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A hamiltonian cycle C = <ui, u2,... Un(G), Ui>
with n(G) = number of vertices of G, is a cycle
C(u1;G) where u1 is the beginning and ending
vertex and uiis the i-th vertex in C and ui # uj

for any i j, 1< i, j= n(G). A set of

mutually independent if any two di®erent
hamiltonian cycles are independent. For a
hamiltonian graph G, the mutually independent
hamiltonicity number of G, denoted by h(G), is
the maximum integer k such that for any vertex u
of G there exist k-mutually independent
hamiltonian cycles of G starting at u. In this
paper, we prove that h(Bn) = n-1 if n= 4, where
Bn is the n-dimensional bubble-sort graph.

Keywords: Hamiltonian cycle, bubble-sort
networks, interconnection networks,
mutually independent Hamiltonian cycles,
Cayley graph
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Let H be a group, and let S be a generating
set of H with S* = S. The Cayley graph on a
group H with generating set S, denoted by
Cay(H; S), is the graph with vertex set H and
for two vertices u and v in H, u is adjacent to
v if and only if v = us for some s € S.
Hamiltonian cycles in Cayley graphs exist
naturally in computing and communication
[10], in the study of word-hyperbolic groups
and automatic groups [6], in
changing-ringing [13], in  creating
Escher-like repeating patterns in hyperbolic
plane [5], and in combinatorial designs [4]. It
is conjectured that every connected Cayley
graph with more than three vertices is
hamiltonian [3]. Up to know, this conjecture
is still unsolved. Yet, some Cayley graphs
have a lot of hamiltonian cycles than we
expected. In this paper, we introduce and
study the concept of mutually independent
hamiltonian cycles in Cayley graphs.

For graph definitions and notations we
follow [2]. G = (V;E) is a graph if V is a
finite set and E is a subset of {(u, v) | (u, v) is
an unordered pair of V }. We say that V is the
vertex set and E is the edge set. We use n(G)
to denote |V |. Let S be a nonempty subset of
V (G). The subgraph induced by S is the
subgraph of G with its vertex set S and with
its edge set consisting of all edges of G
joining any two vertices in S. We use G-S to
denote the subgraph of G induced by V - S.
Two vertices u and v are adjacent if (u; v) is
an edge of G. The set of neighbors of u,
denote by Ne(u), is {v | (u, v) € E}. The
degree of a vertex u of G, deg.(u), is the
number of edges incident with u. The
minimum degree of G, J(G), is min{degc(x)
| x € V }. Agraph G is k-regular if degs(u) =
k for every vertex u in G. A path between
vertices vo and vk is a sequence of vertices
represented by <vo, vi,..., w> with no
repeated vertex and (vi,vi+1) is an edge of G

foreveryi,0 = i = k-1.Weuse Q(i) to
denote the i-th vertex viof Q = <vi, v,..., Vk>.
We also write the path <vo, vi,..., w> as
<vo,...,Vi, Q, Vj,..., ki, where Q is a path form
vito vj. A cycle is a path with at least three
vertices such that the first vertex is the same
as the last one. A hamiltonian cycle of G is a
cycle that traverses every vertex of G. A
graph is hamiltonian if it has a hamiltonian
cycle. A graph G = (B / W;E) is bipartite
with bipartition Band Wif vV (G) =B U W,
B /7W= @, and E(G) is a subset of {(u, v) |
u e Band €2 W}. Let G be a bipartite graph
with bipartition B and W. We say that a
hamiltonian bipartite graph is hamiltonian
lacable if there is a hamiltonian path
between any pair of vertices {x; y} where x in
BandyinW. Leta, b, m € Z with m > 0.
Then a is said to be congruent to b modulo m,
denoteda = b mod m, if m|(a - b).

A hamiltonian cycle C(ui,G) of a
hamiltonian graph G is described as C(u1;G)
=<ui, U2,..., Un(G), U1> to emphasize the order
of vertices in C. Thus, uzis the beginning
vertex and ui is the i-th vertex in C. Two
hamiltonian cycles of G beginning at the
vertex x, C1= C(u1,G) = <ui, U2,..., Un(@), U1>
and C2= C(v1;G) = <vi, V2,..., Vn(G), V1>, are
independent if x = u1 = viand ui # vifor
every i, 2 = i= n(G). Let G be a
hamiltonian graph. A set of hamiltonian
cycles {Ci1,C2,...,Ck} of G is mutually
independent if any two different hamiltonian
cycles are independent. The mutually
independent hamiltonianicity number of a
hamiltonian graph G, called the MIH number
of G and denoted by h(G), is the maximum
integer k such that for any vertex u of G there
exist k-mutually independent hamiltonian
cycles of G starting at u. Obviously, h(G) -
= 0J(G) for a hamiltonian graph G. The
concept of mutually independent hamiltonian
cycles can be applied in many different areas.
The interested readers can refer to [7, 9, 11,



12] for more detailed introduction.

In this paper, we study MIH cycles of
n-dimensional bubble-sort graph Bn. We give
some basic properties for the n-dimensional
bubble-sort graph, and we construct MIH
cycles in Bn and compute h(Bn), the MIH
number of Bh.
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