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Abstract

This paper formulates and solves a route planning problem for semiconductor manufacturing.
In order to quickly respond to demand booming, a semiconductor company usually adopts a
dual-fab strategy in expanding capacity. That is, two fab sites are so built that they are
neighbor to each other, and can easily share capacity. Through the capacity—sharing design, a
product may be produced by a cross-fab route. That is, some operations of a product are
manufactured in one fab and the other operations in the other fab. This leads to a routing
planning problem, which involves two decisions—determining the cutoff point of the cross-fab
route and the route ratio for each product—in order to maximize the throughput subject a cycle
time constraint. An LP-GA method is proposed to solve the route planning problem. We first
use the LP module to make the cutoff point decisions, and proceed to use the GA module for

making the decision of route ratio. Experiment results show that LP-GA method significantly



outperforms the other methods.

Keywords: dual-fab, cross-fab route, route planning, capacity sharing.

1. Introduction

Semiconductor manufacturing industry has three characteristics in expanding capacity.
The cost of equipment is very expensive, maybe costing over one billion dollars for a 12 inch
wafer fab. The lead time for equipment acquisition is quite long, ranging from 3 to 9 months.
Yet, building the factory space is relatively low in expense but with a much longer lead
time—taking about one to two years.

In order to quickly respond to demand booming, a semiconductor company usually adopts
a dual-fab strategy in expanding capacity. That is, a large-scale factory space that could
accommodate two fabs is established in advance. Then, equipments for the two fabs are
gradually moved into the space according to the market demand over time. The two fabs, so
close to each other in location, are eligible to support capacity to each other, and should be
managed in an integrated manner. .

In such a dual-fab configuration, a relatively easy way to manage is manufacturing each
wafer job in one fab. That is, each fab is run separately, without any mutual support in capacity.
Such a separated-operation paradigm would usually lead to the underutilization of equipment.
To remedy the underutilization issue, a cross-fab production paradigm is proposed. This means
that a wafer job is partly manufactured in one fab and partly manufactured in the other fab.

Such a cross-fab production paradigm yields a route planning problem—how to
appropriately assign the operations of a wafer job to each of the two fabs. Only a few studies
on the route planning problem have been published. Toba et al. (2005) addressed the route
planning problem in a real-time manner. That is, whenever an operation of a job is completed,
a decision—which fab to manufacture the next operation—must be immediately made. Wu and
Chang (2006) investigated the route planning problem in a short-term or weekly manner, in
which the two fabs exchange capacity weekly to maximize the total throughput.

Though having established significant milestones, these two prior studies have some

limitations due to make an implicit assumption. They both assumed that the transportation



times within a fab or among fabs are a constant. This implies that the transportation capacity is
infinite, and the route planning algorithm may yield a solution with too much transportation.
This may lead to traffic jam and as a result may lower the throughput and lengthen the cycle
time.

In semiconductor manufacturing, the wafer size has steadily increased over time. In an
up-to-date fab (12 inch wafer fab), wafer jobs must be transported by automatic vehicles
because a wafer job weighs about 30 kg and cannot be handled manually. This may yield a
traffic jam problem because the transportation capacity is limited. Our interview with
practitioners indicates that the traffic jam symptom would occur, in particular for a dual-fab
layout. Therefore, transportation capacity has to be considered in the route planning problem
for an up-to-date fab.

This research investigates the route planning problem for a dual-fab layout and is unique
in two-fold. First, we assume that the transportation capacity is finite and the transportation
times would vary. Second, the route planning decision is made based on a relatively longer
time horizon—for example, one or several months. This research, focusing on a relatively
long-term decision, complements prior studies which focused on either short-term or mid-term
decisions on route planning.

The remainder of this paper is organized as follows. Section 2 reviews literature relevant
to this research. Section 3 presents the route planning problem in detail. Section 4 described
the solution framework that includes a linear programming (LP) model, a binary search

algorithm, a queuing net work model, and a genetic algorithm (GA). Section 5 describes the LP

model and the binary search algorithm. Section 6 describes the queueing model and the GA.
Numerical experiments are presented in Section 7 and concluding remarks are in the last

section.

2. Relevant Literature

Given a customer demand, there may exist more than one manufacturing sites to fulfill
the demand. A decision problem is how to allocate the demand to each manufacturing site. This
capacity allocation problem can be addressed either in product level or in operation level.

For the problem in the product level, each site is designated to manufacture a set of

products. This implies that a product should be completely manufactured within a single



site—cross-site production is prohibited. While in the operation level, each site is designated to

manufacture a group of operations. Then, the operations for manufacturing a product could be

distributed among different sites—cross-site production is allowed. This leads to the need for

studying the route-planning problem.

For the capacity allocation problem—without any cross-site routes, Wu et al. (2005) have
given a comprehensive survey. Some recent studies are listed (Rupp & Ristic 2000; Frederix
2001; Karabuk & Wu 2003; Manmohan 2005; Lee et al. 2006; Chiang et al. 2007). Linear

programming models are commonly used to solve the problems. To address the interactions
among manufacturing sites, game theory was proposed to enhance the LP model (Mieghem
1999).

For the capacity allocation problem—with some cross-site routes, most studies were
addressed in the context of group technology (GT). That is, each site is a manufacturing cell
and multiple cells form a factory. Cross-cell production for manufacturing a product is
permitted. However, each product is preferably manufactured within a particular cell and
cross-cell production should be minimized.

Most prior studies allocated the capacity demand to cells through solving a cell formation
problem (Avonts & Wassenhove 1988; Kim et al. 2005; Vin et al. 2005; Dimopoulos 2006;

Mahdavi 2006; Nsakanda et al. 2006; Spiliopoulos & Sofianopoulou 2007). That is, in order

to minimize the number of cross-cell transportations, researchers have to answer how many
cells should be formed and how each cell should be equipped. After the cell formation problem
is solved, each product is assigned to a particular cell for handling most of its operations. The
remaining operations, much fewer in number, are handled by other cells. A GT cell is designed
for manufacturing a particular group of products, and by nature is limited in its functional
capacity. Therefore, cross-cell routes are unavoidably demanded in GT in order to enhance its
functional spectrum.

However, in the route-planning problem we address, each of the two fabs is assumed to be
functionally comprehensive. That is, a product can be completely manufactured in either one
of the two fabs. The purpose of cross-fab production is to increase the total throughput of the
two fabs, with the rationale explained below.

In practice, a semiconductor fab is equipped to fulfill demand of a particular product mix,



which is generally obtained from the demand forecast at the time of purchasing equipment.
However, the market demand in terms of product mix may change over time. Therefore, a fab
may be underutilized due to a change of product mix. In addition, the two fabs, even both
functionally comprehensive, may differ in number for each type of machines. This implies that
their originally designed product mixes may also differ. Cross-fab production therefore is

needed to increase the total throughput of the two fabs.

3. Problem Statement

This section aims to describe the dual-fab route planning problem more precisely. We first
present the assumptions that confine the context of the route planning problem; and then
proceed to introduce the decision variables, objective function and constraints of the problem.
In explaining the assumptions, the two fabs are respectively called Fab_A and Fab_B.

Assumption 1: Each fab is functional comprehensive. Each of the two fabs is so
comprehensively equipped that it can handle the manufacture of each product by itself—not
requiring the functional support of the other fab.

Assumption 2: A product has four possible routes. To implement cross-fab production, the
manufacturing route of a product is cut into two parts, where the route’s break point is called a
cut-off point. The two parts can be manufactured in different fabs, and yield two possible

routes for cross-fab production. One, represented by « — £, denotes that the first part of the

route is manufactured at Fab_A and the second part is at Fab_B. The other one, represented by

B — a, denotes that the first part of the route is at Fab_B and the second part is at Fab_A.

Since each fab is functionally comprehensive, a product thus has four possible manufacturing

routes, ¢, B, a—>f, and f—>a, where o denotes a route at Fab_A only and S

denotes a route at Fab_B only.

Assumption 3: The transportation path between any two workstations/buffers is unique,
rather than multiple. In each fab, a transportation system for moving wafer jobs has been
established. Theoretically, there may exist multiple paths in transporting a wafer job from a
workstation to another; however, to reduce the complexity of traffic control, we predefine a
fixed path for such a transport.

The route planning problem has two decision variables for each product: its cutoff point

and the ratios of its four possible routes (simply called route ratios). Let the cutoff point and



route ratios of product i be represented by (7zi,Fi) . Herein, 7z, denotes the identification code

(an integer) of the operation for separating a route into two parts; and Fi:[ai,b,,ci,di] is a
four-element vector where each element denotes the percentage of a particular route—of the

fourones a, B, a— p,and f— «a. Define I1=[x,...,7,] as a set of cutoff points and
R= [Flr_n] as a set of route ratios for n products to be produced. The route planning problem

is to determine a (I1°,R”) in order to maximize the total throughput of the two fabs, subject
to the constraint of meeting a target cycle time.
4. Solution Framework

A framework proposed for solving the dual-fab route planning problem is shown in Fig. 1,
which involves two modules.

<<Insert Fig. 1 about here>>

In Module 1, each transportation path is assumed to be equipped with infinite capacity;
and the transportation time between any two workstations/buffers is zero. With the routing
problem so simplified, we attempt to find an optimumII, in terms of minimizing the total
number of inter-fab transportations. The problem is solved by an iterative use of a linear
program (LP) model. For a particularIT, the LP model aims to compute its minimum number
of inter-fab transportations, which is regarded as the performance of theIl. We then use a
binary search algorithm to identify an optimum IT as the ultimate decision for cutoff point.

In Module 2—with the obtained IT" taken as parameters, we deal only with the decision

variables R=[r,...,r.]. In this module, each transportation path is taken as a tool with limited

capacity. The transportation time required for passing through a path can be varied, depending
upon the traffic flow intensity. The higher the traffic intensity, the longer is the cycle time.
Module 2 involves two sub-modules. The first one aims to develop a performance

evaluator for a particular (I1,R). To do so, we first construct a queueing network model

(Connors et al.1996) in order to compute the resulting mean cycle time, subject to a target

throughput and a particular (IT,R). The queueing model is further enhanced as follows.
Subject to a target mean cycle time and a particular (I'l, R) , the enhanced model could compute

the resulting throughput—the performance of the (I1,R).

With TIT" having been obtained in Module 1, the second sub-module of Module 2 aims to



search an R” so that the performance (IT",R") is the best. A genetic algorithm is proposed
to solve the search problem—finding the ultimate decision of R.

In summary, the solution space of the dual-fab routing planning problem can be
described by S ={(IT,R)|ITeIT_Set, Re R_Set}. The objective is to find an optimum

(IT",R") from S, in terms of maximizing throughput subject to a target cycle time. Since the
number of elements in S can be very huge, the problem is decomposed into two sub-problems.
The first one is to find an optimumIT, and the second sub-problem proceeds to find an
optimum R™ by taking IT as predefined parameters.

The essences of these two modules are compared below. Module 1 essentially deals with a
static capacity allocation problem which does not consider job flow time. In contrast, Module
2 deals with a time-phased capacity allocation problem, in which job flow time is addressed
and computed by a queueing network model.

Without addressing job flow time, Module 1 needs not considering the transportation
times of jobs. This leads to the underlying assumption of Module 1—the transportation time
between any two workstations/buffers is zero. While the underlying assumption is released, we
have to consider job flow time in Module 1. Solving such a problem is very computational
extensive because it may need an iterative evaluation of a linear program embodied with a

discrete event simulation program, as proposed by Hung and Leachman (1996).

5. Module 1—LP Model and Search Algorithm

Obtaining the solution for Module 1 is through an iterative use of an LP program. We first

describe the LP model and then present the iterative method—a bi-section search algorithm.

Indices
i: index of product

g : index of workstation in Fab_A

h: index of workstation in Fab_B

Parameters

n: total number of products



7, . cutoff point for defining the cross-fab routes of product i
IT: I1=[x], 1<i<n,avector for describing the cut-off points of all products
Q : an estimated total throughput of the two fabs while in high utilization (in lots), which is

used as the target throughput in the LP model.

P.: percentage of product i in the product mix, Z P=1,0<P<1

i=1

C, : available machine hours of workstation g in Fab_A

C, : available machine hours of workstation h in Fab_B

: total number of workstations in Fab_A

m, : total number of workstations in Fab_B

W, : total processing time per lot required on workstation g in Fab_A, while product i is
manufactured by route «

W, total processing time per lot required on workstation g in Fab_A, while product i is
manufactured by route a — S

W.¢: total processing time per lot required on workstation g in Fab_A, while product i is

manufactured by route S — «a

W, : total processing time per lot required on workstation h in Fab_B, while product i is
manufactured by route S

W, : total processing time per lot required on workstation h in Fab_B, while product i is
manufactured by route a — S

W.! total processing time per lot required on workstation h in Fab_B, while product i is

manufactured by route S — «

Decision Variables

a; : percentage of using route « in producing product i
b, : percentage of using route S in producing product i

C, : percentage of using route @ — £ in producing product i



d, percentage of using route S — « in producing product i

5.1 LP Model

The LP program is to compute a minimum number of cross-fab transportation for a
particular TT--a decision for the route cutoff points, which has been known before solving the
LP problem. The objective function of the LP program is denoted by Z(1T).

Min Z(m) =3 Q-R-(c,+d,)

s. t.
a +b+c+d =1 1<i<n (1)
ZQ'Pi‘(ai W +d; Wy +6 - Wg)<Cy 1<g<m, (2)
i=1
Q'Pi'(bi 'Wir?—l_di'wir?—l_ci 'WirC])SCh 1Sh£mb 3)

i=1

The objective function is to minimize the number of cross-fab production lots. The
rationale for defining this objective is that cross-fab production requires longer transportation
time than within-fab production. Subject to a target cycle time, an attempt to minimize
cross-fab production lots tends to increase total throughput. Constraint (1) describes the
dependent relationship among the route ratios. Constraints (2) and (3) ensure that the capacity
used in each workstation, for Fab_A and Fab_B, should be lower than its available supply.

5.2 Bi-section Search Algorithm

The bi-section search algorithm is to find an optimum solution IT from a space,
denoted by {II}, which is the possible combinations of cutoff points for all products. The
algorithm is an iterative process. In an iteration, each product has only two possible cutoff
points to select. Taking a product route as a line, the two cutoff points are respectively on the
first and the third quartiles (Fig 2). By evenly cutting the route into two segments, each cutoff
point is in the middle of a particular segment. Of the two evenly divided segments, the one
where a cutoff point stays is called the housing-segment of the point.

<<lInsert Fig. 2 about here>>
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In each iteration i, the size of the space {[1} is2" if there are n products. By solving the
LP program in an exhaustive manner (i.e., 2" times), we can obtain the best solution in this
iteration--denoted by TI; , which defines an optimum set of cutoff points. For each product, the
housing-segment of the cutoff point obtained is called the y -segment (i.e., remaining segment)

of the product, which is the output of iteration i and will be the input of iteration i+1. The

bi-section search algorithm is summarized below.

Algorithm Search _Cutoff _Points
Initialization

® For each product, take the whole route as its y -segment.

Fori=1toN

® Create the two cutoff points on the y -segment for each product
® Solve LP programs in an exhaustive manner to find IT;

® Compute the y -segment for each product based on TIT;

End for
Output the cutoff points for each product

6. Module 2—Queueing and GA
The problem to be solved in Module 2 can be stated as follows. Given a target cycle time

(CT,) and a cutoff point decision (IT") obtained from Module 1, we attempt to find an optimal
route ratio decision R= [Flr_n] in order to maximize the total throughput of the two fabs
subject that the corresponding average cycle time is less than CT,.

This problem is essentially a space search problem, with a solution space
H={R}={[r.,..r]|r =(a,b,c,d.)}. Agenetic algorithm is proposed to solve the problem. In

the algorithm, the fitness (performance) of a solution R is evaluated by a queueing network

model. We first introduce the queueing network model and proceed to the genetic algorithm.

6.1 Queueing Network
The queueing network model is an extension of the model developed by Connors et al.

11



(1996). The I/0O function of the model developed by Connors et al. (1996) can be briefly
formulated as follow: CT= f(TH,R,IT). That is, given a target total throughput (TH), a route
ratio decision (R), and a cutoff point decision (IT), the queueing model (f) can be used to
compute the two fabs’ mean cycle time (CT). However, Connors et al. (1996) did not consider
the effect of transportation among workstations.

We extended the application of their model based on two assumptions. First, we assume
that the transportation path between any two stations is unique, where a station is either a
workstation or a WIP storage buffer. Secondly, each transportation path between any two
stations is modeled as a “conveyor machine” with only one unit of capacity. Such an extension
makes the developed queueing model closer to a semiconductor fab in the real world. Likewise,
the 1/0 function of the extended queuing model can also be described as CT= f (TH,R,IT).

The objective function in Module 2 is to maximize throughput (TH) subject to a target

cycle time (CTyp). To evaluate the objective function, we used a bi-section search technique to

find the total throughput (TH) for a particular route ratio (R); that is TH = f(R,IT",CT,)
where IT denotes the cutoff point decision obtained in Module 1 and CT, is the target cycle
time. Notice that, for the function CT= f(TH,R,II"), the higher the TH value, the higher is
the CT value. The bi-section search technique, based on CT= f(TH,R,IT1"), is intended to
search a value for TH so that CT =CT, . The bi-section search algorithm is just like that of the

binary search for a particular point on a line segment.

6.2 Genetic Algorithm
The genetic algorithm (GA\) is to identify an optimal solution R™ from the space {R}. As

stated, the performance of R is obtainable by the enhanced queueing model. A possible solution

R (or called a chromosome) is represented by a vector R :[Fl,...l_‘n] where E:(ai,b,,c,,di).

Wecal r a gene-segment and each of its element a gene, and the gene values are imposed

by the following constraints: a +b, +c +d, =1 and 0<a,b,c,,d, <1.

The GAis an iterative algorithm which can be briefly described as follows.
Procedure GA
Step 1: Initialization

12



® =0, Status = ‘Not-terminate’

® Randomly generate N, valid chromosomes to form a population Po

Step 2: Genetic Search
While (Status = ‘Not-Terminate’) do
®  Use cross-over operator to create N, new chromosomes
® Use mutation operator to create N, new chromosomes

® Form a pool by taking the union of P; and the set of newly created
chromosomes

® t=t+1,andselect the best N, chromosomes from the pool to form P;

® Check if termination condition is met; if yes, set Status = “Terminate”
Endwhile

Step 3: Output the best chromosome R™ in Py

The crossover operation is to create two new chromosomes (say, R; and R4) from two

existing ones (say, R; and R;). Let each gene-segment i in Ry and R, be respectively

represented by E and E . We proposed a one-point crossover operation (Binh & Lan 2007)
on gene-segments r, and r, to create two new ones r, and r,,which in turn could yield

two new chromosomes: R, =[r,], R, =[r,], 1<i<n.

The one-point crossover operation on a gene-segment is briefly introduced. For two
gene-segments (i.e., E and E), we randomly choose a gene, swap their gene values, and
modify another gene values in order to ensure a constraint satisfaction . Consider an example

where the 2" gene is chosen as the cross-over point for mixing r, =(a,,b,,c,,d,) and
r,=(a,b,.c,d,) . By the swap and modification operations, we would obtain

Es = (ail’b|2’cil’1_ai1 _b|2 _Cil) and E = (aiZ’bil’CiZ’l_ & - bil 'Ciz) .
In the mutation operation, a new chromosome (say, R).is created by an existing one (say,
R1). The mutation algorithm creates R, by modifying a particular gene-segment in R;. The

modified gene-segment is randomly chosen. While being selected, two of its genes are

randomly chosen and their gene values are swapped. For example, if gene-segment i’

13



is chosen for modification; and the 2" and 4™ genes are chosen to swap for
E:(au,b,l,cil,dil), then Ez(eyl,dil,cil,ql), which in turn yield a new chromosome
R, =[5,,.1.,..tm] from R =[r,,.r.,..rml.

Two termination conditions are defined for the GA. First, the best solution in P; has been

no change for over a certain period (say, Ty iterations). Second, population P; has evolved over

a certain number of iterations; that is, t has reached its predefined upper bound (T,).

7. Experiments
7.1. Benchmarks and Data

By using numeric experiments, we attempt to evaluate the effectiveness of the proposed
method. Two other methods are used as benchmarks for comparison. The proposed method is
designed as LP-GA, where LP denotes the linear program, GA denotes the genetic algorithm.
The two benchmark methods are special cases of LP-GA. The first one is called M-GA, which
denotes that the cutoff point of each route has been predetermined—just on the middle of the
route. The second one is called N-GA, where denotes that cross-fab production is not allowed.
Such a comparison is to tell how much benefit a dual-fab would obtain if the LP-GA method is
used.

In the dual-fab experiments, the data for machines and product routes are adapted from an
HP-fab in literature (Wein 1988). Of the two fabs, one involves 93 machines and the other
involves 72 machines. Being functionally identical, each fab involves 4 batch workstations and
21 series workstations. The MTBF (mean time between failure) and MTTR (mean time to
repair) of each machine is available, exponentially distributed. Three types of products are
produced. One product involves 150 operations; the other two both involve 172 operations but
are different in processing times. In implementing the GA, we set T, = 1000, T, = 30, Po = 100,
Per=0.8,and P, = 0.1,

7.2 Performance Comparison

The three methods are compared in two scenarios, with product mixes R = (3:2:5) and Rg
= (5:4:1) respectively. For each product mix, by the queueing model, we obtain a throughput
level that will keep the two fabs in high utilization: Qa = 128 lots and Qg = 169 lots.

14



We compare the three methods from two perspectives. First, given a target throughput
level, the mean cycle time of each method is compared. In the comparison, Qa and Qg are used
as the target throughput levels. Second, given a target cycle time, we compare the throughput
of each method. In the comparison, we set CTy=11,081 min. for R and CT=11,445 for Rg.

The cutoff points of each route obtained by the LP-GA method are shown in Table 1,
which indicates that the cutoff points suggested by the LP-GA are different from that of M-GA.

Table 2 shows the comparison of mean cycle times, subject to a target throughput. The
LP-GA outperforms the two benchmark methods. Using the result of LP-GA as a baseline, the
cycle time of the LP-GA method is about 10 % better than that of M-GA, and about 12-20%
better than that of N-GA. This implies that managing a dual fab by adopting an optimum
cross-fab production policy tends to shorten the cycle time—significantly better than managing
each fab independently (i.e., no cross-fab production).

Table 3 shows the comparison of throughput, subject to a target cycle time. The LP-GA
method also outperforms the two benchmark methods. Using the result of the LP-GA as a
baseline, the throughput of the LP-GA method is about 2.3% higher than that of M-GA, and
about 3.1-4.7% higher than that of N-GA. This implies that optimal planning of cross-fab

production is positive in increasing throughput.

<<Insert Table 1 about here>>
<<Insert Table 2 about here>>
<<Insert Table 3 about here>>
Figs. 3 and 4 reveal the relationship between cycle time and throughput for product mixes
Ra and Rg respectively. The higher the throughput, the longer is the cycle time. The two figures
also show that the higher the throughput, the larger is the performance gap. That is, the
contribution of the LP-GA method becomes higher while it is applied in a high market-demand
scenario.
<<Insert Fig. 3 about here>>

<<Insert Fig. 4 about here>>

7.3 Complexity Analysis
The computation times required by each module in the LP-GA method are shown in Table

15



4. The table indicates that the computation effort of Module 2 is much greater than that of
Module 1. Each of the two modules essentially deals with a space-search problem—attempting
to find an optimal solution from a solution space. Module 1 adopts an analytic approach (a
linear program) while .Module 2 adopts a meta-heuristic approach (GA). A complexity
analysis for Module 1 is therefore analyzed below.

<<Insert Table 4 about here>>

In Module 1, the iterative use of linear program is based on a binary-search method. For a
scenario with n product and each product involves 2 <m<2* operations, the number of
linear programs we have to perform is N =x-2". For a scenario with n = 3 and m = 172, we

need to perform the linear program about 8-2° =64 times, which computationally takes only
about 4 sec. The computation time will significantly increase if n is greatly increased.

To deal with the scenarios with large n, a future work of this paper can be investigated.
We need to develop a product clustering module. Out of the n products, only a limited number
(say, c) are considered for cross-fab production; the remaining n-c products are only be eligible

for single-fab production.

8. Conclusion

This paper presents an approach to solve the route planning problem for a semiconductor
dual-fab. In the problem, each product can be manufactured in either fab. And each product has
four possible production routes, which are defined by a cutoff point. The route planning
problem involves two decisions—determining the cutoff point and the route ratio for each
product—in order to maximize the throughput subject a cycle time constraint.

An LP-GA method is proposed to solve the route planning problem. We first use the LP
module to make the cutoff point decisions, and proceed to use the GA module for making the
decision of route ratio. The LP-GA method is compared with two benchmark methods by
numerical experiments. Results show that the LP-GA method significantly outperforms the
other methods.

Some extensions of this research are being considered. The first is the extension of this
approach to a multiple-fab production system—for example, three or more fabs shall share the
capacity in production. The second is the extension to a scenario with higher flexibility in

production routes—for example, each product could have two or more cutoff points and in turn

16



have more than four routes. The third extension as aforementioned is the examination of

scenarios with large number of products.
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Table 1: Cutoff points obtained by the LP-GA program

Product 1 Product 2 Product 3

Total Step Number 172 172 150
Ra 85" step 85" step 129" step
Rs 84" step 84" step 78" step
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Table 2: A comparison of mean cycle times of different algorithms

Ra (Qa = 128 lots)

Rg (Qs = 169 lots)

Algorithm CT (min) | Gaps (%) | CT (min) | Gaps (%)
LP-GA 11,080 0% 11,639 0%
M-GA 12,175 9.88 % 12,811 10.06 %
N-GA 12,463 12.48 % 14,075 209 %
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Table 3: A comparison of computing times of throughput of different algorithms

Ra (CT(=11081 min) Rg (CT=11445 min)
] Throughput Gap Throughput Gap
Algorithm
(lots) (%) (lots) (%)
LP-GA 128 0% 169 0%
M-GA 125 2.34 % 165 2.37 %
N-GA 124 3.12% 161 4.73 %
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Table 4: The computation times required by each module in the LP-GA method

Route ratio Module 1 (sec) Module 2 (sec)
Ra 3.5 95.578
Rs 4.2 103.265
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