. The conditions of the Lyapunoy function for pragmatical asymptotical stability are lower than that for traditional
asymptotical stability. By using this theorem, with the same conditions for Lyapunov function. V> 0.V < 0. asthat in current
scheme of adaptive chaes control. we not only obtain the adaptive control of chagtic systems but also prove that the esti-
mated pammeters approach the uncertain values. Traditional chaos control is limited to decrease chaos of ane chaotic sys-
tem. This method enlarges the effective scope of chaos control. We can control a chaotic system to a given chaotic system or
to a given regular system.
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Abstraet

Chaos synchronization by driving parameter for two uncoupled identical chastic double Duffing systems is presented
Repilacing two correspanding parameters of the identical systems by the same function of chaoti state variables of a third
chactic system, the synchronization or anti-synchronization of two wicoupled systems can be obtaned. Numerical
simulations are ilugrated for cither synchronization or anti-synchronization of which the occurmnee depends significantly
on initial conditions and on driving strength. Alternative complete synchronization and anti-synchronization is ako
discovered

© 2008 Published by Hlsevier Lud

1. Introduction

Various synchronization phenomena are being reported for chaotic systems, such as complete
synchronization (CS), antisynchronization (AS), phase synchronization (PS), lag synchronization, and
weneralized synchronization [1-20,29-38]. However, most of synchronizations can only realize under the
condition that there exists coupling between two chaotic systems. In practice, such as in physical and electrical
systems, sometimes, it is difficult even impossible Lo couple two chaotic systems. In comparison with coupled
chaotic systems, synchronization between the uncoupled chactic systems has many advantages [20-29),

In this paper, synchronization of wo double Duffing systems whose corresponding parameter is driven by a
chaotic signal of 2 third system is analyad. The chaos synchronizations of two uncoupled double Duffing
systems are obtained by replacing their corresponding parameters by the same function of chaotic sate
variables of a third chaotic system. It is noted that whether CS or AS appear depends on the initial conditions
Besides, CS and AS are also characterized by great sensitivity Lo initial conditions and on the strengths of the
substituted variable, Tt is found that CS or AS alternatively occurs under certain conditions [38

This paper is orenized as ©llows. In Section 2, a briel description of synchronization scheme
substitution of the strengths of the mutual coupling term of wo identical chaotic double Dufling s

*Comesponding suthor. Fax: + 586 35720634
Eonasl aubdvessc 2ov iecanctu et (Z-M. Ge).

(22460 X% -sew front matier £ 2008 Published by Ebevier Lid.
o1 010181330 2008 05019

a8 2. Geet al { Joumal of Sosnd and Vibrarion 317 (3008} 449435
4. Conclusions

In this paper, parameter excited chaos synchronizations of two identical double Duffing systems are studied
by adjusting the strength of the substituting variable. Numerical simulations are illustrated for CS or AS of
which the occurrence depends on initial conditions and driving strength, Besides, alternative CS and AS is also
discovered with the same initial conditions and the same driving strengtl
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Abstract

Without any control schemae and coupling terms, temporary lag and anticipated synchronization and temparary lag and
anticipated anti-synchronization are newly discovered in two identical double Mackey—Gilass systems with different mitial
canditions. When all initial conditions am pasitive, the lag synchronization is obiained. The negative initial values make
the time history inverse and temporary lag occur. The ‘both appear

@ 2008 Hsevier Lid. All rights reserved.

1. Introduction

Since the first idea of synchronizing two identical chaotic systems with different initial conditions was
investigated by Pecorra and Carroll [1], chaos synchronization [2-8] has become an important Wopic in
engineering science, Tn Ref. [2], this swdy demonstrates that chaos s i between two different
chaotic systems using setive control has been achieved. The Lorenz, Chen and Li sysiems have been
controlled to be the new system. In Ref. [3], chaos synchronization of two identical chaotic motions of
ymmetric pyros is presented. It has been demonstrated that applying four different kinds of one-way coupling
conditions can synchronize two identical chaotic svstems. In Ref. [4], the dynamic behavior of a symmetric
eyvro with linear-plus-cubic damping, which is subjected to 2 harmonic excitation, is studied in this paper. Tn
Ref. [3], synchronization of feedback method in two identical non-autonomous coupled systems has been
studied. Then the phase effect of two coupled systems and the transient time in unidirectional synchronization
also have been researched. In Ref. [6], the dynamic behavior of eectro-mechanical gyrostat system subjected
1o external disturbanee is swdied, Tn Ref. [7]. a peneral scheme is proposed (o achieve chaos synchronization
via stability with respect o partial variables. Three theorems for synchronization of unidirectional coupled
non-autonemous (also autonomous) systems by linear feedback are developed for systems with and without
system structure perturbations. In Ref. [8], the dynamic system of the vibrometer is shown to produce regular
and chaotic behavior as the parameters are varied. When the system is non-autonomous, the periodic and
«chaotic motions are obtained by numerical methods. Many effective contrel schemes have been developed in a

"Comesponding suthor. Fax: + 84635120634
Eumail address s gliocnctu.sdutw (.M

GI22A60X 5 -see front matter T 2008 Ehevser Lid. All ights eserved.
oi:10,1016 sy 2008,03.062

Z-M. Ge et all | Joumal of Sound and Vibrasian 318 (2008 ) 267-278 m
5. Conclusions

In this paper, emporary lag or anticipated synechronization and the lag or anticipated antisynehronization
of double Mackey-Glass systems with small and similar initial conditions are discovered. For the first interval
of TLS, when all initial values are positive, temporary lag synchronizations are found. The trajectory will be
reversed il the initial condition of x; or 3 is negative. In these cases, the lag or anticipated anti-
synchronization exists. From the results of simulation, we find six temporary lag {anticipated) synchronization
intervals in 30,0005, The numerical simulations of tanporary lag and anticipated synchronization and anti-
synchronization are showed in this paper. In fact, our new double Mackey-Glass systems with different delay
time 1 can be used in ransfusion of blood between two persons. Our future work will study mudﬂ for different
persons with different initial conditions in transfusion of blood. The theoretical anal s applications
should be open for further work in the future.
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A new symplectic synchronization of a Quantum-CNN chaotic oscillator and a Réssler system is obtained by the
Lyapunoy asymptotical stability theorem, Trvo different chaotic dynamical systems, the Ouantun-CNN system and
the Rissler system, are in sympletic synehronization for three cases: the cubic symplectic synchronization, the time
delay symplectic synchronization and the cubic time delay symplectic synchranization. Sympletic synchranization
of chaotic systems can be used to inerease the security of scert communication,
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L Introduction

Many approaches have been presented for the synchranization of chactic systerns [2-6] There are a chaotic maser
system and either an identical or a different slave system. Our goal is the synchronizatien of the chaotic master and the
chaotic slave by coupling or by other methods.

Among many kinds of 7). generalized sy is investigated [8-12], There exists a func-
tional relationship between the states of the master and that of the slave. In this paper, a new synchronization

y=Hix.p.0+Fif) n

is stodied, where x, y are the state vectors of the “master” and of the “skve”, respectively, Fit) is a given function of
time in different fom, such as a regular or a chaotic function. When Hix, 3, 1) = x, Eq. (1) reduces to the generalized
synchronization given in (1], Therefore this paper is an extension of 1]
In Eq. (1), the final desired state y of the “slave” system not only depends upon the “master” system state x but also

depends upon the “slave” system state y itself. Therefore the “slave” system is not a traditional pure dave obeying the

master” system completely but playsa rale to determine the final desired state of the “slave” system. In other wards, it
plays an “interwined” role, so we call this kind of symplecti: s *,and call the “master
system partner A, the “dave” system partner B
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' The tem “ymnphectic’ comes. from the Greek for “interwinsd” H. Weyl first introduaed the term i 1999 i his book “The
Classical Groups” (p. 165 in both the first edition, 199, and secend edilien, 198, Princeion University Press)
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ABSTRCACT

In this paper, we denive some less stingent conditions for the expoventiel and asymplotic
stability of impulsive conmrol systems with fuspulses at fived tmes. These conditions are then wsad
to design an impulsive control law for Quannum Cellular Neural Network chaetic system, which
drives the chaofic state to zero equilibrium and synchronizes fwo chaotic systems. An active sliding
mode control mathod 15 synchronizing fwo chagtic systems and contwollmg chaonic state to periodic
motion state. And & suSficient condition is drawn for the robust stabik
is applied 1o guiding the desizn of the controllers. Final
robusmess snd effectiveness of the propused control sirategy.

¢ of the error dynamics, znd

numerical results are used to show tae

1. Introduction.

Chaosic system exhibirs unpredicrable and imegular dynsmics and it has been found i many
engineering systems. Interestingly, chaotic models can describe complex dynamics with only few
nonlinear equations without any random external inpats and small differences in the initial state can
lead o exordinary differsnces i rhe system stre. Since On, Grebogi, and Yorke proposed the
OGY method [1]. a method of controlling chaos, ‘canirolling of <
aention within the ares of non-linear dynsmics (2,3]. Jt has many applicarions i various systems
while it is unfavorable m many other cases due to its irezular behavior. Therafore, bota chaos
urlization and elimination are imporvant depending on the specific applications. Chaos control is an
effective method for both chaos unlization snd ehiminarion and has been thoroughly studied i
various fields of sciance.

Since the seminsl work of Pecors and Carroll [4], taere has been an interesting and potentisl
topic in recent years in the study of chaos synchronization in physics, mathemati

1

05" is receiving increasing

2nd enginzering

=32, =27, 9y =49, =31 =49, g2 =31
The result is shown m Figs. -3 for unidirectionsl linsar coupling and bi-directionsl linaar
coupling, respectively.

4. Conclusions
Two chaotic Quantum-CHM by tares methods: i linsar
coupling by impulse control, bi-directional Iinear coupling by impulse control and variable structure

ystems are

«control. The chaos controls of a Quanum-CNN system are also sdied. The impulse contel, and
variable strucrure comrol are used to suppress chaos to fixad point or regulation motion. Numericsl
simulations ere used to verify the effectiveness of the proposed comtrollers These chaos
synchronization and control methods can be also used for othar chaotic systems.
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We stucly the synchranization of general chaotic sysiems which satisfy the Lipschitz condition only.
with uncertain chaotic parumeters by linsar coupling and pragmatical adaptive tracking. The up-
corlain parumeters of a system vary with time due to aging. environment, and disturbances. A
sufficient condition is given for the asymptctical stability of common zzro solution of error dynam-
ics and parameter update dynamics by the Ge-Yu-Chen pragmatical asymptatical stability theorem

based on equal probability assumption. Numerical resalts are studicd for a Lerenz system and a
aquantum eellular neural network oscillator to show the cfectivencss of the propased synchronizar
tion strategy. © 2008 American Instinute of Pifysics. [DOL 101 063/1.3040320]

Misuratat sad expetmastal nreniguling bavs dooms
particular chaos synchroniza-
tion, hus grest poteaal n a Iarge sxovmt of appication
rom secure communications to modeling
n this paper, we introduce @ synchroniza-

i chaotic parameters

Twa examples are simulated to il
of the theoretical analysis.

1. INTRODUCTION

The idea of synchronizing two identical chaotic systems
with different initial conditions was introduced by Pecora
and Carroll.” Since then there has been particular interest in
chactic synchronization, due to many potential applications
in securc communication® chemical and  hiological
systems. ™ There are many control metheds to synchronize
chactic systems, such as. lincar coupling. for which the
implerentation is rather casy. adaptive control, impulsive
control, sliding mode control, and other methods.” Most of
them are hased on the exact knowledge of the system struc-
ture and parumeters. But in practice. some o all of the sys-
tem parameters are uncertain. Momover these panmeters
may change from time 10 time and become chaotic because
of chaotic disturbances. For uncerain parameters, a lot of
works have proseaded to solve this problem by adaptive
synchronization. "™ In the curment scheme of adaptive
synchronization,** the traditional Lyapunoy stability theo-
wem and Barbalat lemma are used to prove that the emor
vector approaches zer as fime approaches infinity. But the
question, why the estimated parameters also approach the
uncertain parameters, has remained without answer. From
the Ge-Yu-Chen (GYC) pragmatical asymptatical stability
thearem,"** the question is strictly answered. In this paper.

1054-1500/20081004)033128/11/425.00
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the synchronization of general chactic sysiems which satisfy
the Lipschitz condition only. with unknown parameters
which are altered under some chaotic disturbances, by lincar
coupling and pragmatical adaptive tracking, is studied first

As numerical examples, the Lomnz system and recently
developed quantum cellular neural petwork (Quantum-CNIN)
chactic cecillator are used. Pragmatical adaptive tracking is
used to track chaotic parameters in unidirectional coupled
systems. Two Lornz systems and two Quantum-CNN sys-
tems by pragmatical adaptive tracking ar given as simula-
tion cxamples. Quantum-CNN oscillator equations are -
sived from a Schrédinger equation taking into account
quanium dots cellular automata structures to which in the last
decade o wide interest has been devoted with particular at-
tention towards quantum computing '*-

This paper is organized as follows: In Sec. II, by prag-
matical asympiotical stability thearcm and by using Lips-
chitz conditions, theorctical analysis of synchronization is
given. In Scc. Tl lincar feedback controllers are used. By
pragmatical adapiive tracking, chaos synchranization of two
Lorenz systems andl of two Quantum-CNN oscillator systems
are achicved by numerical simulations. Conchusions are
given in Sec. IV. GYC pragmatical asympiatical stability
theerem is presented in the Appendix. Inwitively this theo-
mem is different from traditional Lyapanov sability thearem
at that when the points in the neighborhood of zem sclution
iniiatng tryjectorics e approaching zcro with tme ars “not
too many,” i.e., in a subset of Lebesque measure 0 in math-
ematical fanguage = we can neglect their existence, i.c.. the
zero solution is acmally asympiotically stable.

Il STRATEGY OF THE CHAOTIC SYNCHRONIZATION

Consider a nonautonomous system in the form s
fallows:

*=Flrx.B(n]. [8)]

The slave system is given by

©2008 American Instiute of Physics
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X is a S-manifold, m=n—p=0—4=5. m+1<n is satishied
From the GYC pragmatical asymptotical stability theorem,
crrar veetar ¢ approaches zero and the estimatcd parsmeters

stability are more slack than that for traditional Lyapunov
asymptctical stability.
Let X and ¥ be two manifolds of dimensions m and

also Jppmn:h the uncertain parameters. The cquilibrivm
0 ii= \2) is asymptoti-
mu, I M i it e B s
stable (see Appendix). The numerical resulis of the time s
fies of states. state errors, parameters and estimated Lipschitz
constant G ar shown in Fig. 6. The chaos synchronization is
accomplished near 3 <. & approaches constant also near 3 s
The conpling strength required is K=2G=5.62.

IV. CONCLUSIONS

Using the Lipschitz condition, the of

(m=<n), respectively, and i be a differcniiable map from ¥
to ¥ then @(X) is a subset of the Lebesque measure 0 of ¥
Fer an antonomous system

£=fix,.
where is a staie vector, the function f
Zlfor s TP s defined on DC R an nomanifold

Lot x=0 be an equilibrium point for the system (Al)
Then

(Al)

Larenz chaotic systems and of Quantum-CNN chaotic oscil-
lator systems with unceriain chaotic parameters by lincar
coupling and pragmatical adaptive tracking are accomplished
by the GYC prgmatical asymptotical stability thecrem
Tracking uncenain chaotic parameters is first studicd in this
paper. This is of practical interest, because system param-
eters may be varied chactically due to aging, eavironment,
and disturbances. Twe Lorenz systems are synchronized for
chactic parameters M <a. Two Quantum-CNN systems are
synchranized for chaotic pammeters M=n. The simulation
wsults imply that this scheme is very effective. By GYC
pragmatical asymptotical stability thcorem, the question,
why the estimated parameters appreach the uncenain param-
eters, has heen strictly answered and verified by numerical
simulations,
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APPENDIX: GYC PRAGMATICAL ASYMPTOTICAL
STABILITY THEOREM

The stability for many problems in real dynamical sys-
tems s actual asymptotical siability. Jl[hnugh it may nnll:r
stability.

£ =0 (A2)
Fora system,
x= g e (A3)

where x=[xy, .. xq ", the function £=[f), ... £, is de-
fined on DR R,. bere t=gpi CR,. The equilibrium
point is

A0y =0 (Ad)

Definition. The equilibrinm point for the sysiem is pragmati-
cally asympictically stable provided that with initial points
an € which is a subsct of the Lebesque measure 0 of D, the
behaviors of the comespanding trajectarics cannat be deter-
mineel, while with initial points on D ~, the comesponding
trajectories behave as those that agree with traditional as-
ymptotical stability.

Theorem: Let V=[x,.xz....5]": D—R, be positive
definite and analytic on D, where zy.%x.... %, are all space
coardinates such that the derivative of ¥ throngh Eqs. (AL}
or (A3). V. is negative semidefinite of [ry xy. ... x,]"

For an autonomeus system, let X be the m-manifold con-
sisting of a point set for which Fx0, Vx)=0 and D is an
memanifold. If m+1<n. then the aquilibium point of the
system is pragmatically asymptatically stable

For a2 nonautonomous system. ket X be the
m+1-manifold consisting of the point set for which %x=0,

manifold, If mi+1+1
brium point of the sys-
tem is stable. Therefore, for

ympiotical stahility demands that lraJrcmms from all nitial
states in the neighborheod of zero solution must approach
the arigin as . If there is only a small part or even a few
of the initial states from which the trajectories do not ap-
preach the crigin as 71—, the zero solution is not math-
ematically asymptctically stable. If the probability of cccur-
mnce of the event that the trajectones from the initial states
arc that they do not approach zero when 7— . i.c.. these
tmjectories re not asymptotical stable for zero solution, is
zero, the stability of zero solution is actual asymptotical sta-
bility though it is not mathematical asymptotical stability. In
ander to analyze the asymptotical stability of the equilibrium
point of such systems, the pragmatical asymptotical stability
theorem is used. The conditions for pragmatical asymptotical

both astoncmous and nenautonomeus systems, the formula
m+1<n is universal. So the following proof s only for an
autonemous system. The proof for the nenastonomens sys-
tem is similar.

Proof: Since every paint of X can be passed by a trajec-
tory of Eq. (A1), which is one-dimensional, the collection of
these trajectories. €, is an (m +1)-manifold "

Ifm+1 <, then the collection €'is a subset of Lebesque
measure 1 of D. By the shove definition. the equilibrium
point of the system is pragmatically asympeotically stable

If an initial point is crgodicly chosen in D, the probabi-
ity of that the initial poini falls on the collection C is zero
Here, equal probability is assumed for every point chosen as
an iniial point tn the neighboroad of the equilibrium poin.
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ABSTRCACT

In fixis peper, we derive some less smngent conditions for the exponentizl and asymptotic
suabiliry of impulsive conol systems with impulses at fixad rimes. These conditions are then used
1o design an inspulsive conmol law for Quansm Celluler Newral Network chaotic system, which
drives the chaofic state fo zero equilibrium and synchronizes two chaotic systems. An active sliding
‘mode control mathod 1s synchronizing two chagtic systems and contralling chaotic state to periodic
motion stare. And a sufficient condition is drown for the robust stabiliry of the erro
is applied to guiding the design of the conmrollers. Finally, mumerical resuls are used to show the

dypamics, zd

robustuess and effectiveness of the propused control sixa

1. Infroduction.
Chaotic system exibits unpredicssble and irregular dynsmics and it has been found it many
engineering systems. Interestingly

haotic models can describe complex dynamics with only few
noulinear equations witheut any random external inputs and small differences in the initial state can
lead to enmsordinary differences in the system state. Since O, Grebogi, and Yorke proposed the
OGY method [1], o method of controlling chaos, ‘commrolling of chaos' is receiving increasing
sttenrion within the ares of noa-linear dynamic:

3], It has many applicarions i various systems
while it is unfsvorable m many other cases due o its wregular bebavior, Tharsfore, both chios
urilization and elimination are important depanding on the specific spplications. Chaos control is an
effective method for both chaos unlization snd elimmnarion and has been thoroughly studied i
various fields of science

Since the seminal work of Pecors and Carroll [4], there has been an inveresting and potential
topic in recent years in the study of chaos synchromization in physics, mathematics snd engineering

1

=

P49, p=3

=49, 53, =31
The result is shown in Figs, 4~3 for unidirectionsl linear coupling and bi-directions! linsar
conpling, respectively.

4. Conclusior
Two chaosic Quanmu-CIN systems are synchronized by three methods: unidirectional linssr
conpling by impulse control, bi-directional kinear coupling by mmpulse control and varisble stmicture

«conmrol. The chaes controls of a Quanfum-CNN system are also smdied. The impulse contrel, and
variable structure comtrol are used 1o suppress chaos to fixed point or regulation metion. Numerical
simulations sre msed fo vesify the effectiveress of te proposed contollers. These chaos
synchromization and conol metaods can be also used for othar chao

systems.
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