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摘要 
 

電子產品的需求大增，造成半導體晶圓的需求也逐年增加，許多公司都不斷的興建

新的晶圓廠，形成公司擁有許多相鄰近晶圓廠的趨勢。而雙廠區的建置更逐漸形成半導

體產業未來的趨勢，如何將產品所需要的產能配置給相鄰近的晶圓廠形成一重要的問

題。過去有許多的相關文獻探討此問題，但其大部分假設廠區間產能無法跨廠支援。本

研究欲發展一演算法在產能可跨廠支援的情境下規劃產品的途程與產能配置，使平均的

生產週期時間最短。先利用線性規劃取得初始的途程規劃解，再利用基因演算法與等候

理論的評估工具來獲得最佳的途程規劃解。然後利用模擬來驗證此途程規劃解的正確

性。最後本研究並分析比較產能可互相支援與不能互相支援的績效差異。 

 

關鍵字：雙廠區、跨廠途程、途程規劃、產能支援 

 

 

Abstract 

 
This paper formulates and solves a route planning problem for semiconductor manufacturing. 

In order to quickly respond to demand booming, a semiconductor company usually adopts a 

dual-fab strategy in expanding capacity. That is, two fab sites are so built that they are 

neighbor to each other, and can easily share capacity. Through the capacity–sharing design, a 

product may be produced by a cross-fab route. That is, some operations of a product are 

manufactured in one fab and the other operations in the other fab. This leads to a routing 

planning problem, which involves two decisions—determining the cutoff point of the cross-fab 

route and the route ratio for each product—in order to maximize the throughput subject a cycle 

time constraint. An LP-GA method is proposed to solve the route planning problem. We first 

use the LP module to make the cutoff point decisions, and proceed to use the GA module for 

making the decision of route ratio. Experiment results show that LP-GA method significantly 
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outperforms the other methods. 

 

Keywords: dual-fab, cross-fab route, route planning, capacity sharing. 

 

 

 

1. Introduction 

Semiconductor manufacturing industry has three characteristics in expanding capacity. 

The cost of equipment is very expensive, maybe costing over one billion dollars for a 12 inch 

wafer fab. The lead time for equipment acquisition is quite long, ranging from 3 to 9 months. 

Yet, building the factory space is relatively low in expense but with a much longer lead 

time—taking about one to two years.   

In order to quickly respond to demand booming, a semiconductor company usually adopts 

a dual-fab strategy in expanding capacity. That is, a large-scale factory space that could 

accommodate two fabs is established in advance. Then, equipments for the two fabs are 

gradually moved into the space according to the market demand over time. The two fabs, so 

close to each other in location, are eligible to support capacity to each other, and should be 

managed in an integrated manner. .  

In such a dual-fab configuration, a relatively easy way to manage is manufacturing each 

wafer job in one fab. That is, each fab is run separately, without any mutual support in capacity. 

Such a separated-operation paradigm would usually lead to the underutilization of equipment. 

To remedy the underutilization issue, a cross-fab production paradigm is proposed. This means 

that a wafer job is partly manufactured in one fab and partly manufactured in the other fab.  

Such a cross-fab production paradigm yields a route planning problem—how to 

appropriately assign the operations of a wafer job to each of the two fabs. Only a few studies 

on the route planning problem have been published. Toba et al. (2005) addressed the route 

planning problem in a real-time manner. That is, whenever an operation of a job is completed, 

a decision—which fab to manufacture the next operation—must be immediately made. Wu and 

Chang (2006) investigated the route planning problem in a short-term or weekly manner, in 

which the two fabs exchange capacity weekly to maximize the total throughput. 

Though having established significant milestones, these two prior studies have some 

limitations due to make an implicit assumption. They both assumed that the transportation 
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times within a fab or among fabs are a constant. This implies that the transportation capacity is 

infinite, and the route planning algorithm may yield a solution with too much transportation. 

This may lead to traffic jam and as a result may lower the throughput and lengthen the cycle 

time.  

In semiconductor manufacturing, the wafer size has steadily increased over time. In an 

up-to-date fab (12 inch wafer fab), wafer jobs must be transported by automatic vehicles 

because a wafer job weighs about 30 kg and cannot be handled manually. This may yield a 

traffic jam problem because the transportation capacity is limited. Our interview with 

practitioners indicates that the traffic jam symptom would occur, in particular for a dual-fab 

layout. Therefore, transportation capacity has to be considered in the route planning problem 

for an up-to-date fab.  

This research investigates the route planning problem for a dual-fab layout and is unique 

in two-fold. First, we assume that the transportation capacity is finite and the transportation 

times would vary. Second, the route planning decision is made based on a relatively longer 

time horizon—for example, one or several months. This research, focusing on a relatively 

long-term decision, complements prior studies which focused on either short-term or mid-term 

decisions on route planning. 

The remainder of this paper is organized as follows. Section 2 reviews literature relevant 

to this research. Section 3 presents the route planning problem in detail. Section 4 described 

the solution framework that includes a linear programming (LP) model, a binary search 

algorithm, a queuing net work model, and a genetic algorithm (GA). Section 5 describes the LP 

model and the binary search algorithm. Section 6 describes the queueing model and the GA. 

Numerical experiments are presented in Section 7 and concluding remarks are in the last 

section. 

 

2. Relevant Literature 

Given a customer demand, there may exist more than one manufacturing sites to fulfill 

the demand. A decision problem is how to allocate the demand to each manufacturing site. This 

capacity allocation problem can be addressed either in product level or in operation level.  

For the problem in the product level, each site is designated to manufacture a set of 

products. This implies that a product should be completely manufactured within a single 
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site—cross-site production is prohibited. While in the operation level, each site is designated to 

manufacture a group of operations. Then, the operations for manufacturing a product could be 

distributed among different sites—cross-site production is allowed. This leads to the need for 

studying the route-planning problem. 

For the capacity allocation problem—without any cross-site routes, Wu et al. (2005) have 

given a comprehensive survey. Some recent studies are listed (Rupp ＆ Ristic 2000; Frederix 

2001; Karabuk ＆ Wu 2003; Manmohan 2005; Lee et al. 2006; Chiang et al. 2007). Linear 

programming models are commonly used to solve the problems. To address the interactions 

among manufacturing sites, game theory was proposed to enhance the LP model (Mieghem 

1999).   

For the capacity allocation problem—with some cross-site routes, most studies were 

addressed in the context of group technology (GT). That is, each site is a manufacturing cell 

and multiple cells form a factory. Cross-cell production for manufacturing a product is 

permitted. However, each product is preferably manufactured within a particular cell and 

cross-cell production should be minimized. 

Most prior studies allocated the capacity demand to cells through solving a cell formation 

problem (Avonts ＆ Wassenhove 1988; Kim et al. 2005; Vin et al. 2005; Dimopoulos 2006; 

Mahdavi 2006; Nsakanda et al. 2006; Spiliopoulos ＆ Sofianopoulou 2007). That is, in order 

to minimize the number of cross-cell transportations, researchers have to answer how many 

cells should be formed and how each cell should be equipped. After the cell formation problem 

is solved, each product is assigned to a particular cell for handling most of its operations. The 

remaining operations, much fewer in number, are handled by other cells. A GT cell is designed 

for manufacturing a particular group of products, and by nature is limited in its functional 

capacity. Therefore, cross-cell routes are unavoidably demanded in GT in order to enhance its 

functional spectrum. 

However, in the route-planning problem we address, each of the two fabs is assumed to be 

functionally comprehensive. That is, a product can be completely manufactured in either one 

of the two fabs. The purpose of cross-fab production is to increase the total throughput of the 

two fabs, with the rationale explained below. 

In practice, a semiconductor fab is equipped to fulfill demand of a particular product mix, 
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which is generally obtained from the demand forecast at the time of purchasing equipment. 

However, the market demand in terms of product mix may change over time. Therefore, a fab 

may be underutilized due to a change of product mix. In addition, the two fabs, even both 

functionally comprehensive, may differ in number for each type of machines. This implies that 

their originally designed product mixes may also differ. Cross-fab production therefore is 

needed to increase the total throughput of the two fabs. 

 

3. Problem Statement 

This section aims to describe the dual-fab route planning problem more precisely. We first 

present the assumptions that confine the context of the route planning problem; and then 

proceed to introduce the decision variables, objective function and constraints of the problem. 

In explaining the assumptions, the two fabs are respectively called Fab_A and Fab_B.  

Assumption 1: Each fab is functional comprehensive. Each of the two fabs is so 

comprehensively equipped that it can handle the manufacture of each product by itself—not 

requiring the functional support of the other fab.  

Assumption 2: A product has four possible routes. To implement cross-fab production, the 

manufacturing route of a product is cut into two parts, where the route‘s break point is called a 

cut-off point. The two parts can be manufactured in different fabs, and yield two possible 

routes for cross-fab production. One, represented by   , denotes that the first part of the 

route is manufactured at Fab_A and the second part is at Fab_B. The other one, represented by 

  , denotes that the first part of the route is at Fab_B and the second part is at Fab_A. 

Since each fab is functionally comprehensive, a product thus has four possible manufacturing 

routes,  ,  ,   , and   , where   denotes a route at Fab_A only and   

denotes a route at Fab_B only. 

Assumption 3: The transportation path between any two workstations/buffers is unique, 

rather than multiple. In each fab, a transportation system for moving wafer jobs has been 

established. Theoretically, there may exist multiple paths in transporting a wafer job from a 

workstation to another; however, to reduce the complexity of traffic control, we predefine a 

fixed path for such a transport. 

The route planning problem has two decision variables for each product: its cutoff point 

and the ratios of its four possible routes (simply called route ratios). Let the cutoff point and 
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route ratios of product i be represented by ( , )i ir . Herein, i  denotes the identification code 

(an integer) of the operation for separating a route into two parts; and  [ , , , ]i i i i ir a b c d  is a 

four-element vector where each element denotes the percentage of a particular route—of the 

four ones  ,  ,   , and   . Define 1[ ,..., ]n    as a set of cutoff points and 

],...,[ 1 nrrR = as a set of route ratios for n products to be produced. The route planning problem 

is to determine a * *( , )R  in order to maximize the total throughput of the two fabs, subject 

to the constraint of meeting a target cycle time.   

4. Solution Framework 

A framework proposed for solving the dual-fab route planning problem is shown in Fig. 1, 

which involves two modules. 

<<Insert Fig. 1 about here>> 

In Module 1, each transportation path is assumed to be equipped with infinite capacity; 

and the transportation time between any two workstations/buffers is zero. With the routing 

problem so simplified, we attempt to find an optimum , in terms of minimizing the total 

number of inter-fab transportations. The problem is solved by an iterative use of a linear 

program (LP) model. For a particular , the LP model aims to compute its minimum number 

of inter-fab transportations, which is regarded as the performance of the . We then use a 

binary search algorithm to identify an optimum * as the ultimate decision for cutoff point. 

In Module 2—with the obtained * taken as parameters, we deal only with the decision 

variables ],...,[ 1 nrrR = . In this module, each transportation path is taken as a tool with limited 

capacity. The transportation time required for passing through a path can be varied, depending 

upon the traffic flow intensity. The higher the traffic intensity, the longer is the cycle time.  

Module 2 involves two sub-modules. The first one aims to develop a performance 

evaluator for a particular ( , )R . To do so, we first construct a queueing network model 

(Connors et al.1996) in order to compute the resulting mean cycle time, subject to a target 

throughput and a particular ( , )R . The queueing model is further enhanced as follows. 

Subject to a target mean cycle time and a particular ( , )R , the enhanced model could compute 

the resulting throughput—the performance of the ( , )R . 

With *  having been obtained in Module 1, the second sub-module of Module 2 aims to 
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search an *R  so that the performance * *( , )R  is the best. A genetic algorithm is proposed 

to solve the search problem—finding the ultimate decision of R. 

 In summary, the solution space of the dual-fab routing planning problem can be 

described by S ={( , ) | _ ,  _ }R Set R R Set   . The objective is to find an optimum 

* *( , )R  from S, in terms of maximizing throughput subject to a target cycle time. Since the 

number of elements in S can be very huge, the problem is decomposed into two sub-problems. 

The first one is to find an optimum * , and the second sub-problem proceeds to find an 

optimum *R  by taking * as predefined parameters. 

The essences of these two modules are compared below. Module 1 essentially deals with a 

static capacity allocation problem which does not consider job flow time. In contrast, Module 

2 deals with a time-phased capacity allocation problem, in which job flow time is addressed 

and computed by a queueing network model.  

Without addressing job flow time, Module 1 needs not considering the transportation 

times of jobs. This leads to the underlying assumption of Module 1—the transportation time 

between any two workstations/buffers is zero. While the underlying assumption is released, we 

have to consider job flow time in Module 1. Solving such a problem is very computational 

extensive because it may need an iterative evaluation of a linear program embodied with a 

discrete event simulation program, as proposed by Hung and Leachman (1996).  

 

5. Module 1－LP Model and Search Algorithm 

Obtaining the solution for Module 1 is through an iterative use of an LP program. We first 

describe the LP model and then present the iterative method—a bi-section search algorithm.  

 

Indices 

i: index of product 

g : index of workstation in Fab_A 

h: index of workstation in Fab_B 

 

Parameters 

n: total number of products 
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i : cutoff point for defining the cross-fab routes of product i 

 : [ ],  1i i n    , a vector for describing the cut-off points of all products 

Q : an estimated total throughput of the two fabs while in high utilization (in lots), which is 

used as the target throughput in the LP model.  

iP : percentage of product i in the product mix, 
1

=1, 0 1
n

i i

i

P P


   

gC : available machine hours of workstation g in Fab_A 

hC : available machine hours of workstation h in Fab_B 

am : total number of workstations in Fab_A 

bm : total number of workstations in Fab_B 

a

igW : total processing time per lot required on workstation g in Fab_A, while product i is 

manufactured by route   

c

igW  total processing time per lot required on workstation g in Fab_A, while product i is 

manufactured by route    

d

igW : total processing time per lot required on workstation g in Fab_A, while product i is 

manufactured by route    

b

ihW : total processing time per lot required on workstation h in Fab_B, while product i is 

manufactured by route   

c

ihW : total processing time per lot required on workstation h in Fab_B, while product i is 

manufactured by route    

d

ihW  total processing time per lot required on workstation h in Fab_B, while product i is 

manufactured by route    

 

Decision Variables 

ia : percentage of using route   in producing product i  

ib : percentage of using route   in producing product i 

ic : percentage of using route    in producing product i 
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id  percentage of using route    in producing product i 

 

5.1 LP Model  

    The LP program is to compute a minimum number of cross-fab transportation for a 

particular  --a decision for the route cutoff points, which has been known before solving the 

LP problem. The objective function of the LP program is denoted by Z( ).  

    Min 
1

( ) ( )
n

i i i

i

Z Q P c d


              

s. t. 

     1i i i ia b c d         1 i n                        (1)           

     
1

( )
n

a d c

i i ig i ig i ig g

i

Q P a W d W c W C


          1 ag m      (2)                                 

1

( )
n

b d c

i i ih i ih i ih h

i

Q P b W d W c W C


          1 bh m       (3)                                     

                                                                                  

    The objective function is to minimize the number of cross-fab production lots. The 

rationale for defining this objective is that cross-fab production requires longer transportation 

time than within-fab production. Subject to a target cycle time, an attempt to minimize 

cross-fab production lots tends to increase total throughput. Constraint (1) describes the 

dependent relationship among the route ratios. Constraints (2) and (3) ensure that the capacity 

used in each workstation, for Fab_A and Fab_B, should be lower than its available supply. 

 

5.2 Bi-section Search Algorithm 

The bi-section search algorithm is to find an optimum solution *  from a space, 

denoted by {}, which is the possible combinations of cutoff points for all products. The 

algorithm is an iterative process. In an iteration, each product has only two possible cutoff 

points to select. Taking a product route as a line, the two cutoff points are respectively on the 

first and the third quartiles (Fig 2). By evenly cutting the route into two segments, each cutoff 

point is in the middle of a particular segment. Of the two evenly divided segments, the one 

where a cutoff point stays is called the housing-segment of the point.  

<<Insert Fig. 2 about here>> 



11 

 

In each iteration i, the size of the space {} is 2n  if there are n products. By solving the 

LP program in an exhaustive manner (i.e., 2n  times), we can obtain the best solution in this 

iteration--denoted by *

i , which defines an optimum set of cutoff points. For each product, the 

housing-segment of the cutoff point obtained is called the -segment (i.e., remaining segment) 

of the product, which is the output of iteration i and will be the input of iteration i+1. The 

bi-section search algorithm is summarized below. 

 

Algorithm Search _Cutoff_Points  

Initialization 

 For each product, take the whole route as its -segment. 

For i = 1 to N 

 Create the two cutoff points on the -segment for each product 

 Solve LP programs in an exhaustive manner to find 
*

i  

 Compute the -segment for each product based on 
*

i  

End for 

Output the cutoff points for each product 

 

6. Module 2—Queueing and GA 

The problem to be solved in Module 2 can be stated as follows. Given a target cycle time 

( 0CT ) and a cutoff point decision ( * ) obtained from Module 1, we attempt to find an optimal 

route ratio decision ],...,[ 1 nrrR =  in order to maximize the total throughput of the two fabs 

subject that the corresponding average cycle time is less than 0CT . 

This problem is essentially a space search problem, with a solution space 

1{ } {[ ,... ] | ( , , , )}n i i i i iH R r r r a b c d   . A genetic algorithm is proposed to solve the problem. In 

the algorithm, the fitness (performance) of a solution R is evaluated by a queueing network 

model. We first introduce the queueing network model and proceed to the genetic algorithm.  

 

6.1 Queueing Network 

The queueing network model is an extension of the model developed by Connors et al. 
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(1996). The I/O function of the model developed by Connors et al. (1996) can be briefly 

formulated as follow: ( , , )CT f TH R  . That is, given a target total throughput (TH), a route 

ratio decision (R), and a cutoff point decision ( ), the queueing model (f) can be used to 

compute the two fabs‘ mean cycle time (CT). However, Connors et al. (1996) did not consider 

the effect of transportation among workstations.  

We extended the application of their model based on two assumptions. First, we assume 

that the transportation path between any two stations is unique, where a station is either a 

workstation or a WIP storage buffer. Secondly, each transportation path between any two 

stations is modeled as a ―conveyor machine‖ with only one unit of capacity. Such an extension 

makes the developed queueing model closer to a semiconductor fab in the real world. Likewise, 

the I/O function of the extended queuing model can also be described as ( , , )CT f TH R  . 

The objective function in Module 2 is to maximize throughput (TH) subject to a target 

cycle time (CT0). To evaluate the objective function, we used a bi-section search technique to 

find the total throughput (TH) for a particular route ratio (R); that is 
*

0( , , )TH f R CT   

where * denotes the cutoff point decision obtained in Module 1 and 0CT  is the target cycle 

time. Notice that, for the function *( , , )CT f TH R  , the higher the TH value, the higher is 

the CT value. The bi-section search technique, based on 
*( , , )CT f TH R  , is intended to 

search a value for TH so that 0 CT CT . The bi-section search algorithm is just like that of the 

binary search for a particular point on a line segment. 

 

6.2 Genetic Algorithm 

 The genetic algorithm (GA) is to identify an optimal solution *R  from the space {R}. As 

stated, the performance of R is obtainable by the enhanced queueing model. A possible solution 

R (or called a chromosome) is represented by a vector 
1[ ,... ]nR r r  where ( , , , )i i i i ir a b c d . 

We call  
ir  a gene-segment and each of its element a gene, and the gene values are imposed 

by the following constraints: 1i i i ia b c d     and 0 , , , 1i i i ia b c d  .  

 The GA is an iterative algorithm which can be briefly described as follows.  

Procedure GA 

 Step 1: Initialization  



13 

 

 t = 0, Status = ‗Not-terminate‘ 

 Randomly generate pN valid chromosomes to form a population P0 

    Step 2: Genetic Search 

While (Status = ‗Not-Terminate‘) do 

 Use cross-over operator to create cN  new chromosomes  

 Use mutation operator to create mN  new chromosomes 

 Form a pool by taking the union of Pt and the set of newly created 

chromosomes 

 t = t + 1, and select the best pN chromosomes from the pool to form Pt 

 Check if termination condition is met; if yes, set Status = ―Terminate‖  

Endwhile 

Step 3: Output the best chromosome *R  in  Pt 

  

 The crossover operation is to create two new chromosomes (say, R3 and R4) from two 

existing ones (say, R1 and R2). Let each gene-segment i in R1 and R2 be respectively 

represented by 
1ir  and 

2ir . We proposed a one-point crossover operation (Binh & Lan 2007) 

on gene-segments 
1ir  and 

2ir  to create two new ones 
3ir  and 

4ir , which in turn could yield 

two new chromosomes: 
3 3[ ]iR r , 

4 4[ ],  1iR r i n   . 

 The one-point crossover operation on a gene-segment is briefly introduced. For two 

gene-segments (i.e., 
1ir  and 

2ir ), we randomly choose a gene, swap their gene values, and 

modify another gene values in order to ensure a constraint satisfaction . Consider an example 

where the 2
nd

 gene is chosen as the cross-over point for mixing 
1 1 1 1 1( , , , )i i i i ir a b c d  and 

2 2 2 2 2( , , , )i i i i ir a b c d . By the swap and modification operations, we would obtain 

3 1 2 1 1 2 1( , , ,1 )i i i i i i ir a b c a b c     and )---1,,,( 2122124 iiiiiii cbacbar = . 

 In the mutation operation, a new chromosome (say, R2).is created by an existing one (say, 

R1). The mutation algorithm creates R2 by modifying a particular gene-segment in R1. The 

modified gene-segment is randomly chosen. While being selected, two of its genes are 

randomly chosen and their gene values are swapped.       For example, if gene-segment *i  
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is chosen for modification; and the 2
nd

 and 4
th

 genes are chosen to swap for 

* 1 1 1 11
( , , , )i i i ii

r a b c d , then * 1 1 1 12
( , , , )i i i ii

r a d c b , which in turn yield a new chromosome 

* 12 11 2
[ ,.. ,... ]n

i
R r r r  from * 11 11 1

[ ,.. ,... ]n
i

R r r r . 

Two termination conditions are defined for the GA. First, the best solution in Pt has been 

no change for over a certain period (say, Tb iterations). Second, population Pt has evolved over 

a certain number of iterations; that is, t has reached its predefined upper bound (Tu). 

 

7. Experiments 

7.1. Benchmarks and Data 

By using numeric experiments, we attempt to evaluate the effectiveness of the proposed 

method. Two other methods are used as benchmarks for comparison. The proposed method is 

designed as LP-GA, where LP denotes the linear program, GA denotes the genetic algorithm. 

The two benchmark methods are special cases of LP-GA. The first one is called M-GA, which 

denotes that the cutoff point of each route has been predetermined—just on the middle of the 

route. The second one is called N-GA, where denotes that cross-fab production is not allowed. 

Such a comparison is to tell how much benefit a dual-fab would obtain if the LP-GA method is 

used.  

In the dual-fab experiments, the data for machines and product routes are adapted from an 

HP-fab in literature (Wein 1988). Of the two fabs, one involves 93 machines and the other 

involves 72 machines. Being functionally identical, each fab involves 4 batch workstations and 

21 series workstations. The MTBF (mean time between failure) and MTTR (mean time to 

repair) of each machine is available, exponentially distributed. Three types of products are 

produced. One product involves 150 operations; the other two both involve 172 operations but 

are different in processing times. In implementing the GA, we set Tb = 1000, Tu = 30, P0 = 100, 

Pcr = 0.8, and Pm = 0.1. 

 

7.2 Performance Comparison 

The three methods are compared in two scenarios, with product mixes RA = (3:2:5) and RB 

= (5:4:1) respectively. For each product mix, by the queueing model, we obtain a throughput 

level that will keep the two fabs in high utilization: QA = 128 lots and QB = 169 lots.  
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We compare the three methods from two perspectives. First, given a target throughput 

level, the mean cycle time of each method is compared. In the comparison, QA and QB are used 

as the target throughput levels. Second, given a target cycle time, we compare the throughput 

of each method. In the comparison, we set CT0 =11,081 min. for RA and CT0 =11,445 for RB. 

The cutoff points of each route obtained by the LP-GA method are shown in Table 1, 

which indicates that the cutoff points suggested by the LP-GA are different from that of M-GA.  

Table 2 shows the comparison of mean cycle times, subject to a target throughput. The 

LP-GA outperforms the two benchmark methods. Using the result of LP-GA as a baseline, the 

cycle time of the LP-GA method is about 10 % better than that of M-GA, and about 12-20% 

better than that of N-GA. This implies that managing a dual fab by adopting an optimum 

cross-fab production policy tends to shorten the cycle time—significantly better than managing 

each fab independently (i.e., no cross-fab production).  

Table 3 shows the comparison of throughput, subject to a target cycle time. The LP-GA 

method also outperforms the two benchmark methods. Using the result of the LP-GA as a 

baseline, the throughput of the LP-GA method is about 2.3% higher than that of M-GA, and 

about 3.1-4.7% higher than that of N-GA. This implies that optimal planning of cross-fab 

production is positive in increasing throughput. 

 

<<Insert Table 1 about here>> 

<<Insert Table 2 about here>> 

<<Insert Table 3 about here>> 

Figs. 3 and 4 reveal the relationship between cycle time and throughput for product mixes 

RA and RB respectively. The higher the throughput, the longer is the cycle time. The two figures 

also show that the higher the throughput, the larger is the performance gap. That is, the 

contribution of the LP-GA method becomes higher while it is applied in a high market-demand 

scenario. 

<<Insert Fig. 3 about here>> 

<<Insert Fig. 4 about here>> 

 

7.3 Complexity Analysis 

The computation times required by each module in the LP-GA method are shown in Table 
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4. The table indicates that the computation effort of Module 2 is much greater than that of 

Module 1. Each of the two modules essentially deals with a space-search problem—attempting 

to find an optimal solution from a solution space. Module 1 adopts an analytic approach (a 

linear program) while .Module 2 adopts a meta-heuristic approach (GA). A complexity 

analysis for Module 1 is therefore analyzed below.  

<<Insert Table 4 about here>> 

In Module 1, the iterative use of linear program is based on a binary-search method. For a 

scenario with n product and each product involves 12 2x xm    operations, the number of 

linear programs we have to perform is 2nN x  . For a scenario with n = 3 and m = 172, we 

need to perform the linear program about 38 2 64   times, which computationally takes only 

about 4 sec. The computation time will significantly increase if n is greatly increased.  

To deal with the scenarios with large n, a future work of this paper can be investigated. 

We need to develop a product clustering module. Out of the n products, only a limited number 

(say, c) are considered for cross-fab production; the remaining n-c products are only be eligible 

for single-fab production.    

 

8. Conclusion 

This paper presents an approach to solve the route planning problem for a semiconductor 

dual-fab. In the problem, each product can be manufactured in either fab. And each product has 

four possible production routes, which are defined by a cutoff point. The route planning 

problem involves two decisions—determining the cutoff point and the route ratio for each 

product—in order to maximize the throughput subject a cycle time constraint.  

 An LP-GA method is proposed to solve the route planning problem. We first use the LP 

module to make the cutoff point decisions, and proceed to use the GA module for making the 

decision of route ratio. The LP-GA method is compared with two benchmark methods by 

numerical experiments. Results show that the LP-GA method significantly outperforms the 

other methods.  

 Some extensions of this research are being considered. The first is the extension of this 

approach to a multiple-fab production system—for example, three or more fabs shall share the 

capacity in production. The second is the extension to a scenario with higher flexibility in 

production routes—for example, each product could have two or more cutoff points and in turn 
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have more than four routes. The third extension as aforementioned is the examination of 

scenarios with large number of products. 
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Table 1: Cutoff points obtained by the LP-GA program 

 Product 1 Product 2 Product 3 

Total Step Number 172 172 150 

RA 85
th

 step 85
th

 step 129
th

 step 

RB 84
th

 step 84
th

 step 78
th

 step 
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Table 2: A comparison of mean cycle times of different algorithms 

 RA (QA = 128 lots) RB (QB = 169 lots) 

Algorithm CT (min)  Gaps (%) CT (min) Gaps (%) 

LP-GA 11,080 0 % 11,639 0 % 

M-GA 12,175 9.88 % 12,811  10.06 % 

N-GA 12,463 12.48 % 14,075 20.9 % 
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Table 3: A comparison of computing times of throughput of different algorithms 

 RA (CT0=11081 min) RB (CT0=11445 min) 

Algorithm 
Throughput 

(lots) 

Gap 

(%) 

Throughput 

 (lots) 

Gap 

(%) 

LP-GA 128 0 % 169 0 % 

M-GA 125 2.34 % 165 2.37 % 

N-GA 124 3.12 % 161 4.73 % 
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Table 4: The computation times required by each module in the LP-GA method 

Route ratio Module 1 (sec) Module 2 (sec) 

RA 3.5 95.578 

RB 4.2 103.265 
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Fig. 1 Solution Framework 
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Fig. 2 Process of the cutoff point 
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Fig. 3 Relationship between throughput and cycle time for product mix RA 
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Fig. 4 Relationship between throughput and cycle time for product mix RB 
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