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Abstract

A hamiltonian cycle C of a graph G is an ordered set (uy, Uy, ..., Un), U1) Of vertices such
that u; = u; for i = j and u; is adjacent to uj+1 for every i € {1, 2, ..., n(G) -1} and un) is
adjacent to u, where n(G) is the order of G. The vertex uy is the starting vertex and u; is the ith
vertex of C. Two hamiltonian cycles C; = (U1, Uy, ..., Un@), U1) and Cy = (v1, Va, ..., V), V1) Of
G are independent if u; = v4 and u; = v; for every i € {2, 3, ..., n(G)}. A set of hamiltonian
cycles {Cy, Cy, ..., Ci} of G is mutually independent if its elements are pairwise independent.
The mutually independent hamiltonicity IHC(G) of a graph G is the maximum integer k such

that for any vertex u of G there exist k mutually independent hamiltonian cycles of G starting at

u.

A bipartite graph B is bipancyclic if it contains a cycle of every even length from 4 to
[V(B)| inclusive. A hamiltonian bipartite graph B is bipanpositionable if, for any two different
vertices x and y, there exists a hamiltonian cycle C of B such that dc(x,y) = k for any integer k
with dg(x,y) < k < |[V(B)[/2 and (k — dg(X,y)) being even. A bipartite graph B is k-cycle
bipanpositionable if, for any two different vertices x and y, there exists a cycle of B with
dc(x,y)= I and |V(C)| = k for any integer | with dg(x,y) <1 < k/2 and (I — dg(x,y)) being even. A
bipartite graph B is bipanpositionable bipancyclic if B is k-cycle bipanpositionable for every
even integer k, 4 <k <|V(B)|.

In this project, the mutually independent hamiltonicity is considered for two families of
Cayley graphs, the n-dimensional pancake graphs P, and the n-dimensional star graphs S, and
the bipanpositionable bipancyclicity is considered the n-dimensional hypercube graph Q,. We
have proven that IHC(Ps) = 1, IHC(P,) =n—1ifn >4, IHC(S,) =n -2 if n € {3, 4} and
IHC(S,) =n—1if n>5, and the hypercube Q, is bipanpositionable bipancyclic for n > 2.

Keywords: Bipanpositionable, bipancyclic, hypercube, hamiltonian, pancake networks, star

networks.
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An interconnection network connects the processors of parallel computers. Its
architecture can be represented as a graph in which the vertices correspond to
processors and the edges correspond to connections. Hence, we use graphs and
networks interchangeably. There are many mutually conflicting requirements in
designing the topology for computer networks.

In 1969, Lovész [1] asked whether every finite connected vertex transitive
graph has a hamiltonian path, that is, a simple path that traverses every vertex exactly
once. All known vertex transitive graphs have a hamiltonian path and moreover, only
four vertex transitive graphs without a hamiltonian cycle are known. Since none of
these four graphs is a Cayley graph there is a folklore conjecture [2] that every Cayley
graph with more than two vertices has a hamiltonian cycle. In the last decades this
problem was extensively studied (see [3-13]) and for those Cayley graphs for which
the existence of hamiltonian cycles is already proven, further properties related to this
problem, such as edge-hamiltonicity, Hamiltonconnectivity and Hamilton-laceability,
are investigated (see [5,14]). In this project, we introduce one of such properties, the
concept of mutually independent hamiltonian cycles which is related to the number of
hamiltonian cycles in a given graph. In particular, mutually independent hamiltonian
cycles of pancake graphs P, and star graphs S,.

The concept of mutually independent hamiltonian arises from the following
application. If there are k pieces of data needed to be sent from u to v, and the data
needed to be processed at every node (and the process takes times), then we want
mutually independent hamiltonian paths so that there will be no waiting time at a
processor. The existence of mutually independent hamiltonian paths is useful for
communication algorithms. Motivated by this result, we begin the study on graphs
with mutually independent hamiltonian paths between every pair of distinct vertices.

The n-dimensional star network S, was proposed in [15] as n attractive
alternative to the n-cube topology for interconnecting processors in parallel computers.
Since its introduction, the network has received considerable attention. Akers and
Krishnameurthy [15] showed that the star graphs are vertex transitive and edge
transitive. The diameter and fault diameters were computed in [15-17]. The
hamiltonian and hamiltonian laceability of star graphs are studied in [18-22]. The

spanning container of star graph is studied in [23].
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Akers and Krishnameurthy [15] proposed another family of interesting
interconnection networks, the n-dimensional pancake graph P,. Hung et al. [24]
studied the hamiltonian connectivity on the faulty pancake graphs. The embedding of
cycles and trees into the pancake graphs were discussed in [24-27]. The spanning
container of pancake graph is studied in [28]. Gates and Papadimitriou [29] studied
the diameter of the pancake graphs. Up to now, we do not know the exact value of the
diameter of the pancake graphs [30].

The n-dimensional hypercube, Q,, consists of all n-bit binary strings as its
vertices and two vertices u and v are adjacent if and only if their binary labels are
different in exactly one bit position. Therefore, Q, can be constructed recursively by
taking two copies of Q,_1, Q% and Q*,, and adding a perfect matching between these
two copies. The hypercube is a widely used topology in computer architecture, see
Leighton [31].

A graph G is pancyclic if it contains a cycle of every length from 3 to |V(G)|
inclusive. The concept of pancyclic graphs wasproposed by Bondy [32]. Since there is
no odd cycle in bipartite graph, the concept of a bipancyclic graph was proposed by
Mitchem and Schmeichel [33]. A bipartite graph is bipancyclic if it contains a cycle
of every even length from 4 to |V(G)| inclusive. It is proved that the hypercube Q is
bipancyclic if n > 2 [34,35]. A graph is panconnected if, for any two different vertices
x and y, there exists a path of length | joining x and y for every | with dg(x, y) <1<
[V(G)| — 1. The concept of panconnected graphs was proposed by Alavi and
Williamson [36]. It is easy to see that any bipartite graph with at least 3 vertices is not
panconnected. Therefore, the concept of bipanconnected graphs is proposed. A
bipartite graph is bipanconnected if, for any two different vertices x and y, there exists
a path of length | joining x and y for every | with dg(x, y) <1< |V(G)| — 1 and (I — dg(X,
y)) being even. It is proved that the hypercube is bipanconnected [34]. A hamiltonian
graph G is panpositionable if for any two different vertices x and y of G and for any
integer k with dg(x, y) <k < |V(G)|/2, there exists a hamiltonian cycle C of G such that
dc(x, y) = k. A hamiltonian bipartite graph G is bipanpositionable if for any two
different vertices x and y of G and for any integer k with dg(X, y) < k < |V(G)|/2 and
(k= ds(X, y)) being even, there exists a hamiltonian cycle C of G such that dc(x, y) = k.
The concepts of panpositionable and bipanpositionable were proposed by Kao et al.

[37]. They proved that the hypercube Qn is bipanpositionable if n > 2 [37]. A bipartite
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graph G is edge-bipancyclic if for any edge in G, there is a cycle of every even length
from 4 to |V(G)| traversing through this edge. The concept of edge-bipancyclic was
proposed by Alspach and Hare [38]. A bipartite graph G is vertex-bipancyclic if for
any vertex in G, there is a cycle of every even length from 4 to [V(G)| going through
this vertex. The concept of vertex-bipancyclic was proposed by Hobbs [39].
Obviously, every edge-bipancyclic graph is vertex-bipancyclic. It is proved that the
hypercube Q, is edge-bipancyclic if n > 2 [34].

We propose a more interesting property about hypercubes. A k-cycle is a cycle of
length k. A bipartite graph G is k-cycle bipanpositionable if for every different
vertices x and y of G and for any integer | with dg(x, y) < | < k/2 and (I — dg(X, Y))
being even, there exists a k-cycle C of G such that dc(x, y) = |. (Note that dc(x, y) < k/2
for every cycle C of length k.) A bipartite graph G is bipanpositionable bipancyclic if
G is k-cycle bipanpositionable for every even integer k with 4 <k < |V(G)|.

In this project, we have proven that IHC(P3) = 1, IHC(P,) = n — 1 if n > 4,
IHC(S)) =n—-2if n € {3, 4} and IHC(S;) =n — 1 if n > 5, and the hypercube Q, is
bipanpositionable bipancyclic for n > 2.
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3. B E®m

In this project, the mutually independent hamiltonicity is considered for two
families of Cayley graphs, the n-dimensional pancake graphs P, and the
n-dimensional star graphs S,, and the bipanpositionable bipancyclicity is considered
the n-dimensional hypercube graph Q,. We have proven that IHC(P3) = 1, IHC(P,) =
n—21ifn>4,IHC(S,) =n-2ifn e {3, 4} and IHC(S,) =n -1 if n > 5, and the
hypercube Q, is bipanpositionable bipancyclic for n > 2.

We discuss the mutually independent hamiltonian cycles for the pancake graphs

and the star graphs. The concept of mutually independent hamiltonian cycle can be
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viewed as a generalization of Latin rectangles. Perhaps one of the most interesting
topics in Latin square is orthogonal Latin square. Two Latin squares of order n are
orthogonal if the n-squared pairs formed by juxtaposing the two arrays are all distinct.
Similarly, two Latin rectangles of order n x m are orthogonal if the n x m pairs formed
by juxtaposing the two arrays are all distinct. With this in mind, let G be a
Hamiltonian graph and C; and C; be two sets of mutually independent hamiltonian
cycles of G from a given vertex x. We say C; and C, are orthogonal if their
corresponding Latin rectangles are orthogonal.

We can also discuss mutually independent hamiltonian paths for some graphs.
Let Py = (v, Vg, ..., Vpy and P, = {ug, Uy, ..., U,) be two hamiltonian paths of a graph G.
We say that P; and P, are independent if u; = vy, u, = vy, and u; # vifor 1 <i<n. We
say a set of hamiltonian paths {P1, P, ..., Ps} of G between two distinct vertices are
mutually independent if any two distinct paths in the set are independent. There are
some study on mutually independent Hamiltonian paths [40, 41].

Recently, people are interested in a mathematical puzzle, called Sudoku [42].
Sudoku can be viewed as a 9x9 Latin square with some constraints. There are several
variations of Sudoku have been introduced. Mutually independent Hamiltonian cycles
can also be considered as a variation of Sudoku.

On the other hand, we prove that the hypercube Q, is bipanpositionable
bipancyclic for n > 2. As a consequence of this result, we can see that many previous
results on hypercubes follow directly from ours. For example, the family of the
hypercube is bipancyclic, bipanconnected, bipanpositionable, edge-bipancyclic and

vertex-bipancyclic. Therefore, our result unifies these results in a general sense.
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ARTICLE INFO ABSTRACT
Article history: A hamiltonian cycle C of a graph G is an ordered set (uy, uy, ..., Uy, U1) of vertices such
Received 19 September 2006 that u; # u; for i # jand u; is adjacent to u;,; for every i € {1,2,...,n(G) — 1} and
Accepted 8 December 2008 Un(c) is adjacent to uy, where n(G) is the order of G. The vertex u; is the starting vertex
Available online 14 January 2009 : : . . o

and u; is the ith vertex of C. Two hamiltonian cycles C; = (u1, Uy, ..., Unc), U1) and
Keywords: G = (v1,v2, ..., Un@), V1) o_f G are independent if u; = v, and_ uj # v fo.r everyi €
Hamiltonian _{2_, 3,...,n(G)}. A se_t of ha_mlltoman cycles {Cq, Gy, . = Cy} of Gis mu‘tuall‘y }ndependent
Pancake networks if its elements are pairwise independent. The mutually independent hamiltonicity IHC (G) of
Star networks a graph G is the maximum integer k such that for any vertex u of G there exist k mutually

independent hamiltonian cycles of G starting at u.

In this paper, the mutually independent hamiltonicity is considered for two families of
Cayley graphs, the n-dimensional pancake graphs P, and the n-dimensional star graphs S,,.
It is proven that IHC(P;) = 1,IHC(P,) = n — 1ifn > 4,[HC(S,) = n — 2ifn € {3, 4} and
IHC(S,) =n— 1ifn > 5.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In 1969, Lovasz [32] asked whether every finite connected vertex transitive graph has a hamiltonian path, that is, a simple
path that traverses every vertex exactly once. All known vertex transitive graphs have a hamiltonian path and moreover,
only four vertex transitive graphs without a hamiltonian cycle are known. Since none of these four graph is a Cayley graph
there is a folklore conjecture [9] that every Cayley graph with more than two vertices has a hamiltonian cycle. In the last
decades this problem was extensively studied (see [2-5,7,12,19,33-36]) and for those Cayley graphs for which the existence
of hamiltonian cycles is already proven, further properties related to this problem, such as edge-hamiltonicity, Hamilton-
connectivity and Hamilton-laceability, are investigated (see [4,8]). In this paper we introduce one of such properties, the
concept of mutually independent hamiltonian cycles which is related to the number of hamiltonian cycles in a given graph.
In particular, mutually independent hamiltonian cycles of pancake graphs P, and star graphs S,, (for definitions see Sections 4
and 5) are studied.

The paper is organized as follows. In Section 2 definitions and notations needed in the subsequent sections are introduced.
In Section 3 applications of the mutually independent hamiltonicity concept are given. In Sections 4 and 5 the mutually
independent hamiltonicity of pancake graphs P, and star graphs S,, respectively, is computed. And in the last section,
Section 6, directions for further research on this topic are discussed.

* Corresponding author.
E-mail addresses: cklin@cs.nctu.edu.tw (C.-K. Lin), hsu@trill.cis.fordham.edu (D.F. Hsu).
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2. Definitions

For definitions and notations not defined here see [6]. Let V be a finite set and E a subset of {(u,v) |
(u, v) is an unordered pair of V}. Then G = (V, E) is a graph with vertex set V and edge set E. The order of G, that is, the
cardinality of the set V, is denoted by n(G). For a subset S of V the graph G[S] induced by S is a graph with vertex set
V(G[S]) = Sand edge set E(G[S]) = {(x,y) | (x,y) € E(G) and x, y € S}. Two vertices u and v are adjacent if (u, v) is an edge
of G. For a vertex u the set Ng(u) = {v | (u, v) € E} is called the set of neighbors of u. The degree deg.(u) of a vertex u in G, is
the cardinality of the set N¢(u). The minimum degree of G, §(G), is min{deg.(x) | x € V}. Agraph G is k-regular if deg.(u) = k
for every vertex u in G. The connectivity of G is the minimum number of vertices whose removal leaves the remaining graph
disconnected or trivial. A path between vertices vy and vy is a sequence of vertices represented by (vg, v, ..., vg) such that
there is no repeated vertex and (v;, viy1) is an edge of G for everyi € {0...k — 1}. We use Q (i) to denote the ith vertex v; of
Q = (v1, va, ..., Uk). We also write the path (vo, vy, ..., vk) as (vo, ..., v, Q, vj, ..., vk), where Q is a path form v; to v;. A
path is a hamiltonian path if it contains all vertices of G. A graph G is hamiltonian connected if there exists a hamiltonian path
joining any two distinct vertices of G. A cycle is a sequence of vertices represented by (vo, v1, ..., vk, vo) such that v; # v;
for alli # j, (vo, vi) is an edge of G, and (v;, vi11) is an edge of G for every i € {0, ..., k — 1}. A hamiltonian cycle of G is a
cycle that traverses every vertex of G. A graph is hamiltonian if it has a hamiltonian cycle.

A hamiltonian cycle C of graph G is described as (uj, uy, ..., Une), U1) to emphasize the order of vertices in C. Thus,
uq is the starting vertex and u; is the ith vertex in C. Two hamiltonian cycles C; = (uy, Uy, ..., Un), U1) and G; =
(v1, V2, ..., Une), V1) Of G are independent if u; = vy and u; # v; foreveryi € {2,...,n(G)}. A set of hamiltonian
cycles {Cy, G5, ..., G} of G are mutually independent if its elements are pairwise independent. The mutually independent
hamiltonicity IHC(G) of graph G the maximum integer k such that for any vertex u of G there exist k mutually independent
hamiltonian cycles of G starting at u. Obviously, IHC(G) < §(G) if G is a hamiltonian graph.

The mutually independent hamiltonicity of a graph can be interpreted as a Latin rectangle. A Latin square of order n is an
n x narray made from the integers 1 to n with the property that any integer occurs once in each row and column. If we delete
some rows from a Latin square, we will get a Latin rectangle. Let K5 be the complete graph with vertex set {0, 1, 2, 3, 4} and
letC; =(0,1,2,3,4,0),C; = (0,2,3,4,1,0),C3 = (0, 3,4, 1,2,0),and C; = (0, 4, 1, 2, 3, 0). Obviously, Cy, G, C3, and
C4 are mutually independent. Thus, IHC (Ks) = 4. We rewrite C;, Cy, C3, and Cy4 into the following Latin square:

112|3]|4
213|141
34|12
411|123

In general, a Latin square of order n can be viewed as n mutually independent hamiltonian cycles with respect to the
complete graph K, 1.

Let H be a group and let S be the generating set of H such that S™' = S. Then the Cayley graph Cayley(S; H) of the group H
with respect to the generating set S is the graph with vertex set H and two vertex u and v are adjacent in Cayley(S; H)
if and only if u='v € S. Hamiltonian cycles in Cayley graphs naturally arise in computer science [25], in the study of
word-hyperbolic groups and automatic groups [14], in changing-ringing [40], in creating Escher-like repeating patterns
in hyperbolic plane [13], and in combinatorial designs [11].

3. Applications of the concept of mutually independent hamiltonian cycles

Mutually independent hamiltonicity of graphs can be applied to many areas. Consider the following scenario. In
Christmas, we have a holiday of 10-days. A tour agency will organize a 10-day tour to Italy. Suppose that there will be a
lot of people joining this tour. However, the maximum number of people stay in each local area is limited, say 100 people,
for the sake of hotel contract. One trivial solution is on the First-Come-First-Serve basis. So only 100 people can attend
this tour. (Note that we cannot schedule the tour in a pipelined manner because the holiday period is fixed.) Nonetheless,
we observe that a tour is like a hamiltonian cycle based on a graph, in which a vertex is denoted as a hotel and any two
vertices are joined with an edge if the associated two hotels can be traveled in a reasonable time. Therefore, we can organize
several subgroups, that is, each subgroup has its own tour. In this way, we do not allow two subgroups stay in the same area
during the same time period. In other words, any two different tours are indeed independent hamiltonian cycles. Suppose
that there are 10 mutually independent hamiltonian cycles. Then we may allow 1000 people to visit Italy on Christmas
vacation. For this reason, we would like to find the maximum number of mutually independent hamiltonian cycles. Such
applications are useful for task scheduling and resource placement, which are also important for compiler optimization to
exploit parallelism.

An interconnection network connects the processors of parallel computers. Its architecture can be represented as a graph
in which the vertices correspond to processors and the edges correspond to connections. Hence, we use graphs and networks
interchangeably. There are many mutually conflicting requirements in designing the topology for computer networks. The
n-cube is one of the most popular topologies [27]. The n-dimensional star network S,, was proposed in [1] as n attractive
alternative to the n-cube topology for interconnecting processors in parallel computers. Since its introduction, the network
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Fig. 1. The pancake graphs P,, P3, and P,.

has received considerable attention. Akers and Krishnameurthy [1] showed that the star graphs are vertex transitive and
edge transitive. The diameter and fault diameters were computed in [1,26,37]. The hamiltonian and hamiltonian laceability
of star graphs are studied in [16,17,21,23,31]. The spanning container of star graph is studied in [28].

Akers and Krishnameurthy [1] proposed another family of interesting interconnection networks, the n-dimensional
pancake graph P,. Hung et al. [22] studied the hamiltonian connectivity on the faulty pancake graphs. The embedding of
cycles and trees into the pancake graphs were discussed in [10,15,22,24]. The spanning container of pancake graph is studied
in [28]. Gates and Papadimitriou [ 18] studied the diameter of the pancake graphs. Up to now, we do not know the exact value
of the diameter of the pancake graphs [20].

4. The pancake graphs

Let n be a positive integer. We use (n) to denote the set {1, 2, ..., n}. The n-dimensional pancake graph, P,, is a graph with
the vertex set V(P,) = {ujuy ... u, | u; € (n) and u; # uy for j # k}. The adjacency is defined as follows: uquy ... u;...u,
is adjacent to v1v, ... ;... v, through an edge of dimensioni with2 < i < nifv; = u_jys forall1 < j <iandv; = u;
foralli < j < n. We will use boldface to denote a vertex of P,. Hence, uq, uy, . . ., u, denote a sequence of vertices in P,. In
particular, e denotes the vertex 12. .. n. The pancake graphs P,, P5, and P, are illustrated in Fig. 1.

By definition, P, is an (n — 1)-regular graph with n! vertices. Akers and Krishnameurthy [ 1] showed that the connectivity
of P, is (n — 1). Letu = uqu; . .. u, be an arbitrary vertex of P,. We use (u); to denote the ith component u; of u, and use P“}
to denote the lth subgraph ofP induced by those vertices u with (u),, = i. Then P,, can be decomposed into n vertex disjoint
subgraphs Pn ,1 <i < n,and each P” is isomorphic to P,_; for all i, i < n. Thus, the pancake graph can be constructed
recursively. Let H be any subset of (n). We use P,’f to denote the subgraph of P, induced by Ujcy V(P,E ). By definition, there
is exactly one neighbor v of u such that u and v are adjacent through an i-dimensional edge with 2 < i < n. We use (u)’ to
denote the unique i-neighbor of u. We have ((u)’)’ = uand ()" € P,g(“)”. For any two distinct elements i and j in (n), we

use E,’;’j to denote the set of edges between P,g'} and P,E” .

Lemma 1. Let i and j be any two distinct elements in (n) with n > 3. Then |E,"{j| =(n-2).
Lemma 2. Let u and v be any two distinct vertices of P, with d(u, v) < 2. Then (u); # (V);.
Theorem 1 ([22]). Suppose that F is a subset of V (P,) with |F| < n — 4. Then P, — F is hamiltonian connected.

Theorem 2. Let {a;, a,, ..., a;} be a subset of (n) for some positive integer r € (n) withn > 5. Assume that u and v are two
distinct vertices of P, w1thu S P{a” andv € Pna'} Then there is a hamiltonian path (u = xl, Hi,¥1, X2, H2, V2, - ., Xp, He Y, =
V) of U_; {a’ joining u to v such that X, = u,y, = v, and H; is a hamiltonian path of P,1 ]ommg X; toy; foreveryi, 1 <i<r.

Proof. We set x4 as u and y, as v. We know that P{a’ is isomorphic to P,,_; for every i € (r). By Theorem 1, this statement
holds for r = 1. Thus, we assume that r > 2. By Lemma 1, |[E,;"“*'| = (n — 2)! > 6 for everyi € (r — 1). We choose
(Vs Xi+1) € Ep 1 for everyi € (r — 1) withy; # X; and X; # y,. By Theorem 1, there is a hamiltonian path H; of P,Sai}
joining x; to y; for every i € (r). Then (u = Xq, H1, ¥y, X2, H2, V5, - . ., X¢, Hr, y, = V) is the desired path. See Fig. 2 for
illustrationon P,. O

Lemma 3. Let k € (n) withn > 4, and let X be a vertex of P,. There is a hamiltonian path P of P, — {X} joining the vertex (xX)"
to some vertex v with (v); = k.
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Fig. 2. Illustration for Theorem 2 on P,,.

are listed below:

k=1 (4321, 3421, 2431, 4231, 1324, 3124, 2134, 4312, 1342, 2143, 4132, 2314, 3214, 4123, 2143, 3412, 1432, 2341, 3241, 1423, 2413, 4213, 1243)
k=2 (4321, 3421, 2431, 4231, 1324, 3124, 2134, 4312, 1342, 3142, 2413, 4213, 1243, 2143, 3412, 1432, 4132, 2314, 3214, 4123, 1423, 3241, 2341)
k=3 (4321, 3421, 2431, 4231, 1324, 3124, 2134, 4312, 1342, 3142, 4132, 2314, 3214, 4123, 1423, 2413, 4213, 1342, 2143, 3412, 1432, 2341, 3241)
k=4 (4321, 3421, 2431, 1342, 3142, 4132, 2314, 3214, 4123, 2143, 1243, 4213, 2413, 1423, 3241, 2341, 1432, 3412, 4312, 2134, 3124, 1324, 4231)

With Theorem 1, we can find the required hamiltonian path in P, foreveryn,n > 5. 0O

Lemma 4. Let a and b be any two distinct elements in (n) with n > 4, and let X be a vertex of P,. There is a hamiltonian path P

of P, — {x} joining a vertex u with (u); = a to a vertex v with (v); = b.

Proof. Suppose that n = 4. Since P, is vertex transitive, we may assume that x = 1234. Without loss of generality, we may

assume that a < b. The required paths of P, — {1234} are listed below:

a=1landb =2
(1423, 4123, 3214, 2314, 1324, 3124, 4213, 2413, 3142, 4132, 1432, 3412, 2143, 1243, 3421, 4321, 2341, 3241, 4231, 2431, 1342, 4312, 2134)

a=1landb=3
(1423, 4123, 2143, 1243, 4213, 2413, 3142, 1342, 2431, 3421, 4321, 2341, 3241, 4231, 1324, 3124, 2134, 4312, 3412, 1432, 4132, 2314, 3214)

a=1landb=4
(1423, 2413, 3142, 1342, 2431, 3421, 4321, 2341, 3241, 4231, 1324, 2314, 3214, 4123, 2143, 1243, 4213, 3124, 2134, 4312, 3412, 1432, 4132)

a=2andb=3
(2134, 4312, 1342, 3142, 2413, 4213, 1243, 2143, 3412, 1432, 4132, 2314, 3214, 4123, 1423, 3241, 2341, 4321, 3421, 2431, 4231, 1324, 3124)

a=2andb=4
(2134, 3124, 1324, 2314, 3214, 4123, 2143, 1243, 4213, 2413, 1423, 3241, 4231, 2431, 3421, 4321, 2341, 1432, 3412, 4312, 1342, 3142, 4132)

a=3andb=4
(3214, 4123, 2143, 1243, 4213, 3124, 2134, 4312, 3412, 1432, 2341, 4321, 3421, 2431, 1342, 3142, 2413, 1423, 3241, 4231, 1324, 2314, 4132)

With Theorem 1, we can find the required hamiltonian path on P, for everyn,n > 5. 0O

y=2134

a=1landb=2

(1432, 2413, 3142, 4132, 1432, 3412, 4312, 1342, 2431, 3421, 4321, 2341, 3241, 4231, 1324, 3124, 4213, 1243, 2143, 4123, 3214, 2314)
a=1landb=3

(1432, 4123, 2143, 1243, 3421, 4321, 2341, 3241, 4231, 2431, 1342, 4312, 3412, 1432, 4132, 3142, 2413, 4213, 3124, 1324, 2314, 3214)
a=1landb=4

(1432, 4123, 3214, 2314, 1324, 3124, 4213, 2413, 3142, 4132, 1432, 2341, 3241, 4231, 2431, 1342, 4312, 3412, 2143, 1243, 3421, 4321)
a=2andb=3

(2314, 3214, 4123, 2143, 1243, 4213, 3124, 1324, 4231, 2431, 1342, 4312, 3412, 1432, 4132, 3142, 2413, 1423, 3241, 2341, 4321, 3421)
a=2andb=4

(2314, 3214, 4123, 2143, 3412, 4312, 1342, 2431, 3421, 1243, 4213, 3124, 1324, 4231, 3241, 1423, 2413, 3142, 4132, 1432, 2341, 4321)
a=3andb=4

(3214, 4123, 2143, 1243, 3421, 2431, 4231, 3241, 1423, 2413, 4213, 3124, 1324, 2314, 4132, 3142, 1342, 4312, 3412, 1432, 2341, 4321)

y=3214
a=1landb=2
(1423, 4123, 2143, 1243, 3421, 4321, 2341, 3241, 4231, 2431, 1342, 3142, 2413, 4213, 3124, 1324, 2314, 4132, 1432, 3412, 4312, 2134)

a=1landb=3
(1423, 4123, 2143, 1243, 4213, 2413, 3142, 1342, 2431, 3421, 4321, 2341, 3241, 4231, 1324, 2314, 4132, 1432, 3412, 4312, 2134, 3124)
a=1landb=4
(1423, 4123, 2143, 1243, 3421, 2431, 1342, 3142, 2413, 4213, 3124, 2134, 4312, 3412, 1432, 4132, 2314, 1324, 4231, 3241, 2341, 4321)
a=2andb=3
(2134, 4312, 1342, 2431, 4231, 3241, 1423, 4123, 2143, 3412, 1432, 2341, 4321, 3421, 1243, 4213, 2413, 3142, 4132, 2314, 1324, 3124)
a=2andb=4
(2134, 3124, 4213, 2413, 3142, 1342, 4312, 3412, 1432, 4132, 2314, 1324, 4231, 2431, 3421, 1243, 2143, 4123, 1423, 3241, 2341, 4321)
a=3andb=4

(3124, 2134, 4312, 1342, 3142, 2413, 4213, 1243, 3421, 2431, 4231, 1324, 2314, 4132, 1432, 3412, 2143, 4123, 1423, 3241, 2341, 4321)

Lemma 5. Let a and b be any two distinct elements in (n) with n > 4. Assume that X and y are two adjacent vertices of P,. There
is a hamiltonian path P of P, — {X, y} joining a vertex u with (w); = a to a vertex v with (v); = b.

Proof. Since P, is vertex transitive, we may assume that x = e andy = (e)’ for some i € {2, 3, ..., n}. Without loss of
generality, we assume thata < b.Thus, a # nand b # 1. We prove this statement by induction on n. For n = 4, the required
paths of P4, — {1234, (1234)'} are listed below:
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y = 4321
a=1landb=2
(1423, 4123, 3214, 2314, 4132, 3142, 2413, 4213, 3124, 1324, 4231, 3241, 2341, 1432, 3412, 2143, 1243, 3421, 2431, 1342, 4312, 2134)
a=1landb=3
(1423, 4123, 2143, 3412, 1432, 2341, 3241, 4231, 1324, 3124, 2134, 4312, 1342, 2431, 2431, 1243, 4213, 2413, 3142, 4132, 2314, 3214)
a=1landb=4

(1423, 2413, 4213, 3124, 2134, 4312, 3412, 2143, 1243, 3421, 2431, 1342, 3142, 4132, 1432, 2341, 3241, 4231, 1324, 2314, 3214, 4123)
a=2andb=3
(2134, 4312, 1342, 3142, 4132, 2314, 3214, 4123, 2143, 3412, 1432, 2341, 3241, 1423, 2413, 4213, 1243, 3421, 2431, 4231, 1324, 3124)
a=2andb=4
(2134, 3124, 4213, 2413, 1423, 3241, 2341, 1432, 4132, 3142, 1342, 4312, 3412, 2143, 1243, 3421, 2431, 4231, 1324, 2314, 3214, 4123)
a=3andb=4
(3214, 2314, 1324, 4231, 3241, 2341, 1432, 4132, 3142, 1342, 2431, 3421, 1243, 2143, 3412, 4312, 2134, 3124, 4213, 2413, 1423, 4123)

Suppose that this statement holds for Py for every k, 4 < k < n. We have the following cases:

Case 1.y = (e)' for somei # 1andi # n, thatis,y € P,[,"}. Let c be an element in (n — 1) — {a}. By induction, there is
a hamiltonian path R of P,i"} — {e, (e)'} joining a vertex u with (u); = a to a vertex z with (z); = c. We choose a vertex
Vv in P,f,"_”_{cl with (v); = b. By Theorem 2, there is a hamiltonian path H of P,§"_1> joining the vertex (z)" to v. Then

(u,R, z, (z)", H, v) is the desired path.

Case 2.y = (e)", thatis,y € P,i”. Let ¢ be an element in (n — 1) — {1, a}, and let d be an element in (n — 1) — {1, b, c}. By
Lemma 4, there is a hamiltonian path R of P,E"’ — {e} joining a vertex u with (u); = a to a vertex w with (w); = c. Again,
there is a hamiltonian path H of P,E” — {(e)"} joining a vertex z with (z); = d to a vertex v with (v); = b. By Theorem 2,
there is a hamiltonian path Q of P,S"_l)_“} joining the vertex (w)" to the vertex (z)". Then (u, R, w, (W)", Q, ()", z, H, v) is
the desired path. O

Lemma 6. Let a and b be any two distinct elements in (n) with n > 4. Let X be any vertex of P,. Assume that X, and X, are two
distinct neighbors of x. There is a hamiltonian path P of P, — {X, X1, X2} joining a vertex u with (u); = a to a vertex v with
(V)1 =D

Proof. Since P, is vertex transitive, we may assume that x = e. Moreover, we assume that x; = (e)’ and x, = (e)’ for some
{i,j} C (n) — {1} withi < j. Without loss of generality, we assume thata < b. Thus, a # nand b # 1. We prove this lemma
by induction on n. For n = 4, the required paths of P, — {1234, (1234)', (1234)'} are listed below:

X1 = 2134and x; = 3214

a=1landb=2

(1423, 4123, 2143, 1243, 3421, 4321, 2341, 3241, 4231, 2431, 1342, 4312, 3412, 1432, 4132, 3142, 2413, 4213, 3124, 1324, 2314)
a=1landb=3

(1423, 4123, 2143, 1243, 3421, 4321, 2341, 3241, 4231, 2431, 1342, 4312, 3412, 1432, 4132, 2314, 1324, 3124, 4213, 2413, 3142)
a=1landb=4

(1423, 4123, 2143, 1243, 3421, 4321, 2341, 3241, 4231, 2431, 1342, 3142, 2413, 4213, 3124, 1324, 2314, 4132, 1432, 3412, 4312)
a=2andb=3

(2143, 4123, 1423, 3241, 4231, 2431, 1342, 4312, 3412, 1432, 2341, 4321, 3421, 1243, 4213, 2413, 3142, 4132, 2314, 1324, 3124)
a=2andb=4

(2143, 4123, 1423, 2413, 3142, 1342, 4312, 3412, 1432, 4132, 2314, 1324, 3124, 4213, 1243, 3421, 2431, 4231, 3241, 2341, 4321)
a=3andb=4

(3124, 4213, 2413, 3142, 1342, 4312, 3412, 1432, 4132, 2314, 1324, 4231, 2431, 3421, 1243, 2143, 4123, 1423, 3241, 2341, 4321)

X1 = 2134 and xp = 4321
a=1landb=2
(1423, 2413, 3142, 4132, 1432, 2341, 3241, 4231, 1324, 3124, 4213, 1243, 3421, 2431, 1342, 4312, 3412, 2143, 4123, 3214, 2314)

a=1landb=3
(1423, 4123, 2143, 1243, 3421, 2431, 1342, 4312, 3412, 1432, 2341, 3241, 4231, 1342, 3124, 4213, 2413, 3142, 4132, 2314, 3214)
a=1landb=4
(1423, 4123, 3214, 2314, 1324, 3124, 4213, 2413, 3142, 1342, 4312, 3412, 2143, 1243, 3421, 2431, 4231, 3241, 2341, 1432, 4132)
a=2andb=3
(2314, 3214, 4123, 2143, 3412, 4312, 1342, 3142, 4132, 1432, 2341, 3241, 1423, 2413, 4213, 1243, 3421, 2431, 4231, 1324, 3124)
a=2andb =4
(2314, 3214, 4123, 2143, 1243, 3421, 2431, 4231, 1324, 3124, 4213, 2413, 1423, 3241, 2341, 1432, 3412, 4312, 1342, 3142, 4132)
a=3andb =4

(3214, 2314, 4132, 3142, 1342, 4312, 3412, 1432, 2341, 3241, 1423, 2413, 4213, 3124, 1324, 4231, 2431, 3421, 1243, 2143, 4123)
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X1 = 3214 and xp = 4321

a=1landb =2

(1423, 4123, 2143, 1243, 3421, 2431, 1342, 4312, 3412, 1432, 2341, 3241, 4231, 1324, 2314, 4132, 3142, 2413, 4213, 3124, 2134)
a=1landb=3

(1423, 4123, 2143, 3412, 1432, 2341, 3241, 4231, 1324, 2314, 4132, 3142, 2413, 4213, 1243, 3421, 2431, 1342, 4312, 2134, 3124)
a=1landb=4

(1423, 2413, 4213, 3124, 2134, 4312, 3412, 1432, 2341, 3241, 4231, 1324, 2314, 4132, 3142, 1342, 2431, 3421, 1243, 2143, 4123)
a=2andb=3

(2134, 4312, 3412, 1432, 2341, 3241, 4231, 1324, 2314, 4132, 3142, 1341, 2431, 3421, 1243, 2143, 4123, 1423, 2413, 4213, 3124)
a=2andb=4

(2134, 3124, 4213, 2413, 3142, 1342, 4312, 3412, 1432, 2341, 3241, 1423, 4123, 2143, 1243, 3421, 2431, 4231, 1324, 2314, 4132)
a=3andb=4

(3124, 2134, 4312, 3412, 1432, 2341, 3241, 4231, 1324, 2314, 4132, 3142, 1342, 2431, 3421, 1243, 2143, 4123, 1423, 2413, 4213)

Suppose that this statement holds for Py for every k, 4 < k < n. We have the following cases:

Case 1.j # n, thatis, x; € P,E"} and x; € P,g"]. Letc € (n — 1) — {1, a}. By induction, there is a hamiltonian path R of
r{,"} — {e, X1, X3} joining a vertex u with (u); = a to a vertex z with (z); = c. We choose a vertex v in P,i” with (v); = b.
By Theorem 2, there is a hamiltonian path H ofPf,"_” joining the vertex (z)" tov. We set P = (u, R, z, ()", H, v). Then P is

the desired path.

Case 2.j = n, thatis, x; € P,E"} and x; € P,E”. letc € (n—1) — {1,a}andd € (n — 1) — {1, b, c}. By Lemma 5, there is
a hamiltonian path R of P,i") — {e, x4} joining a vertex u with (u); = a to a vertex z with (z); = c. By Lemma 4, there is a
hamiltonian path H of P,(l” — {X,} joining a vertex w with (w); = d to a vertex v with (v); = b. By Theorem 2, there is a
hamiltonian Q ofP,§"_1>_[” joining the vertex (z)" to the vertex (w)". WesetP = (u, R, z, ()", Q, (W)", w, H, v). Then P is
the desired path. O

Our main result for the pancake graph P, is stated in the following theorem.

Theorem 3. [HC(P;) = 1and I[HC(P,) =n—1if n > 4.

Proof. It is easy to see that P; is isomorphic to a cycle with six vertices. Thus, IHC(P;) = 1. Since P, is (n — 1)-regular
graph, it is clear that IHC(P,;) < n — 1. Since P, is vertex transitive, we only need to show that there exist (n — 1) mutually
independent hamiltonian cycles of P, starting form the vertex e. For n = 4, we prove that IHC(P4) > 3 by listing the required
hamiltonian cycles as follows:

¢ =

(1234, 2134, 4312, 3412, 2143, 1243, 4213, 3124, 1324, 4231, 3241, 2341, 1432, 4132, 2314, 3214, 4123, 1423, 2413, 3142, 1342, 2431, 3421, 4321, 1234)

Cy) =
(1234, 3214, 2314, 1324, 3124, 4213, 2413, 1423, 4123, 2143, 1243, 3421, 4321, 2341, 3241, 4231, 2431, 1342, 3142, 4132, 1432, 3412, 4312, 2134, 1234)
C3 =

(1234, 4321, 2341, 1432, 4132, 2314, 1324, 4231, 3241, 1423, 2413, 3142, 1342, 2431, 3421, 1243, 4213, 3124, 2134, 4312, 3412, 2143, 4123, 3214, 1234)

Suppose thatn > 5. Let B be the (n — 1) x n matrix with

b — i+j—1 ifi+j—1<n,
MTli+j—-n+1 ifn>i+j.

More precisely,

1 2 3 4 n—1 n
2 3 45 n 1
B —
n—1 n 1 2 --- n—3 n—-2
It is not hard to see that b; 1b;, . .. b; , forms a permutation of {1, 2, ..., n} for every i with 1 < i < n — 1. Moreover,
bij # byjforany1 <i <i <n—1and1 <j < n.Inother words, B forms a Latin rectangle with entries in {1, 2, ..., n}.
For every k € (n — 1), we construct C; as follows:
(1) k = 1.By Lemma 3, there is a hamiltonian path H; ofP,gbl‘”} —{e} joining a vertex x withx # (e)"~'and (x); = n—1to

the vertex (e)"~!. By Theorem 2, there is a hamiltonian path H, of Uf;ll P,Sb“} joining the vertex (e)" to the vertex (x)" with
Hy(i+(—1)(n—1)!) € P,Sb”} foreveryi € ((n—1)!) and foreveryj € (n—1).WesetC; = (e, (e)", H,, (X)", X, Hy, (€)" 1, e).
(2) k = 2. By Lemma 5, there is a hamiltonian path Q; of Py>"™" — {e, (e)?} joining a vertex y with (y); =n — 1to a

vertex z with (z); = 1. By Theorem 2, there is a hamiltonian Q, of U?;lz P,(lbz'[} joining the vertex ((e)?)" to the vertex (y)"

suchthat Q;(i+(G—1)(n—1)!) € P,{lbz’j} foreveryi € ((n—1)!) and foreveryj € (n—2).By Theorem 1, there is a hamiltonian
path Qs of P.">" joining the vertex (z)" to the vertex (e)™. We set C, = (e, ()2, ((&)2)", Qs, ()", ¥, Q1. Z, (2)", Qs, (&)", e).
(3) k € (n — 1) — {1,2}. By Lemma 6, there is a hamiltonian path R of plPrkith _ e (@)1, (e)X} joining a vertex

wy with (wy); = n — 1 to a vertex v with (vx); = 1. By Theorem 2, there is a hamiltonian path R¥ of U?;f Pr{,b""}
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Fig. 3. Illustration for Theorem 3 on Ps.

joining the vertex ((e)¥)" to the vertex (wy)" such that RS(i + (j — 1)(n — 1)) € P{ K}

for every j € (n — k). Again, there is a hamiltonian path R" of Ul_, 42 P { kil joining the vertex (vi)" to the vertex
(@) 1" such that R§(i + ( — H(n — 1) € plPen-kitt) gor everyi € ((n — 1)!) and for everyj € (k — 1). We set

Ce = (e, (@), (@)™, RE, (wi)", wie, RE, vie, (wi)™, R, (€)1, (&)1, e).

for everyi € ((n — 1)!) and

Then {Cy, Gy, ..., C;—1} forms a set of (n — 1) mutually independent hamiltonian cycles of P, starting from the vertex e.
O
Example. We illustrate the proof of Theorem 3 with n = 5 as follows:
We set
1 2 3 4 5
B— 2 3 4 5 1
13 4 5 1 2
2 3

Then we construct {Cq, C, C3, C4} as follows:

(1)k = 1. By Lemma 3, there is a hamiltonian path H; of P{b1 2

— {e} joining a vertex x with X # (e)* and (x); = 4 to

the vertex (e)*. By Theorem 2, there is a hamiltonian path H, of Ule P{ ne) joining the vertex (e)° to the vertex (x)° with

Hy(i+24(G—1)) € P{bl’j} for every i € (24) and for every j € (4) We set C; = (e, (e)°, Ho, (X)°, X, Hy, ()%, e).
(2)k = 2. By Lemma 5, there is a hamiltonian path Q; ofP{ 24} — {e, (e)?} joining a vertex y with (y); = 4 to a vertex z
with (z); = 1. By Theorem 2, there is a hamiltonian Q, of Ut=1 { 2.t} joining the vertex ((e)?)° to the vertex (y)° such that

Q@i+24G—1)) € Ps{bz‘j} for every i € (24) and for every j € (3). By Theorem 1, there is a hamiltonian path Q3 of P tb2.5}
joining the vertex (z)° to the vertex (e)>. We set C, = (e, (€)2, ((€)®)°, Q2, ¥)°, ¥, Q1, z, (z)°, Qs, (e)°, e).

(3)k € {3, 4}. By Lemma 6, there is a hamiltonian path R¥ ofPSKb"‘G*"} —{e, (&) !, (&)} joining a vertex wy with (wy); = 4

{br.c}

to a vertex vy with (vix); = 1. By Theorem 2, there is a hamiltonian path R" of U5 k 1 Ps " joining the vertex ((@)%)° to the

vertex (Wy)> such that R¥(i + 24(j — 1)) € P{ K}

path RS of UP_, , P { kt) ioining the vertex (vi)® to the vertex ((€)~1)° such that REGI+24G — 1)) € P Psk4) for every

i € (24) and for everyJ € (k—1). We set G, = (e, (&), ((@)%)°, RS, (Wi)®, wi, RS, vie, (i))°, RS, ((e)*~ ‘)5, (@)1 e).
Then {C;, G, C3, G4} forms a set of 4 mutually independent hamiltonian cycles of Ps starting from the vertex e. See Fig. 3
for illustration.

for every i € (24) and for every j € (5 — k). Again, there is a hamiltonian

5. The star graphs

Let n be a positive integer. The n-dimensional star graph, S,, is a graph with the vertex set V.(S,) = {uy...u, | u; € (n)
and u; # uy for j # k}. The adjacency is defined as follows: u; ... u;...u, is adjacent to v; ... v; ... v, through an edge of
dimension i with 2 < i < nif v; = ujforeveryj € (n) — {1, i}, vi = w;, and v; = u;. The star graphs S,, S3, and S4 are
illustrated in Fig. 4. In [1], it showed that the connectivity of S, is (n — 1). We use boldface to denote vertices in S,. Hence,
uq, Uy, ..., U, denotes a sequence of vertices in S,,.

By definition, S, is an (n — 1)-regular graph with n! vertices. We use e to denote the vertex 12 ... n. It is known that S,
is a bipartite graph with one partite set containing the vertices corresponding to odd permutations and the other partite
set containing those vertices correspond to even permutations. We use white vertices to represent those even permutation
vertices and we use black vertices to represent those odd permutation vertices. Let u = uqu, ... u, be an arbitrary vertex
of the star graph S,,. We say that u; is the ith coordinate of u, (u);, for1 <i < n.For1 <i <n, let S{” be the subgraph of
S, induced by those vertices u with (u), = i. Then S, can be decomposed into n subgraph S,{, }, 1 <i < n,and each S,{,'} is
isomorphic to S,_1. Thus, the star graph can also be constructed recursively. Let I be any subset of (n). We use S,’1 to denote
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Fig. 4. The star graphs S,, S3, and S4.

the subgraph of S, induced by Ui, V(S,Ei}). For any two distinct elements i and j in (n), we use Ef{j to denote the set of edges

between 5,5” and S,{,”. By the definition of Sy, there is exactly one neighbor v of u such that u and v are adjacent through an
i-dimensional edge with 2 < i < n. For this reason, we use (u)' to denote the unique i-neighbor of u. We have ((u)")'! = u
and (u)" € s\™1,

Lemma 7. Let i and j be any two distinct elements in (n) with n > 3. Then |E,"{j| = (n — 2)\. Moreover, there are (n — 2)!/2
edges joining black vertices of S,{f} to white vertices of S,{l’ ),

Lemma 8. Let u and v be two distinct vertices of S, with d(u, v) < 2. Then (u); # (v);.

Theorem 4 ([21]). Let n > 4. Suppose that u is a white vertex of S, and v is a black vertex of S,. Then there is a hamiltonian
path of S, joining u tov.

Theorem 5. Let {ay, a,, ..., a;} be a subset of (n) for somer € (n) with n > 5. Assume that u is a white vertex in S,{f” and v

is a black vertex in S,{f”. Then there is a hamiltonian path (u = Xq, H1,¥1, X2, H2, Y2, . . ., X, Hr, ¥ = V) of Ul_, S,ﬂa"] joining u
to v such that x; = uw,y, = v, and H; is a hamiltonian path of S,{l”"}joining Xj toy; foreveryi,1 <i<r.

Proof. We set X; as u and y, as v. By Theorem 4, this theorem holds on r = 1. Suppose that r > 2. By Lemma 7, there are

(n —2)!/2 > 3 edges joining black vertices of S,{f"} to white vertices of S,[f'"“] for everyi € (r — 1). We can choose an edge

(¥i» Xi+1) € Ep+1 with y; being a black vertex and x;1 being a white vertex for every i € (r — 1). By Theorem 4, there is a
hamiltonian path H; ofS,{,a‘} joining x; to y; for every i € (r). Then the path (u = x4, Hy, ¥4, X2, H2, ¥3, - - - » X¢, Hr, Yy = V) is
the desired path. O

Theorem 6 ([21]). Let w be a black vertex of S, with n > 4. Assume that u and v are two distinct white vertices of S, — {w }.
Then there is a hamiltonian path H of S, — {w} joining u to v.

Lemma 9 ([30]). Let i be any element in (n) with n > 4. Assume that r and s are two adjacent vertices of S, and u is a white
vertex of S, — {r, s}. Then there is a hamiltonian path of S, — {r, s} joining u to some black vertex v with (v); = i.

Lemma 10. Let a and b be any two distinct elements in (n) with n > 4. Assume that X is a white vertex of S,, and assume that
Xy and X, are two distinct neighbors of x. Then there is a hamiltonian path P of S, — {X, X1, X2} joining a white vertex u with
(u); = a to a white vertex v with (v); = b.

Proof. Since S, is vertex transitive and edge transitive, we may assume that x = e, Xx; = (e)?, and x, = (e)>. Without loss
of generality, we may also assume that a < b. We have a # n and b # 1. We prove this statement by induction on n. For
n = 4, the required paths of S; — {1234, 2134, 3214} are listed below:

a=1landb=2 (1324, 3142, 4132, 1432, 3412, 4312, 2314, 1324, 3124, 4123, 2143, 1243, 4213, 2413, 1423, 3421, 4321, 2341, 3241, 4231, 2431)
a=1landb=3 (1423, 2413, 4213, 1243, 2143, 4123, 3124, 1324, 2314, 4312, 3412, 1432, 4132, 3142, 1342, 2341, 4321, 3421, 2431, 4231, 3241)
a=1landb=4 (1324, 3142, 4132, 1432, 3412, 4312, 2314, 1324, 3124, 4123, 2143, 1243, 4213, 2413, 1423, 3421, 2431, 4231, 3241, 2341, 4321)
a=2andb=3 (2314, 1324, 3124, 4123, 2143, 1243, 4213, 2413, 1423, 3421, 4321, 2341, 3241, 4231, 2431, 1432, 4132, 3142, 1342, 4312, 3412)
a=2andb=4 (2314, 1324, 3124, 4123, 2143, 1243, 4213, 2413, 1423, 3421, 4321, 2341, 3241, 4231, 2431, 1432, 3412, 4312, 1342, 3142, 4132)
a=3andb=14 (3124, 1324, 2314, 4312, 3412, 1432, 4132, 3142, 1342, 2341, 4321, 3421, 2431, 4231, 3241, 1243, 2143, 4123, 1423, 2413, 4213)
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Suppose that this statement holds for Sy, for every k, 4 < k < n— 1. Let ¢ be any element in (n — 1) — {1, a}. By induction,
there is a hamiltonian path H ofS,ﬁ"] —{e, (e)?, (e)*} joining a white vertex u with (u); = a to a white vertex zwith (z); = c.
We choose a white vertex v in S,{ll) with (v); = b. By Theorem 5, there is a hamiltonian path R of s joining the black
vertex (z)" tov. Then (u, H, z, (z)", R, v) is the desired path of S, — {e, (e)?, (e)’}. O

The following theorem is our main result for the star graph S,,.

Theorem 7. IHC(S3) = 1, [HC(S4) = 2, and IHC(S,) =n— 1if n > 5.

Proof. It is easy to see that S3 is isomorphic to a cycle with six vertices. Thus, IHC(S3) = 1. Using a computer, we have
IHC(S4) = 2 by brute force checking. Thus, we assume that n > 5. We know that S, is (n — 1)-regular graph. Hence,
[HC(S,;) < n—1.Since S, is vertex transitive, we only need to show that there are (n — 1) mutually independent hamiltonian
cycles of S, starting from e. Let B be the (n — 1) x n matrix with

b — i+j—1 ifi+j—1<n,

M li+j—n4+1 ifn<i4+j—1.

We construct {Cy, C5, ..., C,_1} as follows:
(1)k = 1. We choose a black vertex x in s,ﬁ’”-"} — {(e)"~'} with (x); = n — 1. By Theorem 6, there is a hamiltonian path

Hq of S,ibl‘"} — {e} joining x to the black vertex (e)"~!. By Theorem 5, there is a hamiltonian path H, of U?;]l s,ﬂ”“} joining

the black vertex (e)" to the white vertex (x)" with Hy(i+ G — 1)(n — 1)!) € S,ib”} for everyi € ((n — 1)!) and for every

jen—1).WesetC; = (e, (e)", Hy, (X)", X, Hy, ()" !, e).

(2)k = 2. We choose a white vertex y in Sr{,bz'"’l} — {e, (e)?} with (y); = n — 1. By Lemma 9, there is a hamiltonian path
Q; of S,Ebz’j] — {e, (e)?} joining y to a black vertex z with (z); = 1. By Theorem 5, there is a hamiltonian Q, of U?:_lz S,Eb“]
joining the white vertex ((e)?)" to the black vertex (y)" such that Q,(i+ (G — 1)(n—1)!) € S,Ebz’j} foreveryi € ((n—1)!) and
for every j € (n — 2). Again, there is a hamiltonian path Qs of S,sz’”] joining the white vertex (z)" to the black vertex (e)".
We set G, = (e, (€)%, ((€)*)", Q2. W™ ¥, Q1. Z, (2)", Q3, (e)", e).

(3)3 < k < n— 1.By Lemma 10, there is a hamiltonian path R¥ of sPen—k+1) e (@)%~ (e)"} joining a white vertex wy

with (wy); = n — 1 to a white vertex vy with (vi); = 1. By Theorem 5, there is a hamiltonian path R’2‘ of U;‘;f S,Sb"'”} joining

the white vertex ((e)¥)" to the black vertex (wy)" such that R’; i+({G—1Dmn -1 € S,{,b"‘j} foreveryi € ((n — 1)!) and

for everyj € (n — k — 1). Again, there is a hamiltonian path R’; of Ui, 112 Sr{lb""} joining the black vertex (vi)" to the black

vertex ((€) )" such that RE(i + (j — )(n — 1)!) € S,{,b"'"’k““} foreveryi € ((n — 1)!) and for everyj € (k — 1). We set
G = (e, (&), ((©)9)", RS, (W)™, wie, R, vie, (Vi)™ RS, (@)™, (&)1, e).
Then {Cy, Gy, ..., C;_1} forms a set of (n — 1) mutually independent hamiltonian cycles of S, starting form the vertex e.
O

6. Discussion

In this paper, we discuss the mutually independent hamiltonian cycles for the pancake graphs and the star graphs. The
concept of mutually independent hamiltonian cycle can be viewed as a generalization of Latin rectangles. Perhaps one of
the most interesting topics in Latin square is orthogonal Latin square. Two Latin squares of order n are orthogonal if the
n-squared pairs formed by juxtaposing the two arrays are all distinct. Similarly, two Latin rectangles of order n x m are
orthogonal if the n x m pairs formed by juxtaposing the two arrays are all distinct. With this in mind, let G be a hamiltonian
graph and C; and C; be two sets of mutually independent hamiltonian cycles of G from a given vertex x. We say C; and C; are
orthogonal if their corresponding Latin rectangles are orthogonal. For example, we know that IHC(P4) = 3. The following
Latin rectangle represents three mutually independent hamiltonian cycles beginning at 1234.

2134,4312, 1342, 2431, 3421, 1243, 4213, 3124, 1324, 4231, 3241, 1423, 2413, 3142, 4132, 2314, 3214, 4123, 2143, 3412, 1432,
2341, 4321
3214, 2314, 4132, 1432, 3412, 4312, 1342, 3142, 2413, 4213, 1243, 2143, 4123, 1423, 3241, 2341, 4321, 3421, 2431, 4231, 1324,
3124,2134
4321, 2341, 1432, 3412, 2143, 4123, 1423, 3241, 4231, 1324, 3124, 2134, 4312, 1342, 2431, 3421, 1243, 4213, 2413, 3142, 4132,
2314,3214

Yet, the following Latin rectangle also represents three mutually independent hamiltonian cycles beginning at 1234.

2134, 3124, 4213, 1243, 2143, 4123, 1423, 2413, 3142, 4132, 1432, 3412, 4312, 1342, 2431, 3421, 4321, 2341, 3241, 4231, 1324,
2314,3214
3214, 2314, 4132, 3142, 2413, 4213, 1243, 3421, 2431, 1342, 4312, 2134, 3124, 1324, 4231, 3241, 1423, 4123, 2143, 3412, 1432,
2341, 4321
4321, 3421, 1243, 2143, 3412, 4312, 1342, 2431, 4231, 1324, 2314, 3214, 4123, 1423, 3241, 2341, 1432, 4132, 3142, 2413, 4213,
3124,2134

We can check that these two Latin rectangles are orthogonal. Thus, we have two sets of three mutually independent
hamiltonian cycles that are orthogonal. With this example in mind, we can consider the following problem. Let G be any



C.-K. Lin et al. / Discrete Mathematics 309 (2009) 5474-5483 5483

hamiltonian graph. We can define MOMH (G) as the largest integer k such that there exist k sets of mutually independent
hamiltonian cycle of G beginning from any vertex x such that each set contains exactly I[HC(G) hamiltonian cycles and any
two different sets are orthogonal. It would be interesting to study the value of MOMH (G) for some hamiltonian graphs G.

We can also discuss mutually independent hamiltonian paths for some graphs. Let Py = (vy,v3,...,v,) and P, =
(uq, Ua, ..., Uy) be two hamiltonian paths of a graph G. We say that P; and P, are independent if u; = vy, u; = vy, and
u; # vifor 1 < i < n. We say a set of hamiltonian paths {Py, P, ..., Ps} of G between two distinct vertices are mutually

independent if any two distinct paths in the set are independent. There are some study on mutually independent hamiltonian
paths [29,39].

Recently, people are interested in a mathematical puzzle, called Sudoku [38]. Sudoku can be viewed as a 9 x 9 Latin square
with some constraints. There are several variations of Sudoku have been introduced. Mutually independent hamiltonian
cycles can also be considered as a variation of Sudoku.
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kwithdg(x,y) <k < |V(G)|/2 and (k — d¢(x, y)) being even. A bipartite graph G is k-cycle
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1. Introduction

For the graph definitions and notations we follow Bondy and Murty [1]. Let G = (V, E) be a graph, where V is a finite
set and E is a subset of {(u, v) | (u, v) is an unordered pair of V}. We say that V is the vertex set and E is the edge set of G.

Two vertices u and v are adjacent if (u, v) € E. A path is represented by (v, v1, va, ..., V), Where all vertices are distinct
except possibly vop = vy. The length of a path Q is the number of edges in Q. We also write the path (vg, vy, v2, ..., vx) as
(vo, Q1, Vi, Vig1 ..., Vj, Q2, Vg, ..., Vk), where Qq is the path (vg, vy, ..., vi_1, v;) and Q, is the path (v}, vjy1, ..., Ve—1, Vr).

We use d;(u, v) to denote the distance between u and v in G, i.e., the length of the shortest path joining u to v in G. A cycle is
a path of at least three vertices such that the first vertex is the same as the last vertex. We use d. (u, v) to denote the distance
between u and v in a cycle C, i.e., the length of the shortest path joining u to v in C. A hamiltonian cycle of G is a cycle that
traverses every vertex of G exactly once. A hamiltonian graph is a graph with a hamiltonian cycle. A graph G = (Vo U V1, E)
is bipartite if V(G) = Vo, U V7 and E(G) is a subset of {(u, v) | u € Vpand v € V1}.

The n-dimensional hypercube, Q,,, consists of all n-bit binary strings as its vertices and two vertices u and v are adjacent if
and only if their binary labels are different in exactly one bit position. Let u = u,,_1uy_3...uUjlUgand Vv = v,_1v;_3...V1g
be two n-bit binary strings. The Hamming distance h(u, v) between two vertices u and v is the number of different bits
in the corresponding strings of both vertices. Let Qr’l be the subgraph of Q, induced by {u,_1tp_5 - - - ujtgy | up—q = i} for
i = 0, 1. Therefore, Q, can be constructed recursively by taking two copies of Q,_1, Q2 and Q, and adding a perfect matching
between these two copies. For a vertex uin Q? (resp. Q,!), we use @i to denote the unique neighbor of win Q! (resp. Q?). The
hypercube is a widely used topology in computer architecture, see Leighton [2].

A graph is pancyclic if it contains a cycle of every length from 3 to |V (G)| inclusive. The concept of pancyclic graphs was
proposed by Bondy [3]. Since there is no odd cycle in bipartite graph, the concept of a bipancyclic graph was proposed
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by Mitchem and Schmeichel [4]. A bipartite graph is bipancyclic if it contains a cycle of every even length from 4 to
|[V(G)] inclusive. It is proved that the hypercube Q, is bipancyclic if n > 2 [5,6]. A graph is panconnected if, for any two
different vertices x and y, there exists a path of length I joining x and y for every [ with dg(x,y) < | < |V(G)| — 1. The
concept of panconnected graphs was proposed by Alavi and Williamson [7]. It is easy to see that any bipartite graph with
at least 3 vertices is not panconnected. Therefore, the concept of bipanconnected graphs is proposed. A bipartite graph
is bipanconnected if, for any two different vertices x and y, there exists a path of length [ joining x and y for every [ with
de(x,y) <1< |V(G)|—1and (I—dgs(x, y)) being even. It is proved that the hypercube is bipanconnected [5]. A hamiltonian
graph G is panpositionable if for any two different vertices x and y of G and for any integer k with ds(x,y) < k < |[V(G)|/2,
there exists a hamiltonian cycle C of G such that dc(x,y) = k. A hamiltonian bipartite graph G is bipanpositionable if for
any two different vertices x and y of G and for any integer k with dg(x,y) < k < |V(G)|/2 and (k — d¢(x, y)) being even,
there exists a hamiltonian cycle C of G such that d¢(x, y) = k. The concepts of panpositionable and bipanpositionable were
proposed by Kao et al. [8]. They proved that the hypercube Q, is bipanpositionable if n > 2 [8]. A bipartite graph G is
edge-bipancyclic if for any edge in G, there is a cycle of every even length from 4 to |V (G)| traversing through this edge. The
concept of edge-bipancyclic was proposed by Alspach and Hare [9]. A bipartite graph G is vertex-bipancyclic if for any vertex
in G, there is a cycle of every even length from 4 to |V (G)| going through this vertex. The concept of vertex-bipancyclic was
proposed by Hobbs [10]. Obviously, every edge-bipancyclic graph is vertex-bipancyclic. It is proved that the hypercube Q,
is edge-bipancyclic if n > 2 [5].

In this paper, we propose a more interesting property about hypercubes. A k-cycle is a cycle of length k. A bipartite graph
G is k-cycle bipanpositionable if for every different vertices x and y of G and for any integer [ with dg(x,y) < | < % and

(I — dg(x,y)) being even, there exists a k-cycle C of G such that dc(x, y) = L (Note that dc(x,y) < % for every cycle C of
length k.) A bipartite graph G is bipanpositionable bipancyclic if G is k-cycle bipanpositionable for every even integer k with
4 < k < |V(G)|. In this paper, we prove that the hypercube Q, is bipanpositionable bipancyclic for n > 2. As a consequence
of this result, we can see that many previous results on hypercubes follows directly from ours. For example, the hypercube is
bipancyclic, bipanconnected, bipanpositionable, edge-bipancyclic and vertex-bipancyclic. Therefore, our result unifies these
results in a general sense.

2. The bipanpositionable bipancyclic property
We prove our main result by induction as stated in Lemma 1 and Theorem 1 below.

Lemma 1. The hypercube Qs is bipanpositionable bipancyclic.

Proof. Letx andy be two different vertices in Q3. Obviously, dg, (X, y) = 1, 2 or 3. Since the hypercube is vertex symmetric,
without loss of generality, we may assume that x = 000.

Case 1: Suppose that dg, (X, y) = 1. Since Q3 is edge symmetric, we assume thaty = 001.

y=001 4cycle dc(x,y)=1 (000,001,011,010, 000)
6-cycle dc(x,y)=1 (000,001, 101, 111, 110, 100, 000)
de(x,y) =3 (000, 100, 101,001, 011, 010, 000)
8-cycle dc(x,y)=1 (000,001,101, 111,011,010, 110, 100, 000)
de(x,y) =3 (000, 100, 101,001, 011, 111, 110, 010, 000)

Case 2: Suppose that dg, (X, y) = 2. By symmetry, we assume thaty = 011.

y=011 4cycle dc(x,y)=2 (000,001,011, 010, 000)
6-cycle dc(x,y)=2 (000,001, 011,010, 110, 100, 000)
8-cycle dc(x,y)=2 (000,001,011, 010, 110, 111, 101, 100, 000)
de(x,y) =4 (000,001, 101, 111, 011, 010, 110, 100, 000)

Case 3: Suppose that dg, (X, y) = 3. We havey = 111.

y=111 6-cycle dc(x,y)=3 (000,001,011, 111, 110, 100, 000)
8-cycle dc(x,y)=3 (000,001,011, 111, 101, 100, 110, 010, 000)

Thus, Q3 is bipanpositionable bipancyclic. O

Theorem 1. The hypercube Q, is bipanpositionable bipancyclic for n > 2.
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Proof. We observe that Q; is not bipanpositionable bipancyclic. So we start with n > 2. We prove Q, is bipanpositionable
bipancyclic by induction on n. It is easy to see that Q is bipanpositionable bipancyclic. By Lemma 1, this statement holds for
n = 3. Suppose that Q,_1 is bipanpositionable bipancyclic for some n > 4. Let x and y be two distinct vertices in Q,, and let
k be an even integer with k > max{4, 2dy, (X, y)} and k < 2". For every integer | with do,(X,y) <[ < g and (I — dg, (X, y))
being even, we need to construct a k-cycle C of Q, with d¢(x,y) = L

Case 1: dg, (X, y) = 1. Without loss of generality, we may assume that both x and y are in Q.?- (I — dg,(x,y)) is even, so
I is an odd number. Since Q? is isomorphic to Q,_, by introduction, there is a k-cycle of Q¥ with dc(x,y) = I for every
4 < k < 2™ 1. Thus, we consider that k > 2"~ + 2.

Case 1.1: | = 1. By induction, there is a (2"~ 1)-cycle C' = (x, P, z,y, x) of Q° where dp(x,z) = 2"~! — 2. Suppose that
k—2""1' = 2.ThenC = (x,P,z,2,Y¥,Y, X) forms a (2" + 2)-cycle with dc(X,y) = 1. Suppose that k — 2"~! > 4. By
induction, there is a (k—2"1)-cycle C” of Q! such thatdc»(Z, §) = 1. We write C” = (z, R, ¥, Z) with dg(Z, §) = k—2""1—1.
ThenC = (x, P, z,Z,R,y,Y, X) forms a k-cycle of Q, withdc(x,y) =1 = 1.

Case 1.2: ] > 3. Suppose that k — | — 1 < 2", By induction, there is an (I + 1)-cycle C’ on,? with dc (X, y) = 1. We write
C' = (x, P, y, x) where dp(x,y) = L By induction, there is a (k — | — 1)-cycle C” of Q, with d¢~(X,y) = 1. We then write
C” = (y,R, X, y) such that dg(y, X) = k—[—2.ThenC = (X, P, y, y, R, X, X) forms a k-cycle of Q, with d¢ (X, y) = L. Suppose
thatk—I—2 > 2"~! 41, By induction, there is a (k—2"~")-cycle C’ on,? with de (x,y) = L. We write C’ = (x, P, y, R, u, X)
with dp(x, y) = land dg(y, X) = k— (2"~! — 1) —— 2. By induction, there is a (2"~ !)-cycle C” of Q;} with dc» (X, 1) = 1. We
write C” = (X, u, S, X) withds(u, X) = 2" ! — 1.Then C = (x, P,y, R, u, 4, S, X, x) forms a k-cycle of Q, with dc(x,y) = L.
Case 2:dg, (X,y) > 2and | = 2. Since dg, (X,y) < land [ = 2,s0dg,(x,y) = 2. Without loss of generality, we may assume
that x is in Qr? andyisin Q.. Then dg, (X, y) = 1and dg, (¥, X) = 1.

Suppose that k = 4. Then C = (x, X, y, ¥, X) forms a 4-cycle of Q, with dy, (X, y) = 2. Suppose that 6 < k < 2"~! +2 By
induction, there is a (k—2)-cycle C' = (x, P, ¥, x) of QC such that dp (X, §) = k—3.ThenC = (x, P, ¥, ¥, X, X) forms a k-cycle
of Q, with d¢(x, y) = 2. Suppose that k > 2"~! + 4. By induction, there is a 2"~ !-cycle C’' of Q¥ with d¢(x, §) = 1. We write
C' = (x, P, z,y,x) withdp(x,z) = 2"~! — 2. By induction, there is a (k — 2"~ ")-cycle C” of Q] with d¢~ (y, Z) = 1. We write
C" =y, z, R, y) withdg(y,z) =k —2""1—1.ThenC = (X, P, z,Z, R, y,¥, X) forms a k-cycle of Q, with dc(x, y) = 2.
Case 3:dy, (X,y) > 2and ! > 3. Without loss of generality, we may assume that X is in Q,? and y is in Qn] Suppose that
k — 1 —dg,(x,y) +2 < 2"!, By induction, there is an (I + dg,(x,y) — 2)-cycle C’ = (x,P, ¥, u, R, x) of Q,? such that
dp(X,y) =1—Tand dg(u, X) = dg,(X,y) — 2. For k — [ — dg, (X, y) + 2 < 2, by induction, thereisa (k — [ — dg, (X, y) + 2)-
cycle C” of Q] with der(y, ) = 1. We write C” = (y, S, &, y) with ds(y, ) = k — | — dg,(X,y) + 1. We then set
C = xPyyuuRx) ifk—1—dy,xy)+2 =20rC = (X,P,y,y,S,u,u,RX) if k — | —do,(x,y) +2 < 4.
Then C forms a k-cycle of Q, with d¢ (X, y) = I. Suppose that k — I —dg, (X, y) +4 > 2"1, By induction, there is a (k — 2" 1)-
cycleC’ = (x,P,y, u, R, X) on,? such that dp(x, ) = [ — 1 and dg(u, X) = k — 2"~ ! — . By induction, there is a 2"~ !-cycle
C” of Q] with dcv (y, 1) = 1. We write C” = {y, S, 11, y) with ds(y, 1) = 2"~' — 1.Then C = (x, P, ¥,y, S, i, u, R, X) forms
a k-cycle of Q, withdc(x,y) = L

The theorem is proved. O
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A path in G is a hamiltonian path if it contains all vertices of G. A graph G is hamiltonian
connected if there exists a hamiltonian path between any two distinct vertices of G. The
degree of a vertex u in G is the number of vertices of G adjacent to u. We denote by
8(G) the minimum degree of vertices of G. A graph G is conditional k edge-fault tolerant
hamiltonian connected if G — F is hamiltonian connected for every F C E(G) with |F| <k
and (G — F) > 3. The conditional edge-fault tolerant hamiltonian connectivity ’HC?(G)
is defined as the maximum integer k such that G is k edge-fault tolerant conditional
hamiltonian connected if G is hamiltonian connected and is undefined otherwise. Let n > 4.
We use K, to denote the complete graph with n vertices. In this paper, we show that
HC2(Kn) =2n — 10 for n ¢ {4,5,8,10}, HC3(K4) = 0, HC3(Ks) = 2, HC3(Ks) =5, and

HC3(K10) = 9.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

For the graph definitions and notations, we follow [1].
Let G = (V, E) be a graph if V is a finite set and E is a sub-
set of {(u,v) | (u,v) is an unordered pair of V}. We say
that V is the vertex set and E is the edge set. Two vertices
u and v are adjacent if (u,v) € E. The complete graph K,
is the graph with n vertices such that any two distinct
vertices are adjacent. The degree of a vertex u in G, de-
noted by deg (u), is the number of vertices adjacent to u.
We use §(G) to denote min{deg;(u) |u € V(G)}. A path of
length m — 1, (vg, v1,..., Vm—1), is an ordered list of dis-
tinct vertices such that v; and v;4q are adjacent for 0 <i <
m — 2. We also write the path (vg,..., Vg, P, v}, ..., Vi)
for P = (vg,..., V). A cycle is a path with at least three
vertices such that the first vertex is the same as the last
one. A hamiltonian cycle of G is a cycle that traverses every
vertex of G exactly once. A graph is hamiltonian if it has
a hamiltonian cycle. A hamiltonian path is a path of length
V(G) —1.

* Corresponding author,
E-mail address: hoho@thit.edu.tw (T.-Y. Ho).

0020-0190/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2009.02.008

A hamiltonian graph G is k edge-fault tolerant hamilto-
nian if G — F remains hamiltonian for every F C E(G) with
|F| < k. The edge-fault tolerant hamiltonicity, He(G), is de-
fined as the maximum integer k such that G is k edge-fault
tolerant hamiltonian if G is hamiltonian and is undefined
otherwise. Assume that G is a hamiltonian graph, and x
is a vertex such that degg(x) = §(G). We arbitrary choose
deg.(x) — 1 edges from those edges incident to x to form
an edge faulty set F. Obviously, deg;_r(x) = 1; hence,
G — F is not hamiltonian. Therefore, H.(G) < §(G) — 2 if
He(G) is defined. Assume that n is an integer with n > 3.
It is proved by Ore [9] that any n-vertex graph with at least
C(n,2) — (n — 3) edges is hamiltonian. Moreover, there ex-
ists a non-hamiltonian n-vertex graph with C(n, 2) —(n—2)
edges. In other words, He(K,) =n — 3 for n > 3. In [5],
it is proved that H.(Qn) =n — 2 for n > 2 where Qj,
is the n-dimensional hypercube. In [6], it is proved that
He(Sp) =n — 3 for n > 3 where S, is the n-dimensional
star graph.

Chan and Lee [2] began the study of the existence of
hamiltonian cycle in a graph such that each vertex is inci-
dent to at least two fault-free edges. A graph G is condi-
tional k edge-fault tolerant hamiltonian if G — F is hamilto-
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nian for every F C E(G) with |[F| <k and §(G — F) > 2.
The conditional edge-fault tolerant hamiltonicity, HE(G), is
defined as the maximum integer k such that G is condi-
tional k edge-fault tolerant hamiltonian if G is hamiltonian
and is undefined otherwise. Chan and Lee [2] proved that
Hg(Qn) =2n — 5 for n > 3. Recently, Fu [3] studies the
conditional edge-fault tolerant hamiltonicity of the com-
plete graph.

Fault tolerant hamiltonian connectivity is another im-
portant parameter for graphs [4]. A graph G is hamilto-
nian connected if there exists a hamiltonian path between
any two distinct vertices of G. It is easy to see that a
hamiltonian connected graph with at least three vertices
is hamiltonian. It is proved by Moon [7] that the degree of
any vertex in a hamiltonian connected graph with at least
four vertices is at least 3. A graph G is k edge-fault tol-
erant hamiltonian connected if G — F remains hamiltonian
connected for any F C E(G) with |F| < k. The edge-fault
tolerant hamiltonian connectivity of a graph G, HC.(G), is
defined as the maximum integer k such that G is k edge-
fault tolerant hamiltonian connected if G is hamiltonian
connected and is undefined otherwise. Assume that G is
a hamiltonian connected graph with at least four vertices
and x is a vertex such that degg;(x) = §(G). We arbitrary
choose deg;(x) — 2 edges from those edges incident to
x to form an edge faulty set F. Obviously, deg;_r(x) =
2; hence, G — F is not hamiltonian connected. Therefore,
HCe(G) < 8(G) — 3 if HC.(G) is defined. Again, Ore [8]
proved that HC.(K,) =n —4 for n > 4.

In this paper, we study the concept of conditional edge-
fault tolerant hamiltonian connectivity. Since the degree of
any vertex in a hamiltonian connected graph with at least
four vertices is at least 3, it is natural to assume that each
vertex is incident to at least three fault-free edges. A graph
G is conditional k edge-fault tolerant hamiltonian connected if
G — F is hamiltonian connected for every F C E(G) with
|F| <k and 8(G — F) > 3. The conditional edge-fault toler-
ant hamiltonian connectivity, HC?_,(G). is defined to be the
maximum integer k such that G is conditional k edge-fault
tolerant hamiltonian connected if G is hamiltonian con-
nected and is undefined otherwise.

Assume that n is an integer with n > 4. In this pa-
per, we prove that HC2(K,) = 2n — 10 for n ¢ {4,5,
8,10}, HC3(Kg) =0, HC3(Ks) = 2, HC3(Kg) = 5, and
HC?(Klo) = 9. To reach this goal, we present some pre-
liminary in the following section. In Section 3, we prove
our main result.

2. Preliminary

Let F be a faulty edge set. We define K, (F) be a graph
with E(Kn(F)) = F and V (Kn(F)) = V(Ky). The following
statement is proved in [3]:

Suppose F C E(Ky) and §(K, — F) > 2, wheren > 4.1fn ¢
{7, 9} (respectively, n € {7, 9}) then K, — F is hamiltonian,
where |F| < 2n — 8 (respectively, |F| < 2n —9).

In the conclusion of [3], it is claimed that the above
statement is optimal. Using our terminology, we obtain the
following statement.

H2(Kn) =2n—8 forn ¢ (7,9} andn > 4, H2(K7) = 5, and
HZ(Kg) =9.

Yet, it is easy to check that H?(Kg) is 0 and H?(K4)
is 2 (not 0.) Thus, we have the following theorem.

Theorem 1. Hg(Kn) =2n — 8 forn ¢ {7,9} and n > 5,
HZ(K3) =0, H2(Kg) = 2, H2(K7) = 5, and H2(Kg) =9.

Lemma 1. Assume that n is an integer with n > 6 and F is any
subset of E(K,) with |[F| =2n — 10 if n ¢ {8,10} and |F| =
2n — 11 if n € {8, 10}. There exists a vertex w in K,(F) such
that 1 < degy, (5 (W) < [251] — 1.

Proof. Suppose that the lemma is false. Then degg, 5y (W) >
L%J for every vertices with degg, r)(w) # 0. Obviously,

there are at least L%J +1 vertices with degy ) (w) #0.

Hence, |F| > (I%51](1%52] + 1))/2. However, (|%51] x

(L5 +1))/2>2n—10 for n ¢ (8,10} and (| "5 |(|"5" ] +
1))/2 > 2n — 11 for n € {8, 10}. It is a contradiction. The

lemma is proved. O

The following theorem can be found in [1].

Theorem 2. (See [1].) Let D = (dy,d>,...,dy) be a nonin-
creasing sequence with di > 1 and d; > 0 for 2 <i < n. We
set D' = (d/,d/z,...,d;]_l) =(dy —1,d3 —1,...,d4, 41 —
1,dg,42,...,dp). Then there exists a graph G with vertex set
{x1,%2,...,Xn} such that deg;(x;) =d; for 1 <i < nif and
only if there exists a graph G’ with vertex set {y1, Y2, ..., Yn—1}
such that degg/ (yj) = d;forl <jg<n-—1.

By the above theorem, we know that there is a graph G
with degree sequence D if and only if there is a graph G’
with degree sequence D'. If d} < 0 for some i, then D’ is
not the degree sequence of any graph, neither is D.

Lemma 2. Let F be a subset of E(Kg) with |F| =8 and §(Kg —
F) > 3. Let u and v be any two distinct vertices in K9 such that
degk,(r)(w) = 0 and degy, ) (v) = 0. Then there exists a ver-
tex w with degg, r) (W) € {2, 3}.

Proof. Let {x1,X2,...,Xs = U, X9 = v} be the vertex set of
Kg such that degg,r)(xi) =d; and d1 > dz > --- > dg. Ob-
viously, Y9, d; = 16. Assume that the lemma is false.
Then degKg(F)(xi) €{0,1,4,5} for 1 <i<9. By brute force,
all such sequences are listed below: (5,5,5,1,0,0,0,0,0),
(5,5,4,1,1,0,0,0,0), (5,4,4,1,1,1,0,0,0), (4,4,4,4,0,
0,0,0,0), and (4,4,4,1,1,1,1,0,0). By Theorem 2, we
can check that such a graph does not exist. Hence, the
lemma is proved. O

Lemma 3. Let F be a subset of E(Ky;) with |F| = 12 and
8(K11 — F) > 3. Let u and v be any two distinct vertices in K11
such that degy,, (r)(u) = 0 and degy,, r)(v) = 0. Then there
exists a vertex w with degy . (r) (W) € {2, 3, 4}.

Proof. Let {x1,x2,...,X10 = U,x;1 = v} be the vertex set
of K11 such that degg, r(x) =d; and dy >dy > --- >
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d11. Obviously, Z}; di = 24. Assume that the lemma
is false. Then degg, (X)) € {0,1,5,6,7} for 1 <i <
11. By brute force, all such sequences are listed below:

,7,7,1,1,1,0,0,0,0,0), (7,7,6,1,1,1,1,0,0,0,0), (7,
7,5,5,0,0,0,0,0,0,0), (7,7,5,1,1,1,1,1,0,0,0), (7,6,
6,5,0,0,0,0,0,0,0), (7,6,6,1,1,1,1,1,0,0,0), (7,6,5,
5,1,0,0,0,0,0,0), (7,6,5,1,1,1,1,1,1,0,0), (7,5,5,5,
1,1,0,0,0,0,0), (6,6,6,6,0,0,0,0,0,0,0), (6,6,6,5,1,
0,0,0,0,0,0), (6,6,6,1,1,1,1,1,1,0,0), (6,6,5,5,1,1,
0,0,0,0,0), (6,5,5,5,1,1,1,0,0,0,0), and (5,5,5,5,1,1,
1,1,0,0,0). By Theorem 2, we can check that such a graph
does not exist. The lemma is proved. O

We can easily obtain the following lemma.

Lemma 4. Let k > 2. Let G be a hamiltonian connected graph.
Then deleting any set S of k vertices from G, the resulting graph
G — S contains at most k — 1 connected components.

By the above lemma, we have a simple observation.

Lemma 5. Let k > 2. Let G be a graph. If there is a set S of k ver-
tices such that G — S contains k or more connected components,
then G is not hamiltonian connected.

3. Main result

Lemma 6. Let n > 4 and F C E(K;) with §(K, — F) > 3
Then K, — F is hamiltonian connected if |F| < 2n — 10 for
n¢{4,528,10}, |[F| =0 forn =4, |F| <2 for n =5, and
|F| <2n—11 forn € {8, 10}.

Proof. We prove this lemma by induction on n. Yet, we
should be very careful because the size of |F| is depending
on n. Without loss of generality, we assume that |F| =2n—
10 for n ¢ {4,5,8,10}, |[F|=0 for n=4, |F|=2 for n =
5, and |F| =2n — 11 for n € {8, 10}. The induction bases
are n=4,n=>5, and n =6. Suppose n=4 and |F| =0. It
is easy to see that the complete graph K4 is hamiltonian
connected. Suppose n =5 and |F| = 2. To keep §(K5 — F) >
3, F forms two independent edges. By brute force, it is
easy to check whether K5 — F is hamiltonian connected.
Suppose that n =6 and |F| = 2. Obviously, F is either two
adjacent edges or two independent edges. Again, by brute
force, we can check that Kg — F is hamiltonian connected.

Now, we assume that n > 7. Let u and v be any two
vertices of K,. The lemma follows if we can find a hamil-
tonian path of K, — F between u and v.

Case 1. deg, r)(u) # 0 or degg, (r)(v) # 0. Without loss
of generality, we assume that degg, ) (u) =k # 0. Let
i1, ..., Ig be the vertices such that (u,ij) € F for 1 < j <k.
Let F/' = (F —{(u,iy),..., (U, i) DU{(v,i1), ..., (v, ir)}. Ob-
viously, |F’| < |F|. Now, we consider K, —{u} as a complete
graph of (n— 1) vertices with faulty edge set F’. Obviously,
|F'|<2(n—1)—8 for n ¢ {8,10} and |F'| <2(n—1) —

for n € {8, 10}. Moreover, §(K, — {u} — F’) > 2. Thus, we
can apply Theorem 1 to obtain a hamiltonian cycle C in
Kn — {u} — F’. Without loss of generality, we write C as

(v,Xx,...,y,v). Then, (u,x,
path of K, —

..,y,v) forms a hamiltonian
F joining u to v.

Case 2. degyg (r)(u) =0 and degg, ) (v) = 0. By Lem-
mas 1, 2, and 3, there exists a vertex w such that
2 < degg, (ry(w) < L 11— 1 for ne{9,11} and 1 <
degy, r) (W) < ["51] — o ng (9, 1),

Obviously, §(K, — F — {w}) > 2. Suppose that §(K, —
F — {w}) = 2. Let x be any vertex in K, — {w} such that
degy, —(w}—r(x) = 2. Obviously, (x, w) ¢ F, degg, _r(x) =3,
and degg, (r)(x) =n —4. We claim that x is the only vertex
in Kn — {w} with degg, _(w—r() = 2. If otherwise, let z
be another vertex in Kp — {w} with degg, _;y—r(2) = 2.
Then |F| > degy, r)(x) + degg,(r)(2) — 1 =2n — 9. This is
impossible because |F| < 2n—10. Thus, x is the only vertex
in Ky —{w} such that degy, _(w—r(x) = 2. Thus, §(Kn—
{u,x}) =3.

Let F'=F — {(x,i) |i € V(Ky)}. We consider K, — {u, x}
as a complete graph of (n—2) vertices with faulty edge set
F’. Obviously, |F'|=1<2forn=7, |[F/|=n—-7<2n—
2)—10 for n ¢ {10,12}, and |F'|=n—7 < 2(n—2) — 11 for
n € {10, 12}. By induction, we have a hamiltonian path P
of K, — {u,x} — F’ joining w to v. So (u,x, w, P, v) forms
a hamiltonian path of K, — F joining u to v.

Now, we consider §(K, — {w} — F) > 3. Since 2 <
degg, (W) < L%J — 1 for ne€ {9,11} and 1 <
degg. (W) < L%J — 1 for n ¢ {9,11}, there exists
(x,y) € F such that {(w,x), (w,y)}NF =@. We set F as
F—{(w,2) | (w,z) € F} — {(x,y)} and consider K, — {w}
with faulty set F’. We have |F’| =2n — 10 — deg, ) (W) —
1<2n—-13for n e {9,11} and |F'| = 2n—10—deg, r)(W)—
1 <2n—12 for n ¢ {9,11}. By induction, there exists a
hamiltonian path P = (u = x1,x2,...,x,—1 = v) of K, —
{w} — F’ joining u to v. Suppose that (x,y) € P. There
exists an integer i such that {x;, x;+1} = {x, y} for some i.
Suppose that (x, y) ¢ P. Since degg, (r)(W) < L%J —1and
degy, (r)(w) +degg, _r(w) =n—1, degg,_p(w) > 5] +1.
Hence, there exists an integer i such that (x;,x;11) € P and
{(w, %), (W, xi+1)}NF = @. Therefore, (u =x1, X2, ...,Xi, W,
Xit+1,Xi+2, ..., v) forms a hamiltonian path of K, — F join-
ingutov. O

Theorem 3. Let n > 4. Then HC3(K,) = 2n — 10 for n ¢
{4,5,8,10}, HC2(K4) = 0, HC2(K5) = 2, HC3(Kg) = 5, and
HC3 (K1) =9.

Proof. Let F be any subset of E(K;) with §(K, — F) >3
Since (K, —F) >3, |F|]=0forn=4and |F|<2forn=5
Thus, HC3(K4) =0 and HC3(Ks) = 2.

Suppose n = 8. Let V(Kg) = {x1,x2,...,x3}. We set R =
{x1,...,x4}, S={x5,...,xg},and F ={(u,v) |u,v € R}. We
can check that §(Kg — F) >3, |F| =6 and (Kg — F) — S has
four connected components. By Lemma 5, Kg — F is not
hamiltonian connected. See Fig. 1(a) for illustration. Thus,
HC3(Kg) < 6. By Lemma 6, HC>(Kg) = 5.

Suppose n = 10. Let V (Kqg)
R={x1,...,%5}, S ={xg,...

= {x1,x2,...,X10}. We set
,X10}, and F ={(u,v) |u,v e
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(a) (b) (c)

Fig. 1. All white vertices are in R, all black vertices are in S, and all gray
vertices are in T. All dashed lines are in F.

R}. Then, §(K19 — F) >3, |F| =10, and (Ky90 — F) — S has
five connected components. By Lemma 5, Ki9 — F is not
hamiltonian connected. See Fig. 1(b) for illustration. Thus,
HC3(K10) < 10. By Lemma 6, HC3(K1g) =9.

Suppose that n € {6,7,9} U {i | i > 11}. Let V(Ky) =
{x1,%2,...,%}. We set R = {x1,x2}, S ={x3,x4,%x5}, T =
{x6,...,%n}, and F ={(u,v)|u € R,v € RUT}. Obviously,
8(Kn—F)>=3,|F|=2(n—-5)+1=2n—-9,and (K, —F)—S
has three connected components. See Fig. 1(c) for illustra-
tion for case n =9. By Lemma 5, K;; — F is not hamil-

tonian connected. Thus, HC?(KH) < 2n — 9. By Lemma 6,
HC3(Kp) =2n — 10.

The theorem is proved. O
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