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Optimal control of an M/G/1/K Queueing System with
Combined F policy and Startup Time

C. C. Kuo and W. L. Pearn
Department of Industrial Engineering & Management,
National Chiao Tung University, Taiwan

1. Introduction

A supplementary variable technique is used to study the optimal management
problem of the F policy M/G/1/K queue where the server needs a startup time before
start allowing customers in the system and K <o denotes the maximum number of
customers in the system. The method of controlling arrivals focuses on reducing the
number of customers in the system. The model presented in this dissertation is very
useful in real-life situations since the controlling of arriving customers is considered.

The primary objective of this chapter is threefold. Firstly, we develop a recursive
method using the supplementary variable technique and treating the supplementary
variable as the remaining service time, to develop the steady-state probability
distributions of the number of customers for the F policy M/G/1/K queue. The method
can be utilized for any service time distribution, such as deterministic (denoted D),
exponential (denoted M) and k-stage Erlang (denoted Ey), etc. Secondly, to illustrate a
recursive method we present three simple examples for three different service time
distributions such as exponential, 3-stage Erlang, and deterministic. Thirdly, we study
various system performance measures, such as the average number of customers in
the system, the probability that the server is busy, the blocking probability, etc. The
total expected cost function per unit time for the F policy M/G/1/K queue with
startup times is developed. Numerical and comparative results are also provided.

2. Assumptions and Notations

We consider the controlling arrivals to a finite capacity M/G/1 queue with
combined F policy and exponential startup time. It is assumed that customers arrive
according to a Poisson process with parameter A, and the service times of the
successive customers are independently and identically distributed (i.i.d.) random
variables having a distribution S(u) (#>0), a probability density function s(u)
(#20) and mean service time s,. The arrival process is independent of the service
process. We assume that arriving customers form a single waiting line based on the
order of their arrivals; that is, the first-come, first-served discipline. Suppose that the
server can serve only one customer at a time. Customers entering into the service
facility and finding that the server is busy have to wait in the queue until the server is
available. Gupta [6] first introduced the concept of a F policy. The definition of a F'
policy is described as follows: When the number of customers in the system reaches
its capacity K (i.e. the system becomes full), no further arriving customers are allowed



to enter the system until there are enough customers in the system have been served so
that the number of customers in the system decreases to a threshold value F
(0 F <K -1). At that time, the server requires to take an exponential startup time

with parameter £ to start allowing customers in the system. Thus, the system

operates normally until the number of customers in the system reaches its capacity at

which time the above process is repeated all over again.

The following notations and probabilities are used throughout this chapter.

F

Sy

threshold level

system capacity (K > F +1)

service time random variable

remaining service time random variable

distribution function (d.f.) of §
probability density function (p.d.f.) of §
Laplace-Stieltjes transform (LST) of §

] th order derivative of S (6) with respectto 6

probability of no customers in the system at time ¢ when the arrivals
are not allowed to enter the system

probability of # customers in the system at time ¢ when the arrivals
are not allowed to enter the system, where n=1,2,...,K.

probability of no customers in the system at time ¢ when the arrivals
are allowed to enter the system

probability of # customers in the system at time ¢ when the arrivals
are allowed to enter the system, where n=1,2,..., K —1.

steady state probability of no customers in the system when the
arrivals are not allowed to enter the system

steady state probability of # customers in the system when the
arrivals are not allowed to enter the system, where n=1,2,...,K.
steady state probability of no customers in the system when the
arrivals are allowed to enter the system

steady state probability of # customers in the system when the
arrivals are allowed to enter the system, where n=1,2,..., K —1.

mean service time

The special case with system capacity K=F+1 is presented in the appendix.



3. Development of the Equations and Solutions

We use the following supplementary variable: U =remaining service time for
the customer in service. The state of the system at time ¢ is given by

N (#) = number of customers in the system, and

U (¢) =remaining service time for the customer being served.

Let us define

Poyn(u,t)du=Pr{N(t)=n,u<U(t)Su+du}, u>0, n=0,1... K.
PLn(u,t)duzPr{N(r)zn,u<U(t)£u+du}, u>0, n=0,1,..,K-1.
Po,n(t):j:POyn(u,t)du, n=0,1,... K.

B, (1) :'f:PLn (u,¢)du, n=0,1,..,.K-1.

Relating the state of the system at time ¢ and #+d¢, we obtain

d

& 00 (8)==BRyo(t)+F,;(0,2), (1
Jd o

——— By, (u,t)==PBE, , (u,t)+ Py ,,1(0,£)s(u), 1<n<F, )
ot Ju) ' '

Jd o

——— By, (4,t)=F,.1(0,t)s(u), F+1<n<K-1, (3)
ot du) '

Jd o

a—t_EJPo,K(U,f)=/u)1,1<—1(“,f)’ 4)
d

EPl,o(f):_/“)1,0(f)+:3P0,0(f)+P1,1(0’f)’ )

d d
(g_gjpl,l(”’f)=_/1Pl,1(u,f)+:3P0,1(”,f)+/u)1,0(t)5(”)+

(6)
B (0,1)s(s),
(i_ijp (1) =—AB. () + BBy (w,6) 4 AR (1,)5(u)
o ou) Ln 1% Ot bt (7)
+P,.1(0,2)s(u), 2<n<F,
(i_ijp (u,t)=-AP,, (u,t)+ AP, 1 (u,t)s(u)+ P, .1 (0,¢)s(u)
ot ou 1,n \ % 1,n \* 1,n-1\* 1Ln+1 \Y) ’ (8)

F+1<n<K-2,



d d
(2 ) R )=~ s )+ A (o).

ot Ju

In steady state, let us define

F,=lLmPF, (), n=01,.,K.

f—o0

B,=lmPE,(t), n=0,1..,K-1.

t—00

PO,I’!( )—IlmPOn(u t) I’l=1,2,...,F.

t—00

B,(u)=lim A, (), n=0,1,.,K-1.

t—00

and further define

By, (u)=F ,s(u), n=12,.,F.

From (1)-(10), we can easily obtain the following steady state equations:

0=—pF,+h), (0),

d
_apo,n (u)= _ﬂPO,nS(u)+PO,n+l (0)s(u),
—diPO’n(u)ZPOynH(O)s(u), Filsn<K-1,
u
d
—d—Po,K(“):/U)l,K—l(”)’
u

0=—-AP o+ BR+F,(0),

d

———PB 1 (u)=—AP; (u)+ BFy;s(u)+ ABgs(u)+ B, (0)s(u),

du

__])1 n( ) _ﬂ'Pl,n (u)+ﬁP0,nS(u)+/1Pl,n—l (u)+])1,n+1 (O)S(u)’

2<n<F,

d

d })l,n( )=_ﬂ'Pl,n(u)+/1})l,n—l(u)+})1,n+1(0)s(u)’
d

duPlK i (u )—_/1131,1(—1(“)*'/1131,1(—2(”)-

Further define

F+1<n<K-2,

®)

(10)

Y

(12)

13)

(14)

15)

(16)

a7)

(18)

19)



S (6)= J: e ?dS (u) = '[: e %s(u)du,

By, (8)=[ ¢ "Ry, (u)du,

P (0)= [ R, (u)du

and

J; e LR, (1) du=6F,,(6)- 2, (0).

0 Ju

Therefore, we take the LST on both sides of (12)-(14) and (16)-(19). It yields

_gPOfn(g)z_ﬁp(),ns*(g)+P0,n+l (O)S*(e)_P()yn (O), 1<n<F,

68, (0)=Fy,,1(0)S"(6)-By,(0), F+l<n<K-1,

_GPOfK (‘9) = ﬂ’PlTK (‘9)_P0,K (0)’

(A-6) R, (6)=BRy,S" ()+AR S (6)+PF,(0)S™ (6)-F,(0),

(ﬂ_e)PITn (0) = IBPO,nS* (9)+1P1Tn—1 (0)+P1,n+1 (O)S* (0)_P1,n (O)’

2<n<F,

(A=) B, (8)= 4B, 1 (6)+ R0 (0)S" ()=, (0). F+1sn<K-2,

(/1_9)131TK—1 (9) = /1P1TK—2 (9) _PI,K—I (0)

(20)

2y

(22)

(23)

(24)

(25)

(26)

The recursive method is developed to obtain Fy,(0) and B, (0). Our
solution algorithm will first obtain F,(0) (1<#<K) which are then used for

finding £, (0).

Using (11) and setting 8 =0 in (20) and (21), we get



umt n, 0<n<
By, (0)=4> R; 1<n<K, where {,= (27)
’ rar S F<n

and

By ui1(0)==B9, r By, + B ,(0), 1<n<K-],

b I, 1<n<F, (28)
where =
¥ 0, otherwise.
Using (28) in (20) and (21), we get
" 1-5" (6
Taking lim,_,, in (29)and using L'Hospital's rule once gives
B, (0)=5PR,(0), 1<n<K-1, (30)
where s, ==8"(0) is the mean service time.
Using (27) in (30), we have
B,(0)=¢,R, l<n<K-I, (31)
1, n=0,
where ¢, = 32
Slﬂ(1+slﬂ)§”’l, 1<n<K G2

Thus, By;(0), By, (0),..., By x_;(0) can be obtained by using (31).

Next, we derive the expressions of B, (0) (1<#<K) in terms of P gand
Fy- Using (31) in (23)-(24) and then setting 6 = A in (23)-(26), we finally obtain

_ Pl,l (0) - ﬂ¢1P0,oS* (}“) _/U)I,OS* (’1)

B,(0)= 5 (1) , (33)
P (0)- P, oS (A)-AP" (A

Pl,n+l (0) — 1,n ( ) ﬂ¢n,F¢nSi),(Ol) ( ) 1,n-1 ( ) , 2<n< K—Z, (34)

Bx1(0)=ARk 5 (). (35)

To obtain }’1;_1 (1) (1<n<K-1) in (34)-(35), using (31) in (23)-(24) again,
differentiating (23)-(26) (l —1) times with respect to @ and setting =4, we
finally get



*(1)
(] S A
B (a)=- 1( )[/1191,0+ﬁ¢11’0,0+/1131,2(0)], I=1,..K-2,

P 1

2<n<K-2, I=1,..,K-n-1,

Byt (A) =288, (A),

(D)= | B (008" (2)+ B, r,Byo8™) (2)+ 281 (2) ],

(36)

(37

(38)

where Pligo)(ﬂ):l’lfn(/i) and S*(l)(e):[(dl/dal)S*(G)} denotes the Ith

derivative of S~ (49) .

Solving (36)-(38) recursively, we obtain

. & Bl indS (4) " LS (A)
B,(A)=-¢, S (A) B, - Z—+l Pyo-2, +1/1 B 11 (0),
i=1 i=1
1<n<K-1,
where

0, otherwise.

Using (39) in (34), we can obtain

1 )
Pl,n(o)zm lnl Z n11])11+1 +
i=1

;VHZ
B| 2 i1l = Put p ot |Fop+ Al 2B, 3Sn<K -1
i=1

‘We further define

1<ksn 7+, +-+1T,=n
7,0y, (1,2, ,n}

0, otherwise,

where

(39)

(40)

(41)

(42)



*;+/€1, 1’l=1,
§(4)

K, =40, n=2,3--K-3, (43)
0, otherwise.

Remark: The representative meaning of the above formulation (42) is to sum up all
possible products of k xs in which the total of subscript values of x equals n. We
give an easily understood example for n = 4:

= K, + 20K, + K2 + 3K1K, + K

Using (42) and (43) to solve (2.41) recursively, and including (15) and (33), we finally
get

R1(0)=A(1)By+B(1) R, (44)
B, (0)=, [A(i) Ry +B()) Ry ] 2<n<K-1, (45)
=2
where
A, n=1,
1-5" (1)
A = /1 —_— =2
(n) { S*(/i) }, n=2, (46)
Al, 3<n<K-1,
_ﬂv 71:1,
1+ .08 (A
B(n)= —ﬂ{%ﬁ)} n=2, (47)

é/nfz
,BZ Coin®; _ﬂ¢n—l,F¢n—]’ 3sn<K-1

i=1

Substituting (45), (44), and (35) into (39) finally yields



i+1 1 i 1 Cx
|:Z€K i 121‘1J l—J"‘l )"‘K lP(K *l I)B(Z)"‘ Z :BEK—i—1¢i:|
B =

i=2 S (ﬂ’) i=1
ZEK”Z\P i—j+1)A(5)+ ( A e,
- S (1)

Finally, we develop the steady-state probabilities Pl*n (0) in terms of Fyo- Setting
6 =0 1in (23)-(26) we have

- 1 é/n
H,n(0)=;{ﬂZ@Po,o+P1,n+1(0)}, 0<n<K-2, (49)
i=0
. yij L
Bx(0)= EZ@PO,O' (50)
i=0

As  B,(0), R5(0),.... Ax4(0) and R, are known, PITI(O)’ PITZ (0),
" PL*K_1 (0) can be determined recursively using (49) and (50) in terms of Fyo-

Now the only unknown quantity is Pof x (0) which can be obtained from (22).
To find it, differentiating (22) with respect to € and setting 6 =0, we have

By (0)=-2B_),(0). 51)

To find ﬂ]’l*g)_l (0), differentiating (23)-(26) with respect to € and setting 6 =0,
we finally obtain

£ (0)- Bt TS T (0)+ AR5 (0)+ 35 (05 T(0) 62
50 (0) o * B0 (0) + 45111 (0)+ £ (005 (0)
1,n - 7 , (53)
2<n<K-2,
*(1)
il (0)= B 2R 0 s

A

As PIZ(I)(O) is known completely from (52), the values P*(l)(O) for

1,n

n=2,3,...,K—1 can be found recursively from (53) and (54). Therefore we obtain

. 1 K-1
Pl,g)—l(o)zz ZPl,i+ﬂS Z¢ Poo"‘S ZPU "‘/uDloS()(O) . (55)
i=1

i=1

Substituting (55) into (51), we have



) S (1) [y e (1) (1) o (1)
Bk (0)=- zPl,i"‘ﬁS (O)Z¢nPO,O+S (O)ZPL;‘(O)“‘APLOS (0)|.  (56)
-1 =

i=1

So By,(0), B,(0),..., Byx (0) is known in terms of Fy,, which can be
determined using the normalizing condition

K K-1
2R+ Ry=1 (57)
i=0 i=0

To demonstrate the working of the recursive method, we first describe the solution
algorithm for calculating the steady state probabilities, F,(0) (0<n<K) and
B, (0) (0sn<K-1). Next, to illustrate the solution algorithm, we provide three
simple examples where the service time distributions are exponential, k-stage Erlang,
and deterministic, respectively.

Let F be the threshold, K be the maximum capacity of the system, and let
S (8) be the I-th derivative of S”(8), where I=1, 2,..., K . We set the values of
F, K, and the LST expression of the service time distribution, namely § ’ (49) The
steps of the solution algorithm are stated as follows:

Step 1. For each n=0, 1,...,K , compute ¢, using (32).

Step 2. For each n=1, 2,...,K -1, compute POfn (0) using (31) in terms of
PO,O N

Step 3. Compute ¢, (1<n<K-2) and «,(1<n<K-3) using (40) and (43),

respectively.

Step 4. For each n=0, 1,...,K -3, compute ¥, using (42).

Step 5. For each n=1, 2,...,K -1, compute A(n) and B(n)using (46) and
7).

Step 6. For each n=1, 2,..,K—1, compute P, ,(0) using (44) and (45) in

terms of A, and F.

Step 7. Compute B, using (48) in terms of Fy,.Thus 7 ,(0)
(1<n<K-1) are achieved from Step 6.

Step 8. For each n=1, 2,..., K —1, compute Pl*n(O) using (49) and (50) in

terms of £ .
Step 9. For n=K , compute F,,(0) using (56) in terms of B,.

Step 10. Determine Fy, using (57). Thus Pofn(O) (n=1,2,..,K) are
achieved from Steps 2 and 9, and P, (0) (2=0, L..,K-1) are
achieved from Steps 7 to 8.



4. Simple Examples

We use the solution algorithm to illustrate a recursive method. We provide three
simple examples for three different service time distributions such as exponential,
3-stage Erlang, and deterministic, respectively.

Example 1 (For M/M/1 queue). We set the mean service time s; =1/, where u is
the service rate. Assume that /=1 and K =4 . In this case, we have

s*(6)=—*—.
u+e
Step 1. Foreach n=0, 1,...,4, compute ¢, .
Using (32), we obtain

9=1. ¢ =(1-a)/a, and ¢2=¢3=¢4=(1—a)/0(2,where a=u/(p+p).

Step 2. For each n=1, 2, 3, compute B, (0) using (31)in terms of F).
From (31), we finally get

* -«
PO,I (0) :¢1P0,0 =7P0,0»

Po*,z (0)= Po*,s (0)= % F0 =l;—2apo,0-
Step 3. For each n=1, 2, compute ¢, and k, using (40) and (43), respectively.
For each n=1, 2, using (40) yields ¢, ==1/(1+0) and £, =—-1/(1+0)" , where
oc=u/l.
For each n =1, we find from (43) that x; = (1 +o+0’ )/O‘(I+G) .
Step 4. For each n=0, 1, compute ¥, .
It implies from (42) that W, =1 and ¥, = (1+c>'+o'2 )/0'(1+0') .
Step 5. Foreach n=1, 2, 3, compute A(n) and B(n).
Using (46) and (47), it follows that

A()=plo, A(2)=p/c? and A(3)=-u/o(l+0).

(1—0{)/1’ B(Z):_(a+0')(1—a),u and B(3):_(1—0{)2,u.

B1)=- o oo (1+0)x

Step 6. For each n=1, 2, 3, compute B, ,(0) using (44) and (45) in terms of A
and Fy,.

It yields from (44) and (45) that



B1(0)=A4(1)Ry+B(1) Ry,
B, (0)="¥, [A(Z)PI,O +B(2)P0,0]
F5(0)="¢, [A(Z)PI,O +B(2)P0,0]+‘P0 [A(3)P1,O +B(3)Po,0]

Step 7. Compute B using (48) in terms of Fy,. Thus A, (0) (1<7<3) are
achieved from Step 6.

From (48), we finally have

o(l-a)(a+o+c”+0°)

Ro= e R (Pl,*o(o)—Plo)’
o;u(l—a)(l+0'+0'2)

P1,1(0)— o Foo-
ou(l-aj)(l+o

PIZ(O): ( az)( )Poo’
ou(l-a)

131,3(0)= o Po,o

Step 8. For each n=1, 2, 3, compute an (0) using (49) and (50) in terms of Fy.
Using (49) and (50) yields

a(l—a)(1+0'+0'2) .
7 Po,o’ P1,2 (0):

PITI(O):
o o

* o(l-a
and P ;(0)= T)Po,o :

Step 9. For n=4, compute F,(0) using (56) in terms of B .

Using (56), it follows that

R (1-a)
P0,4(0)=7P0,0'

Step 10. Determine Fy, using (57). Thus B, (0) (n=0, 1,...,4) are achieved
from Steps 2 and 9, and P, (0) (n=0, 1, 2, 3) are achieved from Steps 7
to 8.

aZ

Po,o =

o’ +a(l-a)+3(1-a)+o(1-a)(3+a+30+20 +0°)



It is to be noted that these results are the same as those given in Gupta [%?{! #

TEIR B - . pl006].

Example 2 (For M/Es/1 queue). The 3-stage Erlang distribution is made up of three
independent and identical exponential stages, each with mean 1/34 . We set the mean
service time s; =1/¢, F=1,and K =3.In this case, we have

S*(e):[3jﬁej3'

Step 1. For each n=0, 1,...,3, compute ¢,.

From (32), we finally obtain
b=1, ¢=3(1-7)/r,and ¢, =9, =3(1-7)(3-27)/7",
where y=3u/(3u+p).

Step 2. For each n=1, 2, compute £, (0) using (31)in terms of F,.

From (31), it follows that
% 1-y
PO,I (0) =0Fo :37Po,o’

(1-7)(3-27)
TP0,0 .
Step 3. For each n=1, compute /.

Using (40) yields ¢, =—3/(1+7), where 7=3u/A.

Po*,z (0) = ¢2Po,o =3

Step 4. For each n=0, compute ¥, .

It implies from (42) that W, =1.

Step 5. Foreach n=1, 2, compute A(n) and B(n).
It yields from (46) and (47) that

A(1)=3u/z and A(2)=3u(1+37+37) /7"

1— o(1+37+37%2 )+7° (3-27) |(1-7)
B(1)=-3""H g B(2):—3[ ( ) y ] .
y oy
Step 6. For each n=1, 2, compute PLn(O) using (44) and (45) in terms of £
and Fy,.

From (44) and (45), we find that



B1(0)=A4(1)Ry+B(1) Ry,
B, (0)="¥, [A(Z)PI,O +B(2)P0,o]

Step 7. Compute B using (48) in terms of Fy,. Thus A, (0) (1<7<2) are
achieved from Step 6.

It implies from (48) that

f(1-9)[7 (1+2)(3-2)+ 11+ 47467
(1+47+67%)5

Ro= Foo- (Pl,*o(o):Pl,o)’

(1+47+62%)7

o T u(1-7)(3-27)
H2(0)=9 (1+47+627)y? foo-

Step 8. For each n=1, 2, compute Pl; (0) using (49) and (50) in terms of Fy,.
Using (49) and (50) yields

(1+7)(1-7)(3-27)(1+37+37%)

B, (0)= Byo.
11(0) (1+41+6r2)7/2 00
) 7(1-7)(3-2y)(1+37+37%)
and B, (0)= " Fyo-

Step 9. For n=3, compute B, (0) using (56) in terms of Fy.
It follows from (56) that

. (1-7)(3-27)(3+10z+1077)

B .(0)= F,.
05(0) (1+41+6r2)7/2 00

Step 10. Determine Fy, using (57). Thus B, (0) (n=0, 1,...,3) are achieved
from Steps 2and 9, and B, (0) (7=0, 1, 2) are achieved from Steps 7 to 8.



By =(1+47+677) 7’ x
{(1+4r+672)[7/2 +(1—7/)(9—7/2)J

-1
+(1-7)(3-27)(3+ 11z +147* +67° + 47 +7°)}

Example 3 (For M/D/1 queue). We set the mean service time s; = /u, F=1, and
K =3. In this case,

S"(8)=¢"".

Step 1. For each n=0, 1,...,3, compute ¢,.
Using (32) yields

dh=1, ¢=(1-a)/a,and ¢,=¢,=(1-)/a’, where a=pu/(u+p).

Step 2. For each n=1, 2, compute £, (0) using (31)in terms of F,.
Using (31), we finally get

* l-«a
PO,I (0) :¢1P0,0 =7P0,0»

Po*,z (0) = ¢2Po,o = 1_—20!130,0-
a

Step 3. For each n=1, compute /.
From (40), we find that ¢/, =—p, where p=A4/u.
Step 4. For each n=0, compute ¥, .
It implies from (42) that W, =1.
Step 5. Foreach n=1, 2, compute A(n) and B(n).
From (46) and (47), it follows that

A(l)=pu and A(2)=pu(1-e”).

,u(l—a)(l—a+ep) |

B(l):—Ta and B(2)=- "

Step 6. For each n=1, 2, compute PM(O) using (44) and (45) in terms of B
and Fy,.

Using (44) and (45) yields



B, (0)= A(l)Pl,O +B(1)Po,o’

B, (0)="¥, [A(Z)Pl,() +B(2)Po,o] ;

Step 7. Compute B using (48) in terms of Fy,. Thus A, (0) (1<7<2) are
achieved from Step 6.

We find from (48) that

(1—a)[a(1+p)—1—ae”]

Bo= 0{2,0(1+p—ep) B (PITO(O)zpl,O)’
_ (-a)u
Pl,l(o)_ 0{2(1+p—e’0)PO’O’
_ (-a)pu
PI,Z(O) 0!2(1+,0—€p)P0’0

Step 8. For each n=1, 2, compute P,,(0) using (49) and (50) in terms of B .
Using (49) and (50) yields
(1-2)

(l—a)(l—e”) *
_pa2(1+p—e”)P0’0 " PLz(O)z_WPO’O'

PITI(O):

Step 9. For n=3, compute B, (0) using (56) in terms of Fy.
It follows from (56) that

(1-a)[2(e” -1)-p(1+¢”) ]
pa2(1+p—ep)

Step 10. Determine Fy, using (57). Thus Pof,l(O) (n=0, 1,...,3) are achieved
from Steps 2 and 9, and P, (0) (n=0, 1, 2) are achieved from Steps 7 to
8.

Pofs(o):

PO,O

Ry :pa2(1+p—e”)x

[p(1+p+a—a2)+e”(ap+a2 —2p? —a)—(l—a)zJ_l.

5. Optimal F policy

Our analysis is based on the following system performance measures of the F



policy M/G/1/K queue with exponential startup time. Let
L, =the average number of customers in the system;
B, =the probability that the server is busy;
P, =the probability that the server requires a startup time before starting the
service;
B, =the probability that the server is blocked.
The expressions for L., F,, P, and B, are give by

K K-1
L= nFy,+ 2 nR,,
n=1 n=1

K K-1
B=2 Fout D B
n=0 n=0

F
Ps ZZPO,n ’
£y ZZPO,n'
n=0

We develop the total expected cost function per unit time for the F policy
M/G/1/K queue with startup times, in which F is a management decision variable.
The main purpose of this subsection is to determine the optimum management £
policy so as to minimize this total expected cost function. Let

C,, =holding cost per unit time for each customer present in the system;

C, =busy cost per unit time for a busy server;

C, =startup cost per unit time for the preparatory work of the server before

starting the service;

C,; =fixed cost for every lost customer when the system is blocked.

Utilizing the definitions of each cost element listed above, the total expected cost
function per unit time is given by

The optimal value of F, F " is determined by satisfying the following
inequality

TC(F" -1)2TC(F") and TC(F +1)2TC(F"). (59)

We now perform a sensitivity analysis on the optimum value F * based on
changes in specific values of the system parameters and fix the system capacity K=15.
We consider the three simple examples for three different service time distributions
such as exponential, 3-stage Erlang, and deterministic and employ the following cost
elements:

Case 1: Ch :5, Cb :200, CS :250, Cbl :300

Case 2: Ch :5, Cb :200, CS :250, Cbl :350
Case 3: C, =5, C, =200, C, =300, C,, =350.



Case 4: C, =5, C, =225, C, =300, C,, =350.
Case 5: Ch :10, Cb :225, CS = 300, Cbl = 350

In this section we provide the numerical results of the optimal value F * and the
minimum expected cost for three interarrival time distributions and specific values of
A, u, B.Wefirstfix (,5) =(1.0,3.0) and choose different values of A4 =0.5,
0.6, 0.7. Next, we fix (ﬂ,ﬂ) = (0.8, 3.0) and consider various values of = 1.0, 1.1,
1.2. Finally, we fix (A4,4) = (0.8, 1.0) and select different values of S = 2.0, 4.0,
5.0.

The optimal value of F, F ", and its minimum expected cost TC (F *) for the
above five cases are shown in Tables 1-3. For fixed values of (4, /3) and various
values of A in Tables 1-3, we observe that (i) 7C (F *) increases as A increases
for any case; and (i) F " decreases as A increases for any case. For fixed values of
(A,B) and various values of 4 in Tables 1-3, we find that (i) 7t C(F *) decreases
as M increases for any case; and (ii) F " increases as M increases for any case.
Again, for fixed (/1, ,u) and various values of £ in Tables 1-3, we observe that (i)
TC(F" slightly decreases as f increases for any case; and (ii) F " does not
change at all when S changes from 2.0 to 5.0 for any case. Intuitively, F " s
insensitive to changes in .

It can be easily see from Tables 1 through 3 that (i) F " increases as c,
decreases or C,, increases (see cases 4-5 and cases 1-2); and (ii)) C, and Cy,
have a larger effect on F~ than C, and C, (see cases 3-4 and cases 2-3).



Table 1. The optimal value of F and its minimum expected cost for the service time distribution such as exponential.

A (/u:ﬂ) = (1'0’3'0)

i (1.5)=(08,3.0)

5 (.40)=(08,10)

0.5 0.6 0.7 1.0 1.1 12 2.0 4.0 5.0
Casel F 9 7 5 4 7 10 5 4 4
TC(F') | 105.000 127.486 151.420 | 177.597 158.454 143.314 | 177.680 177.561 177.540
Case2 F 12 11 9 6 10 12 6 6 6
TC(F') | 105.001 127501 151.554 | 178.285 158.655 143.367 | 178.361 178.247 178.225
Case3 F 12 11 8 6 10 12 6 6 6
TC(F') | 105.001 127502 151.562 | 178.314 158.669 143.374 | 178.404 178269 178.242
Cased F 11 9 7 4 8 11 5 5 5
TC(F') | 117.500 142.496 169.000 | 197.985 176.767 160.020 | 198.072 197.941 197.915
Case5 F 5 4 3 2 4 6 2 2 2
TC(F') | 122470 149.933 180.049 | 213.873 189.095 169.773 | 213.960 213.830 213.804

Table 2. The optimal value of F and its minimum expe,

cted cost for the service time distribution such as 3-stage Erlang.

A (/u:ﬂ) = (1'0’3'0)

i (2.5)=(08,30)

5 (.40)=(08,10)

0.5 0.6 0.7 1.0 1.1 12 2.0 4.0 5.0
Casel F 9 7 6 4 7 10 4 4 4
TC(F') | 104167 125999 148912 | 173.998 155.504 141.111 | 174.022 173.986 173.979
Case2 F 12 11 9 6 10 12 6 6 6
TC(F') | 104167 126.000 148.932 | 174.216 155.541 141.116 | 174.241 174204 174.197
Case3 F 12 11 9 6 10 12 6 6 6
TC(F') | 104.167 126,000 148.933 | 174226 155544 141.117 | 174.255 174211 174.202
Case4 F 11 9 7 5 9 12 5 5 5
TC(F') | 116.667 141.000 166.424 | 194.121 173710 157.781 | 194.150 194.107 194.099
Case5 F 6 4 3 2 4 6 2 2 2
TC(F') | 120833 146996 175278 | 207.572 183.632 165.532 | 207.601 207.557 207.548

Table 3. The optimal value of F and its minimum expected cost for the service time distribution such as deterministic.

2 (1.8)=(1.0,3.0)

1 (,58)=(08,3.0)

B (4,1)=(08,10)

05 0.6 0.7 1.0 1.1 1.2 2.0 4.0 5.0
Casel F 10 8 6 4 7 10 4 4 4
TC(F") | 103.750 125250 147.578 | 171.798 153.930 140.000 | 171.806 171.794 171.792
Case2 F 12 11 9 6 10 12 6 6 6
TC(F") | 103.750 125250 147.582 | 171.869 153.938 140.001 | 171.877 171.865 171.863
Case3 F 12 11 9 6 10 12 6 6 6
TC(F') | 103.750 125250 147.582 | 171.872 153.938 140.001 | 171.882 171.867 171.864
Case4 F 12 10 7 5 9 12 5 5 5
TC(F") | 116.250 140.250 165.080 | 191.839 172.117 156.667 | 191.848 191.834 191.831
Case5 F 7 5 3 2 4 6 2 2 2
TC(F') | 120.000 145.500 172.649 | 203.459 180.568 163.331 | 203.469 203.454 203.451
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