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Abstract

The fading number of a noncoherent two-user Rician fading channel is de-
rived. The fading number is the second term in the high-SNR expansion of
the sum-rate capacity of this multiple-access channel. It is shown that the fad-
ing number is identical to the fading number of the single-user Rician fading
channel that is obtained when the user seeing the worse channel is switched off.

Keywords: Channel capacity, fading number, flat fading, high signal-to-noise
ratio (SNR), multiple-access.
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1 Introduction

In a noncoherent fading channel where neither transmitter nor receiver know the
fading realization, it has been shown in [1] that the capacity at high SNR behaves
fundamentally different from the usual asymptotics seen in AWGN channels or in
coherent fading channels: instead of a logarithmic growth in the SNR, the capacity
only grows double-logarithmically. In detail, we have

C(snr) = log(1 + log(1 + snr)) + χ + o(1) (1)

where o(1) denote terms that tend to zero as the SNR tends to infinity; and where
χ is a constant independent of the SNR that is denoted fading number. The value of
χ depends on the exact specifications of the fading law. Note that even though the
fading number is defined only in the limit when the available SNR tends to infinity,
it has practical relevance also for finite SNR because it is a good estimator for the
threshold where the capacity changes from the normal logarithmic growth to the
highly inefficient double-logarithmic growth.

In the situation of single-user fading channels with multiple antennas both at
transmitter and receiver and with a fading process that may contain memory, a
formula for the fading number has been derived in [2]. The present paper is a first
step towards extending the setup to a multiple-user situation.

2 Channel Model and Previous Results

We consider a multiple-access channel with two independently transmitting users
and one receiver. All terminals are assumed to have only one antenna, and the two
fading channels from each user to the receiver are assumed to suffer from independent
Rician fading. The channel output Y ∈ C can then be written as

Y = H1x1 + H2x2 + Z (2)

= d1x1 + H̃1x1 + d2x2 + H̃2x2 + Z, (3)
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where xi ∈ C denotes the input of user i, i = 1, 2; where the random variables Hi

describe Rician fading

H̃i + di = Hi ∼ NC(di, 1) , i = 1, 2, (4)

(hence, H̃i are zero-mean, circularly symmetric, complex Gaussian random variables
with variance 1) and are assumed to be independent

H1 ⊥⊥ H2; (5)

and where Z ∼ NC

(
0, σ2

)
denotes additive, zero-mean, circularly symmetric Gaus-

sian noise, independent from the fading vector (H1, H2)
T.

We assume a noncoherent situation, i.e., neither transmitter nor receiver have
knowledge of the current fading realization, they only know the fading distributions.
Moreover we assume two different types of input constraints: a peak-power con-
straint and an average-power constraint. We use E to denote the maximum allowed
total instantaneous power in the former case, and to denote the allowed total average
power in the latter case. This total power then still must be split and distributed
among the users.

The sum-rate capacity C(E) of the channel (3) is given by

C(E) = sup I(X1, X2; Y ) (6)

where the supremum is over the set of all probability distributions on X = (X1, X2)
T

for which both components are independent and satisfy the input constraint, i.e.,

|X1|
2 + |X2|

2 ≤ E , almost surely (7)

for a peak-power constraint, or

E
[
|X1|

2 + |X2|
2
]
≤ E (8)

for an average-power constraint.
Note that the difference of this multiple-access channel (MAC) to the multiple-

input single-output (MISO) fading channel with two transmit antennas and one
receive antenna is that in the latter both transmit antennas can cooperate, while in
the former they are assumed to be independent. Hence, it immediately follows from
this that the MAC sum-rate capacity can be upper-bounded by the MISO capacity:

CMAC(E) ≤ CMISO(E). (9)

On the other hand, obviously the sum rate cannot be smaller than the single-user
rate that can be achieved if the weaker of the two users is switched off, i.e.,

CMAC(E) ≥ max
i=1,2

CSISO,i(E). (10)

Using this and specializing [1, Theorem 4.2] and [4, Theorem 6.10] to memoryless
MISO and SISO fading, respectively, we get

lim
E↑∞

{

CMAC(E) − log log
E

σ2

}

< ∞. (11)

We now define the MAC fading number accordingly (see [1, Definition 4.6], [4,
Definition 6.13]) as

χMAC , lim
E↑∞

{

CMAC(E) − log log
E

σ2

}

. (12)
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Prima facie the MAC fading number depends on whether a peak-power constraint
(7) or an average-power constraint (8) is imposed on the input. However, it will
turn out that the MAC fading number is identical for both cases.

From [1, Corollary 4.28] we know that

χMISO = log
(
|d1|

2 + |d2|
2
)
− Ei

(
−|d1|

2 + |d2|
2
)
− 1 (13)

were Ei (·) is the exponential integral function defined as

Ei (−x) , −

∫ ∞

x

e−t

t
dt, x > 0. (14)

Hence, from (9) we have

χMAC ≤ χMISO = log
(
|d1|

2 + |d2|
2
)
− Ei

(
−|d1|

2 + |d2|
2
)
− 1. (15)

On the other hand from (10)

χMAC ≥ max
i

χi,SISO = max
i

{
log

(
|di|

2
)
− Ei

(
−|di|

2
)
− 1

}
. (16)

Using the monotonicity of ξ 7→ log(ξ) − Ei (−ξ) we therefore see that

χMAC = log
(
d2

MAC

)
− Ei

(
−d2

MAC

)
− 1 (17)

where we have introduced dMAC to be a nonnegative real number satisfying

max {|d1|, |d2|} ≤ dMAC ≤
√

|d1|2 + |d2|2. (18)

In the following we will evaluate the exact value of dMAC.
Note that from [5] we actually know that

dMAC <
√

|d1|2 + |d2|2 (19)

with strict inequality.

3 Main Result

Theorem 1. Assume a Rician fading channel as defined in Section 2. Then the
sum-rate fading number is given by

χMAC = log
(
d2

MAC

)
− Ei

(
−d2

MAC

)
− 1, (20)

where
dMAC = max {|d1|, |d2|} . (21)

This shows that the lower bound in (18) is tight.

Note that if the magnitude of the line-of-sight component of one user is strictly
smaller than of the other user, then this sum rate can only be achieved if the user
with the weaker |di| is switched off. If both line-of-sight components have identical
magnitudes, then the sum rate can be achieved by time-sharing.

Remark 2. Note that Theorem 1 continues to hold even if we do not allow power
optimization over the users, i.e., if we constrain the inputs to satisfy

|Xi|
2 ≤

E

2
, almost surely, ∀ i. (22)
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4 Proof of Main Result

The proof of Theorem 1 consists of two parts. The first part is given already in (18).
There it is shown that max{|d1|, |d2|} is a lower bound to dMAC. Note that this lower
bound can be achieved using an input that satisfies the peak-power constraint.

The second part will be to prove that max{|d1|, |d2|} is also an upper bound.
We will prove this under the assumption of an average-power constraint. Since a
peak-power constraint is more stringent than an average-power constraint, the result
follows.

The proof of this upper bound relies strongly on a generalization of the concept
of input distributions that escape to infinity as introduced in [1] and in [6].

Proposition 3. Let {QE}E>0 be a family of joint input distributions of the two-user
MAC given in (3) parameterized by the available power E, E > 0, satisfying the
average-power constraint (8) and

lim
E↑∞

I(QE , W )

log log E
= 1. (23)

Then at least one user’s input distribution must escape to infinity, i.e., for any
E0 > 0,

lim
E↑∞

QE

({

|X1|
2 ≥

E0

2

}

∪

{

|X2|
2 ≥

E0

2

})

= 1. (24)

Proof. See the appendix.

Using [1, Eq. (25)] for our channel model we get after some steps the bound

I(X1, X2; Y ) ≤
ν

β
− 1 + E

[

log
|d1X1 + d2X2|

2

|X1|2 + |X2|2

]

− E

[

Ei

(

−
|d1X1 + d2X2|

2

|X1|2 + |X2|2

)]

+ ǫν + log Γ

(

α,
ν

β

)

+ α(log β − log σ2 + γ)

+
1

β

((
1 + d2

max

)
E + σ2

)

(25)

which with the right choice of the free parameters α, β, and ν leads to the upper
bound

χMAC ≤ lim
E↑∞

sup
QE∈A

{

log E

[
|d1X1 + d2X2|

2

|X1|2 + |X2|2

]

− Ei

(

−E

[
|d1X1 + d2X2|2

|X1|2 + |X2|2

])

− 1

}

. (26)

Here we define A be the set of joint input distributions such that X1 ⊥⊥ X2 and the
input distribution of at least one user escapes to infinity when the available power
E tends to infinity, i.e.,

A ,

{

X1, X2

∣
∣
∣
∣
X1 ⊥⊥ X2, lim

E↑∞
QE

({
|X1|

2 ≥ E0/2
}
∪

{
|X2|

2 ≥ E0/2
})

= 1

for any fixed E0 > 0

}

. (27)
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In the following we will only prove the special case where d1 = d2 = d. The
proof of the case of general d1, d2 is omitted.

Noting that ξ 7→ log(ξ) − Ei (−ξ) is monotonically increasing and writing Xi =
Rie

iΦi , we see that our problem becomes

sup
QE∈A

E

[
|dX1 + dX2|

2

|X1|2 + |X2|2

]

= sup
QE∈A

E

[
|d|2|X1 + X2|

2

|X1|2 + |X2|2

]

(28)

= sup
QE∈A

E

[

|d|2
(

1 +
2|X1||X2| cos(Φ1 − Φ2)

|X1|2 + |X2|2

)]

(29)

= |d|2

(

1 + sup
QE∈A

E

[
2|X1||X2| cos(Φ1 − Φ2)

|X1|2 + |X2|2

])

(30)

≤ |d|2

(

1 + sup
QE∈A

E

[
2R1R2

R2
1 + R2

2

])

, (31)

where in the last inequality we upper-bounded cos(Φ1 − Φ2) ≤ 1. The result now
follows once we can show that

lim
E↑∞

sup
QE∈A

E

[
2R1R2

R2
1 + R2

2

]

= 0. (32)

To that goal let

E
[
|X1|

2
]
≤ E1 (33)

E
[
|X2|

2
]
≤ E2 (34)

where
E1 + E2 = E . (35)

Note that from Proposition 3 we know that if E ↑ ∞ then E1 ↑ ∞ or E2 ↑ ∞ or both.
Without loss of generality assume that E1 ↑ ∞. Note further that

2r1r2

r2
1 + r2

2

≤ 1 (36)

and that r1 7→ 2r1r2

r2

1
+r2

2

is monotonically decreasing in r1 if r1 > r2. Hence, for an

arbitrary choice of a > 1,

lim
E↑∞

sup
QE∈A

E

[
2R1R2

R2
1 + R2

2

]

≤ sup
QR2

lim
E1↑∞

sup
QR1

∈A1

E

[
2R1R2

R2
1 + R2

2

]

(37)

= sup
QR2

lim
E1↑∞

sup
QR1

∈A1

∫ ∞

0

∫ ∞

0

2r1r2

r2
1 + r2

2

dQR1
(r1) dQR2

(r2) (38)

≤ sup
QR2

lim
E1↑∞

sup
QR1

∈A1

∫ ∞

0

∫ ar2

0

2r1r2

r2
1 + r2

2

dQR1
(r1) dQR2

(r2)

+ sup
QR2

lim
E1↑∞

sup
QR1

∈A1

∫ ∞

0

∫ ∞

ar2

2r1r2

r2
1 + r2

2

dQR1
(r1) dQR2

(r2). (39)

Here in the first inequality we define A1 as the set of all input distributions of the
first user that escape to infinity, we use that from E ↑ ∞ we know that E1 ↑ ∞
and take the supremum over all QR2

without any constraint on the average power
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and no dependence on QR1
. The last inequality then follows from splitting the

integration into two parts and from the property that the supremum of a sum is
always upper-bounded by the sum of the suprema.

Next, let’s look at the first term in (39):

lim
E1↑∞

sup
QR1

∈A1

∫ ∞

0

∫ ar2

0

2r1r2

r2
1 + r2

2
︸ ︷︷ ︸

≤1

dQR1
(r1) dQR2

(r2)

≤ lim
E1↑∞

sup
QR1

∈A1

∫ ∞

0

∫ ar2

0
dQR1

(r1) dQR2
(r2) (40)

≤ lim
E1↑∞

∫ ∞

0
sup

QR1
∈A1

∫ ar2

0
dQR1

(r1) dQR2
(r2) (41)

=

∫ ∞

0
lim
E1↑∞

sup
QR1

∈A1

∫ ar2

0
dQR1

(r1) dQR2
(r2) (42)

=

∫ ∞

0
0 dQR2

(r2) (43)

= 0. (44)

Here, (43) follows because QR1
escapes to infinity; and in (42) we exchange the limit

and the integration which can be justified as follows: let

gE1
(r2) , sup

QR1
∈A1

∫ ar2

0
dQR1

(r1) (45)

≤ sup
QR1

∈A1

∫ ∞

0
dQR1

(r1) (46)

= 1 , gupper(r2). (47)

Then note that
∫ ∞

0
gupper(r2) dQR2

(r2) =

∫ ∞

0
dQR2

(r2) = 1, (48)

i.e., gupper(·) is independent of E1 and integrable. Hence by the Dominated Conver-
gence Theorem (DCT) [7, Ch. 14] we are allowed to swap limit and integration.

Hence, we continue with (39) as follows:

lim
E↑∞

sup
QE∈A

E

[
2R1R2

R2
1 + R2

2

]

≤ sup
QR2

lim
E1↑∞

sup
QR1

∈A1

∫ ∞

0

∫ ∞

ar2

2r1r2

r2
1 + r2

2

dQR1
(r1) dQR2

(r2)

(49)

≤ sup
QR2

lim
E1↑∞

sup
QR1

∈A1

∫ ∞

0

∫ ∞

ar2

2(ar2)r2

(ar2)2 + r2
2

dQR1
(r1) dQR2

(r2) (50)

= sup
QR2

lim
E1↑∞

sup
QR1

∈A1

∫ ∞

0

∫ ∞

ar2

2a

a2 + 1
dQR1

(r1) dQR2
(r2)

(51)

≤ sup
QR2

lim
E1↑∞

sup
QR1

∈A1

∫ ∞

0

∫ ∞

0

2a

a2 + 1
dQR1

(r1) dQR2
(r2)

(52)
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=
2a

a2 + 1
sup
QR2

lim
E1↑∞

sup
QR1

∈A1

∫ ∞

0

∫ ∞

0
dQR1

(r1) dQR2
(r2)

(53)

=
2a

a2 + 1
< ǫ if a large enough. (54)

Here (50) follows because r1 7→ 2r1r2/(r2
1 + r2

2) is monotonically decreasing in r1 if
r1 > r2. Since a is arbitrary, the result follows.

5 Conclusions

We have shown that at very high SNR, the sum-rate capacity of a noncoherent
multiple-access Rician fading channel is limited by the capacity of the better of the
two users. This rather pessimistic result fits to the very pessimistic behavior of
noncoherent fading channels at high SNR.

Currently we are working on an extension of this result to more than two users
where each user is allowed to use several antennas. We believe that the stated
theorem generalizes accordingly, i.e., the MAC fading number corresponds to the
MISO fading number if only the user seeing the best channel is allowed to transmit.

A Proof of Proposition 3

In the following we will prove Proposition 3. From (9) we know that

lim
E↑∞

CMAC(E)

log log E
= 1. (55)

Moreover note that

lim
E↑∞

{

sup
µ∈(0,µ0]

µ log log E
µ

log log E

}

< 1, ∀ 0 < µ0 < 1. (56)

Fix some E0 > 0 and let

E ,

{

1 if |X1|
2 ≥ E0/2 or |X1|

2 ≥ E0/2,

0 if |X1|
2 < E0/2 and |X1|

2 < E0/2.
(57)

and
µ , Pr[E = 1] . (58)

Then

I(QX1
, QX2

, W ) = I (X1, X2; Y ) (59)

= I (X1, X2, E; Y ) (60)

= I(E; Y ) + I (X1, X2; Y | E) (61)

= I(E; Y ) + I (X1, X2; Y | E = 0) Pr[E = 0]

+ I (X1, X2; Y | E = 1) Pr[E = 1] (62)

≤ log 2 + I (X1, X2; Y | E = 0) + µI (X1, X2; Y | E = 1) (63)

≤ log 2 + C(E0) + µC

(
E

µ

)

, (64)
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where the first inequality follows because E is a binary random variable and because
Pr[E = 0] ≤ 1; the subsequent inequality follows because conditional on E = 0,
E
[
|X1|

2 + |X2|
2
]

< E0 and

E
[
|X1|

2 + |X2|
2
]

= µE
[
|X1|

2 + |X2|
2
∣
∣ E = 1

]

+ (1 − µ)E
[
|X1|

2 + |X2|
2
∣
∣ E = 0

]

︸ ︷︷ ︸

≥0

(65)

≥ µE
[
|X1|

2 + |X2|
2
∣
∣ E = 1

]
(66)

from which follows that

E
[
|X1|

2 + |X2|
2
∣
∣ E = 1

]
≤

E
[
|X1|2 + |X2|2

]

µ
≤

E

µ
. (67)

To show µ ↑ 1, let En be a sequence with En ↑ ∞. Let QEn
be a family of joint input

distributions on the MAC channel (3) such that

lim
n↑∞

I(QEn
, W )

log log En
= 1 (68)

and define

µn , QEn

({

|X1|
2 ≥

E0

2

}

∪

{

|X2|
2 ≥

E0

2

})

. (69)

By contradiction, assume µn → µ∗ < 1. Then ∃ µ0 < 1 such that

µn < µ0, n sufficiently large. (70)

From (64) we have

I(QEn
, W )

log log En
︸ ︷︷ ︸

→1

≤
log 2 + C(E0)

log log En
︸ ︷︷ ︸

→0

+
C

(
En

µn

)

log log En

µn
︸ ︷︷ ︸

→1

·
µn log log En

µn

log log En
. (71)

Here the limiting behavior of the LHS follows from (68); the limiting behavior of the
first term on the RHS is because C(E0) < ∞; the second term on the RHS tends to
one because En ↑ ∞ implies En/µn ↑ ∞ and because of (55). Hence, when n ↑ ∞
we obtain the contradiction

1 ≤ lim
n↑∞

µn log log En

µn

log log En
(72)

≤ lim
E↑∞

{

sup
µ∈(0,µ0]

µ log log E
µ

log log E

}

(73)

< 1, (74)

where the first inequality follows from (71); the second inequality follows from (70);
and the last inequality follows from (56).
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