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Abstract

Stationarity is investigated in the context of a general multiple-input–multiple-
output (MIMO) fading channel with memory. It is shown that stationary processes
behave nicely as one does expect.

Concretely, this reports concentrates on three topics with regard to stationarity:
firstly it is proven that—under weak conditions on the channel—any stationary
channel model will have a capacity-achieving input distribution that is stationary.
This statement holds in general and is not restricted to MIMO fading channels.

Secondly, it is shown that entropy rate is well-defined also in the context of
differential entropy and stationary processes. Moreover, it can be generalized to
more complex forms of conditional entropy rates without problems as long as all
involved processes are stationary. Again, this are general statements not specific to
MIMO fading.

Thirdly, in the context of MIMO fading it is shown that the memory of a sta-
tionary process fades in a way that one expects.

Keywords: Channel capacity, fading number, flat fading, stationarity.
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Chapter 1

Introduction

1.1 General Background

The importance of mobile communication systems nowadays needs not to be em-
phasized. Worldwide millions of people rely daily on their mobile phone. While for
the user a mobile phone looks very similar to an old-fashioned wired telephone, the
engineering technique behind it is very much different. The reason for this is that
in a wireless communication system several physical effects occur that change the
behavior of the channel completely compared with wired communication:

• The signal may find many different paths from the sender to the receiver via
various different reflections (buildings, trees, etc.). Therefore the receiver re-
ceives multiple copies of the same signal, however, since each path has different
length and different attenuation, the various copies of the signal will arrive at
different times and with different strength.

• Since the transmitter and/or the receiver might be in motion while transmit-
ting, a physical phenomenon called Doppler effect occurs: the frequency of
the transmitted signal is shifted depending on the relative movement between
receiver and transmitter.

• Since receiver and transmitter are moving and because the environment is
changing permanently (e.g., movements by wind, passing cars, people, etc.),
the different signal paths are constantly changing, too.

The first two effects lead to a channel that not only adds noise to the transmitted
signal (as this is the case for the traditional wired communication channel), but also
changes the amplitude of the signal (so called fading) and in extreme cases intro-
duces inter-symbol interference. Both effects can be combatted using appropriate
transmissions schemes and coding.

The fact of the time variant nature of the channel is more difficult to deal with.
Nowadays, usually a wireless communication system uses training sequences that are
regularly transmitted between real data in order to measure the channel state, and
then this knowledge is used to detect the data. This approach has the advantage
that the system design can be split into two parts: one part dealing with estimating
the channel and one part doing the detection under the assumption that the channel
state is perfectly known.

The big disadvantage of the separate estimation and detection is that it is rather
inefficient because bandwidth is lost for the transmission of the training sequences.
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Particularly, if the channel is fast changing, the estimates will quickly become poor
and the amount of needed training data will be exuberantly large.

A more promising approach is to design a system that uses the received data
carrying the information at the same time for estimating the channel state. Such
a joint estimation and detection approach will be particularly important for future
systems where the required data rates are considerably larger than the rates provided
by present systems (like, e.g., GSM).

A further advantage of such joint estimation and detection systems is that they
allow fair and realistic approximations to the physically feasible data rates. To elab-
orate more on this point, we need to briefly review some basic facts from information
theory: in his famous landmark paper “A Mathematical Theory of Communication”
[1] Claude E. Shannon proved that for every communication channel there exists a
maximal rate—denoted capacity—above which one cannot transmit information re-
liably, i.e., the probability of making decoding errors tends to one. On the other
hand for every rate below the capacity it is theoretically possible to design a system
such that the error probability is as small as one wishes. Of course, depending on
the aimed probability of error, the system design will be rather complex and one
will encounter possibly very long delays between the start of the transmission until
the signal can be decoded. Particularly the latter is a large obstacle in real systems
because most communication systems cannot afford large delays. Nevertheless, the
capacity shows the ultimate limit of communication rate of the available channel
and is therefore fundamental for the understanding of the channel and also for the
judgment of implemented systems regarding their efficiency.

As mentioned above, in the situation of wireless communication channels the
channel capacity is limited due to two main sources of transmission errors. Firstly,
the receiver introduces thermal noise that can be well modeled by an additive random
noise process. Secondly, because the signals are electromagnetic waves transmitted
through air, the received signals suffer from random fluctuations in the magnitude
and phase. This effect, known as fading, can be described by a multiplicative random
noise process.

While the additive noise can be well approximated by an independent and identi-
cally distributed (IID) complex Gaussian process for almost all channels of interest,
the detailed properties of the multiplicative noise depends on many parameters,
system-internal and -external, and should therefore be kept as general as possible.
Unfortunately, the analysis of the channel capacity in such generality is very difficult
so that commonly the model is simplified in certain aspects.

One possible simplification is to assume that the receiver perfectly knows the
fading realizations. This assumption is based on the idea that the transmitter will
firstly transmit some known training symbols from which the receiver learns the
current state of the multiplicative noise process. The capacity is then computed
without taking into account the estimation scheme. It is common to call this the
coherent capacity of fading channels. Such an approach will definitely lead to an
overly optimistic capacity value because

• even with a large amount of training data the channel knowledge will never be
perfect, but only an estimate; and because

• the data rate that is wasted for the training symbols is completely ignored.

In this project we will not make this simplification, but stick with noncoherent
detection where the receiver has no additional knowledge about the channel state.

3



Note that the receiver is free to do anything in its power to gain knowledge about
the fading based on the received signals.

Marzetta and Hochwald [2] simplify the noncoherent channel model by assuming
that during blocks consisting of several symbol periods the fading remains constant,
while the fading coefficients corresponding to different blocks are assumed to be
independent. This model is generally known as block fading model. Note that
it is pessimistic to assume that the blocks are independent of each other because
memory provides additional information about the current fading level which in
general will increase capacity. However, it is more problematic to conjecture that
the fading coefficients are perfectly constant during one block. This means that for
high enough signal-to-noise ratios (SNR) and for long enough blocks the receiver
can get an (almost) perfect estimate of the fading value within a block and use this
knowledge to decode the received signal similarly to coherent detection. For larger
SNR this seems to be overly optimistic. Indeed, as shown in [2] for single-input–
single-output (SISO) Gaussian block fading and in [3] for multiple-input–multiple-
output (MIMO) Gaussian block fading, the capacity of the block fading channel
grows logarithmically in the SNR at high SNR, i.e., the capacity has the same
growth rate as the coherent capacity (and, as a matter of fact, as the capacity of an
additive noise channel without fading, too).

In [4] Liang and Veeravalli generalize the SISO Gaussian block fading model by
allowing some temporal correlation between the different fading coefficients within
one block. They show that the rank of the block correlation matrix is crucial when
determining the high-SNR channel capacity: if we have a rank-deficient correlation
matrix, the effect of perfect predictability comes into play again similar to the situ-
ation of Marzetta and Hochwald [2]. This then again leads to a logarithmic growth
of capacity. For a full-rank correlation matrix this is not true anymore. In this case
the channel model reduces to a special case of the more general model described
next.

The most general models only restrict the random noise processes to be sta-
tionary and ergodic, with additional variations in the exact fading law, the number
of antennas, and the memory [5]–[13]. In [5] the authors investigate a memory-
less SISO Rayleigh fading channel and derive some bounds. In [6] it is shown that
the capacity-achieving input distribution for the memoryless SISO Rayleigh fading
channel is discrete. In [7]–[9] the channel model is then generalized to MIMO and to
general non-Gaussian fading distributions (possibly with memory) where the fading
process is assumed to be regular, i.e., its differential entropy rate is finite. The com-
plementary situation of nonregular fading processes has been studied in [10]–[13].

It turns out that the capacity at high SNR is very sensitive to the exact assump-
tions of the channel model, in particular to the regularity assumption. If we assume
a regular fading process, then the capacity grows only double-logarithmically in the
SNR at high SNR [7, Theorem 4.2], [9, Theorem 6.10]. This means that at high
power such a channel becomes extremely power-inefficient in the sense that whenever
the capacity shall be increased by only one bit, the SNR needs to be squared or, on
a dB-scale, the SNR needs to be doubled! So the high-SNR behavior is dramatically
different from the optimistic models mentioned above.

For nonregular Gaussian fading the high-SNR behavior of capacity depends on
the specific power spectral density and can be anything between the logarithmic and
the double-logarithmic growth [11].

However, it is interesting to observe that for low SNR the difference between the
different models is relatively small. Indeed, the capacity of regular fading channels
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Figure 1: An upper bound on the capacity of a Rician fading channel as a function
of the output-SNR ρ = (1 + |d|2)snr for different values of the specular component
d. The dashed line corresponds to the situation of a Rayleigh fading channel with
a zero line-of-sight component d = 0. The dotted line depicts the capacity of an
additive Gaussian noise channel (without fading) of equal output-SNR ρ, namely
log(1 + ρ).

usually shows a very distinct turn at a certain SNR level where the growth rate
changes from logarithmic to double-logarithmic. As an example Figure 1 shows the
capacity of a noncoherent Rician fading channel with various values of the line-of-
sight component. One clearly sees that the capacity curve, while growing logarith-
mically at lower SNR, suddenly has a sharp bend at a certain threshold where its
growth becomes very slow. Moreover, one sees that this threshold depends strongly
on the channel law, i.e., on the line-of-sight component.

We conclude that at lower SNR the exact choice of the channel model has only
a small impact on the capacity analysis, i.e., the described simplifications (even the
assumption of coherent detection) are useful in that regime. However, at high SNR
many simplifications seem to lose their validity. Based on this observation we imme-
diately ask ourselves whether we can say something about the separation between
these two regimes. Particularly, in the situation of a regular fading model, we would
like to know more about the threshold between the efficient low- to medium-SNR
regime where the capacity grows logarithmically in the SNR and the highly ineffi-
cient high-SNR regime with a double-logarithmic growth. The dependence of this
threshold on some system parameters like the number of antennas, the memory in
the channel, or the availability of feedback might give valuable insight in good design
criteria of wireless and mobile communication systems.
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1.2 The Fading Number

In an attempt to more precisely quantify the mentioned threshold between the
power-efficient and the power-inefficient regime, [7, Sec. IV.C] and [9, Sec. 6.5.2]
define the fading number χ as the second term in the high-SNR asymptotic expan-
sion of capacity, i.e., at high SNR the channel capacity can be expressed as

C(snr) = log(1 + log(1 + snr)) + χ + o(1). (1.1)

Here, o(1) denotes some terms that tend to zero as snr ↑ ∞.
Based on (1.1) we define the high-SNR regime to be the region where the o(1)-

terms in (1.1) are negligible, i.e., we say that a wireless communication system
operates in the inefficient high-SNR regime if its capacity can be well approximated
by

C(snr) ≈ log(1 + log(1 + snr)) + χ. (1.2)

The important point to notice is that due to the extremely slow growth of log(1 +
log(1 + snr)) the fading number χ is usually the dominant term in the lower range
of the high-SNR regime. In other words, log(1 + log(1 + snr)) is only much larger
than χ for extremely large values of snr. An illustration of this behavior is given in
Figure 2.

C(snr)

o(1) χ

χ

log(1+ log(1+snr))

snr
snr0

dominatingdominatingdominating

Figure 2: Illustration of the different regimes of a typical regular fading channel. At
low SNR the o(1) terms are dominant, in the lower range of the high-SNR regime the
fading number χ is dominant, and only at very high SNR the log(1 + log(1 + snr))
term takes the lead.

The fading number is therefore strongly connected to the point where the bend
of the capacity curve occurs. As an example consider the following situation [13],
[14]: assume for the moment that the threshold snr0 lies somewhere between 30
and 80 dB (it can be shown that this is a reasonable assumption for many channels
that are encountered in practice). In this case, the threshold capacity C0 = C(snr0)
must be somewhere in the following interval:

log
(
1 + log

(
1 + 30 dB

))
+ χ ≤ C0 ≤ log

(
1 + log

(
1 + 80 dB

))
+ χ (1.3)

i.e.,
χ + 2.1 nats ≤ C0 ≤ χ + 3 nats. (1.4)
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Hence, even though we have assumed a wide range from 30 to 80 dB, the capacity
changes only very little (this is because the log log-term is growing extremely slowly).
Hence, we get the following rule of thumb.

Conjecture 1 ([13], [14]). A communication system over a noncoherent regular
fading channel1 that operates at rates appreciably above χ + 2 nats is in the high-
SNR regime and therefore extremely power-inefficient.

The fading number can therefore be regarded as quality attribute of the chan-
nel: the larger the fading number is, the higher is the maximum rate at which the
channel can be used without being extremely power-inefficient. It follows from this
observation that a good system design will aim at achieving a large fading number.

So far explicit expressions for the fading number are known in the special situ-
ation of general SISO fading channels with memory2 [7, Theorem 4.41], [9, Theo-
rem 6.41]:

χ
(
{Hk}

)
= log π + E

[
log |H0|

2
]
− h
(
{Hk}

)
(1.5)

and of general single-input–multiple-output (SIMO) fading channels with memory
[8, Theorem 1], [9, Theorem 6.44]:

χ
(
{Hk}

)
= χIID

(

H0

∣
∣
∣H

−1
−∞, {Ĥℓe

iΘℓ}∞ℓ=1

)

. (1.6)

Here χIID

(
H
∣
∣S
)

denotes the memoryless SIMO fading number with partial side-
information S at the receiver [7, Note 4.31], [9, Eq. (6.194)]:

χIID

(
H
∣
∣S
)

= hλ

(
ĤeiΘ

∣
∣S
)

+ nRE
[
log ‖H‖2

]
− log 2 − h

(
H
∣
∣S
)
. (1.7)

The fading number of the multiple-input–single-output (MISO) fading channel
has only been derived for the memoryless case [7, Theorem 4.27], [9, Theorem 6.27]:

χ(HT) = sup
‖x̂‖=1

{
log π + E

[
log |HTx̂|2

]
− h(HTx̂)

}
. (1.8)

This fading number is achievable by inputs that can be expressed as the product of
a constant unit vector in C

nT and a circularly symmetric, scalar, complex random
variable of the same law that achieves the memoryless SISO fading number [7].
Hence, the asymptotic capacity of a memoryless MISO fading channel is achieved
by beam-forming where the beam-direction is chosen not to maximize the SNR, but
the fading number.

For MISO fading with memory some bounds have been found [15]–[17]:

χ
(
{HT

k}
)
≤ sup

x̂0
−∞

{

log π + E
[
log |HT

0x̂0|
2
]
− h
(
HT

0x̂0

∣
∣ {HT

ℓ x̂ℓ}
−1
ℓ=−∞

)}

(1.9)

and

χ
(
{HT

k}
)
≥ sup

x̂

{

log π + E
[
log |HT

0x̂|
2
]
− h
(
HT

0x̂
∣
∣ {HT

ℓ x̂}
−1
ℓ=−∞

)}

. (1.10)

The MIMO case has been solved recently in the memoryless situation [18]:

χ(H) = sup
Q

X̂
circ. sym.

{

hλ

(

HX̂

‖HX̂‖

)

+ nRE

[

log ‖HX̂‖2
]

− log 2 − h
(
HX̂

∣
∣ X̂
)

}

.

(1.11)

1For more details about the exact assumptions made in this report we refer to Section 2.2.
2For an explanation of the notation used in this report we refer to Section 2.1.
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In this project we aim for the derivation of the most general case, the MIMO fad-
ing number with memory both in space and time. In this most general case we only
make one main assumption: the channel model is assumed to be stationary, i.e., all
noise processes have a stationary probability distribution. This report concentrates
on this aspect of the channel model and derives some useful consequences that follow
from this assumption. It will turn out that in spite of the generality of our channel
model that still allows for a very large family of possible fading distribution, the fact
that we assume stationary processes might help us considerably in the derivations
of the MIMO fading number with memory.

1.3 Stationarity

We start with a formal definition of stationarity.

Definition 2. A discrete-time stochastic process {Vk} is called stationary if for
every positive integer n ∈ N, for every choice of integers k1, . . . , kn, ki ∈ Z for
i = 1, . . . , n, and for every κ ∈ Z we have

Pr[Vk1+κ = v1, . . . , Vkn+κ = vn] = Pr[Vk1 = v1, . . . , Vkn
= vn] , ∀v1, . . . , vn

(1.12)
i.e., the probability distribution of any subset of random variables from the process
does not change when shifting over time.

In this report we will derive some properties of stationary processes and station-
ary channel models. Even though these results were derived with the main intention
of learning more about MIMO fading channels, most of them are very general and
in no way restricted to fading channels.

More precisely, we are going to derive the following results: In Section 3.1 we
will show that—under weak conditions on the channel—a stationary channel has a
capacity-achieving input distribution that is stationary. This seems very intuitive,
however, we are not aware of any rigorous proof in the literature. There we will also
introduce the concept of quasi-stationarity : a finite sequence of random variables is
said to be quasi-stationary if any subset of random variables from the sequence has
a probability distribution that does not change when it is shifted in time (within the
range of the finite sequence). Hence, a quasi-stationary block of random variables
is basically a “stationary” process of finite duration.

In Section 3.2 we investigate the entropy rates of stationary processes. It is a
fundamental result of (discrete) entropy that an “average” entropy, called entropy
rate, exists for stationary processes. Similarly to the entropy that describes the un-
certainty of a random variable, the entropy rate accurately describes the uncertainty
in a random process.

We will generalize the definition of entropy rate for finite-alphabet processes to
differential entropy rates of continuous-alphabet processes and to even more compli-
cated forms of conditional differential entropy rates. We will show that due to the
stationarity assumption all limits still exist and these definitions make sense.

Finally, in Section 3.3 we investigate one particular mutual information term
that intuitively is supposed to tend to zero because from a practical point of view
the memory of any process is supposed to fade away once we let the time tend to
infinity. However, it turns out that this is rather difficult to prove. Again, the clue to
a mathematically correct derivation is stationarity (or, actually, quasi-stationarity).
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The derivations and proofs for these statements can be found in Chapter 4, and
we conclude in Chapter 5.

Next, in the following chapter, we will give some more details about our notation
and about the channel model used in the situation of fading channels.
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Chapter 2

Definitions and Notation

2.1 Notation

As is by now fairly customary, we usually try to use upper-case letters for random
quantities and lower-case letters for their realizations. This rule becomes awkward
when dealing with matrices because matrices are usually written in upper case even if
they are deterministic. To better differentiate between scalars, vectors, and matrices
we have resorted to using different fonts for the different quantities. Upper-case
letters such as X are used to denote scalar random variables taking value in the
reals R or in the complex plane C. Their realizations are typically written in lower-
case, e.g., x. Random vectors in the m-dimensional complex Euclidean space C

m are
described by bold face capitals, e.g., X; for their realizations we use bold lower-case,
e.g., x. Deterministic matrices are denoted by upper-case letters but of a special
font, e.g., H; and random matrices are denoted using another special upper-case
font, e.g., H.

However, there will be a few exceptions to these rules. Since they are widely
used in the literature, we will stick with the common customary shape of the en-
tropy H(·) of a discrete random variable and of the mutual information functional
I(·; ·). Moreover, we have decided to use the capital Q to denote the probability dis-
tribution of on input of a channel. In particular, QX and QX denote the probability
distribution of a random variable X and random vector X, respectively. Given an
alphabet A we denote the set of all probability distributions over A by P(A).

The capacity is denoted by C, the energy per symbol by E , and the signal-to-noise
ratio is denoted by snr.

We use the shorthand Hb
a for (Ha, Ha+1, . . . , Hb). For more complicated expres-

sions, such as
(HT

ax̂a,H
T

a+1x̂a+1, . . . ,H
T

b x̂b)

we use the dummy variable ℓ to clarify notation: {HT

ℓ x̂ℓ}
b
ℓ=a.

The subscript k is reserved to denote discrete time. Curly brackets are used to
distinguish between a random process and its manifestation at time k: {Xk} is a
discrete random process over time, while Xk is the random variable of this process
at time k.

Hermitian conjugation is denoted by (·)†, and (·)T stands for the transpose (with-
out conjugation) of a matrix or vector. We use ‖ · ‖ to denote the Euclidean norm

10



of vectors or the Euclidean operator norm of matrices. That is,

‖x‖ ,

√
√
√
√

m∑

t=1

|x(t)|2, x ∈ C
m (2.1)

‖A‖ , max
‖ŵ‖=1

‖Aŵ‖. (2.2)

Thus, ‖A‖ is the maximal singular value of the matrix A.
The Frobenius norm of matrices is denoted by ‖ · ‖F and is given by the square

root of the sum of the squared magnitudes of the elements of the matrix, i.e.,

‖A‖F ,

√

tr (A†A) (2.3)

where tr (·) denotes the the trace of a matrix. Note that for every matrix A

‖A‖ ≤ ‖A‖F (2.4)

as can be verified by upper-bounding the squared magnitude of each of the compo-
nents of Aŵ using the Cauchy-Schwarz inequality.

We will often split a complex vector v ∈ C
m up into its magnitude ‖v‖ and its

direction
v̂ ,

v

‖v‖
(2.5)

where we reserve this notation exclusively for unit vectors, i.e., throughout this
report every vector carrying a hat, v̂ or V̂, denotes a (deterministic or random,
respectively) vector of unit length

‖v̂‖ = ‖V̂‖ = 1. (2.6)

To be able to work with such direction vectors we shall need a differential entropy-
like quantity for random vectors that take value on the unit sphere in C

m. Note that
with respect to a probability distribution over C

m, the surface of the unit sphere in
C

m has zero measure such that the corresponding differential entropy is undefined.
We therefore introduce a new probability space that only lives on the surface of the
unit sphere in C

m and denote its measure by λ. If a random vector V̂ takes value
in the unit sphere and has the density pλ

V̂
(v̂) with respect to λ, then we shall let

hλ(V̂) , −E

[

log pλ
V̂

(V̂)
]

(2.7)

if the expectation is defined.
We note that just as ordinary differential entropy is invariant under translation,

so is hλ(V̂) invariant under rotation. That is, if U is a deterministic unitary matrix,
then

hλ(UV̂) = hλ(V̂). (2.8)

Also note that hλ(V̂) is maximized if V̂ is uniformly distributed on the unit sphere,
in which case

hλ(V̂) = log cm (2.9)

where cm denotes the surface area of the unit sphere in C
m

cm =
2πm

Γ(m)
. (2.10)
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The definition (2.7) can be easily extended to conditional entropies: if W is
some random vector, and if conditional on W = w the random vector V̂ has density
pλ
V̂|W

(v̂|w) then we can define

hλ

(
V̂
∣
∣W = w

)
, −E

[

log pλ
V̂|W

(V̂|W)
∣
∣
∣ W = w

]

(2.11)

and we can define hλ

(
V̂
∣
∣W

)
as the expectation (with respect to W) of hλ

(
V̂
∣
∣W =

w
)
.
Based on these definitions we have the following lemma.

Lemma 3. Let V be a complex random vector taking value in C
m and having dif-

ferential entropy h(V). Let ‖V‖ denote its norm and V̂ denotes its direction as in
(2.5). Then

h(V) = h(‖V‖) + hλ

(
V̂
∣
∣ ‖V‖

)
+ (2m − 1)E[log ‖V‖] (2.12)

= hλ

(
V̂
)

+ h
(
‖V‖

∣
∣ V̂
)

+ (2m − 1)E[log ‖V‖] (2.13)

whenever all the quantities in (2.12) and (2.13), respectively, are defined. Here
h(‖V‖) is the differential entropy of ‖V‖ when viewed as a real (scalar) random
variable.

Proof. This follows from a change of variables. Let W denote the real random
vector in R

2m that consists of the real and imaginary part of V stacked on top of
each other. Then we define

R , ‖W‖ and Ŵ ,
W

‖W‖
(2.14)

and note that the infinitesimal volume dw in the 2m-dimensional Euclidean space
corresponds to dr · r2m−1 dŵ where dŵ denotes an infinitesimal area on the unit
sphere in R

2m. Hence, the joint probability densities can be written as

pR

(
‖v‖

)
pλ
V̂|R

(
v̂
∣
∣ ‖v‖

)
= pλ

V̂

(
v̂
)
pR|V̂

(
‖v‖

∣
∣ v̂
)

(2.15)

= ‖v‖2m−1pV(v). (2.16)

The result now follows from h(V) = −E[log pV(V)].

We shall write X ∼ NC (µ, K) if X − µ is a circularly symmetric, zero-mean,
complex Gaussian random vector of covariance matrix E

[
(X − µ)(X − µ)†

]
= K.

By X ∼ U([a, b]) we denote a random variable that is uniformly distributed on the
interval [a, b].

All rates specified in this report are in nats per channel use, i.e., log(·) denotes
the natural logarithmic function. The abbreviation RHS stands for right-hand side
and LHS stands for left-hand side.

2.2 The Channel Model

We consider a channel with nT transmit antennas and nR receive antennas whose
time-k output Yk ∈ C

nR is given by

Yk = Hkxk + Zk. (2.17)

12



Here xk ∈ C
nT denotes the time-k channel input vector; the random matrix Hk ∈

C
nR×nT denotes the time-k fading matrix; and the random vector Zk ∈ C

nR denotes
additive noise.

We assume that the fading process {Hk} and the additive noise process {Zk} are
independent and of a joint law that does not depend on the channel input {xk}.

The random vector process {Zk} is assumed to be a spatially and temporally
white, zero-mean, circularly symmetric, complex Gaussian random process, i.e.,
{Zk} is temporally IID ∼ NC

(
0, σ2

InR

)
for some σ2 > 0. Here InR denotes the

nR × nR identity matrix.
As for the multi-variate fading process {Hk}, we shall only assume that it is

stationary, ergodic, of finite second moment

E
[
‖Hk‖

2
F

]
< ∞ (2.18)

and of finite differential entropy rate

h({Hk}) > −∞ (2.19)

(the regularity assumption). Hence the components of Hk are in general correlated
and depend on the past. Moreover, note that we do not necessarily assume that
{Hk} is Gaussian, but allow any distribution that satisfies the above assumptions,
i.e., that is stationary, ergodic, regular and of finite second moment. The important
special case of Gaussian fading is analyzed in more detail in a separate publication
[19].

We would like to briefly comment about these assumptions. The assumption of
stationarity reflects our lack of knowledge about the exact dependence of the fading
law on time. Obviously we can not assume stationarity for all time as the fading
law will change drastically if, e.g., we move from an urban to a rural area. However,
in a certain setting and for a reasonable time period, stationarity seems a natural
choice. Note that the block fading model [2] is not stationary.

Ergodicity reflects our assumption that we are allowing very large blocklengths
so that the channel “averages out.” For systems with strong delay constraints this
assumption will not be justified. Finally, by asking for a fading process that is
regular we ensure that the fading process is “fully random” in the (engineering) sense
that even if the past is perfectly known, the present values of the fading cannot be
predicted error-free.3 This assumption will be appropriate in certain situations and
will not be in others. It seems therefore clear to us that both situations, regular and
nonregular fading, should be investigated. We would like to emphasize once more
that at high SNR this assumption has a dramatic effect on the capacity behavior
[11].

As for the input, we consider two different constraints: a peak-power constraint
or an average-power constraint. We use E to denote the maximal allowed instan-
taneous power in the former case, and to denote the allowed average power in the
latter case. For both cases we set

snr ,
E

σ2
. (2.20)

The capacity C(snr) of the channel (2.17) is given by

C(snr) = lim
n↑∞

1

n
sup I (Xn

1 ;Yn
1 ) (2.21)

3Note that this is not a strictly mathematical explanation in general, but it is precise in the

special case of a spatially independent Gaussian fading process.
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where the supremum is over the set of all probability distributions on Xn
1 satisfying

the constraints, i.e.,

‖Xk‖
2 ≤ E , almost surely, k = 1, 2, . . . , n (2.22)

for a peak-power constraint, or

1

n

n∑

k=1

E
[
‖Xk‖

2
]
≤ E (2.23)

for an average-power constraint.
From [7, Theorem 4.2], [9, Theorem 6.10] we have

lim
snr↑∞

{

C(snr) − log(1 + log(1 + snr))
}

< ∞. (2.24)

Note that [7, Theorem 4.2], [9, Theorem 6.10] is stated under the assumption of
an average-power constraint only. However, since a peak-power constraint is more
stringent than an average-power constraint, (2.24) also holds in the situation of a
peak-power constraint.

The fading number χ is now defined as in [7, Definition 4.6], [9, Definition 6.13]
by

χ({Hk}) , lim
snr↑∞

{

C(snr) − log(1 + log(1 + snr))
}

. (2.25)

Prima facie the fading number depends on whether a peak-power constraint (2.22)
or an average-power constraint (2.23) is imposed on the input. However, it will turn
out that the MIMO fading number with memory is identical for both cases.
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Chapter 3

Main Results

3.1 Capacity-Achieving Input Distributions and Station-

arity

One of the main assumptions about our channel model is that the fading process
and the additive noise are stationary. From an intuitive point of view it is clear that
a stationary channel model should have a capacity-achieving input distribution that
is also stationary. Unfortunately, we are not aware of a rigorous proof of this claim.

In [8, Lemma 5], [9, Lemma B.1] it is proven that—apart from edge effects—the
optimum input distribution can be assumed to have equal marginals. Here we will
extend this statement and prove that the capacity can be approached up to an ǫ > 0
by a distribution that looks stationary apart from edge effects.

Theorem 4. Consider a channel model with input xk ∈ C
nT and output Yk ∈ C

nR.
Assume that the channel is both stationary and unaffected by zero input vectors
0 in the following sense: for every choice of n ∈ N and t ∈ Z, for some integers
n < −|t| and n > n + |t|, and for every distribution Q ∈ P(CnT×n) we have

I
(

00+t
n ,Xn+t

1+t ,0
n
n+1+t ; Yn

n

)

= I
(
Xn

1 ;Yn
1

)
(3.1)

whenever both Xn+t
1+t on the LHS and Xn

1 on the RHS have the same distribution Q.
Now fix some nonnegative integer κ and some power E > 0. Then for every

ǫ > 0 there corresponds some positive integer η = η(E , ǫ) and some distribution
Qκ+1

E,ǫ ∈ P
(
C

nT×(κ+1)
)

such that for a blocklength n sufficiently large there exists
some input Xn

1 satisfying the following:

1. The input Xn
1 nearly achieves capacity in the sense that

1

n
I
(
Xn

1 ;Yn
1

)
≥ C(E) − ǫ. (3.2)

2. For every integer µ with 0 ≤ µ ≤ κ, every length-(µ + 1) block of adjacent
vectors

(Xℓ, . . . ,Xℓ+µ) (3.3)

taken from within the sequence

Xη,Xη+1, . . . ,Xn−2η+2 (3.4)

has the same joint distribution Qµ+1
E,ǫ , where this distribution Qµ+1

E,ǫ is given as

the corresponding marginal distribution of Qκ+1
E,ǫ .
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3. In particular, all vectors in (3.4) have the same marginal Q1
E,ǫ.

4. The marginal distribution Q1
E,ǫ gives rise to a second moment E:

E
[
‖Xk‖

2
]

= E , k ∈ {η, . . . , n − 2η + 2}. (3.5)

5. The first η−1 vectors and the last 2(η−1) vectors satisfy the power constraint
possibly strictly:

E
[
‖Xk‖

2
]
≤ E , k ∈ {1, . . . , η − 1} ∪ {n − 2η + 3, . . . , n}. (3.6)

Proof. The proof is based on a shift-and-mix argument using the fact that when
using deterministic zeros at the input, the corresponding output yields zero infor-
mation. The details are given in Section 4.1.

Remark 5. Neglecting the edge-effects for the moment, Theorem 4 basically says
that, for every µ ≤ κ, every block of µ+1 adjacent vectors has the same distribution
independent of the time shift. From this it immediately follows that the distribution
of every subset of (not necessarily adjacent) vectors of a µ+1 block does not change
when the vectors are shifted in time (simply marginalize those vectors out that are not
member of the subset). Hence, Theorem 4 almost proves that the capacity-achieving
input distribution is stationary: the only problem are the edge effects. Note that κ
can be chosen freely, but has to remain fixed until n has been loosened to infinity.
I.e., to get rid of the edge effects one needs to firstly let n tend to infinity, before one
can let κ grow.

In the remainder of this report we will refer to Qκ+1
E,ǫ and to a block of vectors

Xκ
0 ∼ Qκ+1

E,ǫ as quasi-stationary.

3.2 Generalization of Entropy Rates

It is generally known that (discrete) entropy of a stationary discrete-time, discrete-
alphabet process {Vk} behaves nicely in the sense that we can define the entropy
rate as an average entropy over a block

H({Vk}) , lim
n↑∞

1

n
H(V1, . . . , Vn), (3.7)

i.e., that this limit always exists. Moreover, another also intuitive expression that
defines an entropy of {Vk} as uncertainty about V0 once we know the infinite past,

H̃({Vk}) , H(V0|V−1, V−2, . . .) (3.8)

is also always defined and, very pleasingly, actually coincides with the official defi-
nition (3.7).

We will now show that this nice behavior can be extended to differential en-
tropy once we additionally assume that the differential entropy is finite (regularity
assumption).

Theorem 6. Let {Hk} be stationary, ergodic, of finite energy and regular, as given
in Section 2.2. Then

1. the sequence 1
nh(Hn

1 ) is nonincreasing in n;
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2. the sequence h(Hn|H
n−1
1 ) is nonincreasing in n ∈ N;

3. for all n we have

h(Hn|H
n−1
1 ) ≤

1

n
h(Hn

1 ), ∀n ∈ N; (3.9)

and

4. the limits exist and are equal:

h({Hk}) , lim
n↑∞

1

n
h(Hn

1 ) = lim
n↑∞

h(Hn|H
n−1
1 ). (3.10)

Proof. See Section 4.2.1.

This entropy rate can easily be extended to more complex forms like, e.g.,

h

(

{
‖HkX̂k‖

}

∣
∣
∣
∣
∣

{

HkX̂k

‖HkX̂k‖

})

, lim
n↑∞

1

n
h

(

{
‖HℓX̂ℓ‖

}n

ℓ=1

∣
∣
∣
∣
∣

{

HℓX̂ℓ

‖HℓX̂ℓ‖

}n

ℓ=1

)

; (3.11)

h
({

Ψ
(1)
k

}
∣
∣
∣

{
Ψ

(r)
k − Ψ

(1)
k

}nR

r=2
,
{
|H

(r)T
k X̂k|

}nR

r=1

)

, lim
n↑∞

1

n
h

(
{
Ψ

(1)
ℓ

}n

ℓ=1

∣
∣
∣
∣

{
Ψ

(r)
ℓ − Ψ

(1)
ℓ

}

r=2,...,nR
ℓ=1,...,n

,
{
|H

(r)T
ℓ X̂ℓ|

}

r=1,...,nR
ℓ=1,...,n

)

; (3.12)

h

(

{H
(1)T
k X̂k}

∣
∣
∣
∣
∣

{

H
(r)T
k X̂k

H
(1)T
k X̂k

}nR

r=2

, {X̂k}

)

, lim
n↑∞

1

n
h






{
H

(1)T
ℓ X̂ℓ

}n

ℓ=1

∣
∣
∣
∣
∣
∣
∣

{

H
(r)T
ℓ X̂ℓ

H
(1)T
ℓ X̂ℓ

}

r=2,...,nR
ℓ=1,...,n

, X̂n
1




 . (3.13)

Here H
(r)
k denotes the r-th row of Hk, and Ψ

(r)
k denotes the phase of H

(r)T
k X̂k.

Also these entropy rates are all well-defined because the underlying processes
are stationary. This is proven in the following theorem for only one particular case
that, however, is representative for all other cases.

Theorem 7. Let {Hk} be stationary, ergodic, of finite energy and regular, as given
in Section 2.2. Let {X̂k} be a stationary unit-vector process. Then

1. the sequence 1
nh
(
{HℓX̂ℓ}

n
ℓ=1

∣
∣ X̂n

1

)
is nonincreasing in n;

2. the sequence h
(
HnX̂n

∣
∣ {HℓX̂ℓ}

n−1
ℓ=1 , X̂n

1

)
is nonincreasing in n;

3. for all n ∈ N we have

h
(
HnX̂n

∣
∣ {HℓX̂ℓ}

n−1
ℓ=1 , X̂n

1

)
≤

1

n
h
(
{HℓX̂ℓ}

n
ℓ=1

∣
∣ X̂n

1

)
, ∀n ∈ N; (3.14)

and

4. the limits exist and are equal:

h
(
{HkX̂k}

∣
∣ {X̂k}

)
, lim

n↑∞

1

n
h
(
{HℓX̂ℓ}

n
ℓ=1

∣
∣ X̂n

1

)
(3.15)

= lim
n↑∞

h
(
HnX̂n

∣
∣ {HℓX̂ℓ}

n−1
ℓ=1 , X̂n

1

)
. (3.16)

Proof. See Section 4.2.2.
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3.3 Limited Memory of a Quasi-Stationary Process

In this section we want to look at the term

I
(
H

k−κ−1
1 ;Yk

∣
∣Xk

k−κ, {HℓXℓ}
k−1
ℓ=k−κ

)
.

From an intuitive point of view this term should tend to zero as κ tends to infinity:

I
(
H

k−κ−1
1 ;Yk

∣
∣Xk

k−κ, {HℓXℓ}
k−1
ℓ=k−κ

)

= I
(
H

k−κ−1
1 ;Yk,Xk

∣
∣Xk−1

k−κ, {HℓXℓ}
k−1
ℓ=k−κ

)

− I
(
H

k−κ−1
1 ;Xk

∣
∣Xk−1

k−κ, {HℓXℓ}
k−1
ℓ=k−κ

)
(3.17)

≤ I
(
H

k−κ−1
1 ;Yk,Xk

∣
∣Xk−1

k−κ, {HℓXℓ}
k−1
ℓ=k−κ

)
(3.18)

≤ I
(
H

k−κ−1
1 ;Yk,Xk, Hk

∣
∣Xk−1

k−κ, {HℓXℓ}
k−1
ℓ=k−κ

)
(3.19)

= I
(
H

k−κ−1
1 ; Hk

∣
∣Xk−1

k−κ, {HℓXℓ}
k−1
ℓ=k−κ

)
(3.20)

= I
(
H

k−κ−1
1 ; Hk

∣
∣ X̂k−1

k−κ, {HℓX̂ℓ}
k−1
ℓ=k−κ, {‖Xℓ‖}

k−1
ℓ=k−κ

)
(3.21)

= E

[

I
(
H

k−κ−1
1 ; Hk

∣
∣ {X̂ℓ = x̂ℓ}

k−1
ℓ=k−κ, {Hℓx̂ℓ}

k−1
ℓ=k−κ

)]

(3.22)

≤ sup
x̂

k−1
k−κ

I
(
H

k−κ−1
1 ; Hk

∣
∣ {Hℓx̂ℓ}

k−1
ℓ=k−κ

)
(3.23)

= sup
ê
−1
−κ

I
(
H

−κ−1
−k+1; H0

∣
∣ {Hℓêℓ}

−1
ℓ=−κ

)
(3.24)

≤ sup
ê
−1
−κ

I
(
H

−κ−1
−∞ ; H0

∣
∣ {Hℓêℓ}

−1
ℓ=−κ

)
(3.25)

, δ̃1(κ). (3.26)

Here, the first equality follows from the chain rule; (3.18) follows from the non-
negativity of mutual information; in (3.19) we include additional random matrices
in the mutual information; then (3.20) follows from the independence of the present
input and output on the past fading when conditioned on the present fading; in (3.21)
we introduce X̂ , X/‖X‖; in (3.22) we drop ‖Xℓ‖ because conditional on X̂ℓ they
are independent of the other quantities; in (3.23) we upper bound the expectation by
a supremum; (3.24) follows from stationarity; and (3.25) follows again from inclusion
of additional terms into the mutual information.

Note that δ̃1(κ) does neither depend on k nor on the input {Xk}. Intuitively,
it should tend to zero as κ tends to infinity, however, mathematically this is not
clear at all because we have a supremum and because the terms in the conditioning
are only nR-dimensional, while the arguments of the mutual information term are
nR × nT dimensional.

Luckily, we can avoid these problems when we rely on the fact that Xk
k−κ is

quasi-stationary.

Theorem 8. Let Xk
k−κ be quasi-stationary as defined in Theorem 4 and Remark 5.

Then
I
(
H

k−κ−1
1 ;Yk

∣
∣Xk

k−κ, {HℓXℓ}
k−1
ℓ=k−κ

)
≤ δ1(κ) (3.27)

where δ1(κ) does neither depend on k nor on the input {Xk} and tends to zero as κ
tends to infinity.

Proof. See Section 4.3.
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Chapter 4

Derivations of Main Results

4.1 Proof of Theorem 4

The proof follows the same lines as the proofs of [8, Lemma 5] and [9, Lemma B.1].
It is based on a shift-and-mix argument.

Fix some arbitrary ǫ > 0, E > 0, and an integer κ > 0. Recalling that

C(E) = lim
n↑∞

1

n
sup I(X1, . . . ,Xn;Y1, . . . ,Yn) (4.1)

where the supremum is over all joint distributions on (X1, . . . ,Xn) ∈ C
nT×n under

which
∑n

k=1 E
[
‖Xk‖

2
]

= nE , we conclude that there must exist some integer η ≥ 1
and some joint distribution Q∗ ∈ P(CnT×η) such that if (X1, . . . ,Xη) ∼ Q∗ then

1

η

η
∑

k=1

E
[
‖Xk‖

2
]

= E (4.2)

and
1

η
I(X1, . . . ,Xη;Y1, . . . ,Yη) > C(E) −

ǫ

2
. (4.3)

Let W be a nT ×
(

η ·
⌈

κ
η + 1

⌉)

random matrix whose distribution consists of
⌈

κ
η + 1

⌉

independent nT × η blocks that are distributed according to Q∗. The dis-

tribution of W can then be written as the product of
⌈

κ
η + 1

⌉

distributions Q∗:

QW

(

w1, . . . ,wη
l

κ
η
+1

m

)

=

l

κ
η
+1

m

−1
∏

i=0

Q∗ (wi·η+1, . . . ,wi·η+η) , wℓ ∈ C
nT . (4.4)

Let us next compute the marginal distribution of QW for a certain block of length
κ+1, (Wℓ, . . . ,Wℓ+κ). This marginal distribution depends on the particular choice
of the starting point ℓ of the block, however, note that in total different choices
of ℓ will result in at most η different marginal distributions. This follows from
the definition of QW in (4.4). Let Qκ+1

E,ǫ be the probability law on C
nT×(κ+1) that

is a mixture of these η different block-marginals of QW, i.e., for every Borel set
B ⊆ C

nT×(κ+1)

Qκ+1
E,ǫ (B) ,

1

η

η
∑

ℓ=1

QW

[
(Wℓ, . . . ,Wℓ+κ) ∈ B

]
. (4.5)
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Note that in the situation when κ < η, Qκ+1
E,ǫ can alternatively be written as

Qκ+1
E,ǫ (B) ,

1

η

η−κ
∑

ℓ=1

Q∗
[
(Xℓ,Xℓ+1, . . . ,Xℓ+κ) ∈ B

]

+
1

η

η
∑

ℓ=η−κ+1

Q∗
[
(Xℓ, . . . ,Xη) ∈ B1,...,η−ℓ+1

]

· Q∗
[
(X1, . . . ,Xℓ−1) ∈ Bη−ℓ+2,...,η

]

(4.6)

where we used Bi,...,j to denote the set of all corresponding nT×(j−i+1) submatrices
of B that are created by taking only columns i to j of each matrix in B.

Note further that from our definition it follows that Qκ+1
E,ǫ is quasi-stationary in

the sense that if Xκ
0 ∼ Qκ+1

E,ǫ then every length-(µ + 1) subblock X
ℓ+µ
ℓ has the same

distribution Qµ+1
E,ǫ for all ℓ = 0, . . . , κ − µ. The distribution Qµ+1

E,ǫ can be computed

from Qκ+1
E,ǫ as marginal distribution, 0 ≤ µ ≤ κ.

In the theorem we have assumed that n is given and sufficiently large. In partic-
ular we will assume that n ≫ max{η, κ}. We shall next describe the required input
distribution as follows: let

ν ,

⌊
n − η + 1

η

⌋

(4.7)

and let the length-(n + η − 1) sequence X̃ of random nT-vectors be defined by

X̃ ,

(

0, . . . ,0
︸ ︷︷ ︸

η−1

,Ξ
(1)
1 , . . . ,Ξ(1)

η
︸ ︷︷ ︸

η

, . . . , . . . ,Ξ
(ν)
1 , . . . ,Ξ(ν)

η
︸ ︷︷ ︸

η

,0, . . . ,0
)

(4.8)

so that

X̃k =







0, if 1 ≤ k ≤ η − 1

Ξ
⌊k/η⌋
(k mod η)+1, if η ≤ k ≤ (ν + 1)η − 1

0, if (ν + 1)η ≤ k ≤ n + η − 1

(4.9)

where 0 is the zero nT-vector and where
{(

Ξ
(j)
1 , . . . ,Ξ(j)

η

)}ν

j=1
are IID ∼ Q∗. (4.10)

If we choose {X̃k} as input for our channel, then it follows from the fact that
zeros have no effect and from (4.3) that

1

n
I
(
X̃n

1 ;Yn
1

)
>

1

n
· νη

(

C(E) −
ǫ

2

)

. (4.11)

Again, since the lead-in and trailing zeros are of no consequence and since shifting
does not change mutual information, this same mutual information results if we shift
X̃k by t (provided that 0 ≤ t ≤ η − 1 and n is large enough so that we do not lose
any nonzero input vector):

1

n
I
(
X̃n+t

1+t ;Y
n
1

)
>

1

n
· νη

(

C(E) −
ǫ

2

)

. (4.12)

Consequently, if we define X1, . . . ,Xn by the mixture of the time shift of X̃, i.e.,

Xk , X̃k+T , 1 ≤ k ≤ n (4.13)
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where
T ∼ U({0, . . . , η − 1}) (4.14)

is independent of X̃, then by the concavity of mutual information in the input
distribution we obtain that

1

n
I (Xn

1 ;Yn
1 ) >

ην

n

(

C(E) −
ǫ

2

)

(4.15)

=
η
⌊

n−η+1
η

⌋

n

(

C(E) −
ǫ

2

)

(4.16)

which exceeds C(E) − ǫ for sufficiently large n.
Except at the edges, the above mixture guarantees that every block of µ + 1

vectors has the same distribution

Qµ+1
E,ǫ (B) ,

1

η

η
∑

ℓ=1

QW

[
(Wℓ, . . . ,Wℓ+µ) ∈ B

]
(4.17)

for every µ, 0 ≤ µ ≤ κ and every Borel set B ⊆ C
nT×(µ+1), i.e., Xn

1 is (apart from
the edges) quasi-stationary.

Note further that by (4.2) we have for µ = 0

∫

C
nT

‖x‖2 dQ1
E,ǫ(x) = E . (4.18)

The power in the edges can be smaller than E because of the mixture with deter-
ministic zero vectors.

4.2 Derivations for Entropy Rates

4.2.1 Proof of Theorem 6

We start with the proof of the second statement which follows directly from the fact
that conditioning cannot increase differential entropy:

h(Hn+1|H
n
1 ) ≤ h(Hn+1|H

n
2 ) (4.19)

= h
(
Hn

∣
∣H

n−1
1

)
(4.20)

where the last equality follows from stationarity.
We next use the second statement to prove the third:

h(Hn
1 ) =

n∑

k=1

h
(
Hk

∣
∣H

k−1
1

)
(4.21)

≥
n∑

k=1

h
(
Hn

∣
∣H

n−1
1

)
(4.22)

= nh
(
Hn

∣
∣H

n−1
1

)
(4.23)

where (4.21) follows from the chain rule; and (4.22) follows from the second state-
ment.
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Next, we prove the first statement:

h
(
H

n+1
1

)
= h(Hn

1 ) + h
(
Hn+1

∣
∣H

n
1

)
(4.24)

≤ h(Hn
1 ) + h

(
Hn

∣
∣H

n−1
1

)
(4.25)

≤ h(Hn
1 ) +

1

n
h(Hn

1 ) (4.26)

=
n + 1

n
h(Hn

1 ) (4.27)

where (4.24) follows from the chain rule; where (4.25) follows from the second state-
ment; and where (4.26) follows from the third statement.

Finally, to prove the fourth statement we note that for an arbitrary m ∈ N

h
(
H

n+m
1

)
= h

(
H

n
1

)
+ h
(
H

n+m
n+1

∣
∣H

n
1

)
(4.28)

= h
(
H

n
1

)
+

n+m∑

k=n+1

h
(
Hk

∣
∣H

k−1
1

)
(4.29)

≤ h
(
H

n
1

)
+

n+m∑

k=n+1

h
(
Hn+1

∣
∣H

n
1

)
(4.30)

= h
(
H

n
1

)
+ mh

(
Hn+1

∣
∣H

n
1

)
. (4.31)

Here in (4.28) and (4.29) we use the chain rule; and (4.30) follows from the second
statement. Hence,

1

n + m
h
(
H

n+m
1

)

︸ ︷︷ ︸

→ 1
m

h
(

Hm
1

)
as m↑∞

≤
1

n + m
h(Hn

1 )
︸ ︷︷ ︸

→0 as m↑∞

+
m

n + m
︸ ︷︷ ︸

→1 as m↑∞

h(Hn+1|H
n
1 ). (4.32)

Letting m tend to infinity we then get

lim
m↑∞

1

m
h
(
H

n+m
1

)
≤ h(Hn+1|H

n
1 ) (4.33)

which combined with the third statement proves the fourth statement.

4.2.2 Proof of Theorem 7

We start with the proof of the second statement which follows directly from the fact
that conditioning cannot increase differential entropy:

h
(
Hn+1X̂n+1

∣
∣ {HℓX̂ℓ}

n
ℓ=1, X̂

n+1
1

)
≤ h

(
Hn+1X̂n+1

∣
∣ {HℓX̂ℓ}

n
ℓ=2, X̂

n+1
2

)
(4.34)

= h
(
HnX̂n

∣
∣ {HℓX̂ℓ}

n−1
ℓ=1 , X̂n

1

)
(4.35)

where the last equality follows from stationarity.
We next use the second statement to prove the third:

h
(
{HℓX̂ℓ}

n
ℓ=1

∣
∣ X̂n

1

)
=

n∑

k=1

h
(
HkX̂k

∣
∣ {HℓX̂ℓ}

k−1
ℓ=1 , X̂n

1

)
(4.36)

=
n∑

k=1

h
(
HkX̂k

∣
∣ {HℓX̂ℓ}

k−1
ℓ=1 , X̂k

1

)
(4.37)

≥
n∑

k=1

h
(
HnX̂n

∣
∣ {HℓX̂ℓ}

n−1
ℓ=1 , X̂n

1

)
(4.38)

= nh
(
HnX̂n

∣
∣ {HℓX̂ℓ}

n−1
ℓ=1 , X̂n

1

)
(4.39)
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where (4.36) follows from the chain rule; (4.37) from the fact that conditional on
X̂k

1, X̂n
k+1 is independent of all other random variables in the expression; and (4.38)

follows from the second statement.
Next, we prove the first statement:

h
(
{HℓX̂ℓ}

n+1
ℓ=1

∣
∣ X̂n+1

1

)

= h
(
{HℓX̂ℓ}

n
ℓ=1

∣
∣ X̂n+1

1

)
+ h
(
Hn+1X̂n+1

∣
∣ {HℓX̂ℓ}

n
ℓ=1, X̂

n+1
1

)
(4.40)

≤ h
(
{HℓX̂ℓ}

n
ℓ=1

∣
∣ X̂n

1

)
+ h
(
HnX̂n

∣
∣ {HℓX̂ℓ}

n−1
ℓ=1 , X̂n

1

)
(4.41)

≤ h
(
{HℓX̂ℓ}

n
ℓ=1

∣
∣ X̂n

1

)
+

1

n
h
(
{HℓX̂ℓ}

n
ℓ=1

∣
∣ X̂n

1

)
(4.42)

=
n + 1

n
h
(
{HℓX̂ℓ}

n
ℓ=1

∣
∣ X̂n

1

)
(4.43)

where (4.40) follows from the chain rule; where (4.41) follows from the second state-
ment and from the fact that given X̂n

1 the random vector X̂n+1 is independent of
{HℓX̂ℓ}

n
ℓ=1, and where (4.42) follows from the third statement.

Finally, to prove the fourth statement we note that for an arbitrary m ∈ N

h
(
{HℓX̂ℓ}

n+m
ℓ=1

∣
∣ X̂n+m

1

)

= h
(
{HℓX̂ℓ}

n
ℓ=1

∣
∣ X̂n+m

1

)
+ h
(
{HℓX̂ℓ}

n+m
ℓ=n+1

∣
∣ {HℓX̂ℓ}

n
ℓ=1, X̂

n+m
1

)
(4.44)

= h
(
{HℓX̂ℓ}

n
ℓ=1

∣
∣ X̂n

1

)
+

n+m∑

k=n+1

h
(
HkX̂k

∣
∣ {HℓX̂ℓ}

k−1
ℓ=1 , X̂n+m

1

)
(4.45)

= h
(
{HℓX̂ℓ}

n
ℓ=1

∣
∣ X̂n

1

)
+

n+m∑

k=n+1

h
(
HkX̂k

∣
∣ {HℓX̂ℓ}

k−1
ℓ=1 , X̂k

1

)
(4.46)

≤ h
(
{HℓX̂ℓ}

n
ℓ=1

∣
∣ X̂n

1

)
+

n+m∑

k=n+1

h
(
Hn+1X̂n+1

∣
∣ {HℓX̂ℓ}

n
ℓ=1, X̂

n+1
1

)
(4.47)

= h
(
{HℓX̂ℓ}

n
ℓ=1

∣
∣ X̂n

1

)
+ mh

(
Hn+1X̂n+1

∣
∣ {HℓX̂ℓ}

n
ℓ=1, X̂

n+1
1

)
. (4.48)

Here in (4.44) and (4.45) we use the chain rule; (4.46) follows from the fact that
conditional on X̂k

1, X̂n+m
k+1 are independent of all other random variables in the

expression; and (4.47) follows from the second statement. Hence,

1

n + m
h
(
{HℓX̂ℓ}

n+m
ℓ=1

∣
∣ X̂n+m

1

)

︸ ︷︷ ︸

→ 1
m

h
(
{HℓX̂ℓ}

m
ℓ=1

∣
∣ X̂m

1

)
as m↑∞

≤
1

n + m
h
(
{HℓX̂ℓ}

n
ℓ=1

∣
∣ X̂n

1

)

︸ ︷︷ ︸

→0 as m↑∞

+
m

n + m
︸ ︷︷ ︸

→1 as m↑∞

h
(
Hn+1X̂n+1

∣
∣ {HℓX̂ℓ}

n
ℓ=1, X̂

n+1
1

)
.(4.49)

Letting m tend to infinity we then get

lim
m↑∞

1

m
h
(
{HℓX̂ℓ}

m
ℓ=1

∣
∣ X̂m

1

)
≤ h

(
Hn+1X̂n+1

∣
∣ {HℓX̂ℓ}

n
ℓ=1, X̂

n+1
1

)
(4.50)

which combined with the third statement proves the fourth statement.

23



4.3 Proof of Theorem 8

We assume that Xk
k−κ is distributed according to the quasi-stationary distribution

Qκ+1
E,ǫ . We bound as follows:

I
(
H

k−κ−1
1 ;Yk

∣
∣Xk

k−κ, {HℓXℓ}
k−1
ℓ=k−κ

)

= I
(
H

k−κ−1
1 ;Yk

∣
∣ X̂k

k−κ, {‖Xℓ‖}
k
ℓ=k−κ, {HℓX̂ℓ}

k−1
ℓ=k−κ

)
(4.51)

≤ I
(
H

k−κ−1
1 ;Yk, HkX̂k

∣
∣ X̂k

k−κ, {‖Xℓ‖}
k
ℓ=k−κ, {HℓX̂ℓ}

k−1
ℓ=k−κ

)
(4.52)

= I
(
H

k−κ−1
1 ; HkX̂k

∣
∣ X̂k

k−κ, {‖Xℓ‖}
k
ℓ=k−κ, {HℓX̂ℓ}

k−1
ℓ=k−κ

)
(4.53)

= I
(
H

k−κ−1
1 ; HkX̂k

∣
∣ X̂k

k−κ, {HℓX̂ℓ}
k−1
ℓ=k−κ

)
(4.54)

= I
(
H

−κ−1
−k+1; H0X̂k

∣
∣ X̂k

k−κ, {HℓX̂k+ℓ}
−1
ℓ=−κ

)
. (4.55)

Here, in (4.51) we split the vectors Xℓ up into magnitude and direction; in (4.52)
we add the additional term HkX̂k to the argument of mutual information; in (4.53)
we drop Yk because given HkX̂k it is independent of the other random quantities;
then in (4.54) we remove the conditioning on ‖Xℓ‖ because it does not provide any
useful information; and in the last step (4.55) we made use of the stationarity of
{Hk}.

Similar to the derivation of the upper bound, in the following we will again
introduce a shorthand and rename X̂k

k−κ by X̂0
−κ. Note that since the upper bound

that is derived in this appendix will not depend on {X̂k}, we lose the dependence
on k in the end anyway.

Hence, letting X̂0
−κ ∼ Qκ+1

E,ǫ , we rewrite (4.55) as follows:

I
(
H

−κ−1
−k+1; H0X̂k

∣
∣ X̂k

k−κ, {HℓX̂k+ℓ}
−1
ℓ=−κ

)

= I
(
H

−κ−1
−k+1; H0X̂0

∣
∣ X̂0

−κ, {HℓX̂ℓ}
−1
ℓ=−κ

)
(4.56)

≤ I
(
H

−κ−1
−∞ ; H0X̂0

∣
∣ X̂0

−κ, {HℓX̂ℓ}
−1
ℓ=−κ

)
(4.57)

= h
(
H0X̂0

∣
∣ {HℓX̂ℓ}

−1
ℓ=−κ, X̂0

−κ

)
− h
(
H0X̂0

∣
∣ {HℓX̂ℓ}

−1
ℓ=−κ, X̂0

−κ, H−κ−1
−∞

)
(4.58)

≤
1

κ + 1
h
(
{HℓX̂ℓ}

0
ℓ=−κ

∣
∣ X̂0

−κ

)
− h
(
H0X̂0

∣
∣ {HℓX̂ℓ}

−1
ℓ=−κ, X̂0

−κ, H−κ−1
−∞

)
. (4.59)

Here in (4.57) we add more terms to the argument of mutual information; and (4.59)
follows from the third statement of Theorem 7.

Now note that for X̂0
−κ being quasi-stationary and for all i ∈ {−κ, . . . ,−1} we

have

h
(
HiX̂i

∣
∣ {HℓX̂ℓ}

i−1
ℓ=−κ, X̂i

−κ, H−κ−1
−∞

)

= h
(
Hi+1X̂i+1

∣
∣ {HℓX̂ℓ}

i
ℓ=−κ+1, X̂

i+1
−κ+1, H

−κ
−∞

)
(4.60)

= h
(
Hi+1X̂i+1

∣
∣ {HℓX̂ℓ}

i
ℓ=−κ+1, X̂

i+1
−κ+1, X̂−κ, H−κ

−∞

)
(4.61)

= h
(
Hi+1X̂i+1

∣
∣ {HℓX̂ℓ}

i
ℓ=−κ+1, X̂

i+1
−κ , H−κ

−∞, H−κX̂−κ

)
(4.62)

≤ h
(
Hi+1X̂i+1

∣
∣ {HℓX̂ℓ}

i
ℓ=−κ+1, X̂

i+1
−κ , H−κ−1

−∞ , H−κX̂−κ

)
(4.63)

= h
(
Hi+1X̂i+1

∣
∣ {HℓX̂ℓ}

i
ℓ=−κ, X̂i+1

−κ , H−κ−1
−∞

)
(4.64)

where (4.60) follows from the stationarity of {Hk} and the quasi-stationarity of X̂0
−κ

(note that i < 0 so that i + 1 ≤ 0); in (4.61) we add X̂−κ which, conditional
on X̂i+1

−κ+1, is independent of the other random quantities; then in (4.62) we add

H−κX̂−κ to the conditioning which does not change anything as it is a function of
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the given terms H−κ and X̂−κ; and the inequality (4.63) then follows by dropping
H−κ which cannot reduce entropy.

Therefore,

h
(
{HℓX̂ℓ}

0
ℓ=−κ

∣
∣ X̂0

−κ, H−κ−1
−∞

)

=
0∑

i=−κ

h
(
HiX̂i

∣
∣ {HℓX̂ℓ}

i−1
ℓ=−κ, X̂0

−κ, H−κ−1
−∞

)
(4.65)

=
0∑

i=−κ

h
(
HiX̂i

∣
∣ {HℓX̂ℓ}

i−1
ℓ=−κ, X̂i

−κ, H−κ−1
−∞

)
(4.66)

≤
0∑

i=−κ

h
(
H0X̂0

∣
∣ {HℓX̂ℓ}

−1
ℓ=−κ, X̂0

−κ, H−κ−1
−∞

)
(4.67)

= (κ + 1)h
(
H0X̂0

∣
∣ {HℓX̂ℓ}

−1
ℓ=−κ, X̂0

−κ, H−κ−1
−∞

)
. (4.68)

Here, (4.65) follows from the chain rule; in (4.66) we drop X̂0
i+1 because conditioned

on X̂i
−κ they are independent of the other random quantities; and in (4.67) we apply

(4.64) several times to each term of the sum.
Hence we have

h
(
H0X̂0

∣
∣ {HℓX̂ℓ}

−1
ℓ=−κ, X̂0

−κ, H−κ−1
−∞

)
≥

1

κ + 1
h
(
{HℓX̂ℓ}

0
ℓ=−κ

∣
∣ X̂0

−κ, H−κ−1
−∞

)
. (4.69)

Using this in (4.59) and (4.55) we finally get

I
(
H

k−κ−1
1 ;Yk

∣
∣Xk

k−κ, {HℓXℓ}
k−1
ℓ=k−κ

)

≤
1

κ + 1
h
(
{HℓX̂ℓ}

0
ℓ=−κ

∣
∣ X̂0

−κ

)
−

1

κ + 1
h
(
{HℓX̂ℓ}

0
ℓ=−κ

∣
∣ X̂0

−κ, H−κ−1
−∞

)
(4.70)

=
1

κ + 1
I
(
H

−κ−1
−∞ ; {HℓX̂ℓ}

0
ℓ=−κ

∣
∣ X̂0

−κ

)
(4.71)

=
1

κ + 1
I
(
H

−κ−1
−∞ ; {HℓX̂ℓ}

0
ℓ=−κ, X̂0

−κ

)
(4.72)

≤
1

κ + 1
I
(
H

−κ−1
−∞ ; {HℓX̂ℓ}

0
ℓ=−κ, X̂0

−κ, H0
−κ

)
(4.73)

=
1

κ + 1
I
(
H

−κ−1
−∞ ; H0

−κ

)
(4.74)

=
1

κ + 1
h(H0

−κ) −
1

κ + 1
h(H0

−κ|H
−κ−1
−∞ ) (4.75)

=
1

κ + 1
h(H0

−κ) −
1

κ + 1

0∑

i=−κ

h(Hi|H
−i−1
−∞ ) (4.76)

=
1

κ + 1
h(H0

−κ) −
1

κ + 1

0∑

i=−κ

h(H0|H
−1
−∞) (4.77)

=
1

κ + 1
h(H0

−κ) − h(H0|H
−1
−∞) (4.78)

, δ1(κ). (4.79)

Here, (4.72) follows because X̂0
−κ is independent of H

−κ−1
−∞ ; in (4.73) we add H

0
−κ to

the argument of mutual information; in (4.74) we drop ({HℓX̂ℓ}
0
ℓ=−κ, X̂0

−κ) because

conditional on H
0
−κ it is independent of H

−κ−1
−∞ ; and (4.77) follows from stationarity.

Note that δ1(κ) does neither depend on k nor on the input {Xk} and that by
Theorem 6 it monotonically tends to zero as κ tends to infinity.
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Chapter 5

Discussion & Conclusion

We have proven three results about stationary fading channels: the first two are
fundamental results that are true in a much more general context and are in no way
restricted to the situation of MIMO fading channels: the first results states that
a stationary channel has a capacity-achieving input distribution that is stationary.
This is intuitively very pleasing and confirms our belief that stationary processes in
general behave “the way engineers expect them to behave.”

The second result concerns entropy rates of various forms. We have shown that
entropy rates are also well-defined for processes with a continuous alphabet as long
as the processes are stationary (and the entropy rate is finite). Moreover, we also
generalize this definition to include various sorts of conditional entropy rates and
show that they are also well-defined. These conditional entropy rates are strongly
matched to the situation of MIMO fading channels, however, this is not necessary
and similar type of results can be derived in many other situations, too. Even though
we have shown the proof only for two cases, it is clearly seen that the fundament of
the proof is the stationarity assumption only.

As third result we prove that a certain mutual information expression of the form

I
(
X−κ

−∞; X0

∣
∣X−1

−κ+1

)

tends to zero as κ tends to infinity. This corresponds to the intuition that a process
is supposed to forget about things that happened an infinite amount of time before.
This result is more strongly bound to the context of MIMO fading channel. Never-
theless it contains some general message: it is a further example for the nice behavior
of stationary processes. Note, however,that in order to prove this mathematically, it
is crucial not to leave the scope of stationarity, i.e., steps introducing a supremum or
similar might open the door to unrealistic, but mathematically dangerous processes,
which will destroy the nice properties of the family of stationary distributions.

We believe that all three results are of interests in many different situations.
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