
Large-time behavior of macrodispersion in heterogeneous

trending aquifers

Ching-Min Chang1 and Hund-Der Yeh1

Received 5 March 2007; revised 5 July 2007; accepted 9 August 2007; published 3 November 2007.

[1] This paper presents a stochastic analysis of the large-time behavior of
macrodispersion in a three-dimensional heterogeneous aquifer with a linear trend in the
mean log hydraulic conductivity. To solve the problem analytically, focus is placed on the
particular case where the linear trend is aligned in the direction of mean hydraulic
head gradient. A spectral approach based on Fourier-Stieltjes representations for the
perturbed quantities is used to develop closed-form expressions that describe variability of
flow velocity, the second-order mean flow, and asymptotic macrodispersion. The impact
of the mean log hydraulic conductivity gradient on these results is examined. It is found
that the asymptotic longitudinal and transverse macrodispersion coefficients decrease
with the increasing trend gradient of mean log hydraulic conductivity in the case of finite
Peclet numbers. This feature is a consequence of the reduction in variability of flow
velocity with the trend gradient.
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1. Introduction

[2] The presence of a trend in the mean log hydraulic
conductivity induces nonstationarity in the statistics of
random velocity fields in heterogeneous aquifers, thereby
affecting the behavior of solute transport [e.g., Rehfeldt et al.,
1992; Eggleston and Rojstaczer, 1998; Seong and Rubin,
1999]. For such a nonstationary condition, most stochastic
analyses of field-scale solute transport [e.g., Rubin and
Seong, 1994; Indelman and Rubin, 1996; Eggleston and
Rojstaczer, 1998] assume that large-scale velocity variations,
reflecting the effects of log hydraulic conductivity trends,
would not enhance spreading. The small-scale velocity
variations, caused by small-scale hydraulic conductivity
fluctuations, contribute the most to spreading. Therefore, in
the analysis of macrodispersion, the trends must be removed
from the log hydraulic conductivity field in order to relate the
spatial covariances of the velocity field to those of the local
log hydraulic conductivity fluctuations [e.g., Rubin and
Seong, 1994; Indelman and Rubin, 1995, 1996].
[3] Existing stochastic studies of field-scale solute trans-

port in trending media [e.g., Rubin and Seong, 1994;
Indelman and Rubin, 1996; Eggleston and Rojstaczer,
1998] have built on the Lagrangian methodology. The
application of the Eulerian concept to the investigation of
the impact of the trend gradient in the mean log hydraulic
conductivity on the behavior of solute transport by ground-
water has so far not been attempted, and this is the task
undertaken here. This task will be performed using a
spectral approach [e.g., Bakr et al., 1978; Gelhar and

Axness, 1983; Li and McLaughlin, 1991, 1995] based on
Fourier-Stieltjes representations for the perturbed quantities.
[4] The numerical investigation of field-scale spreading

of solute transport by Rubin and Seong [1994] for a two-
dimensional system suggests that the impact of the linear
log hydraulic conductivity trend on the process of solute
transport through the trending formations becomes notice-
able at very large travel time. Motivated by this, this paper
therefore focuses only on analysis of the asymptotic behav-
ior of field-scale solute transport in heterogeneous trending
media. It presents closed-form expressions for the mean and
variances of flow velocity, and the asymptotic macrodis-
persion coefficients in a three-dimensional statistically ho-
mogenous medium where the mean log hydraulic
conductivity displays a linear trend aligned in the direction
of mean head gradient. The closed-form results, to the best
of our knowledge, have never before been presented. It
concludes by examining the impact of the mean log
hydraulic conductivity gradient on these results.

2. Problem Formulation

[5] We start by considering steady state transport of
conservative solutes in heterogeneous porous media dis-
playing a linear trend in the mean log hydraulic conductiv-
ity. The flow domain under consideration is of a sufficiently
large extent. The log hydraulic conductivity (lnK) field is
modeled as a random process, and may be represented as
the sum of a constant, F, a linear lnK trend gradient vector,
m, and a zero mean perturbation, f: [e.g., Loaiciga et al.,
1993; Rubin and Seong, 1994; Li and McLaughlin, 1995]

lnK ¼ hlnKi þ f ¼ F þ m � X þ f ð1Þ

where h i stands for the expected value operator and the lnK
perturbation field f is assumed to be a second-order
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stationary random field with known covariance function or
spectral density function. For convenience, the positive X1

coordinate axis is selected to be in the direction of the mean
hydraulic gradient vector J so that J = �rhHi = (J(X), 0,
0), where H is the hydraulic head; consequently, the mean
flow is parallel to the X1 coordinate axis, i.e., U = hui = (U,
0, 0), where u is the fluid velocity.
[6] It is apparent that the spatial variability of flow

velocities strongly influenced by spatial variations in hy-
draulic conductivity is responsible for the field-scale dis-
persion in heterogeneous media. Neuman and Zhang [1990]
have derived a quasi-linear stochastic model relating the
macrodispersion of conservative solutes to the local flow
variation. We will use their macrodispersion model to
investigate the large-time behavior of macrodispersion in
medium of trending mean log hydraulic conductivity. From
Neuman and Zhang [1990], under the unidirectional mean
fluid flow condition, the macrodispersion tensor, Dij, at
large times is given by

Dij ¼
Z1

�1

R � dR
R � dRð Þ2þ R � Uð Þ2

Sujui Rð ÞdR ð2Þ

where R = (R1, R2, R3) is the wave number vector, Sujuj(R) is
the cross spectrum of the j and i components of the velocity,
and d is a diagonal dispersion tensor whose components are
equal to d1 (the longitudinal dispersion coefficient) parallel
to u1, and d2, d3 (the dispersion transverse coefficients)
parallel to u2, u3, respectively.
[7] To proceed with the evaluation of (2) in trending

formations, one needs to establish the relationship between
Sujuj(R) and the spectrum of the local log hydraulic
conductivity field, Sff (R), by taking account of the impact
of coefficient m, the trend gradient of mean log hydraulic
conductivity. The scope of this study is limited to the case
where the trend in the mean log conductivity is parallel to
the mean hydraulic head gradient, i.e., m = (m, 0, 0).

3. Flow Analysis

3.1. Flow Perturbation

[8] Using the Fourier-Stieltjes representations of the
random fields the spectra of the local flow variation in (2)
and hydraulic conductivity are directly related through the
linearized first-order perturbation approximation of Darcy’s
law [Gelhar and Axness, 1983]. The first-order equation for
the velocity perturbation in trending media derived from the
Darcy equation is of the form [e.g., Rubin and Seong, 1994;
Indelman and Rubin, 1995]

u0i ¼ Kg Xð Þ Jidi1 f �
@h

@Xi

� �
ð3Þ

where Kg = exp[hlnKi] = exp[F + mX1], and h is a zero mean
head perturbation, related to the log hydraulic conductivity
perturbation f by the following first-order perturbation
approximation of the flow equation [Rubin and Seong,
1994; Li and McLaughlin, 1995]

@2h

@X 2
i

þ m
@h

@X1

¼ J X1ð Þ @f

@X1

ð4Þ

It is noteworthy that the presence of the trend gradient
produces a space-dependent mean hydraulic head gradient,
and consequently, results in a nonstationary solution, h, to (4).
To evaluate the flow velocity spectrum in (2), equation (4)
must be solved first in order to relate the gradient of the
hydraulic head perturbation field in (3) to the local log
hydraulic conductivity perturbations.
[9] In the case where the trend gradient is in the direction

of the mean hydraulic head gradient, the spectral represen-
tation solution for the head perturbations to (4) can be
expressed as, according to [Li and McLaughlin, 1995]

h Xð Þ ¼ �
Z1

�1

exp iR � X½ � iR1

R2 þ imR1

J X1ð ÞdZf Rð Þ ð5Þ

with the mean hydraulic head gradient J(X1) quantified as

J X1ð Þ ¼ Joexp �m X1 � Xoð Þ½ � ð6Þ

where dZf (R) is the complex Fourier-Stieltjes increment,
R2 = R1

2 + R2
2 + R3

2, and J0 is the known value of J at X1 = X0.
Using their result, we can start to investigate the
characteristics of the velocity variation, which are important
in the analysis of field-scale solute transport.
[10] From (5) we immediately have

@h Xð Þ
@X1

¼
Z1

�1

exp iR � X½ �R
2
1 þ imR1

R2 þ imR1

J X1ð ÞdZf Rð Þ ð7aÞ

@h Xð Þ
@X2

¼
Z1

�1

exp iR � X½ � R1R2

R2 þ imR1

J X1ð ÞdZf Rð Þ ð7bÞ

@h Xð Þ
@X3

¼
Z1

�1

exp iR � X½ � R1R3

R2 þ imR1

J X1ð ÞdZf Rð Þ ð7cÞ

Substituting (7a)–(7c) and the Fourier-Stieltjes representa-
tions of velocity perturbations, i.e.,

u0i ¼
Z1

�1

exp iR � X½ �dZui Rð Þ

into the velocity perturbation equation (3) and invoking the
uniqueness of the spectral representation gives the follow-
ing velocity spectra

Su1u1 Rð Þ ¼ KgJ
� �2 R4 � 2R2R2

1 þ R4
1

R4 þ m2R2
1

Sff Rð Þ ð8aÞ

Su2u2 Rð Þ ¼ KgJ
� �2 R2

1R
2
2

R4 þ m2R2
1

Sff Rð Þ ð8bÞ

Su3u3 Rð Þ ¼ KgJ
� �2 R2

1R
2
3

R4 þ m2R2
1

Sff Rð Þ ð8cÞ
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[11] The velocity spectra (8a)–(8c) are the generalization
of the corresponding spectra given by Equation (23) in
Rubin and Seong [1994] to the case of a three-dimensional
flow domain.
[12] Recalling that hlnKi = F + mX1, the first term on the

right hand side of (8) can be rewritten, using (6), as

KgJ ¼ exp F þ mX1½ �Jo exp �m X1 � Xoð Þ½ � ¼ exp F þ mXo½ �Jo
ð9Þ

For consistence with the order of the derivation of (8), (9)
may be interpreted as the mean fluid velocity at zero order
and implies that the mean fluid velocity at zero order can be
determined from a reference velocity, i.e., U0 = exp[F +
mX0]J0 = KgJ. This leads (8) to

Su1u1 Rð Þ ¼ U2
0

R4 � 2R2R2
1 þ R4

1

R4 þ m2R2
1

Sff Rð Þ ð10aÞ

Su2u2 Rð Þ ¼ U2
0

R2
1R

2
2

R4 þ m2R2
1

Sff Rð Þ ð10bÞ

Su3u3 Rð Þ ¼ U2
0

R2
1R

2
3

R4 þ m2R2
1

Sff Rð Þ ð10cÞ

3.2. Velocity Variances

[13] The variance of flow velocity can now be computed
by integrating (10) over the wave number domain, accord-
ing to

s2
ui
¼

Z1

�1

Suiui Rð ÞdR ð11Þ

The form of the lnK spectrum in (10) must be selected to
evaluate (11).
[14] The evaluation of (11) cannot be performed analyt-

ically for the general case of statistically anisotropic lnK
distribution. However, to take the advantage of closed-form
expressions, which provide a clear insight of the impact of
trend gradient on the variation of flow velocity, we assume
statistical isotropy of the lnK field. The random lnK
perturbation field f under consideration is characterized by
the following spectral density function [e.g., Bakr et al.,
1978; Gelhar and Axness, 1983; Neuman and Zhang,
1990]

Sff Rð Þ ¼
s2
f l

3

p2 1þ l2R2
� �2 ð12Þ

where sf
2 is the variance of lnK and l is the correlation

scale of lnK.
[15] The closed-form expressions for variations in longi-

tudinal and transverse flow velocities can be derived by

substituting (10) and (12) into (11) and integrating over the
wave number domain, respectively,

s2
u1
¼ U2

0s
2
f � 6

m4l4
þ 3

m3l3
þ 6

m2l2
� 5

2

1

ml

�

þ 6

m5l5
� 8

m3l3
þ 2

ml

� �
ln 1þ mlð Þ

�
ð13aÞ

s2
u2
¼ s2

u3
¼ U2

0s
2
f

3

m4l4
� 3

2

1

m3l3
� 1

m2l2
þ 1

4

1

ml

�

þ � 3

m5l5
þ 2

m3l3

� �
ln 1þ mlð Þ

�
ð13bÞ

with the corresponding limits for the no-trend case (ml! 0)

s2
u1
¼ 8

15
U2

0s
2
f ð14aÞ

s2
u2
¼ s2

u3
¼ 1

15
U2

0s
2
f ð14bÞ

where su1
2 is the variance of longitudinal flow velocity and

su2
2 , su3

2 are the variances of transverse flow velocity.
Equations (14a) and (14b) are the well known results [e.g.,
Winter et al., 1984; Gelhar, 1987] in the no-trend case.
[16] In Figures 1a and 1b the behavior of the velocity

variances as a function of the trend gradient are illustrated
respectively in the longitudinal and transversal directions.
The variance of velocity decreases with increasing trend
gradient, because of the fact that the larger trend gradient
results in longer correlation distance of hydraulic head and
hence the smaller variability of the flow velocity.

3.3. Note on the Mean Velocity at Second Order

[17] Following Rubin and Seong [1994], the mean
velocity at the second order for the case of parallel m and
J is approximated as

U ¼ KgJ 1þ 1

2
s2
f �

1

J
f
@h

@X1

� 	� �
ð15Þ

The cross-correlation term in (15) is evaluated using (7a)
and the representation theorem for f such that

1

J
f
@h

@X1

� 	
¼

Z1

�1

R2R2
1 þ m2R2

1

R4 þ m2R2
1

Sff Rð ÞdR ð16Þ

Introducing the statistically isotropic input spectrum (12),
the integral of (16) takes the following form:

1

J
f
@h

@X1

� 	
¼ � 4

m2l2
þ 2

ml
þ 1þ 4

m3l3
� 2

ml

� �
ln 1þ mlð Þ

� �
s2
f

ð17Þ
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On the basis of (9) and (17), the second-order approxima-
tion for the mean velocity in (15) becomes

U ¼ U0 1þ 1

2
s2
f �

�
� 4

m2l2
þ 2

ml
þ 1þ

�
4

m3l3
� 2

ml


 �

� ln 1þ mlð Þ
�
s2
f

�
ð18Þ

where U0 = exp[F + mX0]J0.
[18] The second-order result for the mean velocity is

independent of position for the case where the trend
gradient is aligned in the direction of mean hydraulic head
gradient, as indicated by (18). This qualitatively agrees with
the earlier finding of the numerical simulations by Rubin
and Seong [1994] for a two-dimensional system. The result

of (18) is presented graphically in Figure 2, which shows
the decrease in the mean velocity as a function of the trend
gradient. In the limit of ml ! 0, the last term in brackets in
(18) approaches 1/3 and the mean velocity converges to

U ¼ U0 1þ 1

2
s2
f �

1

3
s2
f

� �
¼ U0 1þ 1

6
s2
f

� �
ð19Þ

which is a well-known expression reported in the literature.

4. Asymptotic Macrodispersion

[19] Once the spectrum of the fluid velocity accounting
for the impact of trend gradient is obtained, we are in a

Figure 1. Dimensionless variance of the (a) longitudinal and (b) transverse velocity versus
dimensionless trend gradient.
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position to investigate the asymptotic behavior of field-scale
solute transport spreading in media displaying a linear trend
in the mean log hydraulic conductivity. Substituting (10)
and (12) into (2) leads to the following results for the large
time limit of longitudinal and transverse macrodispersion
coefficients:

D11 ¼
Uos2

f l

P 1� m2l2=P2
� � 4

P2
� 2

P
þ P þ 4 � 1

P3
þ 1

P

� �
ln 1þ Pð Þ

� �


� 4

m2l2
� 2

ml
þ mlþ 4 � 1

m3l3
þ 1

ml

� �
ln 1þ mlð Þ

� ��

ð20aÞ

D22 ¼ D33 ¼
Uos2

f l

P 1� m2l2=P2
� � � 2

P2
þ 1

P
þ 2

P3
� 1

P

� �
ln 1þ Pð Þ

� �


� � 2

m2l2
þ 1

ml
þ 2

m3l3
� 1

ml

� �
ln 1þ mlð Þ

� ��

ð20bÞ

where P = Uol/d.
[20] Taking the limit of (20a) and (20b) as ml ! 0, we

thus have

D11 ¼
Uos2

f l

P

4

P2
� 2

P
þ P � 8

3
þ 4 � 1

P3
þ 1

P

� �
ln 1þ Pð Þ

� �

ð21aÞ

D22 ¼ D33 ¼
Uos2

f l

P
� 2

P2
þ 1

P
þ 1

3
þ 2

P3
� 1

P

� �
ln 1þ Pð Þ

� �

ð21bÞ

These are equivalent to the results of Neuman and Zhang
[1990, (50a) and (50b)] after rearranging their rational
expressions as partial fractions.
[21] Figures 3a and 3b show how longitudinal and

transverse macrodispersion coefficients, respectively, vary
with the trend gradient for various P values. As expected,
the larger the trend gradient, the less the plume spreads, as
implied by Figure 1. A larger trend gradient results in
reductions in the variation of flow velocity and, conse-
quently, results in less spreading of the solute. Also, from
Figures 3a and 3b, the longitudinal macrodispersion
coefficient becomes a constant, sf

2U0l, and the transverse
macrodispersion coefficient tends to zero in the case when
the local dispersion coefficient d = 0 (i.e., P ! 1). In other
words, the large-time limit of the macrodispersion becomes
independent of the trend gradient for very small local
dispersion. So it would not be appropriate to assume
advection-dominated transport in approximating the large-
time asymptotic limit of macrodispersion coefficients in
nonstationary velocity fields.

5. Conclusions

[22] We have presented closed-form expressions for the
mean and variances of flow velocity, and the asymptotic
macrodispersion coefficients in a three-dimensional statisti-
cally homogenous medium where the mean log hydraulic
conductivity displays a linear trend aligned in the direction
of mean head gradient. These expressions are derived
directly from the spectrum of the Eulerian velocity includ-
ing the log hydraulic conductivity trend effects, based on
the nonstationary representation for head perturbation [Li
and McLaughlin, 1995].
[23] It was found that the inclusion of a trend gradient of

mean log hydraulic conductivity parallel to the mean head
gradient reduces both the asymptotic longitudinal and
transverse macrodispersion coefficients. This feature is a
consequence of the reduction in variability of flow velocity
with a trend gradient. The prediction of the large-time
behavior of macrodispersion made by assuming advec-

Figure 2. Dimensionless mean velocity versus dimensionless trend gradient for various lnK variance.

W11501 CHANG AND YEH: TECHNICAL NOTE

5 of 7

W11501



tion-dominated transport, which is in disregard of pore-scale
dispersion, will not provide a good asymptotic approxima-
tion in nonstationary velocity field.
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