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摘要 

 
一個圖形 G 的漢米爾頓圈 C，是為點的有序集合 〈u1, u2, …, un(G), u1〉，使得 ui ≠ uj對

於 i≠j 以及當 i ∈ {1, 2, …, n(G) −1}時，ui 是與 ui+1 相連接的且 un(G)是與 u1 相連接的，其

中 n(G)是代表圖形 G 中的點數。點 u1 是起始點且 ui代表是第 i 個點。如果稱圖形 G 中的

兩個漢米爾頓圈 C1 = 〈u1, u2, …, un(G), u1〉 和 C2 = 〈v1, v2, …, vn(G), v1〉 是獨立的，是因為 u1 

= v1 且對於 i ∈ {2, 3, …, n(G)}，會使得 ui ≠ vi。如果稱圖形 G 中的一個漢米爾頓圈之集合

{C1, C2, …, Ck}為相互獨立的，是因為集合中的元素都是兩兩互相獨立的。圖形 G 中相互

獨立的漢米爾頓圈 IHC(G)，是一個最大整數 k，使得對於圖形 G 中的任意一個點 u，存

在 k 個相互獨立的漢米爾頓圈，起始點為 u。 

如果稱一個二部圖 B 為二部泛圈性，是圖形 B 中包含所有偶數長度從 4 到 |V(B)|。

如果稱一個二部漢米爾頓圖形 B 為二部泛定位性，是因為對於任意兩個相異點 x 和 y 在

圖形 B，存在一個漢米爾頓圈 C，使得對於任意整數 k 介於 dB(x,y) ≤ k ≤ |V(B)|/2 且(k − 

dB(x,y))為偶數下，dC(x,y) = k。如果稱一個二部圖 B 為 k-迴圈二部泛定位性，是因為對於

任兩個相異點 x 和 y，在圖形 B 中存在一個迴圈，其中 k 為任意整數，使得 dC(x,y)= l 以

及|V(C)| = k，且 l 為任意整數介於 dB(x,y) ≤ l ≤ k/2，(l − dB(x,y))是為偶數。如果稱一個二

部圖 B 為二部泛定位二部泛圈性，是因對於任意偶數整數 k 介於 4 ≤ k ≤ |V(B)|中，圖形 B

中有 k 迴圈二部泛定位性。 

在這個計劃中，相互獨立的漢密爾頓圈是被考慮在 Cayley 圖形中的兩個家族，n-維

度的鬆餅圖(Pancake graphs Pn)以及 n-維度的星狀圖(Star graphs Sn)，而二部泛定位二部泛

圈性是被考慮在 n-維度的超立方體(Hypercube graph Qn)。我們在這個計劃中，已經證明

出來 IHC(P3) = 1，且當 n ≥ 4，IHC(Pn) = n − 1 又當 n ∈ {3, 4}，IHC(Sn) = n − 2，且當 n ≥ 

5，IHC(Sn) = n − 1，最後當 n ≥ 2 的超立方體 Qn 是有二部泛定位二部泛圈性。 

 

關鍵字：二部泛定位性、二部泛圈性、超立方體、漢米爾頓、鬆餅圖、星狀圖。 

II 
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Abstract 

 
A hamiltonian cycle C of a graph G is an ordered set 〈u1, u2, …, un(G), u1〉 of vertices such 

that ui ≠ uj for i ≠ j and ui is adjacent to ui+1 for every i ∈ {1, 2, …, n(G) −1} and un(G) is 

adjacent to u1, where n(G) is the order of G. The vertex u1 is the starting vertex and ui is the ith 

vertex of C. Two hamiltonian cycles C1 = 〈u1, u2, …, un(G), u1〉 and C2 = 〈v1, v2, …, vn(G), v1〉 of 

G are independent if u1 = v1 and ui ≠ vi for every i ∈ {2, 3, …, n(G)}. A set of hamiltonian 

cycles {C1, C2, …, Ck} of G is mutually independent if its elements are pairwise independent. 

The mutually independent hamiltonicity IHC(G) of a graph G is the maximum integer k such 

that for any vertex u of G there exist k mutually independent hamiltonian cycles of G starting at 

u. 

A bipartite graph B is bipancyclic if it contains a cycle of every even length from 4 to 

|V(B)| inclusive. A hamiltonian bipartite graph B is bipanpositionable if, for any two different 

vertices x and y, there exists a hamiltonian cycle C of B such that dC(x,y) = k for any integer k 

with dB(x,y) ≤ k ≤ |V(B)|/2 and (k − dB(x,y)) being even. A bipartite graph B is k-cycle 

bipanpositionable if, for any two different vertices x and y, there exists a cycle of B with 

dC(x,y)= l and |V(C)| = k for any integer l with dB(x,y) ≤ l ≤ k/2 and (l − dB(x,y)) being even. A 

bipartite graph B is bipanpositionable bipancyclic if B is k-cycle bipanpositionable for every 

even integer k, 4 ≤ k ≤ |V(B)|.  

In this project, the mutually independent hamiltonicity is considered for two families of 

Cayley graphs, the n-dimensional pancake graphs Pn and the n-dimensional star graphs Sn, and 

the bipanpositionable bipancyclicity is considered the n-dimensional hypercube graph Qn. We 

have proven that IHC(P3) = 1, IHC(Pn) = n − 1 if n ≥ 4, IHC(Sn) = n − 2 if n ∈ {3, 4} and 

IHC(Sn) = n − 1 if n ≥ 5, and the hypercube Qn is bipanpositionable bipancyclic for n ≥ 2. 

 

Keywords: Bipanpositionable, bipancyclic, hypercube, hamiltonian, pancake networks, star 

networks. 
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1. 前言、研究目的及文獻探討 

An interconnection network connects the processors of parallel computers. Its 

architecture can be represented as a graph in which the vertices correspond to 

processors and the edges correspond to connections. Hence, we use graphs and 

networks interchangeably. There are many mutually conflicting requirements in 

designing the topology for computer networks. 

 In 1969, Lovász [1] asked whether every finite connected vertex transitive 

graph has a hamiltonian path, that is, a simple path that traverses every vertex exactly 

once. All known vertex transitive graphs have a hamiltonian path and moreover, only 

four vertex transitive graphs without a hamiltonian cycle are known. Since none of 

these four graphs is a Cayley graph there is a folklore conjecture [2] that every Cayley 

graph with more than two vertices has a hamiltonian cycle. In the last decades this 

problem was extensively studied (see [3-13]) and for those Cayley graphs for which 

the existence of hamiltonian cycles is already proven, further properties related to this 

problem, such as edge-hamiltonicity, Hamiltonconnectivity and Hamilton-laceability, 

are investigated (see [5,14]). In this project, we introduce one of such properties, the 

concept of mutually independent hamiltonian cycles which is related to the number of 

hamiltonian cycles in a given graph. In particular, mutually independent hamiltonian 

cycles of pancake graphs Pn and star graphs Sn. 

The concept of mutually independent hamiltonian arises from the following 

application. If there are k pieces of data needed to be sent from u to v, and the data 

needed to be processed at every node (and the process takes times), then we want 

mutually independent hamiltonian paths so that there will be no waiting time at a 

processor. The existence of mutually independent hamiltonian paths is useful for 

communication algorithms. Motivated by this result, we begin the study on graphs 

with mutually independent hamiltonian paths between every pair of distinct vertices. 

The n-dimensional star network Sn was proposed in [15] as n attractive 

alternative to the n-cube topology for interconnecting processors in parallel computers. 

Since its introduction, the network has received considerable attention. Akers and 

Krishnameurthy [15] showed that the star graphs are vertex transitive and edge 

transitive. The diameter and fault diameters were computed in [15-17]. The 

hamiltonian and hamiltonian laceability of star graphs are studied in [18-22]. The 

spanning container of star graph is studied in [23]. 
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Akers and Krishnameurthy [15] proposed another family of interesting 

interconnection networks, the n-dimensional pancake graph Pn. Hung et al. [24] 

studied the hamiltonian connectivity on the faulty pancake graphs. The embedding of 

cycles and trees into the pancake graphs were discussed in [24-27]. The spanning 

container of pancake graph is studied in [28]. Gates and Papadimitriou [29] studied 

the diameter of the pancake graphs. Up to now, we do not know the exact value of the 

diameter of the pancake graphs [30]. 

The n-dimensional hypercube, Qn, consists of all n-bit binary strings as its 

vertices and two vertices u and v are adjacent if and only if their binary labels are 

different in exactly one bit position. Therefore, Qn can be constructed recursively by 

taking two copies of Qn−1, Q0
n and Q1

n, and adding a perfect matching between these 

two copies. The hypercube is a widely used topology in computer architecture, see 

Leighton [31]. 

A graph G is pancyclic if it contains a cycle of every length from 3 to |V(G)| 

inclusive. The concept of pancyclic graphs wasproposed by Bondy [32]. Since there is 

no odd cycle in bipartite graph, the concept of a bipancyclic graph was proposed by 

Mitchem and Schmeichel [33]. A bipartite graph is bipancyclic if it contains a cycle 

of every even length from 4 to |V(G)| inclusive. It is proved that the hypercube Qn is 

bipancyclic if n ≥ 2 [34,35]. A graph is panconnected if, for any two different vertices 

x and y, there exists a path of length l joining x and y for every l with dG(x, y) ≤ l ≤ 

|V(G)| − 1. The concept of panconnected graphs was proposed by Alavi and 

Williamson [36]. It is easy to see that any bipartite graph with at least 3 vertices is not 

panconnected. Therefore, the concept of bipanconnected graphs is proposed. A 

bipartite graph is bipanconnected if, for any two different vertices x and y, there exists 

a path of length l joining x and y for every l with dG(x, y) ≤ l ≤ |V(G)| − 1 and (l − dG(x, 

y)) being even. It is proved that the hypercube is bipanconnected [34]. A hamiltonian 

graph G is panpositionable if for any two different vertices x and y of G and for any 

integer k with dG(x, y) ≤ k ≤ |V(G)|/2, there exists a hamiltonian cycle C of G such that 

dC(x, y) = k. A hamiltonian bipartite graph G is bipanpositionable if for any two 

different vertices x and y of G and for any integer k with dG(x, y) ≤ k ≤ |V(G)|/2 and 

(k− dG(x, y)) being even, there exists a hamiltonian cycle C of G such that dC(x, y) = k. 

The concepts of panpositionable and bipanpositionable were proposed by Kao et al. 

[37]. They proved that the hypercube Qn is bipanpositionable if n ≥ 2 [37]. A bipartite 
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graph G is edge-bipancyclic if for any edge in G, there is a cycle of every even length 

from 4 to |V(G)| traversing through this edge. The concept of edge-bipancyclic was 

proposed by Alspach and Hare [38]. A bipartite graph G is vertex-bipancyclic if for 

any vertex in G, there is a cycle of every even length from 4 to |V(G)| going through 

this vertex. The concept of vertex-bipancyclic was proposed by Hobbs [39]. 

Obviously, every edge-bipancyclic graph is vertex-bipancyclic. It is proved that the 

hypercube Qn is edge-bipancyclic if n ≥ 2 [34]. 

We propose a more interesting property about hypercubes. A k-cycle is a cycle of 

length k. A bipartite graph G is k-cycle bipanpositionable if for every different 

vertices x and y of G and for any integer l with dG(x, y) ≤ l ≤ k/2 and (l − dG(x, y)) 

being even, there exists a k-cycle C of G such that dC(x, y) = l. (Note that dC(x, y) ≤ k/2 

for every cycle C of length k.) A bipartite graph G is bipanpositionable bipancyclic if 

G is k-cycle bipanpositionable for every even integer k with 4 ≤ k ≤ |V(G)|. 

In this project, we have proven that IHC(P3) = 1, IHC(Pn) = n − 1 if n ≥ 4, 

IHC(Sn) = n − 2 if n ∈ {3, 4} and IHC(Sn) = n − 1 if n ≥ 5, and the hypercube Qn is 

bipanpositionable bipancyclic for n ≥ 2. 

 

2. 研究方法 

我們知道在目前有許多著名的連結網路抑或是多處理器架構中，都有存在許

多的好性質，例如 bipancyclic, bipanconnected, bipanpositionable, edge-bipancyclic 
and vertex-bipancyclic。但是這麼多的好性質通常需要分開的驗證，或者是有其

它的好性質沒有被發現出來，例如，mutually independent hamiltonian cycles。所

以在本次的計劃中，我們將深入去探討這些著名的連結網路或是多處理架構中，

是否存在著更好的性質。 

我們研究的過程分為以下四個步驟： 

一. 收集文獻： 

我們善加利用學校的圖書館藏的資源、參與國內外重要的演討會以及網 

路上相關學術網站上的資料，來充實我們對於研究題材本身的知識，以

及知道學術界上相關領域的主流發展。 

 

二. 探討文獻及發現問題： 

我們利用收集到的資料，請計劃中的參與人員詳細閱讀，並在每週固定

時間的討論會中發表心得與感想，並藉由討論過程中，激發出相關議題

與我們可再繼續探討研究之主題。 
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三. 解決問題： 

在主持人確定主題與研究方向之後，由主持人帶領著參與計劃的博士生

來研究並解決問題。在過程中，有需要利用電腦程式的執行來加快我們

驗證的速度，也有需要利用理論及數學方法的推導，加以證明我們所提

出的研究議題之正確性。並在每週固定的討論會中，鉅細靡遺的說明解

釋給主持人及其他計劃的參與人員知道，以保證不會因個人小部分的觀

念偏差，造成有錯誤的解果產生。 

 

四. 成過發表： 

當有研究主題被驗證為正確之時，我們會將其撰寫成論文，並發表在國

際期刊以及國際研討會中。其中本計劃相關的論文也已經有發表在國際

著名 SCI 期刊以及國際研討會中。 

 

Cheng-Kuan Lin,Jimmy J.M. Tan, Hua-Min Huang, D. Frank Hsu, and 

Lih-Hsing Hsu, "Mutually independent hamiltonian cycles for the 

pancake graphs and the star graphs," Discrete Mathematics, 309 

(2009) 5474-5483. 

 

Yuan-Kang Shih, Cheng-Kuan Lin, Jimmy J.M. Tan,�and Lih-Hsing Hsu, 

"The bipanpositionable bipancyclic property of the hypercube," 

Computers and Mathematics with Applications, 58 (2009) 1722-1724. 

 

Tung-Yang Ho, Yuan-Kang Shih, Jimmy J.M. Tan, and Lih-Hsing Hsu, 

"Conditional fault hamiltonian connectivity of the complete 

graph," Information Processing Letters, 109 (2009) 585-588. 

 

3. 結果與討論 

In this project, the mutually independent hamiltonicity is considered for two 

families of Cayley graphs, the n-dimensional pancake graphs Pn and the 

n-dimensional star graphs Sn, and the bipanpositionable bipancyclicity is considered 

the n-dimensional hypercube graph Qn. We have proven that IHC(P3) = 1, IHC(Pn) = 

n − 1 if n ≥ 4, IHC(Sn) = n − 2 if n ∈ {3, 4} and IHC(Sn) = n − 1 if n ≥ 5, and the 

hypercube Qn is bipanpositionable bipancyclic for n ≥ 2. 

We discuss the mutually independent hamiltonian cycles for the pancake graphs 

and the star graphs. The concept of mutually independent hamiltonian cycle can be 
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viewed as a generalization of Latin rectangles. Perhaps one of the most interesting 

topics in Latin square is orthogonal Latin square. Two Latin squares of order n are 

orthogonal if the n-squared pairs formed by juxtaposing the two arrays are all distinct. 

Similarly, two Latin rectangles of order n × m are orthogonal if the n × m pairs formed 

by juxtaposing the two arrays are all distinct. With this in mind, let G be a 

Hamiltonian graph and C1 and C2 be two sets of mutually independent hamiltonian 

cycles of G from a given vertex x. We say C1 and C2 are orthogonal if their 

corresponding Latin rectangles are orthogonal. 

We can also discuss mutually independent hamiltonian paths for some graphs. 

Let P1 = 〈v1, v2, …, vn〉 and P2 = 〈u1, u2, …, un〉 be two hamiltonian paths of a graph G. 

We say that P1 and P2 are independent if u1 = v1, un = vn, and ui ≠ vi for 1 < i < n. We 

say a set of hamiltonian paths {P1, P2, …, Ps} of G between two distinct vertices are 

mutually independent if any two distinct paths in the set are independent. There are 

some study on mutually independent Hamiltonian paths [40, 41]. 

Recently, people are interested in a mathematical puzzle, called Sudoku [42]. 

Sudoku can be viewed as a 9×9 Latin square with some constraints. There are several 

variations of Sudoku have been introduced. Mutually independent Hamiltonian cycles 

can also be considered as a variation of Sudoku. 

On the other hand, we prove that the hypercube Qn is bipanpositionable 

bipancyclic for n ≥ 2. As a consequence of this result, we can see that many previous 

results on hypercubes follow directly from ours. For example, the family of the 

hypercube is bipancyclic, bipanconnected, bipanpositionable, edge-bipancyclic and 

vertex-bipancyclic. Therefore, our result unifies these results in a general sense. 
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a b s t r a c t

A hamiltonian cycle C of a graph G is an ordered set 〈u1, u2, . . . , un(G), u1〉 of vertices such
that ui 6= uj for i 6= j and ui is adjacent to ui+1 for every i ∈ {1, 2, . . . , n(G) − 1} and
un(G) is adjacent to u1, where n(G) is the order of G. The vertex u1 is the starting vertex
and ui is the ith vertex of C . Two hamiltonian cycles C1 = 〈u1, u2, . . . , un(G), u1〉 and
C2 = 〈v1, v2, . . . , vn(G), v1〉 of G are independent if u1 = v1 and ui 6= vi for every i ∈
{2, 3, . . . , n(G)}. A set of hamiltonian cycles {C1, C2, . . . , Ck} of G is mutually independent
if its elements are pairwise independent. Themutually independent hamiltonicity IHC(G) of
a graph G is the maximum integer k such that for any vertex u of G there exist kmutually
independent hamiltonian cycles of G starting at u.
In this paper, the mutually independent hamiltonicity is considered for two families of

Cayley graphs, the n-dimensional pancake graphs Pn and the n-dimensional star graphs Sn.
It is proven that IHC(P3) = 1, IHC(Pn) = n− 1 if n ≥ 4, IHC(Sn) = n− 2 if n ∈ {3, 4} and
IHC(Sn) = n− 1 if n ≥ 5.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In 1969, Lovász [32] askedwhether every finite connected vertex transitive graph has a hamiltonian path, that is, a simple
path that traverses every vertex exactly once. All known vertex transitive graphs have a hamiltonian path and moreover,
only four vertex transitive graphs without a hamiltonian cycle are known. Since none of these four graph is a Cayley graph
there is a folklore conjecture [9] that every Cayley graph with more than two vertices has a hamiltonian cycle. In the last
decades this problemwas extensively studied (see [2–5,7,12,19,33–36]) and for those Cayley graphs for which the existence
of hamiltonian cycles is already proven, further properties related to this problem, such as edge-hamiltonicity, Hamilton-
connectivity and Hamilton-laceability, are investigated (see [4,8]). In this paper we introduce one of such properties, the
concept of mutually independent hamiltonian cycles which is related to the number of hamiltonian cycles in a given graph.
In particular,mutually independent hamiltonian cycles of pancake graphs Pn and star graphs Sn (for definitions see Sections 4
and 5) are studied.
The paper is organized as follows. In Section 2 definitions andnotations needed in the subsequent sections are introduced.

In Section 3 applications of the mutually independent hamiltonicity concept are given. In Sections 4 and 5 the mutually
independent hamiltonicity of pancake graphs Pn and star graphs Sn, respectively, is computed. And in the last section,
Section 6, directions for further research on this topic are discussed.
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2. Definitions

For definitions and notations not defined here see [6]. Let V be a finite set and E a subset of {(u, v) |

(u, v) is an unordered pair of V }. Then G = (V , E) is a graph with vertex set V and edge set E. The order of G, that is, the
cardinality of the set V , is denoted by n(G). For a subset S of V the graph G[S] induced by S is a graph with vertex set
V (G[S]) = S and edge set E(G[S]) = {(x, y) | (x, y) ∈ E(G) and x, y ∈ S}. Two vertices u and v are adjacent if (u, v) is an edge
of G. For a vertex u the set NG(u) = {v | (u, v) ∈ E} is called the set of neighbors of u. The degree degG(u) of a vertex u in G, is
the cardinality of the setNG(u). Theminimum degree of G, δ(G), is min{degG(x) | x ∈ V }. A graph G is k-regular if degG(u) = k
for every vertex u in G. The connectivity of G is the minimum number of vertices whose removal leaves the remaining graph
disconnected or trivial. A path between vertices v0 and vk is a sequence of vertices represented by 〈v0, v1, . . . , vk〉 such that
there is no repeated vertex and (vi, vi+1) is an edge of G for every i ∈ {0 . . . k− 1}. We use Q (i) to denote the ith vertex vi of
Q = 〈v1, v2, . . . , vk〉. We also write the path 〈v0, v1, . . . , vk〉 as 〈v0, . . . , vi,Q , vj, . . . , vk〉, where Q is a path form vi to vj. A
path is a hamiltonian path if it contains all vertices of G. A graph G is hamiltonian connected if there exists a hamiltonian path
joining any two distinct vertices of G. A cycle is a sequence of vertices represented by 〈v0, v1, . . . , vk, v0〉 such that vi 6= vj
for all i 6= j, (v0, vk) is an edge of G, and (vi, vi+1) is an edge of G for every i ∈ {0, . . . , k − 1}. A hamiltonian cycle of G is a
cycle that traverses every vertex of G. A graph is hamiltonian if it has a hamiltonian cycle.
A hamiltonian cycle C of graph G is described as 〈u1, u2, . . . , un(G), u1〉 to emphasize the order of vertices in C . Thus,

u1 is the starting vertex and ui is the ith vertex in C . Two hamiltonian cycles C1 = 〈u1, u2, . . . , un(G), u1〉 and C2 =
〈v1, v2, . . . , vn(G), v1〉 of G are independent if u1 = v1 and ui 6= vi for every i ∈ {2, . . . , n(G)}. A set of hamiltonian
cycles {C1, C2, . . . , Ck} of G are mutually independent if its elements are pairwise independent. The mutually independent
hamiltonicity IHC(G) of graph G the maximum integer k such that for any vertex u of G there exist kmutually independent
hamiltonian cycles of G starting at u. Obviously, IHC(G) ≤ δ(G) if G is a hamiltonian graph.
The mutually independent hamiltonicity of a graph can be interpreted as a Latin rectangle. A Latin square of order n is an

n×n arraymade from the integers 1 to nwith the property that any integer occurs once in each row and column. If we delete
some rows from a Latin square, we will get a Latin rectangle. Let K5 be the complete graph with vertex set {0, 1, 2, 3, 4} and
let C1 = 〈0, 1, 2, 3, 4, 0〉, C2 = 〈0, 2, 3, 4, 1, 0〉, C3 = 〈0, 3, 4, 1, 2, 0〉, and C4 = 〈0, 4, 1, 2, 3, 0〉. Obviously, C1, C2, C3, and
C4 are mutually independent. Thus, IHC(K5) = 4. We rewrite C1, C2, C3, and C4 into the following Latin square:

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

In general, a Latin square of order n can be viewed as n mutually independent hamiltonian cycles with respect to the
complete graph Kn+1.
LetH be a group and let S be the generating set ofH such that S−1 = S. Then the Cayley graph Cayley(S;H) of the groupH

with respect to the generating set S is the graph with vertex set H and two vertex u and v are adjacent in Cayley(S;H)
if and only if u−1v ∈ S. Hamiltonian cycles in Cayley graphs naturally arise in computer science [25], in the study of
word-hyperbolic groups and automatic groups [14], in changing-ringing [40], in creating Escher-like repeating patterns
in hyperbolic plane [13], and in combinatorial designs [11].

3. Applications of the concept of mutually independent hamiltonian cycles

Mutually independent hamiltonicity of graphs can be applied to many areas. Consider the following scenario. In
Christmas, we have a holiday of 10-days. A tour agency will organize a 10-day tour to Italy. Suppose that there will be a
lot of people joining this tour. However, the maximum number of people stay in each local area is limited, say 100 people,
for the sake of hotel contract. One trivial solution is on the First-Come-First-Serve basis. So only 100 people can attend
this tour. (Note that we cannot schedule the tour in a pipelined manner because the holiday period is fixed.) Nonetheless,
we observe that a tour is like a hamiltonian cycle based on a graph, in which a vertex is denoted as a hotel and any two
vertices are joinedwith an edge if the associated two hotels can be traveled in a reasonable time. Therefore, we can organize
several subgroups, that is, each subgroup has its own tour. In this way, we do not allow two subgroups stay in the same area
during the same time period. In other words, any two different tours are indeed independent hamiltonian cycles. Suppose
that there are 10 mutually independent hamiltonian cycles. Then we may allow 1000 people to visit Italy on Christmas
vacation. For this reason, we would like to find the maximum number of mutually independent hamiltonian cycles. Such
applications are useful for task scheduling and resource placement, which are also important for compiler optimization to
exploit parallelism.
An interconnection network connects the processors of parallel computers. Its architecture can be represented as a graph

inwhich the vertices correspond to processors and the edges correspond to connections. Hence,we use graphs and networks
interchangeably. There are many mutually conflicting requirements in designing the topology for computer networks. The
n-cube is one of the most popular topologies [27]. The n-dimensional star network Sn was proposed in [1] as n attractive
alternative to the n-cube topology for interconnecting processors in parallel computers. Since its introduction, the network
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Fig. 1. The pancake graphs P2 , P3 , and P4 .

has received considerable attention. Akers and Krishnameurthy [1] showed that the star graphs are vertex transitive and
edge transitive. The diameter and fault diameters were computed in [1,26,37]. The hamiltonian and hamiltonian laceability
of star graphs are studied in [16,17,21,23,31]. The spanning container of star graph is studied in [28].
Akers and Krishnameurthy [1] proposed another family of interesting interconnection networks, the n-dimensional

pancake graph Pn. Hung et al. [22] studied the hamiltonian connectivity on the faulty pancake graphs. The embedding of
cycles and trees into the pancake graphswere discussed in [10,15,22,24]. The spanning container of pancake graph is studied
in [28]. Gates and Papadimitriou [18] studied the diameter of the pancake graphs. Up to now,we do not know the exact value
of the diameter of the pancake graphs [20].

4. The pancake graphs

Let n be a positive integer. We use 〈n〉 to denote the set {1, 2, . . . , n}. The n-dimensional pancake graph, Pn, is a graphwith
the vertex set V (Pn) = {u1u2 . . . un | ui ∈ 〈n〉 and uj 6= uk for j 6= k}. The adjacency is defined as follows: u1u2 . . . ui . . . un
is adjacent to v1v2 . . . vi . . . vn through an edge of dimension i with 2 ≤ i ≤ n if vj = ui−j+1 for all 1 ≤ j ≤ i and vj = uj
for all i < j ≤ n. We will use boldface to denote a vertex of Pn. Hence, u1,u2, . . . ,un denote a sequence of vertices in Pn. In
particular, e denotes the vertex 12 . . . n. The pancake graphs P2, P3, and P4 are illustrated in Fig. 1.
By definition, Pn is an (n−1)-regular graph with n! vertices. Akers and Krishnameurthy [1] showed that the connectivity

of Pn is (n− 1). Let u = u1u2 . . . un be an arbitrary vertex of Pn. We use (u)i to denote the ith component ui of u, and use P
{i}
n

to denote the ith subgraph of Pn induced by those vertices uwith (u)n = i. Then Pn can be decomposed into n vertex disjoint
subgraphs P {i}n , 1 ≤ i ≤ n, and each P

{i}
n is isomorphic to Pn−1 for all i, i ≤ n. Thus, the pancake graph can be constructed

recursively. Let H be any subset of 〈n〉. We use PHn to denote the subgraph of Pn induced by ∪i∈H V (P
{i}
n ). By definition, there

is exactly one neighbor v of u such that u and v are adjacent through an i-dimensional edge with 2 ≤ i ≤ n. We use (u)i to
denote the unique i-neighbor of u. We have ((u)i)i = u and (u)n ∈ P {(u)1}n . For any two distinct elements i and j in 〈n〉, we
use E i,jn to denote the set of edges between P

{i}
n and P

{j}
n .

Lemma 1. Let i and j be any two distinct elements in 〈n〉 with n ≥ 3. Then |E i,jn | = (n− 2)!.

Lemma 2. Let u and v be any two distinct vertices of Pn with d(u, v) ≤ 2. Then (u)1 6= (v)1.

Theorem 1 ([22]). Suppose that F is a subset of V (Pn) with |F | ≤ n− 4. Then Pn − F is hamiltonian connected.

Theorem 2. Let {a1, a2, . . . , ar} be a subset of 〈n〉 for some positive integer r ∈ 〈n〉 with n ≥ 5. Assume that u and v are two
distinct vertices of Pn withu ∈ P

{a1}
n and v ∈ P {ar }n . Then there is a hamiltonian path 〈u = x1,H1, y1, x2,H2, y2, . . . , xr,Hr , yr =

v〉 of ∪ri=1 P
{ai}
n joining u to v such that x1 = u, yr = v, and Hi is a hamiltonian path of P

{ai}
n joining xi to yi for every i, 1 ≤ i ≤ r.

Proof. We set x1 as u and yr as v. We know that P
{ai}
n is isomorphic to Pn−1 for every i ∈ 〈r〉. By Theorem 1, this statement

holds for r = 1. Thus, we assume that r ≥ 2. By Lemma 1, |Eai,ai+1n | = (n − 2)! ≥ 6 for every i ∈ 〈r − 1〉. We choose
(yi, xi+1) ∈ E

ai,ai+1
n for every i ∈ 〈r − 1〉 with y1 6= x1 and xr 6= yr. By Theorem 1, there is a hamiltonian path Hi of P

{ai}
n

joining xi to yi for every i ∈ 〈r〉. Then 〈u = x1,H1, y1, x2,H2, y2, . . . , xr,Hr , yr = v〉 is the desired path. See Fig. 2 for
illustration on Pn. �

Lemma 3. Let k ∈ 〈n〉 with n ≥ 4, and let x be a vertex of Pn. There is a hamiltonian path P of Pn − {x} joining the vertex (x)n
to some vertex v with (v)1 = k.
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Fig. 2. Illustration for Theorem 2 on Pn .

Proof. Suppose that n = 4. Since P4 is vertex transitive, we may assume that x = 1234. The required paths of P4 − {1234}
are listed below:
k = 1 〈4321, 3421, 2431, 4231, 1324, 3124, 2134, 4312, 1342, 2143, 4132, 2314, 3214, 4123, 2143, 3412, 1432, 2341, 3241, 1423, 2413, 4213, 1243〉
k = 2 〈4321, 3421, 2431, 4231, 1324, 3124, 2134, 4312, 1342, 3142, 2413, 4213, 1243, 2143, 3412, 1432, 4132, 2314, 3214, 4123, 1423, 3241, 2341〉
k = 3 〈4321, 3421, 2431, 4231, 1324, 3124, 2134, 4312, 1342, 3142, 4132, 2314, 3214, 4123, 1423, 2413, 4213, 1342, 2143, 3412, 1432, 2341, 3241〉
k = 4 〈4321, 3421, 2431, 1342, 3142, 4132, 2314, 3214, 4123, 2143, 1243, 4213, 2413, 1423, 3241, 2341, 1432, 3412, 4312, 2134, 3124, 1324, 4231〉

With Theorem 1, we can find the required hamiltonian path in Pn for every n, n ≥ 5. �

Lemma 4. Let a and b be any two distinct elements in 〈n〉 with n ≥ 4, and let x be a vertex of Pn. There is a hamiltonian path P
of Pn − {x} joining a vertex u with (u)1 = a to a vertex v with (v)1 = b.
Proof. Suppose that n = 4. Since P4 is vertex transitive, we may assume that x = 1234. Without loss of generality, we may
assume that a < b. The required paths of P4 − {1234} are listed below:

a = 1 and b = 2
〈1423, 4123, 3214, 2314, 1324, 3124, 4213, 2413, 3142, 4132, 1432, 3412, 2143, 1243, 3421, 4321, 2341, 3241, 4231, 2431, 1342, 4312, 2134〉
a = 1 and b = 3
〈1423, 4123, 2143, 1243, 4213, 2413, 3142, 1342, 2431, 3421, 4321, 2341, 3241, 4231, 1324, 3124, 2134, 4312, 3412, 1432, 4132, 2314, 3214〉
a = 1 and b = 4
〈1423, 2413, 3142, 1342, 2431, 3421, 4321, 2341, 3241, 4231, 1324, 2314, 3214, 4123, 2143, 1243, 4213, 3124, 2134, 4312, 3412, 1432, 4132〉
a = 2 and b = 3
〈2134, 4312, 1342, 3142, 2413, 4213, 1243, 2143, 3412, 1432, 4132, 2314, 3214, 4123, 1423, 3241, 2341, 4321, 3421, 2431, 4231, 1324, 3124〉
a = 2 and b = 4
〈2134, 3124, 1324, 2314, 3214, 4123, 2143, 1243, 4213, 2413, 1423, 3241, 4231, 2431, 3421, 4321, 2341, 1432, 3412, 4312, 1342, 3142, 4132〉
a = 3 and b = 4
〈3214, 4123, 2143, 1243, 4213, 3124, 2134, 4312, 3412, 1432, 2341, 4321, 3421, 2431, 1342, 3142, 2413, 1423, 3241, 4231, 1324, 2314, 4132〉

With Theorem 1, we can find the required hamiltonian path on Pn for every n, n ≥ 5. �

Lemma 5. Let a and b be any two distinct elements in 〈n〉with n ≥ 4. Assume that x and y are two adjacent vertices of Pn. There
is a hamiltonian path P of Pn − {x, y} joining a vertex u with (u)1 = a to a vertex v with (v)1 = b.
Proof. Since Pn is vertex transitive, we may assume that x = e and y = (e)i for some i ∈ {2, 3, . . . , n}. Without loss of
generality, we assume that a < b. Thus, a 6= n and b 6= 1.We prove this statement by induction on n. For n = 4, the required
paths of P4 − {1234, (1234)i} are listed below:

y = 2134
a = 1 and b = 2
〈1432, 2413, 3142, 4132, 1432, 3412, 4312, 1342, 2431, 3421, 4321, 2341, 3241, 4231, 1324, 3124, 4213, 1243, 2143, 4123, 3214, 2314〉
a = 1 and b = 3
〈1432, 4123, 2143, 1243, 3421, 4321, 2341, 3241, 4231, 2431, 1342, 4312, 3412, 1432, 4132, 3142, 2413, 4213, 3124, 1324, 2314, 3214〉
a = 1 and b = 4
〈1432, 4123, 3214, 2314, 1324, 3124, 4213, 2413, 3142, 4132, 1432, 2341, 3241, 4231, 2431, 1342, 4312, 3412, 2143, 1243, 3421, 4321〉
a = 2 and b = 3
〈2314, 3214, 4123, 2143, 1243, 4213, 3124, 1324, 4231, 2431, 1342, 4312, 3412, 1432, 4132, 3142, 2413, 1423, 3241, 2341, 4321, 3421〉
a = 2 and b = 4
〈2314, 3214, 4123, 2143, 3412, 4312, 1342, 2431, 3421, 1243, 4213, 3124, 1324, 4231, 3241, 1423, 2413, 3142, 4132, 1432, 2341, 4321〉
a = 3 and b = 4
〈3214, 4123, 2143, 1243, 3421, 2431, 4231, 3241, 1423, 2413, 4213, 3124, 1324, 2314, 4132, 3142, 1342, 4312, 3412, 1432, 2341, 4321〉

y = 3214
a = 1 and b = 2
〈1423, 4123, 2143, 1243, 3421, 4321, 2341, 3241, 4231, 2431, 1342, 3142, 2413, 4213, 3124, 1324, 2314, 4132, 1432, 3412, 4312, 2134〉
a = 1 and b = 3
〈1423, 4123, 2143, 1243, 4213, 2413, 3142, 1342, 2431, 3421, 4321, 2341, 3241, 4231, 1324, 2314, 4132, 1432, 3412, 4312, 2134, 3124〉
a = 1 and b = 4
〈1423, 4123, 2143, 1243, 3421, 2431, 1342, 3142, 2413, 4213, 3124, 2134, 4312, 3412, 1432, 4132, 2314, 1324, 4231, 3241, 2341, 4321〉
a = 2 and b = 3
〈2134, 4312, 1342, 2431, 4231, 3241, 1423, 4123, 2143, 3412, 1432, 2341, 4321, 3421, 1243, 4213, 2413, 3142, 4132, 2314, 1324, 3124〉
a = 2 and b = 4
〈2134, 3124, 4213, 2413, 3142, 1342, 4312, 3412, 1432, 4132, 2314, 1324, 4231, 2431, 3421, 1243, 2143, 4123, 1423, 3241, 2341, 4321〉
a = 3 and b = 4
〈3124, 2134, 4312, 1342, 3142, 2413, 4213, 1243, 3421, 2431, 4231, 1324, 2314, 4132, 1432, 3412, 2143, 4123, 1423, 3241, 2341, 4321〉
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y = 4321
a = 1 and b = 2
〈1423, 4123, 3214, 2314, 4132, 3142, 2413, 4213, 3124, 1324, 4231, 3241, 2341, 1432, 3412, 2143, 1243, 3421, 2431, 1342, 4312, 2134〉
a = 1 and b = 3
〈1423, 4123, 2143, 3412, 1432, 2341, 3241, 4231, 1324, 3124, 2134, 4312, 1342, 2431, 2431, 1243, 4213, 2413, 3142, 4132, 2314, 3214〉
a = 1 and b = 4
〈1423, 2413, 4213, 3124, 2134, 4312, 3412, 2143, 1243, 3421, 2431, 1342, 3142, 4132, 1432, 2341, 3241, 4231, 1324, 2314, 3214, 4123〉
a = 2 and b = 3
〈2134, 4312, 1342, 3142, 4132, 2314, 3214, 4123, 2143, 3412, 1432, 2341, 3241, 1423, 2413, 4213, 1243, 3421, 2431, 4231, 1324, 3124〉
a = 2 and b = 4
〈2134, 3124, 4213, 2413, 1423, 3241, 2341, 1432, 4132, 3142, 1342, 4312, 3412, 2143, 1243, 3421, 2431, 4231, 1324, 2314, 3214, 4123〉
a = 3 and b = 4
〈3214, 2314, 1324, 4231, 3241, 2341, 1432, 4132, 3142, 1342, 2431, 3421, 1243, 2143, 3412, 4312, 2134, 3124, 4213, 2413, 1423, 4123〉

Suppose that this statement holds for Pk for every k, 4 ≤ k < n. We have the following cases:

Case 1. y = (e)i for some i 6= 1 and i 6= n, that is, y ∈ P {n}n . Let c be an element in 〈n − 1〉 − {a}. By induction, there is
a hamiltonian path R of P {n}n − {e, (e)i} joining a vertex u with (u)1 = a to a vertex z with (z)1 = c. We choose a vertex
v in P 〈n−1〉−{c}n with (v)1 = b. By Theorem 2, there is a hamiltonian path H of P

〈n−1〉
n joining the vertex (z)n to v. Then

〈u, R, z, (z)n,H, v〉 is the desired path.

Case 2. y = (e)n, that is, y ∈ P {1}n . Let c be an element in 〈n − 1〉 − {1, a}, and let d be an element in 〈n − 1〉 − {1, b, c}. By
Lemma 4, there is a hamiltonian path R of P {n}n − {e} joining a vertex u with (u)1 = a to a vertex w with (w)1 = c. Again,
there is a hamiltonian path H of P {1}n − {(e)n} joining a vertex z with (z)1 = d to a vertex v with (v)1 = b. By Theorem 2,
there is a hamiltonian path Q of P 〈n−1〉−{1}n joining the vertex (w)n to the vertex (z)n. Then 〈u, R,w, (w)n,Q , (z)n, z,H, v〉 is
the desired path. �

Lemma 6. Let a and b be any two distinct elements in 〈n〉 with n ≥ 4. Let x be any vertex of Pn. Assume that x1 and x2 are two
distinct neighbors of x. There is a hamiltonian path P of Pn − {x, x1, x2} joining a vertex u with (u)1 = a to a vertex v with
(v)1 = b.

Proof. Since Pn is vertex transitive, we may assume that x = e. Moreover, we assume that x1 = (e)i and x2 = (e)j for some
{i, j} ⊂ 〈n〉 − {1}with i < j. Without loss of generality, we assume that a < b. Thus, a 6= n and b 6= 1. We prove this lemma
by induction on n. For n = 4, the required paths of P4 − {1234, (1234)i, (1234)j} are listed below:

x1 = 2134 and x2 = 3214
a = 1 and b = 2
〈1423, 4123, 2143, 1243, 3421, 4321, 2341, 3241, 4231, 2431, 1342, 4312, 3412, 1432, 4132, 3142, 2413, 4213, 3124, 1324, 2314〉
a = 1 and b = 3
〈1423, 4123, 2143, 1243, 3421, 4321, 2341, 3241, 4231, 2431, 1342, 4312, 3412, 1432, 4132, 2314, 1324, 3124, 4213, 2413, 3142〉
a = 1 and b = 4
〈1423, 4123, 2143, 1243, 3421, 4321, 2341, 3241, 4231, 2431, 1342, 3142, 2413, 4213, 3124, 1324, 2314, 4132, 1432, 3412, 4312〉
a = 2 and b = 3
〈2143, 4123, 1423, 3241, 4231, 2431, 1342, 4312, 3412, 1432, 2341, 4321, 3421, 1243, 4213, 2413, 3142, 4132, 2314, 1324, 3124〉
a = 2 and b = 4
〈2143, 4123, 1423, 2413, 3142, 1342, 4312, 3412, 1432, 4132, 2314, 1324, 3124, 4213, 1243, 3421, 2431, 4231, 3241, 2341, 4321〉
a = 3 and b = 4
〈3124, 4213, 2413, 3142, 1342, 4312, 3412, 1432, 4132, 2314, 1324, 4231, 2431, 3421, 1243, 2143, 4123, 1423, 3241, 2341, 4321〉

x1 = 2134 and x2 = 4321
a = 1 and b = 2
〈1423, 2413, 3142, 4132, 1432, 2341, 3241, 4231, 1324, 3124, 4213, 1243, 3421, 2431, 1342, 4312, 3412, 2143, 4123, 3214, 2314〉
a = 1 and b = 3
〈1423, 4123, 2143, 1243, 3421, 2431, 1342, 4312, 3412, 1432, 2341, 3241, 4231, 1342, 3124, 4213, 2413, 3142, 4132, 2314, 3214〉
a = 1 and b = 4
〈1423, 4123, 3214, 2314, 1324, 3124, 4213, 2413, 3142, 1342, 4312, 3412, 2143, 1243, 3421, 2431, 4231, 3241, 2341, 1432, 4132〉
a = 2 and b = 3
〈2314, 3214, 4123, 2143, 3412, 4312, 1342, 3142, 4132, 1432, 2341, 3241, 1423, 2413, 4213, 1243, 3421, 2431, 4231, 1324, 3124〉
a = 2 and b = 4
〈2314, 3214, 4123, 2143, 1243, 3421, 2431, 4231, 1324, 3124, 4213, 2413, 1423, 3241, 2341, 1432, 3412, 4312, 1342, 3142, 4132〉
a = 3 and b = 4
〈3214, 2314, 4132, 3142, 1342, 4312, 3412, 1432, 2341, 3241, 1423, 2413, 4213, 3124, 1324, 4231, 2431, 3421, 1243, 2143, 4123〉
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x1 = 3214 and x2 = 4321
a = 1 and b = 2
〈1423, 4123, 2143, 1243, 3421, 2431, 1342, 4312, 3412, 1432, 2341, 3241, 4231, 1324, 2314, 4132, 3142, 2413, 4213, 3124, 2134〉
a = 1 and b = 3
〈1423, 4123, 2143, 3412, 1432, 2341, 3241, 4231, 1324, 2314, 4132, 3142, 2413, 4213, 1243, 3421, 2431, 1342, 4312, 2134, 3124〉
a = 1 and b = 4
〈1423, 2413, 4213, 3124, 2134, 4312, 3412, 1432, 2341, 3241, 4231, 1324, 2314, 4132, 3142, 1342, 2431, 3421, 1243, 2143, 4123〉
a = 2 and b = 3
〈2134, 4312, 3412, 1432, 2341, 3241, 4231, 1324, 2314, 4132, 3142, 1341, 2431, 3421, 1243, 2143, 4123, 1423, 2413, 4213, 3124〉
a = 2 and b = 4
〈2134, 3124, 4213, 2413, 3142, 1342, 4312, 3412, 1432, 2341, 3241, 1423, 4123, 2143, 1243, 3421, 2431, 4231, 1324, 2314, 4132〉
a = 3 and b = 4
〈3124, 2134, 4312, 3412, 1432, 2341, 3241, 4231, 1324, 2314, 4132, 3142, 1342, 2431, 3421, 1243, 2143, 4123, 1423, 2413, 4213〉

Suppose that this statement holds for Pk for every k, 4 ≤ k < n. We have the following cases:
Case 1. j 6= n, that is, x1 ∈ P

{n}
n and x2 ∈ P

{n}
n . Let c ∈ 〈n − 1〉 − {1, a}. By induction, there is a hamiltonian path R of

P {n}n − {e, x1, x2} joining a vertex u with (u)1 = a to a vertex z with (z)1 = c. We choose a vertex v in P
{1}
n with (v)1 = b.

By Theorem 2, there is a hamiltonian path H of P 〈n−1〉n joining the vertex (z)n to v. We set P = 〈u, R, z, (z)n,H, v〉. Then P is
the desired path.
Case 2. j = n, that is, x1 ∈ P

{n}
n and x2 ∈ P

{1}
n . Let c ∈ 〈n − 1〉 − {1, a} and d ∈ 〈n − 1〉 − {1, b, c}. By Lemma 5, there is

a hamiltonian path R of P {n}n − {e, x1} joining a vertex u with (u)1 = a to a vertex z with (z)1 = c . By Lemma 4, there is a
hamiltonian path H of P {1}n − {x2} joining a vertex w with (w)1 = d to a vertex v with (v)1 = b. By Theorem 2, there is a
hamiltonian Q of P 〈n−1〉−{1}n joining the vertex (z)n to the vertex (w)n. We set P = 〈u, R, z, (z)n,Q , (w)n,w,H, v〉. Then P is
the desired path. �

Our main result for the pancake graph Pn is stated in the following theorem.

Theorem 3. IHC(P3) = 1 and IHC(Pn) = n− 1 if n ≥ 4.
Proof. It is easy to see that P3 is isomorphic to a cycle with six vertices. Thus, IHC(P3) = 1. Since Pn is (n − 1)-regular
graph, it is clear that IHC(Pn) ≤ n− 1. Since Pn is vertex transitive, we only need to show that there exist (n− 1)mutually
independent hamiltonian cycles of Pn starting form the vertex e. For n = 4, we prove that IHC(P4) ≥ 3 by listing the required
hamiltonian cycles as follows:

C1 =
〈1234, 2134, 4312, 3412, 2143, 1243, 4213, 3124, 1324, 4231, 3241, 2341, 1432, 4132, 2314, 3214, 4123, 1423, 2413, 3142, 1342, 2431, 3421, 4321, 1234〉
C2 =
〈1234, 3214, 2314, 1324, 3124, 4213, 2413, 1423, 4123, 2143, 1243, 3421, 4321, 2341, 3241, 4231, 2431, 1342, 3142, 4132, 1432, 3412, 4312, 2134, 1234〉
C3 =
〈1234, 4321, 2341, 1432, 4132, 2314, 1324, 4231, 3241, 1423, 2413, 3142, 1342, 2431, 3421, 1243, 4213, 3124, 2134, 4312, 3412, 2143, 4123, 3214, 1234〉

Suppose that n ≥ 5. Let B be the (n− 1)× nmatrix with

bi,j =
{
i+ j− 1 if i+ j− 1 ≤ n,
i+ j− n+ 1 if n ≥ i+ j.

More precisely,

B =


1 2 3 4 · · · n− 1 n
2 3 4 5 · · · n 1
...

...
...

...
. . .

...
...

n− 1 n 1 2 · · · n− 3 n− 2

 .
It is not hard to see that bi,1bi,2 . . . bi,n forms a permutation of {1, 2, . . . , n} for every i with 1 ≤ i ≤ n − 1. Moreover,

bi,j 6= bi′,j for any 1 ≤ i < i′ ≤ n− 1 and 1 ≤ j ≤ n. In other words, B forms a Latin rectangle with entries in {1, 2, . . . , n}.
For every k ∈ 〈n− 1〉, we construct Ck as follows:
(1) k = 1. By Lemma3, there is a hamiltonian pathH1 of P

{b1,n}
n −{e} joining a vertex xwith x 6= (e)n−1 and (x)1 = n−1 to

the vertex (e)n−1. By Theorem 2, there is a hamiltonian path H2 of ∪n−1t=1 P
{b1,t }
n joining the vertex (e)n to the vertex (x)n with

H2(i+(j−1)(n−1)!) ∈ P
{b1,j}
n for every i ∈ 〈(n−1)!〉 and for every j ∈ 〈n−1〉.We set C1 = 〈e, (e)n,H2, (x)n, x,H1, (e)n−1, e〉.

(2) k = 2. By Lemma 5, there is a hamiltonian path Q1 of P
{b2,n−1}
n − {e, (e)2} joining a vertex y with (y)1 = n − 1 to a

vertex z with (z)1 = 1. By Theorem 2, there is a hamiltonian Q2 of ∪n−2t=1 P
{b2,t }
n joining the vertex ((e)2)n to the vertex (y)n

such thatQ2(i+(j−1)(n−1)!) ∈ P
{b2,j}
n for every i ∈ 〈(n−1)!〉 and for every j ∈ 〈n−2〉. By Theorem1, there is a hamiltonian

path Q3 of P
{b2,n}
n joining the vertex (z)n to the vertex (e)n. We set C2 = 〈e, (e)2, ((e)2)n,Q2, (y)n, y,Q1, z, (z)n,Q3, (e)n, e〉.

(3) k ∈ 〈n − 1〉 − {1, 2}. By Lemma 6, there is a hamiltonian path Rk1 of P
{bk,n−k+1}
n − {e, (e)k−1, (e)k} joining a vertex

wk with (wk)1 = n − 1 to a vertex vk with (vk)1 = 1. By Theorem 2, there is a hamiltonian path Rk2 of ∪
n−k
t=1 P

{bk,t }
n
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Fig. 3. Illustration for Theorem 3 on P5 .

joining the vertex ((e)k)n to the vertex (wk)
n such that Rk2(i + (j − 1)(n − 1)!) ∈ P

{bk,j}
n for every i ∈ 〈(n − 1)!〉 and

for every j ∈ 〈n − k〉. Again, there is a hamiltonian path Rk3 of ∪
n
t=n−k+2 P

{bk,t }
n joining the vertex (vk)n to the vertex

((e)k−1)n such that Rk3(i + (j − 1)(n − 1)!) ∈ P
{bk,n−k+j+1}
n for every i ∈ 〈(n − 1)!〉 and for every j ∈ 〈k − 1〉. We set

Ck = 〈e, (e)k, ((e)k)n, Rk2, (wk)
n,wk, Rk1, vk, (vk)

n, Rk3, ((e)
k−1)n, (e)k−1, e〉.

Then {C1, C2, . . . , Cn−1} forms a set of (n− 1)mutually independent hamiltonian cycles of Pn starting from the vertex e.
�

Example. We illustrate the proof of Theorem 3 with n = 5 as follows:
We set

B =

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3

 .
Then we construct {C1, C2, C3, C4} as follows:
(1)k = 1. By Lemma 3, there is a hamiltonian path H1 of P

{b1,5}
5 − {e} joining a vertex x with x 6= (e)4 and (x)1 = 4 to

the vertex (e)4. By Theorem 2, there is a hamiltonian path H2 of ∪4t=1 P
{b1,t }
5 joining the vertex (e)5 to the vertex (x)5 with

H2(i+ 24(j− 1)) ∈ P
{b1,j}
5 for every i ∈ 〈24〉 and for every j ∈ 〈4〉. We set C1 = 〈e, (e)5,H2, (x)5, x,H1, (e)4, e〉.

(2)k = 2. By Lemma 5, there is a hamiltonian path Q1 of P
{b2,4}
5 − {e, (e)2} joining a vertex ywith (y)1 = 4 to a vertex z

with (z)1 = 1. By Theorem 2, there is a hamiltonian Q2 of ∪3t=1 P
{b2,t }
5 joining the vertex ((e)2)5 to the vertex (y)5 such that

Q2(i + 24(j − 1)) ∈ P
{b2,j}
5 for every i ∈ 〈24〉 and for every j ∈ 〈3〉. By Theorem 1, there is a hamiltonian path Q3 of P

{b2,5}
5

joining the vertex (z)5 to the vertex (e)5. We set C2 = 〈e, (e)2, ((e)2)5,Q2, (y)5, y,Q1, z, (z)5,Q3, (e)5, e〉.
(3)k ∈ {3, 4}. By Lemma 6, there is a hamiltonian path Rk1 of P

{bk,6−k}
5 −{e, (e)k−1, (e)k} joining a vertexwkwith (wk)1 = 4

to a vertex vk with (vk)1 = 1. By Theorem 2, there is a hamiltonian path Rk2 of ∪
5−k
t=1 P

{bk,t }
5 joining the vertex ((e)k)5 to the

vertex (wk)
5 such that Rk2(i+ 24(j− 1)) ∈ P

{bk,j}
5 for every i ∈ 〈24〉 and for every j ∈ 〈5− k〉. Again, there is a hamiltonian

path Rk3 of ∪
5
t=7−k P

{bk,t }
5 joining the vertex (vk)5 to the vertex ((e)k−1)5 such that Rk3(i + 24(j − 1)) ∈ P

{bk,6−k+j}
5 for every

i ∈ 〈24〉 and for every j ∈ 〈k− 1〉. We set Ck = 〈e, (e)k, ((e)k)5, Rk2, (wk)
5,wk, Rk1, vk, (vk)

5, Rk3, ((e)
k−1)5, (e)k−1, e〉.

Then {C1, C2, C3, C4} forms a set of 4 mutually independent hamiltonian cycles of P5 starting from the vertex e. See Fig. 3
for illustration.

5. The star graphs

Let n be a positive integer. The n-dimensional star graph, Sn, is a graph with the vertex set V (Sn) = {u1 . . . un | ui ∈ 〈n〉
and uj 6= uk for j 6= k}. The adjacency is defined as follows: u1 . . . ui . . . un is adjacent to v1 . . . vi . . . vn through an edge of
dimension i with 2 ≤ i ≤ n if vj = uj for every j ∈ 〈n〉 − {1, i}, v1 = ui, and vi = u1. The star graphs S2, S3, and S4 are
illustrated in Fig. 4. In [1], it showed that the connectivity of Sn is (n − 1). We use boldface to denote vertices in Sn. Hence,
u1,u2, . . . ,un denotes a sequence of vertices in Sn.
By definition, Sn is an (n − 1)-regular graph with n! vertices. We use e to denote the vertex 12 . . . n. It is known that Sn

is a bipartite graph with one partite set containing the vertices corresponding to odd permutations and the other partite
set containing those vertices correspond to even permutations. We use white vertices to represent those even permutation
vertices and we use black vertices to represent those odd permutation vertices. Let u = u1u2 . . . un be an arbitrary vertex
of the star graph Sn. We say that ui is the ith coordinate of u, (u)i, for 1 ≤ i ≤ n. For 1 ≤ i ≤ n, let S

{i}
n be the subgraph of

Sn induced by those vertices u with (u)n = i. Then Sn can be decomposed into n subgraph S
{i}
n , 1 ≤ i ≤ n, and each S

{i}
n is

isomorphic to Sn−1. Thus, the star graph can also be constructed recursively. Let I be any subset of 〈n〉. We use S In to denote
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Fig. 4. The star graphs S2 , S3 , and S4 .

the subgraph of Sn induced by ∪i∈I V (S
{i}
n ). For any two distinct elements i and j in 〈n〉, we use E

i,j
n to denote the set of edges

between S{i}n and S
{j}
n . By the definition of Sn, there is exactly one neighbor v of u such that u and v are adjacent through an

i-dimensional edge with 2 ≤ i ≤ n. For this reason, we use (u)i to denote the unique i-neighbor of u. We have ((u)i)i = u
and (u)n ∈ S{(u)1}n .

Lemma 7. Let i and j be any two distinct elements in 〈n〉 with n ≥ 3. Then |E i,jn | = (n − 2)!. Moreover, there are (n − 2)!/2
edges joining black vertices of S{i}n to white vertices of S

{j}
n .

Lemma 8. Let u and v be two distinct vertices of Sn with d(u, v) ≤ 2. Then (u)1 6= (v)1.

Theorem 4 ([21]). Let n ≥ 4. Suppose that u is a white vertex of Sn and v is a black vertex of Sn. Then there is a hamiltonian
path of Sn joining u to v.

Theorem 5. Let {a1, a2, . . . , ar} be a subset of 〈n〉 for some r ∈ 〈n〉 with n ≥ 5. Assume that u is a white vertex in S
{a1}
n and v

is a black vertex in S{ar }n . Then there is a hamiltonian path 〈u = x1,H1, y1, x2,H2, y2, . . . , xr,Hr , yr = v〉 of ∪ri=1 S
{ai}
n joining u

to v such that x1 = u, yr = v, and Hi is a hamiltonian path of S
{ai}
n joining xi to yi for every i, 1 ≤ i ≤ r.

Proof. We set x1 as u and yr as v. By Theorem 4, this theorem holds on r = 1. Suppose that r ≥ 2. By Lemma 7, there are
(n− 2)!/2 ≥ 3 edges joining black vertices of S{ai}n to white vertices of S{ai+1}n for every i ∈ 〈r − 1〉. We can choose an edge
(yi, xi+1) ∈ E

ai,ai+1
n with yi being a black vertex and xi+1 being a white vertex for every i ∈ 〈r − 1〉. By Theorem 4, there is a

hamiltonian path Hi of S
{ai}
n joining xi to yi for every i ∈ 〈r〉. Then the path 〈u = x1,H1, y1, x2,H2, y2, . . . , xr,Hr , yr = v〉 is

the desired path. �

Theorem 6 ([21]). Let w be a black vertex of Sn with n ≥ 4. Assume that u and v are two distinct white vertices of Sn − {w }.
Then there is a hamiltonian path H of Sn − {w} joining u to v.

Lemma 9 ([30]). Let i be any element in 〈n〉 with n ≥ 4. Assume that r and s are two adjacent vertices of Sn and u is a white
vertex of Sn − {r, s}. Then there is a hamiltonian path of Sn − {r, s} joining u to some black vertex v with (v)1 = i.

Lemma 10. Let a and b be any two distinct elements in 〈n〉 with n ≥ 4. Assume that x is a white vertex of Sn, and assume that
x1 and x2 are two distinct neighbors of x. Then there is a hamiltonian path P of Sn − {x, x1, x2} joining a white vertex u with
(u)1 = a to a white vertex v with (v)1 = b.

Proof. Since Sn is vertex transitive and edge transitive, we may assume that x = e, x1 = (e)2, and x2 = (e)3. Without loss
of generality, we may also assume that a < b. We have a 6= n and b 6= 1. We prove this statement by induction on n. For
n = 4, the required paths of S4 − {1234, 2134, 3214} are listed below:

a = 1 and b = 2 〈1324, 3142, 4132, 1432, 3412, 4312, 2314, 1324, 3124, 4123, 2143, 1243, 4213, 2413, 1423, 3421, 4321, 2341, 3241, 4231, 2431〉
a = 1 and b = 3 〈1423, 2413, 4213, 1243, 2143, 4123, 3124, 1324, 2314, 4312, 3412, 1432, 4132, 3142, 1342, 2341, 4321, 3421, 2431, 4231, 3241〉
a = 1 and b = 4 〈1324, 3142, 4132, 1432, 3412, 4312, 2314, 1324, 3124, 4123, 2143, 1243, 4213, 2413, 1423, 3421, 2431, 4231, 3241, 2341, 4321〉
a = 2 and b = 3 〈2314, 1324, 3124, 4123, 2143, 1243, 4213, 2413, 1423, 3421, 4321, 2341, 3241, 4231, 2431, 1432, 4132, 3142, 1342, 4312, 3412〉
a = 2 and b = 4 〈2314, 1324, 3124, 4123, 2143, 1243, 4213, 2413, 1423, 3421, 4321, 2341, 3241, 4231, 2431, 1432, 3412, 4312, 1342, 3142, 4132〉
a = 3 and b = 4 〈3124, 1324, 2314, 4312, 3412, 1432, 4132, 3142, 1342, 2341, 4321, 3421, 2431, 4231, 3241, 1243, 2143, 4123, 1423, 2413, 4213〉
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Suppose that this statement holds for Sk for every k, 4 ≤ k ≤ n−1. Let c be any element in 〈n−1〉−{1, a}. By induction,
there is a hamiltonian pathH of S{n}n −{e, (e)2, (e)3} joining awhite vertex uwith (u)1 = a to awhite vertex zwith (z)1 = c.
We choose a white vertex v in S{1}n with (v)1 = b. By Theorem 5, there is a hamiltonian path R of S

〈n−1〉
n joining the black

vertex (z)n to v. Then 〈u,H, z, (z)n, R, v〉 is the desired path of Sn − {e, (e)2, (e)3}. �

The following theorem is our main result for the star graph Sn.

Theorem 7. IHC(S3) = 1, IHC(S4) = 2, and IHC(Sn) = n− 1 if n ≥ 5.
Proof. It is easy to see that S3 is isomorphic to a cycle with six vertices. Thus, IHC(S3) = 1. Using a computer, we have
IHC(S4) = 2 by brute force checking. Thus, we assume that n ≥ 5. We know that Sn is (n − 1)-regular graph. Hence,
IHC(Sn) ≤ n−1. Since Sn is vertex transitive, we only need to show that there are (n−1)mutually independent hamiltonian
cycles of Sn starting from e. Let B be the (n− 1)× nmatrix with

bi,j =
{
i+ j− 1 if i+ j− 1 ≤ n,
i+ j− n+ 1 if n < i+ j− 1.

We construct {C1, C2, . . . , Cn−1} as follows:
(1)k = 1. We choose a black vertex x in S{b1,n}n − {(e)n−1}with (x)1 = n− 1. By Theorem 6, there is a hamiltonian path

H1 of S
{b1,n}
n − {e} joining x to the black vertex (e)n−1. By Theorem 5, there is a hamiltonian path H2 of ∪n−1t=1 S

{b1,t }
n joining

the black vertex (e)n to the white vertex (x)n with H2(i + (j − 1)(n − 1)!) ∈ S
{b1,j}
n for every i ∈ 〈(n − 1)!〉 and for every

j ∈ 〈n− 1〉. We set C1 = 〈e, (e)n,H2, (x)n, x,H1, (e)n−1, e〉.
(2)k = 2. We choose a white vertex y in S{b2,n−1}n − {e, (e)2}with (y)1 = n− 1. By Lemma 9, there is a hamiltonian path

Q1 of S
{b2,j}
n − {e, (e)2} joining y to a black vertex z with (z)1 = 1. By Theorem 5, there is a hamiltonian Q2 of ∪n−2t=1 S

{b2,t }
n

joining the white vertex ((e)2)n to the black vertex (y)n such that Q2(i+ (j−1)(n−1)!) ∈ S
{b2,j}
n for every i ∈ 〈(n−1)!〉 and

for every j ∈ 〈n − 2〉. Again, there is a hamiltonian path Q3 of S
{b2,n}
n joining the white vertex (z)n to the black vertex (e)n.

We set C2 = 〈e, (e)2, ((e)2)n,Q2, (y)n, y,Q1, z, (z)n,Q3, (e)n, e〉.
(3)3 ≤ k ≤ n− 1. By Lemma 10, there is a hamiltonian path Rk1 of S

{bk,n−k+1}
n − {e, (e)k−1, (e)k} joining a white vertexwk

with (wk)1 = n− 1 to a white vertex vk with (vk)1 = 1. By Theorem 5, there is a hamiltonian path Rk2 of ∪
n−k
t=1 S

{bk,t }
n joining

the white vertex ((e)k)n to the black vertex (wk)
n such that Rk2(i + (j − 1)(n − 1)!) ∈ S

{bk,j}
n for every i ∈ 〈(n − 1)!〉 and

for every j ∈ 〈n− k− 1〉. Again, there is a hamiltonian path Rk3 of ∪
n
t=n−k+2 S

{bk,t }
n joining the black vertex (vk)n to the black

vertex ((e)k−1)n such that Rk3(i + (j − 1)(n − 1)!) ∈ S
{bk,n−k+j+1}
n for every i ∈ 〈(n − 1)!〉 and for every j ∈ 〈k − 1〉. We set

Ck = 〈e, (e)k, ((e)k)n, Rk2, (wk)
n,wk, Rk1, vk, (vk)

n, Rk3, ((e)
k−1)n, (e)k−1, e〉.

Then {C1, C2, . . . , Cn−1} forms a set of (n− 1)mutually independent hamiltonian cycles of Sn starting form the vertex e.
�

6. Discussion

In this paper, we discuss the mutually independent hamiltonian cycles for the pancake graphs and the star graphs. The
concept of mutually independent hamiltonian cycle can be viewed as a generalization of Latin rectangles. Perhaps one of
the most interesting topics in Latin square is orthogonal Latin square. Two Latin squares of order n are orthogonal if the
n-squared pairs formed by juxtaposing the two arrays are all distinct. Similarly, two Latin rectangles of order n × m are
orthogonal if the n×m pairs formed by juxtaposing the two arrays are all distinct. With this in mind, let G be a hamiltonian
graph and C1 and C2 be two sets of mutually independent hamiltonian cycles of G from a given vertex x. We say C1 and C2 are
orthogonal if their corresponding Latin rectangles are orthogonal. For example, we know that IHC(P4) = 3. The following
Latin rectangle represents three mutually independent hamiltonian cycles beginning at 1234.

2134, 4312, 1342, 2431, 3421, 1243, 4213, 3124, 1324, 4231, 3241, 1423, 2413, 3142, 4132, 2314, 3214, 4123, 2143, 3412, 1432,
2341, 4321
3214, 2314, 4132, 1432, 3412, 4312, 1342, 3142, 2413, 4213, 1243, 2143, 4123, 1423, 3241, 2341, 4321, 3421, 2431, 4231, 1324,
3124, 2134
4321, 2341, 1432, 3412, 2143, 4123, 1423, 3241, 4231, 1324, 3124, 2134, 4312, 1342, 2431, 3421, 1243, 4213, 2413, 3142, 4132,
2314, 3214

Yet, the following Latin rectangle also represents three mutually independent hamiltonian cycles beginning at 1234.
2134, 3124, 4213, 1243, 2143, 4123, 1423, 2413, 3142, 4132, 1432, 3412, 4312, 1342, 2431, 3421, 4321, 2341, 3241, 4231, 1324,
2314, 3214
3214, 2314, 4132, 3142, 2413, 4213, 1243, 3421, 2431, 1342, 4312, 2134, 3124, 1324, 4231, 3241, 1423, 4123, 2143, 3412, 1432,
2341, 4321
4321, 3421, 1243, 2143, 3412, 4312, 1342, 2431, 4231, 1324, 2314, 3214, 4123, 1423, 3241, 2341, 1432, 4132, 3142, 2413, 4213,
3124, 2134

We can check that these two Latin rectangles are orthogonal. Thus, we have two sets of three mutually independent
hamiltonian cycles that are orthogonal. With this example in mind, we can consider the following problem. Let G be any
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hamiltonian graph. We can define MOMH(G) as the largest integer k such that there exist k sets of mutually independent
hamiltonian cycle of G beginning from any vertex x such that each set contains exactly IHC(G) hamiltonian cycles and any
two different sets are orthogonal. It would be interesting to study the value ofMOMH(G) for some hamiltonian graphs G.
We can also discuss mutually independent hamiltonian paths for some graphs. Let P1 = 〈v1, v2, . . . , vn〉 and P2 =

〈u1, u2, . . . , un〉 be two hamiltonian paths of a graph G. We say that P1 and P2 are independent if u1 = v1, un = vn, and
ui 6= vi for 1 < i < n. We say a set of hamiltonian paths {P1, P2, . . . , Ps} of G between two distinct vertices are mutually
independent if any twodistinct paths in the set are independent. There are some study onmutually independent hamiltonian
paths [29,39].
Recently, people are interested in amathematical puzzle, called Sudoku [38]. Sudoku can be viewed as a 9×9 Latin square

with some constraints. There are several variations of Sudoku have been introduced. Mutually independent hamiltonian
cycles can also be considered as a variation of Sudoku.
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a b s t r a c t

A bipartite graph is bipancyclic if it contains a cycle of every even length from 4 to |V (G)|
inclusive. A hamiltonian bipartite graph G is bipanpositionable if, for any two different
vertices x and y, there exists a hamiltonian cycle C ofG such that dC (x, y) = k for any integer
kwith dG(x, y) ≤ k ≤ |V (G)|/2 and (k− dG(x, y)) being even. A bipartite graph G is k-cycle
bipanpositionable if, for any two different vertices x and y, there exists a cycle of G with
dC (x, y) = l and |V (C)| = k for any integer lwith dG(x, y) ≤ l ≤ k

2 and (l− dG(x, y)) being
even. A bipartite graphG is bipanpositionable bipancyclic ifG is k-cycle bipanpositionable for
every even integer k, 4 ≤ k ≤ |V (G)|. We prove that the hypercube Qn is bipanpositionable
bipancyclic for n ≥ 2.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

For the graph definitions and notations we follow Bondy and Murty [1]. Let G = (V , E) be a graph, where V is a finite
set and E is a subset of {(u, v) | (u, v) is an unordered pair of V }. We say that V is the vertex set and E is the edge set of G.
Two vertices u and v are adjacent if (u, v) ∈ E. A path is represented by 〈v0, v1, v2, . . . , vk〉, where all vertices are distinct
except possibly v0 = vk. The length of a path Q is the number of edges in Q . We also write the path 〈v0, v1, v2, . . . , vk〉 as
〈v0,Q1, vi, vi+1 . . . , vj,Q2, vt , . . . , vk〉, where Q1 is the path 〈v0, v1, . . . , vi−1, vi〉 and Q2 is the path 〈vj, vj+1, . . . , vt−1, vt〉.
We use dG(u, v) to denote the distance between u and v in G, i.e., the length of the shortest path joining u to v in G. A cycle is
a path of at least three vertices such that the first vertex is the same as the last vertex.We use dc(u, v) to denote the distance
between u and v in a cycle C , i.e., the length of the shortest path joining u to v in C . A hamiltonian cycle of G is a cycle that
traverses every vertex of G exactly once. A hamiltonian graph is a graph with a hamiltonian cycle. A graph G = (V0 ∪ V1, E)
is bipartite if V (G) = V0 ∪ V1 and E(G) is a subset of {(u, v) | u ∈ V0 and v ∈ V1}.
The n-dimensional hypercube, Qn, consists of all n-bit binary strings as its vertices and two vertices u and v are adjacent if

and only if their binary labels are different in exactly one bit position. Let u = un−1un−2 . . . u1u0 and v = vn−1vn−2 . . . v1v0
be two n-bit binary strings. The Hamming distance h(u, v) between two vertices u and v is the number of different bits
in the corresponding strings of both vertices. Let Q in be the subgraph of Qn induced by {un−1un−2 · · · u1u0 | un−1 = i} for
i = 0, 1. Therefore,Qn can be constructed recursively by taking two copies ofQn−1,Q 0n andQ

1
n , and adding a perfectmatching

between these two copies. For a vertex u in Q 0n (resp. Q
1
n ), we use ū to denote the unique neighbor of u in Q

1
n (resp. Q

0
n ). The

hypercube is a widely used topology in computer architecture, see Leighton [2].
A graph is pancyclic if it contains a cycle of every length from 3 to |V (G)| inclusive. The concept of pancyclic graphs was

proposed by Bondy [3]. Since there is no odd cycle in bipartite graph, the concept of a bipancyclic graph was proposed
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by Mitchem and Schmeichel [4]. A bipartite graph is bipancyclic if it contains a cycle of every even length from 4 to
|V (G)| inclusive. It is proved that the hypercube Qn is bipancyclic if n ≥ 2 [5,6]. A graph is panconnected if, for any two
different vertices x and y, there exists a path of length l joining x and y for every l with dG(x, y) ≤ l ≤ |V (G)| − 1. The
concept of panconnected graphs was proposed by Alavi and Williamson [7]. It is easy to see that any bipartite graph with
at least 3 vertices is not panconnected. Therefore, the concept of bipanconnected graphs is proposed. A bipartite graph
is bipanconnected if, for any two different vertices x and y, there exists a path of length l joining x and y for every l with
dG(x, y) ≤ l ≤ |V (G)|−1 and (l−dG(x, y)) being even. It is proved that the hypercube is bipanconnected [5]. A hamiltonian
graph G is panpositionable if for any two different vertices x and y of G and for any integer k with dG(x, y) ≤ k ≤ |V (G)|/2,
there exists a hamiltonian cycle C of G such that dC (x, y) = k. A hamiltonian bipartite graph G is bipanpositionable if for
any two different vertices x and y of G and for any integer k with dG(x, y) ≤ k ≤ |V (G)|/2 and (k − dG(x, y)) being even,
there exists a hamiltonian cycle C of G such that dC (x, y) = k. The concepts of panpositionable and bipanpositionable were
proposed by Kao et al. [8]. They proved that the hypercube Qn is bipanpositionable if n ≥ 2 [8]. A bipartite graph G is
edge-bipancyclic if for any edge in G, there is a cycle of every even length from 4 to |V (G)| traversing through this edge. The
concept of edge-bipancyclic was proposed by Alspach and Hare [9]. A bipartite graph G is vertex-bipancyclic if for any vertex
in G, there is a cycle of every even length from 4 to |V (G)| going through this vertex. The concept of vertex-bipancyclic was
proposed by Hobbs [10]. Obviously, every edge-bipancyclic graph is vertex-bipancyclic. It is proved that the hypercube Qn
is edge-bipancyclic if n ≥ 2 [5].
In this paper, we propose a more interesting property about hypercubes. A k-cycle is a cycle of length k. A bipartite graph

G is k-cycle bipanpositionable if for every different vertices x and y of G and for any integer l with dG(x, y) ≤ l ≤ k
2 and

(l − dG(x, y)) being even, there exists a k-cycle C of G such that dC (x, y) = l. (Note that dC (x, y) ≤ k
2 for every cycle C of

length k.) A bipartite graph G is bipanpositionable bipancyclic if G is k-cycle bipanpositionable for every even integer k with
4 ≤ k ≤ |V (G)|. In this paper, we prove that the hypercube Qn is bipanpositionable bipancyclic for n ≥ 2. As a consequence
of this result, we can see thatmany previous results on hypercubes follows directly from ours. For example, the hypercube is
bipancyclic, bipanconnected, bipanpositionable, edge-bipancyclic and vertex-bipancyclic. Therefore, our result unifies these
results in a general sense.

2. The bipanpositionable bipancyclic property

We prove our main result by induction as stated in Lemma 1 and Theorem 1 below.

Lemma 1. The hypercube Q3 is bipanpositionable bipancyclic.

Proof. Let x and y be two different vertices in Q3. Obviously, dQ3(x, y) = 1, 2 or 3. Since the hypercube is vertex symmetric,
without loss of generality, we may assume that x = 000.
Case 1: Suppose that dQ3(x, y) = 1. Since Q3 is edge symmetric, we assume that y = 001.

y = 001 4-cycle dC (x, y) = 1 〈000, 001, 011, 010, 000〉
6-cycle dC (x, y) = 1 〈000, 001, 101, 111, 110, 100, 000〉

dC (x, y) = 3 〈000, 100, 101, 001, 011, 010, 000〉
8-cycle dC (x, y) = 1 〈000, 001, 101, 111, 011, 010, 110, 100, 000〉

dC (x, y) = 3 〈000, 100, 101, 001, 011, 111, 110, 010, 000〉

Case 2: Suppose that dQ3(x, y) = 2. By symmetry, we assume that y = 011.

y = 011 4-cycle dC (x, y) = 2 〈000, 001, 011, 010, 000〉
6-cycle dC (x, y) = 2 〈000, 001, 011, 010, 110, 100, 000〉
8-cycle dC (x, y) = 2 〈000, 001, 011, 010, 110, 111, 101, 100, 000〉

dC (x, y) = 4 〈000, 001, 101, 111, 011, 010, 110, 100, 000〉

Case 3: Suppose that dQ3(x, y) = 3. We have y = 111.

y = 111 6-cycle dC (x, y) = 3 〈000, 001, 011, 111, 110, 100, 000〉
8-cycle dC (x, y) = 3 〈000, 001, 011, 111, 101, 100, 110, 010, 000〉

Thus, Q3 is bipanpositionable bipancyclic. �

Theorem 1. The hypercube Qn is bipanpositionable bipancyclic for n ≥ 2.
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Proof. We observe that Q1 is not bipanpositionable bipancyclic. So we start with n ≥ 2. We prove Qn is bipanpositionable
bipancyclic by induction on n. It is easy to see that Q2 is bipanpositionable bipancyclic. By Lemma 1, this statement holds for
n = 3. Suppose that Qn−1 is bipanpositionable bipancyclic for some n ≥ 4. Let x and y be two distinct vertices in Qn, and let
k be an even integer with k ≥ max{4, 2dQn(x, y)} and k ≤ 2n. For every integer lwith dQn(x, y) ≤ l ≤

k
2 and (l− dQn(x, y))

being even, we need to construct a k-cycle C of Qn with dC (x, y) = l.
Case 1: dQn(x, y) = 1. Without loss of generality, we may assume that both x and y are in Q 0n . (l − dQn(x, y)) is even, so
l is an odd number. Since Q 0n is isomorphic to Qn−1, by introduction, there is a k-cycle of Q

0
n with dC (x, y) = l for every

4 ≤ k ≤ 2n−1. Thus, we consider that k ≥ 2n−1 + 2.
Case 1.1: l = 1. By induction, there is a (2n−1)-cycle C ′ = 〈x, P, z, y, x〉 of Q 0n where dP(x, z) = 2

n−1
− 2. Suppose that

k − 2n−1 = 2. Then C = 〈x, P, z, z̄, ȳ, y, x〉 forms a (2n−1 + 2)-cycle with dC (x, y) = 1. Suppose that k − 2n−1 ≥ 4. By
induction, there is a (k−2n−1)-cycle C ′′ ofQ 1n such that dC ′′(z̄, ȳ) = 1.Wewrite C

′′
= 〈z̄, R, ȳ, z̄〉with dR(z̄, ȳ) = k−2n−1−1.

Then C = 〈x, P, z, z̄, R, ȳ, y, x〉 forms a k-cycle of Qn with dC (x, y) = l = 1.
Case 1.2: l ≥ 3. Suppose that k− l− 1 ≤ 2n−1. By induction, there is an (l+ 1)-cycle C ′ of Q 0n with dC ′(x, y) = 1. We write
C ′ = 〈x, P, y, x〉 where dP(x, y) = l. By induction, there is a (k − l − 1)-cycle C ′′ of Q 1n with dC ′′(x̄, ȳ) = 1. We then write
C ′′ = 〈ȳ, R, x̄, ȳ〉 such that dR(ȳ, x̄) = k− l−2. Then C = 〈x, P, y, ȳ, R, x̄, x〉 forms a k-cycle of Qn with dC (x, y) = l. Suppose
that k− l−2 ≥ 2n−1+1. By induction, there is a (k−2n−1)-cycle C ′ of Q 0n with dC ′(x, y) = l. Wewrite C

′
= 〈x, P, y, R,u, x〉

with dP(x, y) = l and dR(y, x) = k− (2n−1−1)− l−2. By induction, there is a (2n−1)-cycle C ′′ of Q 1n with dC ′′(x̄, ū) = 1.We
write C ′′ = 〈x̄, ū, S, x̄〉with dS(ū, x̄) = 2n−1 − 1. Then C = 〈x, P, y, R,u, ū, S, x̄, x〉 forms a k-cycle of Qn with dC (x, y) = l.
Case 2: dQn(x, y) ≥ 2 and l = 2. Since dQn(x, y) ≤ l and l = 2, so dQn(x, y) = 2. Without loss of generality, we may assume
that x is in Q 0n and y is in Q

1
n . Then dQn(x̄, y) = 1 and dQn(ȳ, x) = 1.

Suppose that k = 4. Then C = 〈x, x̄, y, ȳ, x〉 forms a 4-cycle of Qn with dQn(x, y) = 2. Suppose that 6 ≤ k ≤ 2n−1+ 2. By
induction, there is a (k−2)-cycle C ′ = 〈x, P, ȳ, x〉 ofQ 0n such that dP(x, ȳ) = k−3. Then C = 〈x, P, ȳ, y, x̄, x〉 forms a k-cycle
of Qn with dC (x, y) = 2. Suppose that k ≥ 2n−1+ 4. By induction, there is a 2n−1-cycle C ′ of Q 0n with dC ′(x, ȳ) = 1. We write
C ′ = 〈x, P, z, ȳ, x〉with dP(x, z) = 2n−1− 2. By induction, there is a (k− 2n−1)-cycle C ′′ of Q 1n with dC ′′(y, z̄) = 1. We write
C ′′ = 〈y, z̄, R, y〉with dR(y, z̄) = k− 2n−1 − 1. Then C = 〈x, P, z, z̄, R, y, ȳ, x〉 forms a k-cycle of Qn with dC (x, y) = 2.
Case 3: dQn(x, y) ≥ 2 and l ≥ 3. Without loss of generality, we may assume that x is in Q 0n and y is in Q 1n . Suppose that
k − l − dQn(x, y) + 2 ≤ 2n−1. By induction, there is an (l + dQn(x, y) − 2)-cycle C ′ = 〈x, P, ȳ,u, R, x〉 of Q 0n such that
dP(x, ȳ) = l− 1 and dR(u, x) = dQn(x, y)− 2. For k− l− dQn(x, y)+ 2 ≤ 2, by induction, there is a (k− l− dQn(x, y)+ 2)-
cycle C ′′ of Q 1n with dC ′′(y, ū) = 1. We write C ′′ = 〈y, S, ū, y〉 with dS(y, ū) = k − l − dQn(x, y) + 1. We then set
C = 〈x, P, ȳ, y, ū,u, R, x〉 if k − l − dQn(x, y) + 2 = 2 or C = 〈x, P, ȳ, y, S, ū,u, R, x〉 if k − l − dQn(x, y) + 2 ≤ 4.
Then C forms a k-cycle of Qn with dC (x, y) = l. Suppose that k− l−dQn(x, y)+4 ≥ 2n−1. By induction, there is a (k−2n−1)-
cycle C ′ = 〈x, P, ȳ,u, R, x〉 of Q 0n such that dP(x, ȳ) = l− 1 and dR(u, x) = k− 2n−1 − l. By induction, there is a 2n−1-cycle
C ′′ of Q 1n with dC ′′(y, ū) = 1. We write C ′′ = 〈y, S, ū, y〉with dS(y, ū) = 2n−1 − 1. Then C = 〈x, P, ȳ, y, S, ū,u, R, x〉 forms
a k-cycle of Qn with dC (x, y) = l.
The theorem is proved. �
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A path in G is a hamiltonian path if it contains all vertices of G . A graph G is hamiltonian
connected if there exists a hamiltonian path between any two distinct vertices of G . The
degree of a vertex u in G is the number of vertices of G adjacent to u. We denote by
δ(G) the minimum degree of vertices of G . A graph G is conditional k edge-fault tolerant
hamiltonian connected if G − F is hamiltonian connected for every F ⊂ E(G) with |F | � k
and δ(G − F ) � 3. The conditional edge-fault tolerant hamiltonian connectivity H C 3

e (G)

is defined as the maximum integer k such that G is k edge-fault tolerant conditional
hamiltonian connected if G is hamiltonian connected and is undefined otherwise. Let n � 4.
We use Kn to denote the complete graph with n vertices. In this paper, we show that
H C 3

e (Kn) = 2n − 10 for n /∈ {4,5,8,10}, H C 3
e (K4) = 0, H C 3

e (K5) = 2, H C 3
e (K8) = 5, and

H C 3
e (K10) = 9.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

For the graph definitions and notations, we follow [1].
Let G = (V , E) be a graph if V is a finite set and E is a sub-
set of {(u, v) | (u, v) is an unordered pair of V }. We say
that V is the vertex set and E is the edge set. Two vertices
u and v are adjacent if (u, v) ∈ E . The complete graph Kn

is the graph with n vertices such that any two distinct
vertices are adjacent. The degree of a vertex u in G , de-
noted by degG(u), is the number of vertices adjacent to u.
We use δ(G) to denote min{degG(u) | u ∈ V (G)}. A path of
length m − 1, 〈v0, v1, . . . , vm−1〉, is an ordered list of dis-
tinct vertices such that vi and vi+1 are adjacent for 0 � i �
m − 2. We also write the path 〈v0, . . . , vk, P , vl, . . . , vm〉
for P = 〈vk, . . . , vl〉. A cycle is a path with at least three
vertices such that the first vertex is the same as the last
one. A hamiltonian cycle of G is a cycle that traverses every
vertex of G exactly once. A graph is hamiltonian if it has
a hamiltonian cycle. A hamiltonian path is a path of length
V (G) − 1.

* Corresponding author.
E-mail address: hoho@thit.edu.tw (T.-Y. Ho).

A hamiltonian graph G is k edge-fault tolerant hamilto-
nian if G − F remains hamiltonian for every F ⊂ E(G) with
|F | � k. The edge-fault tolerant hamiltonicity, He(G), is de-
fined as the maximum integer k such that G is k edge-fault
tolerant hamiltonian if G is hamiltonian and is undefined
otherwise. Assume that G is a hamiltonian graph, and x
is a vertex such that degG(x) = δ(G). We arbitrary choose
degG(x) − 1 edges from those edges incident to x to form
an edge faulty set F . Obviously, degG−F (x) = 1; hence,
G − F is not hamiltonian. Therefore, He(G) � δ(G) − 2 if

He(G) is defined. Assume that n is an integer with n � 3.
It is proved by Ore [9] that any n-vertex graph with at least
C(n,2) − (n − 3) edges is hamiltonian. Moreover, there ex-
ists a non-hamiltonian n-vertex graph with C(n,2)−(n−2)

edges. In other words, He(Kn) = n − 3 for n � 3. In [5],
it is proved that He(Q n) = n − 2 for n � 2 where Q n

is the n-dimensional hypercube. In [6], it is proved that
He(Sn) = n − 3 for n � 3 where Sn is the n-dimensional
star graph.

Chan and Lee [2] began the study of the existence of
hamiltonian cycle in a graph such that each vertex is inci-
dent to at least two fault-free edges. A graph G is condi-
tional k edge-fault tolerant hamiltonian if G − F is hamilto-

0020-0190/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2009.02.008
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nian for every F ⊂ E(G) with |F | � k and δ(G − F ) � 2.
The conditional edge-fault tolerant hamiltonicity, H2

e (G), is
defined as the maximum integer k such that G is condi-
tional k edge-fault tolerant hamiltonian if G is hamiltonian
and is undefined otherwise. Chan and Lee [2] proved that
H2

e (Q n) = 2n − 5 for n � 3. Recently, Fu [3] studies the
conditional edge-fault tolerant hamiltonicity of the com-
plete graph.

Fault tolerant hamiltonian connectivity is another im-
portant parameter for graphs [4]. A graph G is hamilto-
nian connected if there exists a hamiltonian path between
any two distinct vertices of G . It is easy to see that a
hamiltonian connected graph with at least three vertices
is hamiltonian. It is proved by Moon [7] that the degree of
any vertex in a hamiltonian connected graph with at least
four vertices is at least 3. A graph G is k edge-fault tol-
erant hamiltonian connected if G − F remains hamiltonian
connected for any F ⊂ E(G) with |F | � k. The edge-fault
tolerant hamiltonian connectivity of a graph G , H C e(G), is
defined as the maximum integer k such that G is k edge-
fault tolerant hamiltonian connected if G is hamiltonian
connected and is undefined otherwise. Assume that G is
a hamiltonian connected graph with at least four vertices
and x is a vertex such that degG(x) = δ(G). We arbitrary
choose degG(x) − 2 edges from those edges incident to
x to form an edge faulty set F . Obviously, degG−F (x) =
2; hence, G − F is not hamiltonian connected. Therefore,
H C e(G) � δ(G) − 3 if H C e(G) is defined. Again, Ore [8]
proved that H C e(Kn) = n − 4 for n � 4.

In this paper, we study the concept of conditional edge-
fault tolerant hamiltonian connectivity. Since the degree of
any vertex in a hamiltonian connected graph with at least
four vertices is at least 3, it is natural to assume that each
vertex is incident to at least three fault-free edges. A graph
G is conditional k edge-fault tolerant hamiltonian connected if
G − F is hamiltonian connected for every F ⊂ E(G) with
|F | � k and δ(G − F ) � 3. The conditional edge-fault toler-
ant hamiltonian connectivity, H C 3

e (G), is defined to be the
maximum integer k such that G is conditional k edge-fault
tolerant hamiltonian connected if G is hamiltonian con-
nected and is undefined otherwise.

Assume that n is an integer with n � 4. In this pa-
per, we prove that H C 3

e (Kn) = 2n − 10 for n /∈ {4,5,

8,10}, H C 3
e (K4) = 0, H C 3

e (K5) = 2, H C 3
e (K8) = 5, and

H C 3
e (K10) = 9. To reach this goal, we present some pre-

liminary in the following section. In Section 3, we prove
our main result.

2. Preliminary

Let F be a faulty edge set. We define Kn(F ) be a graph
with E(Kn(F )) = F and V (Kn(F )) = V (Kn). The following
statement is proved in [3]:

Suppose F ⊂ E(Kn) and δ(Kn − F ) � 2, where n � 4. If n /∈
{7,9} (respectively, n ∈ {7,9}) then Kn − F is hamiltonian,
where |F | � 2n − 8 (respectively, |F | � 2n − 9).

In the conclusion of [3], it is claimed that the above
statement is optimal. Using our terminology, we obtain the
following statement.

H2
e (Kn) = 2n−8 for n /∈ {7,9} and n � 4, H2

e (K7) = 5, and

H2
e (K9) = 9.

Yet, it is easy to check that H2
e (K3) is 0 and H2

e (K4)

is 2 (not 0.) Thus, we have the following theorem.

Theorem 1. H2
e (Kn) = 2n − 8 for n /∈ {7,9} and n � 5,

H2
e (K3) = 0, H2

e (K4) = 2, H2
e (K7) = 5, and H2

e (K9) = 9.

Lemma 1. Assume that n is an integer with n � 6 and F is any
subset of E(Kn) with |F | = 2n − 10 if n /∈ {8,10} and |F | =
2n − 11 if n ∈ {8,10}. There exists a vertex w in Kn(F ) such
that 1 � degKn(F )(w) � �n−1

2 � − 1.

Proof. Suppose that the lemma is false. Then degKn(F )(w) �
�n−1

2 � for every vertices with degKn(F )(w) 	= 0. Obviously,
there are at least �n−1

2 � + 1 vertices with degKn(F )(w) 	= 0.
Hence, |F | � (�n−1

2 �(�n−1
2 � + 1))/2. However, (�n−1

2 � ×
(�n−1

2 �+1))/2 > 2n−10 for n /∈ {8,10} and (�n−1
2 �(�n−1

2 �+
1))/2 > 2n − 11 for n ∈ {8,10}. It is a contradiction. The
lemma is proved. �

The following theorem can be found in [1].

Theorem 2. (See [1].) Let D = (d1,d2, . . . ,dn) be a nonin-
creasing sequence with d1 � 1 and di � 0 for 2 � i � n. We
set D ′ = (d′

1,d′
2, . . . ,d′

n−1) = (d2 − 1,d3 − 1, . . . ,dd1+1 −
1,dd1+2, . . . ,dn). Then there exists a graph G with vertex set
{x1, x2, . . . , xn} such that degG(xi) = di for 1 � i � n if and
only if there exists a graph G ′ with vertex set {y1, y2, . . . , yn−1}
such that degG ′(y j) = d′

j for 1 � j � n − 1.

By the above theorem, we know that there is a graph G
with degree sequence D if and only if there is a graph G ′
with degree sequence D ′ . If d′

i < 0 for some i, then D ′ is
not the degree sequence of any graph, neither is D .

Lemma 2. Let F be a subset of E(K9) with |F | = 8 and δ(K9 −
F ) � 3. Let u and v be any two distinct vertices in K9 such that
degK9(F )(u) = 0 and degK9(F )(v) = 0. Then there exists a ver-
tex w with degK9(F )(w) ∈ {2,3}.

Proof. Let {x1, x2, . . . , x8 = u, x9 = v} be the vertex set of
K9 such that degK9(F )(xi) = di and d1 � d2 � · · · � d9. Ob-

viously,
∑9

i=1 di = 16. Assume that the lemma is false.
Then degK9(F )(xi) ∈ {0,1,4,5} for 1 � i � 9. By brute force,
all such sequences are listed below: (5,5,5,1,0,0,0,0,0),
(5,5,4,1,1,0,0,0,0), (5,4,4,1,1,1,0,0,0), (4,4,4,4,0,

0,0,0,0), and (4,4,4,1,1,1,1,0,0). By Theorem 2, we
can check that such a graph does not exist. Hence, the
lemma is proved. �
Lemma 3. Let F be a subset of E(K11) with |F | = 12 and
δ(K11 − F ) � 3. Let u and v be any two distinct vertices in K11
such that degK11(F )(u) = 0 and degK11(F )(v) = 0. Then there
exists a vertex w with degK11(F )(w) ∈ {2,3,4}.

Proof. Let {x1, x2, . . . , x10 = u, x11 = v} be the vertex set
of K11 such that degK11(F )(xi) = di and d1 � d2 � · · · �
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d11. Obviously,
∑11

i=1 di = 24. Assume that the lemma
is false. Then degK11(F )(xi) ∈ {0,1,5,6,7} for 1 � i �
11. By brute force, all such sequences are listed below:
(7,7,7,1,1,1,0,0,0,0,0), (7,7,6,1,1,1,1,0,0,0,0), (7,

7,5,5,0,0,0,0,0,0,0), (7,7,5,1,1,1,1,1,0,0,0), (7,6,

6,5,0,0,0,0,0,0,0), (7,6,6,1,1,1,1,1,0,0,0), (7,6,5,

5,1,0,0,0,0,0,0), (7,6,5,1,1,1,1,1,1,0,0), (7,5,5,5,

1,1,0,0,0,0,0), (6,6,6,6,0,0,0,0,0,0,0), (6,6,6,5,1,

0,0,0,0,0,0), (6,6,6,1,1,1,1,1,1,0,0), (6,6,5,5,1,1,

0,0,0,0,0), (6,5,5,5,1,1,1,0,0,0,0), and (5,5,5,5,1,1,

1,1,0,0,0). By Theorem 2, we can check that such a graph
does not exist. The lemma is proved. �

We can easily obtain the following lemma.

Lemma 4. Let k � 2. Let G be a hamiltonian connected graph.
Then deleting any set S of k vertices from G, the resulting graph
G − S contains at most k − 1 connected components.

By the above lemma, we have a simple observation.

Lemma 5. Let k � 2. Let G be a graph. If there is a set S of k ver-
tices such that G − S contains k or more connected components,
then G is not hamiltonian connected.

3. Main result

Lemma 6. Let n � 4 and F ⊂ E(Kn) with δ(Kn − F ) � 3.
Then Kn − F is hamiltonian connected if |F | � 2n − 10 for
n /∈ {4,5,8,10}, |F | = 0 for n = 4, |F | � 2 for n = 5, and
|F | � 2n − 11 for n ∈ {8,10}.

Proof. We prove this lemma by induction on n. Yet, we
should be very careful because the size of |F | is depending
on n. Without loss of generality, we assume that |F | = 2n−
10 for n /∈ {4,5,8,10}, |F | = 0 for n = 4, |F | = 2 for n =
5, and |F | = 2n − 11 for n ∈ {8,10}. The induction bases
are n = 4, n = 5, and n = 6. Suppose n = 4 and |F | = 0. It
is easy to see that the complete graph K4 is hamiltonian
connected. Suppose n = 5 and |F | = 2. To keep δ(K5 − F ) �
3, F forms two independent edges. By brute force, it is
easy to check whether K5 − F is hamiltonian connected.
Suppose that n = 6 and |F | = 2. Obviously, F is either two
adjacent edges or two independent edges. Again, by brute
force, we can check that K6 − F is hamiltonian connected.

Now, we assume that n � 7. Let u and v be any two
vertices of Kn . The lemma follows if we can find a hamil-
tonian path of Kn − F between u and v .

Case 1. degKn(F )(u) 	= 0 or degKn(F )(v) 	= 0. Without loss
of generality, we assume that degKn(F )(u) = k 	= 0. Let
i1, . . . , ik be the vertices such that (u, i j) ∈ F for 1 � j � k.
Let F ′ = (F −{(u, i1), . . . , (u, ik)})∪{(v, i1), . . . , (v, ik)}. Ob-
viously, |F ′| � |F |. Now, we consider Kn −{u} as a complete
graph of (n − 1) vertices with faulty edge set F ′ . Obviously,
|F ′| � 2(n − 1) − 8 for n /∈ {8,10} and |F ′| � 2(n − 1) − 9
for n ∈ {8,10}. Moreover, δ(Kn − {u} − F ′) � 2. Thus, we
can apply Theorem 1 to obtain a hamiltonian cycle C in
Kn − {u} − F ′ . Without loss of generality, we write C as

〈v, x, . . . , y, v〉. Then, 〈u, x, . . . , y, v〉 forms a hamiltonian
path of Kn − F joining u to v .

Case 2. degKn(F )(u) = 0 and degKn(F )(v) = 0. By Lem-
mas 1, 2, and 3, there exists a vertex w such that
2 � degKn(F )(w) � �n−1

2 � − 1 for n ∈ {9,11} and 1 �
degKn(F )(w) � �n−1

2 � − 1 for n /∈ {9,11}.

Obviously, δ(Kn − F − {w}) � 2. Suppose that δ(Kn −
F − {w}) = 2. Let x be any vertex in Kn − {w} such that
degKn−{w}−F (x) = 2. Obviously, (x, w) /∈ F , degKn−F (x) = 3,
and degKn(F )(x) = n − 4. We claim that x is the only vertex
in Kn − {w} with degKn−{w}−F (x) = 2. If otherwise, let z
be another vertex in Kn − {w} with degKn−{w}−F (z) = 2.
Then |F | � degKn(F )(x) + degKn(F )(z) − 1 = 2n − 9. This is
impossible because |F | � 2n−10. Thus, x is the only vertex
in Kn −{w} such that degKn−{w}−F (x) = 2. Thus, δ(Kn − F −
{u, x}) � 3.

Let F ′ = F − {(x, i) | i ∈ V (Kn)}. We consider Kn − {u, x}
as a complete graph of (n −2) vertices with faulty edge set
F ′ . Obviously, |F ′| = 1 � 2 for n = 7, |F ′| = n − 7 � 2(n −
2) − 10 for n /∈ {10,12}, and |F ′| = n − 7 � 2(n − 2) − 11 for
n ∈ {10,12}. By induction, we have a hamiltonian path P
of Kn − {u, x} − F ′ joining w to v . So 〈u, x, w, P , v〉 forms
a hamiltonian path of Kn − F joining u to v .

Now, we consider δ(Kn − {w} − F ) � 3. Since 2 �
degKn(F )(w) � �n−1

2 � − 1 for n ∈ {9,11} and 1 �
degKn(F )(w) � �n−1

2 � − 1 for n /∈ {9,11}, there exists
(x, y) ∈ F such that {(w, x), (w, y)} ∩ F = ∅. We set F ′ as
F − {(w, z) | (w, z) ∈ F } − {(x, y)} and consider Kn − {w}
with faulty set F ′ . We have |F ′| = 2n − 10 − degKn(F )(w) −
1 � 2n−13 for n ∈ {9,11} and |F ′| = 2n−10−degKn(F )(w)−
1 � 2n − 12 for n /∈ {9,11}. By induction, there exists a
hamiltonian path P = 〈u = x1, x2, . . . , xn−1 = v〉 of Kn −
{w} − F ′ joining u to v . Suppose that (x, y) ∈ P . There
exists an integer i such that {xi, xi+1} = {x, y} for some i.
Suppose that (x, y) /∈ P . Since degKn(F )(w) � �n−1

2 �−1 and
degKn(F )(w) + degKn−F (w) = n − 1, degKn−F (w) � � n

2 � + 1.
Hence, there exists an integer i such that (xi, xi+1) ∈ P and
{(w, xi), (w, xi+1)}∩ F = ∅. Therefore, 〈u = x1, x2, . . . , xi, w,

xi+1, xi+2, . . . , v〉 forms a hamiltonian path of Kn − F join-
ing u to v . �
Theorem 3. Let n � 4. Then H C 3

e (Kn) = 2n − 10 for n /∈
{4,5,8,10}, H C 3

e (K4) = 0, H C 3
e (K5) = 2, H C 3

e (K8) = 5, and
H C 3

e (K10) = 9.

Proof. Let F be any subset of E(Kn) with δ(Kn − F ) � 3.
Since δ(Kn − F ) � 3, |F | = 0 for n = 4 and |F | � 2 for n = 5.
Thus, H C 3

e (K4) = 0 and H C 3
e (K5) = 2.

Suppose n = 8. Let V (K8) = {x1, x2, . . . , x8}. We set R =
{x1, . . . , x4}, S = {x5, . . . , x8}, and F = {(u, v) | u, v ∈ R}. We
can check that δ(K8 − F ) � 3, |F | = 6 and (K8 − F )− S has
four connected components. By Lemma 5, K8 − F is not
hamiltonian connected. See Fig. 1(a) for illustration. Thus,
H C 3

e (K8) < 6. By Lemma 6, H C 3
e (K8) = 5.

Suppose n = 10. Let V (K10) = {x1, x2, . . . , x10}. We set
R = {x1, . . . , x5}, S = {x6, . . . , x10}, and F = {(u, v) | u, v ∈
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Fig. 1. All white vertices are in R , all black vertices are in S , and all gray
vertices are in T . All dashed lines are in F .

R}. Then, δ(K10 − F ) � 3, |F | = 10, and (K10 − F ) − S has
five connected components. By Lemma 5, K10 − F is not
hamiltonian connected. See Fig. 1(b) for illustration. Thus,
H C 3

e (K10) < 10. By Lemma 6, H C 3
e (K10) = 9.

Suppose that n ∈ {6,7,9} ∪ {i | i � 11}. Let V (Kn) =
{x1, x2, . . . , xn}. We set R = {x1, x2}, S = {x3, x4, x5}, T =
{x6, . . . , xn}, and F = {(u, v) | u ∈ R, v ∈ R ∪ T }. Obviously,
δ(Kn − F ) � 3, |F | = 2(n −5)+1 = 2n −9, and (Kn − F )− S
has three connected components. See Fig. 1(c) for illustra-
tion for case n = 9. By Lemma 5, Kn − F is not hamil-

tonian connected. Thus, H C 3
e (Kn) < 2n − 9. By Lemma 6,

H C 3
e (Kn) = 2n − 10.

The theorem is proved. �
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