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Abstract

The sum-rate capacity of a noncoherent multiple-access Rician fading chan-
nel is investigated under three different categories of power constraints: in-
dividual per user peak-power constraints, individual per user average-power
constraints, or a global power-sharing average-power constraint. Upper and
lower bounds on the sum-rate capacity are derived and it is shown that at high
signal-to-noise ratio the sum-rate capacity only grows double-logarithmically in
the available power. The asymptotic behavior of capacity is then analyzed in
detail and the exact asymptotic expansion is derived including its second term,
the so called fading number. It is shown that the fading number is identical
to the fading number of the single-user Rician fading channel that is obtained
when only the user seeing the best channel is transmitting and all other users
are switched off at all times. This pessimistic result holds independently of the
type of power constraint that is imposed.

Keywords: Channel capacity, fading number, flat fading, high signal-to-
noise ratio (SNR), multiple-access channel (MAC), multiple-input single-output
(MISO), multiple users, Rician fading.
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1 Introduction

In a noncoherent fading channel where neither transmitter nor receiver know the
fading realization, it has been shown in [1] that the capacity at high signal-to-noise
ratio (SNR) behaves fundamentally different from the usual asymptotics seen in
Gaussian channels or in coherent fading channels: instead of a logarithmic growth
in the SNR, the capacity only grows double-logarithmically. To be precise, if the
fading process is stationary, ergodic, and has a finite differential entropy rate and a
finite expected second moment, then we have

C(snr) = log(1 + log(1 + snr)) + χ+ o(1) (1)

where o(1) denotes terms that tend to zero as the SNR tends to infinity; and where
χ is a constant independent of the SNR that is called fading number. The value
of χ depends on the exact specifications of the fading law. In the situation of a
general memoryless fading process, i.e., a fading process that is independent and
identically distributed (IID) over time and of a general law, the fading number has
been derived for a single-input single-output (SISO) channel, a single-input multiple-
output (SIMO) channel, and a multiple-input single-output (MISO) channel in [1],
and the multiple-input multiple-output (MIMO) channel was solved in [2]. The more
general setup of a stationary, ergodic and regular fading process has been analyzed
in [1] for the SISO case, [3] solved the SIMO case, and the most general MIMO case
was addressed in [4].

Note that even though the fading number is defined only in the limit when the
available SNR tends to infinity, it has practical relevance also for finite SNR: it
is a good estimator for the threshold where the capacity changes from the normal
logarithmic growth to the highly inefficient double-logarithmic growth. For more
details we refer to the discussion in Section 3.3 and to the introduction section in
[4].

All the above mentioned results are restricted to the situation of a single trans-
mitter (possibly with several antennas) and a single receiver. The present work is
a first step towards generalizing the setup to a multiple-user situation. Concretely,
we include m transmitters, each having a certain number ni of antennas and trying
to communicate to a common receiver with only one antenna. The fading law is
assumed to be memoryless both over time and space and Gaussian distributed with
line-of-sight (LOS) components. We will propose upper and lower bounds on the
sum-rate capacity of this channel and derive the exact asymptotic expansion of the
sum-rate capacity for the SNR tending to infinity. It will turn out that the asymp-
totic capacity corresponds to the single-user capacity for the case when all but one
user are switched off at all times.

The remainder of this paper is structured as follows. After some short remarks
about notation we will introduce the multiple-access (MAC) Rician fading channel
and three different power constraints in Section 2. In Section 3 we will derive upper
and lower bounds on the sum-rate capacity of this model that are valid for all SNR.
These bounds are based on new bounds for the single-user MISO Rician fading
channel. We will see there that in contrast to the low-SNR regime, at high SNR the
capacity only grows double-logarithmically in the power.

To investigate the threshold between these two regimes, in Sections 4 and 5 the
asymptotic behavior of the sum-rate capacity will be analyzed and stated exactly.
The proof of the main result can be found in Section 6, while the derivations of some
intermediate steps have been moved to the appendix. We conclude in Section 7.
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We try to clearly distinguish random and constant quantities: while random
quantities are denoted by capital Roman letters, constants are typeset in small
Romans or the Greek alphabet. To distinguish numbers from vectors, vectors are
in bold face. E.g., X denotes a random vector and x its realization, while Y is
a random variable and y its realization. There are a few exceptions to this rule:
matrices are denoted by capital letters, but of a different font, e.g., D; C stands for
capacity; E for the available power; I denotes the mutual information functional;
and Q is a cumulative distribution function (CDF) of the channel input.

The superscript T refers to the transpose operation of vectors and matrices. We
use ‖ · ‖ to denote the Euclidean norm of vectors. Sets are set in calligraphic font
D, and Dc denotes the complement set.

All rates specified in this paper are in nats per channel use, i.e., log(·) denotes
the natural logarithmic function.

2 Channel Model and Power Constraints

We consider a multiple-access channel with m transmitters (users) and one receiver.
The signals transmitted by the users are assumed to be independent. The receiver
is assumed to have only one antenna, whereas each user i has some number ni of
transmit antennas, i = 1, . . . ,m, which yields a total number of antennas at the
transmitter side of

nT =
m∑

i=1

ni. (2)

All channels between one of the nT transmit antennas and the receiver antenna
are assumed to be memoryless and independent Rician fading channels, i.e., the
fading is complex Gaussian distributed with variance 1 and some mean (line-of-

sight component) d
(ℓ)
i ∈ C. Note that in the following we will use i (and sometimes

j) to denote the users, i.e., i = 1, . . . ,m, and ℓ to denote the antennas of user i, i.e.,
ℓ = 1, . . . , ni.

To simplify our notation and because we assume all channels to be IID over time,
we restrain ourselves from using time indices. We would like to point out that the
assumption of memorylessness has been made for simplicity. We believe it is possible
to extend the results to fading with memory (see also the discussion in Section 7).

So the channel output Y ∈ C can be written as

Y =
m∑

i=1

(dT

i +HT

i )xi + Z (3)

=

m∑

i=1

ni∑

ℓ=1

(
d
(ℓ)
i +H

(ℓ)
i

)
x
(ℓ)
i + Z. (4)

Here xi ∈ C
ni denotes the input vector for the ni antennas of user i; the components

of the random vector di +Hi describe Rician fading

H
(ℓ)
i + d

(ℓ)
i ∼ NC

(

d
(ℓ)
i , 1

)

(5)

(hence, H
(ℓ)
i are zero-mean, unit-variance, circularly symmetric, complex Gaussian

random variables) and are assumed to be independent

H
(ℓ)
i ⊥⊥ H

(ℓ′)
i′ , (i, ℓ) 6= (i′, ℓ′) (6)
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and Z ∼ NC

(
0, σ2

)
denotes additive, zero-mean, circularly symmetric Gaussian

noise, independent from the fading (H1, . . . ,Hm).
We assume a noncoherent situation, i.e., neither transmitters nor receiver have

knowledge of the current fading realization, they only know the fading distributions.1

Note that we do not restrict the receiver and/or transmitters to try to gain such
knowledge. Any power or bandwidth used for such estimation schemes, however,
are taken into account for the capacity analysis and are not given for free as in a
coherent setup. Neither will it be possible for the receiver to gain perfect channel
knowledge.

We do not allow cooperation between the users, i.e., we assume that the input
vectors of the different users are statistically independent:

Xi ⊥⊥ Xj , i 6= j. (7)

For completeness we also mention that the users’ input vectors are assumed to be
independent from fading and noise.

For simplicity of notation we will sometimes collect all LOS vectors di into one
nT-vector d:

d , (dT

1, . . . ,d
T

m)T (8)

the fading vectors Hi into one fading vector H of length nT:

H , (HT

1, . . . ,H
T

m)T (9)

and the input vectors Xi of all users into one nT-vector X:

X , (XT

1, . . . ,X
T

m)T. (10)

In the given setup we can consider several possible constraints on the power. We
will analyze three different scenarios:

• Peak-Power Constraint: At every time-step every user i is allowed to use
a power of at most κi

mE :

Pr
[

‖Xi‖2 >
κi
m
E
]

= 0 (11)

for some fixed number κi > 0.

• Average-Power Constraint: Averaged over the length of a codeword, every
user i is allowed to use a power of at most κi

mE :

E
[
‖Xi‖2

]
≤ κi

m
E (12)

for some fixed number κi > 0.

• Power-Sharing Average-Power Constraint: Averaged over the length of
a codeword all users together are allowed to use a power of at most κ̄E :

E

[
m∑

i=1

‖Xi‖2
]

≤ κ̄E (13)

for some fixed number κ̄ > 0.

1Note that the constant LOS vectors di are part of the distributions and are therefore known
everywhere!
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Note that if κi = 1 for all i, we have the special case where all users have an equal
power available. Also note that in (11) and (12) we have normalized the power to
the number of users m. This might be strange from an engineering point of view,
however, in regard of our freedom to choose κi it is irrelevant, and it simplifies our
analysis because we can easily connect the power-sharing average-power constraint
with the other two constraints. Indeed, if we define κ̄ to be the average of the
constants {κi}mi=1, i.e.,

κ̄ =
1

m

m∑

i=1

κi (14)

then the three constraints are in order of strictness: the peak-power constraint is
the most stringent of the three constraints in the sense that if (11) is satisfied for
all i = 1, . . . ,m, then the other two constraints are also satisfied; and the average-
power constraint is the second most stringent in the sense that if (12) is satisfied for
all i, then also the power-sharing average-power constraint (13) is satisfied. In the
remainder of this paper we will always assume that (14) holds.

For some comments about even more general types of power constraints, we refer
to the discussion in Section 7.

It is worth mentioning that the slackest constraint, i.e., the power-sharing av-
erage-power constraint, implicitly allows a form of cooperation: while the users are
still assumed to be statistically independent, we do allow cooperation concerning
power distribution. This is not very realistic, however, we include it anyway be-
cause it will help in deriving bounds on the sum-rate capacity. As a matter of fact,
it will turn out that the asymptotic sum-rate capacity is unchanged irrespective of
which constraint is assumed.

The sum-rate capacity CMAC(E) of the channel (3) is given by

CMAC(E) = sup
QX1

···QXm

power constraint

I(X1, . . . ,Xm;Y ) (15)

where the supremum is over the set of all probability distributions of the m input
vectors such that the users are statistically independent of each other (7), and such
that one particular power constraint (11), (12), or (13) is satisfied.

3 Nonasymptotic Bounds on the Sum-Rate Capacity

3.1 Relationship between MAC and MISO

We derive an upper and a lower bound on the sum-rate capacity (15) by properly
changing the setup to a single-user situation.

Firstly, we upper-bound CMAC(E) by dropping the independence-constraint (7),
i.e., allowing full cooperation among all users. Moreover, we choose the most relaxed
power constraint (13):

CMAC(E) = sup
QX1

···QXm

power constraint

I(X1, . . . ,Xm;Y ) (16)

≤ sup
QX1,...,Xm

E[
∑m

i=1 ‖Xi‖
2]≤κ̄E

I(X1, . . . ,Xm;Y ) (17)

= sup
QX

E[‖X‖2]≤κ̄E

I(X;Y ) (18)
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= CMISO,av,nT
(κ̄E). (19)

Here CMISO,av,nT
(Υ) denotes the (single-user) capacity of the MISO Rician fading

channel with nT transmitter antennas (and one receiver antenna)

Y = dTx+HTx+ Z (20)

(where d, H, and x are defined in (8), (9), and (10), respectively) under the average-
power constraint

E
[
‖X‖2

]
≤ Υ. (21)

On the other hand, obviously the sum rate cannot be smaller than the single-user
rate that can be achieved if all but one user are switched off, assuming the most
stringent type of power constraint (11), and assuming the minimal amount of power
among all users. I.e., for an arbitrary i ∈ {1, . . . ,m},

CMAC(E) = sup
QX1

···QXm

power constraint

I(X1, . . . ,Xm;Y ) (22)

≥ sup
QX1

···QXm

Pr[‖Xj‖
2>

κmin
m

E]=0, ∀j

I(X1, . . . ,Xm;Y )

∣
∣
∣
∣Xj≡0,
∀ j 6=i

(23)

= sup
QXi

Pr[‖Xi‖
2>

κmin
m

E]=0

I(Xi;Y ) (24)

= CMISO,pp,ni

(κmin

m
E
)

. (25)

Here, CMISO,pp,ni
(Υ) denotes the (single-user) capacity of the MISO Rician fading

channel with ni transmitter antennas (and one receiver antenna)

Y = dT

ixi +HT

ixi + Z (26)

under the peak-power constraint

Pr
[
‖Xi‖2 > Υ

]
= 0 (27)

and we define
κmin , min

i∈{1,...,m}
κi. (28)

Hence, we have the following first important result.

Theorem 1. The sum-rate capacity (15) of the multiple-access Rician fading chan-
nel (3) under one of the three power constraints (11), (12), or (13) is bounded as
follows:

max
i

CMISO,pp,ni

(κmin

m
E
)

≤ CMAC(E) ≤ CMISO,av,nT
(κ̄E). (29)

3.2 Bounds on MISO Rician Fading Channel

In order to be able derive more explicit bounds on the MAC sum-rate capacity, we
make a small detour and develop some bounds on the MISO Rician fading channel.
We start with an upper bound, which is a generalization of a bound from [1], based
on a dual expression of mutual information.
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Proposition 2. The capacity of the MISO Rician fading channel (20) under an
average-power constraint (21) is upper-bounded as follows:

CMISO,av,nT
(Υ) ≤ inf

0<α≤1
β>0,ν≥0

{

α log

(
β

σ2

)

− 1 + log Γ

(

α,
ν

β

)

+
(‖d‖2 + 1)Υ + σ2

β

+
ν

β
+ (1− α)

(

log

( ‖d‖2Υ
Υ+ σ2

)

− Ei

(

− ‖d‖2Υ
Υ+ σ2

))

+ (1− α)
(

log
( ν

σ2

)

− e
ν

σ2 Ei
(

− ν

σ2

)

+ γ
)
}

(30)

where Ei (·) denotes the exponential integral function

Ei (−ξ) , −
∫ ∞

ξ

e−t

t
dt, ξ > 0 (31)

and where γ ≈ 0.57 denotes Euler’s constant.

Proof. See Appendix A.

In order to be able to apply any lower bound on the MISO Rician fading channel
to Theorem 1, we need to consider a peak-power constraint instead of an average-
power constraint. We will derive two different lower bounds. The first bound relies
on an input chosen such that the logarithm of its magnitude is uniformly distributed
in the interval

[
1
2 logΥ0,

1
2 logΥ

]
for some constant 0 < Υ0 < Υ.

The second lower bound is based on a binary input

Xi ,
√
Υ · Ξ · di

‖di‖
eiΦ (32)

with Pr[Ξ = 1] = 1−Pr[Ξ = 0] = p and Φ (independent of Ξ) being uniform between
0 and 2π, Φ ∼ U ([0, 2π)). The induced mutual information is then computed
numerically.

Proposition 3. The capacity of the MISO Rician fading channel (26) under a peak-
power constraint (27) is lower-bounded as follows:

CMISO,pp,ni
(Υ) ≥ conv.-hull

{
max{CL1,ni

(Υ),CL2,ni
(Υ)}

}
(33)

where

CL1,ni
(Υ) , max

0<Υ0<Υ

{

log log

(
Υ

Υ0

)

+ log
(
‖di‖2

)
− Ei

(
−‖di‖2

)

− 1− log

(

1 +
σ2

Υ0

)}

(34)

and

CL2,ni
(Υ) , max

0≤p≤1

{

−
∫ ∞

0
fR2

i
(t) log fR2

i
(t) dt− 1

− p log
(
Υ+ σ2

)
− (1− p) log

(
σ2
)
}

(35)

with

fR2
i
(t) ,

1− p

σ2
e−

t

σ2 +
p

Υ+ σ2
e
−

t+‖di‖
2Υ

Υ+σ2 I0

(

2‖di‖
√
Υt

Υ+ σ2

)

. (36)

Here I0(·) denotes the modified Bessel function of order zero, and Ei (·) is defined
in (31).

Proof. See Appendix B.
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Figure 1: Nonasymptotic bounds (29) on the sum-rate of a two-user multiple-access
Rician fading channel. The dotted line shows the capacity of an additive Gaussian
noise channel with equivalent received SNR. The red horizontal line corresponds
to the fading number χ as derived in Section 5, and the dashed red line is the
approximate threshold χ + 2 nats between the efficient low-SNR and the highly
inefficient high-SNR behavior.

3.3 Discussion

Proposition 2 and 3 can be applied directly to Theorem 1 to get bounds on the
sum-rate capacity. Figure 1 depicts an example with two users m = 2, each of them
having the same power constraint, i.e., κ1 = κ2 = κ̄ = 1. The LOS components are
assumed to be ‖d1‖ = 6 and ‖d2‖ = 8, such that ‖d‖ = 10. Note that the exact
choice of the vectors d1 and d2 including their dimensions n1 and n2 is irrelevant
for the given bounds. The LOS components influence the expressions only via their
magnitudes.

We clearly see that there exist two distinct regimes: for SNR values below around
10 dB (or a rate of about CMAC ≈ 5 nats) the sum-rate capacity grows logarithmi-
cally in the SNR, while above the threshold the growth changes dramatically and
becomes very slowly growing. We will show in the next section that this high-SNR
growth is double-logarithmic.

We conclude that one should not use this channel at high SNR, and we ask for
more insight about this threshold between the efficient low-SNR regime and the
highly inefficient high-SNR regime. As described in [4, Sec. I.B] it turns out that an
asymptotic capacity analysis is the clue to such an investigation. This might seem
strange at first sight as we just have concluded that we are not interested in this
channel at high SNR. However, it is important to realize that around the threshold,
the sum-rate capacity is dominated by the second (constant) term of the asymptotic
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high-SNR expansion of the sum-rate capacity (and not by the double-logarithmic
term!). Indeed, we note that

log(1 + log(1 + Υ)) ≈ 2 nats (37)

for Υ ∈ [20 dB, 80 dB], and therefore conclude that as a rule of thumb the threshold
will be around CMAC ≈ χ+ 2 nats.

Hence, in deriving the asymptotic expansion of capacity one gains important
understanding of the behavior of the channel at a reasonable and finite SNR. In the
remainder of this paper we will investigate the asymptotic behavior of the sum-rate
capacity and in particular compute its exact asymptotic expansion.

4 The Asymptotic Sum-Rate Capacity

We will now consider the asymptotic case, i.e., the situation when the available
power E tends to infinity. We know that for the MISO Rician fading case2 [1,
Theorem 4.27]

CMISO(E) = CMISO,av(E) = CMISO,pp(E)

= log log

( E
σ2

)

+ χMISO,d + o(1) (38)

where o(1) denotes terms that tend to zero as E tends to infinity and where χMISO,d

is a constant denoted MISO fading number. Note that the value of χMISO,d is inde-
pendent of whether we have assumed an average-power or a peak-power constraint
and is given by [1, Corollary 4.28]

χMISO,d = log
(
‖d‖2

)
− Ei

(
−‖d‖2

)
− 1 (39)

where Ei (·) is defined in (31) and where d denotes the LOS vector of the MISO
Rician fading channel.

We further note that for any constant factor β

lim
E↑∞

{
log log(βE)− log log E

}
= 0, β > 0 (40)

i.e., the double-logarithmic growth is not influenced by the factors κmin
m or κ̄ in

Theorem 1. Therefore, we directly get from (29), (38), and (40) the following result.

Corollary 4. The sum-rate capacity (15) of the multiple-access Rician fading chan-
nel (3) under any one of the three power constraints (11), (12), or (13), and ir-
respective of the values of κ1, . . . , κm, grows double-logarithmically in the power at
high power:

lim
E↑∞

{

CMAC(E)− log log

( E
σ2

)}

< ∞. (41)

We next step out to analyze the second term of the high-SNR expansion of the
sum-rate capacity: the MAC fading number.

Definition 5. The MAC fading number is defined as

χMAC , lim
E↑∞

{

CMAC(E)− log

(

1 + log

(

1 +
E
σ2

))}

. (42)

2Note that asymptotically for E ↑ ∞, log
(

1 + log
(

1 + E
σ2

))

= log log
(

E
σ2

)

+ o(1).
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A priori χMAC depends on the type of power constraint (11), (12), or (13) that
is imposed on the input. However, it will turn out that the value of the MAC fading
number is identical for all three cases. We therefore take the liberty to use a slightly
sloppy notation that does not specify the used power constraint.

From (29), (38), and (40) we realize that

max
i

χMISO,di
≤ χMAC ≤ χMISO,d (43)

or explicitly (by (39))

max
i

{
log
(
‖di‖2

)
− Ei

(
−‖di‖2

)
− 1
}
≤ χMAC ≤ log

(
‖d‖2

)
− Ei

(
−‖d‖2

)
− 1 (44)

where we remind the reader that di is the LOS vector of user i and d , (dT

1, . . . ,d
T

m)T

is the stacked LOS vector of all users.
Using the monotonicity of ξ 7→ log(ξ)−Ei(−ξ)−1 we now define dMAC ≥ 0 such

that
χMAC = log

(
d2MAC

)
− Ei

(
−d2MAC

)
− 1. (45)

From (44) we know that

max
{
‖d1‖2, . . . , ‖dm‖2

}
≤ d2MAC ≤ ‖d‖2 = ‖d1‖2 + · · ·+ ‖dm‖2. (46)

In the remainder we will derive the exact value of dMAC.
We would like to point out that in [5] it has been proven that for the two-user

case m = 2 with n1 = n2 = 1 (and with κ1 = κ2 = 1) the upper bound in (46)
cannot be achieved, i.e.,

d2MAC < ‖d‖2 (47)

with strict inequality.

5 Main Result: The MAC Fading Number

Theorem 6. Consider a multiple-access Rician fading channel as defined in (3).
Then, irrespective of which power constraint (11), (12), or (13) is imposed on the
input and irrespective of the values of κ1, . . . , κm, the MAC fading number χMAC

(42) is given by
χMAC = log

(
d2MAC

)
− Ei

(
−d2MAC

)
− 1 (48)

with
d2MAC , max

{
‖d1‖2, . . . , ‖dm‖2

}
. (49)

This shows that the lower bound in (46) is tight, which is a rather pessimistic
result. It means that if the magnitude of the LOS vector of one user is strictly larger
than the LOS vectors of the other users, then the asymptotic sum-rate capacity can
only be achieved if all but this strongest user are switched off at all times. If there are
several users with LOS vectors of identical largest magnitude, the sum-rate capacity
can also be achieved by time sharing among those best users.

Note that the result holds even if we allow for power sharing among the users.
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6 Proof of Main Result

The proof of Theorem 6 consists of two parts. The first part is given already in
Section 4: it is shown in (46) that maxi ‖di‖2 is a lower bound to d2MAC. Note
that this lower bound can be achieved using an input that satisfies the strictest
constraint, i.e., the peak-power constraint (11).

The second part will be to prove that maxi ‖di‖2 also is an upper bound to
d2MAC. We will prove this under the assumption of the slackest constraint, i.e., the
power-sharing average-power constraint (13). Since the peak-power constraint (11)
and the average-power constraint (12) are more stringent than the power-sharing
average-power constraint (13), the result will follow.

Before we start with the actual derivation of this upper bound, we need to
generalize a concept that has been introduced in [1] and [3].

Proposition 7 (Input Distributions that Escape to Infinity). Let {QE}E>0

be a family of joint input distributions of the multiple-access Rician fading channel
(3), parametrized by the available power E > 0, satisfying the power-sharing average-
power constraint (13), and satisfying

lim
E↑∞

I(QE)

log log E = 1 (50)

where I(Q) denotes the mutual information between input and output of this channel
induced by the input distribution Q.

Then at least one user’s input distribution must escape to infinity, i.e., for any
fixed E0 > 0,

lim
E↑∞

QE

({

‖X1‖2 ≥
E0
m

}

∪ · · · ∪
{

‖Xm‖2 ≥ E0
m

})

= 1. (51)

Proof. See Appendix C.

To put it in an engineering way, Proposition 7 says that in the limit when the
available power tends to infinity, at least one user must use a coding scheme where
every used symbol uses infinite energy. Or, if all users use one (or more) symbol
with finite energy, the asymptotic growth rate of the sum-rate capacity cannot be
achieved.

Definition 8. We define A to be the set of families of joint input distributions of all
users such that the users are independent (7), such that the power-sharing average-
power constraint (13) is satisfied, and such that the input distribution of at least one
user escapes to infinity when the available power E tends to infinity (51), i.e.,

A ,
{
{QX}E>0 : (7), (13), and (51) are satisfied

}
. (52)

We are now ready for the derivation of an upper bound on the MAC fading
number. The following bound is derived from a duality-based bound on mutual
information.

Lemma 9. The MAC fading number (42) is upper-bounded as follows:

χMAC ≤ lim
E↑∞

sup
QE∈A

{

log

(

E

[ |dTX|2
‖X‖2

])

− Ei

(

−E

[ |dTX|2
‖X‖2

])

− 1

}

. (53)
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Proof. See Appendix D.

Noting that ξ 7→ log(ξ)−Ei (−ξ)− 1 is a monotonically increasing function and
using our definition of dMAC in (45) we hence conclude that

d2MAC ≤ lim
E↑∞

sup
QE∈A

E

[ |dTX|2
‖X‖2

]

. (54)

We would like to point out that without the constraint (51) the right-hand side
(RHS) of (54) actually equals to ‖d‖2, i.e., to the RHS of (46), from which we
already know that it is (at least in some cases) strictly loose. So we see that the
presented generalization of the concept of input distributions that escape to infinity
(Proposition 7) is crucial to this proof.

We now continue as follows:

sup
QE∈A

E

[ |dTX|2
‖X‖2

]

= sup
QE∈A

E

[∣
∣dT

1X1 + · · ·+ dT

mXm

∣
∣2

‖X1‖2 + · · ·+ ‖Xm‖2

]

(55)

≤ sup
QE∈A

E

[ |dT

1X1|2 + · · ·+ |dT

mXm|2
‖X1‖2 + · · ·+ ‖Xm‖2

]

+
m∑

i=1

m∑

j=1
j 6=i

sup
QE∈A

E

[ |dT

iXi| · |dT

jXj |
‖X1‖2 + · · ·+ ‖Xm‖2

]

(56)

≤ sup
QE∈A

E

[‖d1‖2‖X1‖2 + · · ·+ ‖dm‖2‖Xm‖2
‖X1‖2 + · · ·+ ‖Xm‖2

]

+
m∑

i=1

m∑

j=1
j 6=i

sup
QE∈A

E

[ ‖di‖‖Xi‖‖dj‖‖Xj‖
‖X1‖2 + · · ·+ ‖Xm‖2

]

(57)

where in (56) we split the supremum into many separate suprema, and where (57)
follows from the Cauchy-Schwarz inequality

|dT

iXi|2 ≤ ‖di‖2‖Xi‖2. (58)

We next upper-bound the first term in (57) as follows:

sup
QE∈A

E

[‖d1‖2‖X1‖2 + · · ·+ ‖dm‖2‖Xm‖2
‖X1‖2 + · · ·+ ‖Xm‖2

]

≤ sup
r1,...,rm

{‖d1‖2r21 + · · ·+ ‖dm‖2r2m
r21 + · · ·+ r2m

}

(59)

= sup
r

rT
D̃r

‖r‖2 (60)

= λmax(D̃) (61)

= max
{
‖d1‖2, . . . , ‖dm‖2

}
(62)

where we have defined the vector r , (r1, . . . , rm)T and the matrix

D̃ , diag
(
‖d1‖2, . . . , ‖dm‖2

)
. (63)

The equality (61) follows from the Rayleigh-Ritz Theorem [6, Theorem 4.2.2].
To address the remaining terms in (57) we note that by definition of A in (52)

at least one user’s input must escape to infinity. Without loss of generality assume
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that X1 is among them. Then we can separate the remaining terms in (57) into two
kinds:

sup
QE∈A

E

[ ‖d1‖‖di‖‖X1‖‖Xi‖
‖X1‖2 + · · ·+ ‖Xm‖2

]

, i ∈ {2, . . . ,m} (64)

and

sup
QE∈A

E

[ ‖di‖‖dj‖‖Xi‖‖Xj‖
‖X1‖2 + · · ·+ ‖Xm‖2

]

, i, j ∈ {2, . . . ,m}, i 6= j. (65)

Our proof is concluded once we can show that

lim
E↑∞

sup
QE∈A

E

[ ‖d1‖‖di‖‖X1‖‖Xi‖
‖X1‖2 + · · ·+ ‖Xm‖2

]

= 0 (66)

lim
E↑∞

sup
QE∈A

E

[ ‖di‖‖dj‖‖Xi‖‖Xj‖
‖X1‖2 + · · ·+ ‖Xm‖2

]

= 0 (67)

for i, j ∈ {2, . . . ,m}, i 6= j.
We start with (66) and note that by dropping some terms in the denominator

we have

lim
E↑∞

sup
QE∈A

E

[ ‖d1‖‖di‖‖X1‖‖Xi‖
‖X1‖2 + · · ·+ ‖Xm‖2

]

≤ ‖d1‖‖di‖ lim
E↑∞

sup
QE∈A

E

[ ‖X1‖‖Xi‖
‖X1‖2 + ‖Xi‖2

]

.

(68)
Next we define

E1 , E
[
‖X1‖2

]
(69)

and recall that if E ↑ ∞ then E1 ↑ ∞ by our assumption that user 1 escapes to
infinity. Note further that

r1ri
r21 + r2i

≤ 1

2
(70)

and that r1 7→ r1ri
r21+r2

i

is monotonically decreasing if r1 > ri.

Therefore, for an arbitrary choice of a > 1, we define the set D as

D ,
{
x1 : 0 ≤ ‖x1‖ ≤ a‖xi‖

}
(71)

and bound

lim
E↑∞

sup
QE∈A

E

[ ‖X1‖‖Xi‖
‖X1‖2 + ‖Xi‖2

]

≤ sup
QXi

lim
E1↑∞

sup
QX1

∈A1

E

[ ‖X1‖‖Xi‖
‖X1‖2 + ‖Xi‖2

]

(72)

= sup
QXi

lim
E1↑∞

sup
QX1

∈A1

∫∫ ‖x1‖‖xi‖
‖x1‖2 + ‖xi‖2

dQX1(x1) dQXi
(xi) (73)

≤ sup
QXi

lim
E1↑∞

sup
QX1

∈A1

∫∫

x1∈D

‖x1‖‖xi‖
‖x1‖2 + ‖xi‖2

dQX1(x1) dQXi
(xi)

+ sup
QXi

lim
E1↑∞

sup
QX1

∈A1

∫∫

x1∈Dc

‖x1‖‖xi‖
‖x1‖2 + ‖xi‖2

dQX1(x1) dQXi
(xi). (74)

Here in the first inequality (72) we define A1 as the set of all input distributions of
the first user that escape to infinity, and take the supremum over all QXi

without
any constraint on the average power and no dependence on QX1 . The last inequality
(74) then follows from splitting the inner integration into two parts and from the
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property that the supremum of a sum is always upper-bounded by the sum of the
suprema.

Next, let’s look at the first term in (74) and use (70):

lim
E1↑∞

sup
QX1

∈A1

∫∫

x1∈D

‖x1‖‖xi‖
‖x1‖2 + ‖xi‖2
︸ ︷︷ ︸

≤ 1
2

dQX1(x1) dQXi
(xi)

≤ lim
E1↑∞

sup
QX1

∈A1

∫∫

x1∈D

1

2
dQX1(x1) dQXi

(xi) (75)

≤ lim
E1↑∞

∫
(

sup
QX1

∈A1

1

2

∫

x1∈D
dQX1(x1)

)

dQXi
(xi) (76)

=

∫

lim
E1↑∞

(

sup
QX1

∈A1

1

2

∫

x1∈D
dQX1(x1)

)

dQXi
(xi) (77)

=

∫
(

lim
E1↑∞

sup
QX1

∈A1

1

2
Pr[‖X1‖ ≤ a‖xi‖]

)

dQXi
(xi) (78)

=

∫

0 dQXi
(xi) = 0. (79)

Here, (75) follows from (70); the subsequent inequality (76) follows by taking the
supremum into the first integral which can only enlarge the expression; in (77) we
exchange limit and integration which needs justification: define

gE1(xi) , sup
QX1

∈A1

1

2

∫

x1∈D
dQX1(x1) (80)

≤ sup
QX1

∈A1

1

2

∫

dQX1(x1) (81)

=
1

2
, gupper(xi) (82)

and then note that
∫

gupper(xi) dQXi
(xi) =

∫
1

2
dQXi

(xi) =
1

2
(83)

i.e., gupper(·) is independent of E1 and integrable. Thus, by the Dominated Conver-
gence Theorem [7] we are allowed to swap limit and integration.

Finally, (79) follows from Proposition 7 because QX1 escapes to infinity.
Continuing with (74) we now have:

lim
E↑∞

sup
QE∈A

E

[ ‖X1‖‖Xi‖
‖X1‖2 + ‖Xi‖2

]

≤ sup
QXi

lim
E1↑∞

sup
QX1

∈A1

∫∫

x1∈Dc

‖x1‖‖xi‖
‖x1‖2 + ‖xi‖2

dQX1(x1) dQXi
(xi) (84)

≤ sup
QXi

lim
E1↑∞

sup
QX1

∈A1

∫∫

x1∈Dc

(
a‖xi‖

)
‖xi‖

(a‖xi‖)2 + ‖xi‖2
dQX1(x1) dQXi

(xi) (85)

= sup
QXi

lim
E1↑∞

sup
QX1

∈A1

∫∫

x1∈Dc

a

a2 + 1
dQX1(x1) dQXi

(xi) (86)

≤ sup
QXi

lim
E1↑∞

sup
QX1

∈A1

∫∫
a

a2 + 1
dQX1(x1) dQXi

(xi) (87)
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= sup
QXi

∫
a

a2 + 1
dQXi

(xi) (88)

=
a

a2 + 1
< ǫ (89)

for any ǫ > 0 if we choose a large enough. Here (85) follows because r1 7→ r1ri
r21+r2

i

is

monotonically decreasing if r1 > ri. Since a > 1 is arbitrary, we obtain:

lim
E↑∞

sup
QE∈A

E

[ ‖X1‖‖Xi‖
‖X1‖2 + ‖Xi‖2

]

= 0. (90)

This proves (66).
To prove (67), we again drop some terms in the denominator:

E

[ ‖di‖‖dj‖‖Xi‖‖Xj‖
‖X1‖2 + · · ·+ ‖Xm‖2

]

≤ ‖di‖‖dj‖E
[ ‖Xi‖‖Xj‖
‖X1‖2 + ‖Xi‖2 + ‖Xj‖2

]

. (91)

We once more use definition (69) and note that

rirj
r21 + r2i + r2j

≤ r2i
r21 + 2r2i

≤ 1

2
(92)

and that r1 7→ r2i
r21+2r2

i

is monotonically decreasing.

For an arbitrary choice of a > 1, we use the set D from (71) to derive

lim
E↑∞

sup
QE∈A

E

[ ‖Xi‖‖Xj‖
‖X1‖2 + ‖Xi‖2 + ‖Xj‖2

]

≤ sup
QXi

·QXj

lim
E1↑∞

sup
QX1

∈A1

∫∫∫ ‖xi‖‖xj‖
‖x1‖2 + ‖xi‖2 + ‖xj‖2

dQX1(x1) dQXi
(xi) dQXj

(xj)

(93)

≤ sup
QXi

lim
E1↑∞

sup
QX1

∈A1

∫∫ ‖xi‖2
‖x1‖2 + 2‖xi‖2

dQX1(x1) dQXi
(xi) (94)

≤ sup
QXi

lim
E1↑∞

sup
QX1

∈A1

∫∫

x1∈D

‖xi‖2
‖x1‖2 + 2‖xi‖2

dQX1(xm) dQXi
(xi)

+ sup
QXi

lim
E1↑∞

sup
QX1

∈A1

∫∫

x1∈Dc

‖xi‖2
‖x1‖2 + 2‖xi‖2

dQX1(xm) dQXi
(xi). (95)

Here in (93) we define A1 as the set of all input distributions such that the first
user escapes to infinity, and take the supremum over all joint distributions of QXi

and QXj
without any restriction on the average power. In the subsequent inequality

(94) we apply (92) to replace ‖xj‖ by ‖xi‖. In the last inequality we split the inner
integration into two parts using (71).

For the first term in (95), we have

lim
E1↑∞

sup
QX1

∈A1

∫∫

x1∈D

‖xi‖2
‖x1‖2 + 2‖xi‖2
︸ ︷︷ ︸

≤ 1
2

dQX1(x1) dQXi
(xi)

≤ lim
E1↑∞

sup
QX1

∈A1

∫∫

x1∈D

1

2
dQX1(x1) dQXi

(xi) (96)

= 0 (97)
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where (97) follows from a derivation analogous to (75)–(79).
The second term in (95) can be bounded as follows:

sup
QXi

lim
E1↑∞

sup
QX1

∈A1

∫∫

x1∈Dc

‖xi‖2
‖x1‖2 + 2‖xi‖2

dQX1(x1) dQXi
(xi)

≤ sup
QXi

lim
E1↑∞

sup
QX1

∈A1

∫∫

x1∈Dc

‖xi‖2
(a‖xi‖)2 + 2‖xi‖2

dQX1(x1) dQXi
(xi) (98)

≤ sup
QXi

∫
1

a2 + 2
dQXi

(xi) (99)

=
1

a2 + 2
< ǫ (100)

for any ǫ > 0 if we choose a large enough. Here in the first inequality we use that

r1 7→ r2i
r21+2r2

i

is monotonically decreasing. Since a is arbitrary, this proves (67) and

concludes the proof.

7 Conclusions

In this paper we have derived a new upper and lower bound on the sum-rate ca-
pacity of a noncoherent memoryless multiple-access Rician fading channel with m
transmitters (with a different number of antennas each) and one receiver (with only
one antenna). We have shown that while the sum-rate capacity at low SNR behaves
normally with a logarithmic growth in the available power, at high SNR it is highly
power-inefficient and only grows double-logarithmically. It is therefore advisable not
to operate such a channel at high SNR. These bounds rely on novel bounds on the
capacity of a single-user MISO Rician fading channel that are valid for any SNR.

In a second step we then derived the exact asymptotic high-SNR expansion of
the sum-rate capacity, which has the form

CMAC = log log

( E
σ2

)

+ χMAC + o(1). (101)

We have shown that this asymptotic sum-rate capacity is limited by the asymptotic
capacity of the user seeing the best channel and can only be achieved if all users
with a channel that is strictly worse than the best channel are always switched off
and cannot communicate. Note that this should not be confused with the idea of
time sharing where at any given time only one user is allowed to communicate. In
the presented setup, as long as the channel model does not change, the best user
will remain the best user, i.e., all other users can never communicate.3 This very
pessimistic result fits to the already rather pessimistic double-logarithmic behavior
and strengthen the conviction that these channels should not be used at high SNR,
but only at low SNR where the channel will behave normally like a coherent fading
channel.

At first sight our results seems very similar to a result by Knopp and Humblet
[8] [9] [10], who showed that the strategy of one user at a time also is optimal for
the MAC with full channel state information both at the transmitter and receiver
side. In [8] a continuous-time system is considered and it is shown that if the
transmitter and receiver have full knowledge of the fading, then it is best if the

3The only exception is if there are several users having the same best channel. In this case these
equivalent best users can use time sharing to alternatively communicate.
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users are assigned separate frequency and time slots corresponding to best fading
realizations (orthogonal signaling). However, we would like to point out that in
this setup, each user can transmit regularly and has a strictly nonzero average
communication rate, while in the channel model considered here, it turns out that
optimally most users have a zero transmission rate. So these two results are not
properly comparable.

We remark further that from the fact that the sum-rate capacity is achieved in
a corner where only one user has positive rate, one can deduce that the asymptotic
capacity region has the shape of an m-dimensional simplex.

In the analysis of the channel we have allowed for many different types of power
constraints. We grouped them into three categories: an individual peak-power con-
straint for each user, an individual average-power constraint for each user, and a com-
bined power-sharing average-power constraint among all users. The power-sharing
constraint does not make sense in a practical setup as it requires the users to share a
common battery, while their signals still are restricted to be independent. However,
the inclusion of this case helps with the analysis. Moreover, it turns out that the
pessimistic results described above even hold if we allow for such power sharing.

Within a category of constraints, we do allow for different power settings for
different users as long as the constraints scale linearly (see the constants κi and κ̄ in
(11)–(13)). It would be possible to extend the shown results to situations where the
power constraints among the different user differ exponentially, i.e., if every user i
is allowed to use a power of at most

κi
m
Eϑi

for some κi, ϑi > 0. In this case, however, ϑi will influence the MAC fading number4

via an additive term log ϑi. This then means that in the evaluation of the MAC
fading number (48) not only ‖di‖ is important, but also this additive term log ϑi

has to be taken into account.
While in this paper we have restricted the channel model to be memoryless, a

generalization to a fading process with memory is possible. Again, one has to be
careful as the memory will influence the MAC fading number and thereby affect the
search for the best channel.

As already discussed in Section 3.3, we would like to emphasize once more that
the analysis of the asymptotic sum-rate capacity of this channel is of practical inter-
est in spite of the fact that we will not use the channel at high SNR. The reason is
that the MAC fading number χMAC is a good indicator for the threshold between the
efficient low-SNR and the highly inefficient high-SNR regime. As a rule of thumb,
the MAC Rician fading channel can be used up to a sum-rate of about χ + 2 nats
(see Figure 1 for an example). It is ominous that the fading number—and ergo
also the threshold—does not vary with the type of the used power constraint. This
means that once a sum rate of around χ+ 2 nats is achieved, the channel behavior
will become very poor and cannot be improved by any optimization of the power
allocation. Instead the system has to be changed in a more fundamental fashion in
order to achieve a change in the channel model.

An important clue to the derivations is a generalization of the concept of input
distributions that escape to infinity. To put it in engineering words, the concept says
that one cannot achieve the sum-rate capacity asymptotically unless at least one
of the users always uses input symbols of infinite power. Note that while we have

4The double-logarithmic term in the asymptotic expansion will remain unchanged.
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stated this concept here specifically for the multiple-access Rician fading channel at
hand, it can be further extended to more general multiple-user channels.

A Upper Bound on MISO Rician Fading Capacity

The upper bound (30) on the MISO Rician fading channel (20) is a generalization
of an upper bound on the SISO Rician fading channel presented in [1, Eq. (166)]. It
is based on a duality-based upper bound on the mutual information taken from [1,
Eq. (25)]:

I(X;Y ) ≤ −h(Y |X) + log π + α log β + log Γ

(

α,
ν

β

)

+ (1− α)E
[
log
(
|Y |2 + ν

)]
+

1

β
E
[
|Y |2

]
+

ν

β
(102)

where α, β > 0 and ν ≥ 0 are free parameters.
We start with an upper bound on the fifth term on the RHS of (102). To that

goal we assume 0 < α < 1 such that 1− α > 0 and define

ǫν , sup
x

{

E
[
log
(
|Y |2 + ν

) ∣
∣ X = x

]
− E

[
log |Y |2

∣
∣ X = x

] }

(103)

such that

(1− α)E
[
log
(
|Y |2 + ν

)]

= (1− α)E
[
log |Y |2

]
+ (1− α)

(
E
[
log
(
|Y |2 + ν

)]
− E

[
log |Y |2

])
(104)

≤ (1− α)E
[
log |Y |2

]

+ (1− α) sup
x

{

E
[
log
(
|Y |2 + ν

) ∣
∣ X = x

]
− E

[
log |Y |2

∣
∣ X = x

] }

(105)

= (1− α)E
[
log |Y |2

]
+ (1− α)ǫν . (106)

Next we apply (102) to the MISO Rician fading channel (20). We note that
conditional on X = x

Y ∼ NC

(
dTx, ‖x‖2 + σ2

)
(107)

and compute

h(Y |X = x) = log π + 1 + log
(
‖x‖2 + σ2

)
(108)

E
[
|Y |2

∣
∣ X = x

]
= |dTx|2 + ‖x‖2 + σ2 (109)

and

E
[
log |Y |2

∣
∣ X = x

]
= log

( |dTx|2
‖x‖2 + σ2

)

− Ei

(

− |dTx|2
‖x‖2 + σ2

)

+ log(‖x‖2 + σ2)(110)

ǫν = sup
x

E

[

log

(

1 +
ν

|Y |2
) ∣
∣
∣
∣
X = x

]

(111)

= E

[

log

(

1 +
ν

|Y |2
) ∣
∣
∣
∣
X = 0

]

(112)

= log
( ν

σ2

)

− eν/σ
2
Ei
(

− ν

σ2

)

+ γ. (113)

Here, in (110) we evaluate the expected logarithm of a noncentral chi-square random
variable as derived in [11], [1, Lemma 10.1], [12, Lemma A.6]; and (112) follows
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from a stochastic ordering argument by noting that the function ξ 7→ log
(
1 + 1

ξ

)

is monotonically decreasing and that the distribution of Y conditional on X = x is
stochastically larger than the distribution of Y conditional on X = 0 [1, Sec. IV.B].
The final step (113) follows by a direct calculation.

Plugging (106) and (108)–(113) into (102) then yields

I(X;Y ) ≤ −1 + α log β − αE
[
log
(
‖X‖2 + σ2

)]
+ log Γ

(

α,
ν

β

)

+
E
[
‖X‖2 + σ2 + |dTX|2

]

β
+

ν

β

+ (1− α)

(

E

[

log

( |dTX|2
‖X‖2 + σ2

)

− Ei

(

− |dTX|2
‖X‖2 + σ2

)]

+ ǫν

)

(114)

≤ −1 + α log

(
β

σ2

)

+ log Γ

(

α,
ν

β

)

+
E
[
‖X‖2

]
+ σ2 + ‖d‖2E

[
‖X‖2

]

β
+

ν

β

+ (1− α)

(

log

(

‖d‖2E
[
‖X‖2

]

E[‖X‖2] + σ2

)

− Ei

(

−‖d‖2E
[
‖X‖2

]

E[‖X‖2] + σ2

)

+ ǫν

)

(115)

where for the last step we have lower-bounded E
[
log
(
‖X‖2 + σ2

)]
≥ log σ2; used the

monotonicity of ξ 7→ log(ξ)− Ei (−ξ) together with the Cauchy-Schwarz inequality
(58); and applied Jensen’s inequality to the concave function

ξ 7→ log

( ‖d‖2ξ
ξ + σ2

)

− Ei

(

− ‖d‖2ξ
ξ + σ2

)

. (116)

The upper bound (30) now follows from the average-power constraint (21).

B Lower Bound on MISO Rician Fading Capacity

The first lower bound (34) on the capacity of the MISO Rician fading channel (26)
with peak-power constraint (27) is based on the following lemma that has been
proven in [1, Lemma 4.9].

Lemma 10 ([1]). Let the random vector X take value in C
nT and satisfy

Pr
[
‖X‖2 ≥ x2min

]
= 1 (117)

for some xmin > 0. Let H be a random nR×nT matrix having finite entropy h(H) >
−∞ and finite expected squared Frobenius norm E

[
‖H‖2F

]
< ∞. Let Z ∼ NC

(
0, σ2

I
)

and assume that X, H, and Z are independent. Then

I(X;HX+ Z) ≥ I(X;HX)− sup
‖x̂‖=1

{

h

(

Hx̂+
Z

xmin

)

− h(Hx̂)

}

. (118)

We apply this lemma to the situation of the MISO Rician fading channel (26)
and choose the following distribution on Xi:

Xi , R · di

‖di‖
eiΦ (119)

20



where Φ and R are statistically independent, Φ is uniform between 0 and 2π, Φ ∼
U([0, 2π)), and R is such that

logR2 ∼ U([logΥ0, logΥ]) (120)

for some fixed Υ0. This choice satisfies the peak-power constraint (27) and also

Pr
[
‖Xi‖2 ≥ Υ0

]
= 1. (121)

Hence by Lemma 10, we get

CMISO,pp,ni
(Υ) ≥ I(Xi;d

T

iXi +HT

iXi + Z) (122)

≥ I(Xi;d
T

iXi +HT

iXi)

− sup
‖x̂‖=1

{

h

(

dT

i x̂+HT

i x̂+
Z√
Υ0

)

− h(dT

i x̂+HT

i x̂)

}

(123)

= I(Xi;d
T

iXi +HT

iXi)− log

(

1 +
σ2

Υ0

)

. (124)

We introduce a random variable

H̃ , HT

i ·
di

‖di‖
eiΦ ∼ NC(0, 1) (125)

and rewrite the first term on the RHS of (124) as follows:

I(Xi;d
T

iXi +HT

iXi)

= h(dT

iXi +HT

iXi)− h(dT

iXi +HT

iXi|Xi) (126)

= h(‖di‖eiΦR+ H̃R)− E
[
log
(
πe‖Xi‖2

)]
(127)

= h
(∣
∣‖di‖eiΦR+ H̃R

∣
∣2
)

− 1− E
[
logR2

]
(128)

≥ h
(

R2 ·
∣
∣‖di‖eiΦ + H̃

∣
∣2
∣
∣
∣Φ, H̃

)

− 1− E
[
logR2

]
(129)

= h
(
R2
)
+ E

[

log
∣
∣‖di‖eiΦ + H̃

∣
∣2
]

− 1− E
[
logR2

]
. (130)

Here, (128) follows from the fact that for a circularly symmetric random variable U
we have [1, Lemma 6.16]

h(U) = h
(
|U |2

)
+ log π. (131)

In (129) we condition the differential entropy which cannot increase its value; and
(130) follows from the scaling property of differential entropy [13, Th. 8.6.4].

Next, we again evaluate the expected logarithm of a noncentral chi-square ran-
dom variable [11], [1, Lemma 10.1], [12, Lemma A.6]:

E

[

log
(∣
∣‖di‖eiΦ + H̃

∣
∣2
)]

= E

[

log
(∣
∣‖di‖+ H̃

∣
∣2
)]

(132)

= log
(
‖di‖2

)
− Ei

(
−‖di‖2

)
(133)

(where the first equality follows because H̃ is circularly symmetric) and use the
following identity [1, Lemma 6.15]:

h
(
logR2

)
= h

(
R2
)
− E

[
logR2

]
. (134)

The lower bound (34) now follows by plugging (130), (133), and (134) into (124)
and noting that because of (120)

h
(
logR2

)
= log log

(
Υ

Υ0

)

. (135)
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The second lower bound (35) follows from (122) with the choice (32):

CMISO,pp,ni
(Υ) ≥ h(dT

iXi +HT

iXi + Z)− h(dT

iXi +HT

iXi + Z|Xi) (136)

= h(dT

iXi +HT

iXi + Z)− E
[
log
(
πe(‖X‖2 + σ2)

)]
(137)

= h(R2)− 1− p log(Υ + σ2)− (1− p) log σ2. (138)

Here in the last step we have used (131) together with the fact that

dT

iXi +HT

iXi + Z
L

= ‖di‖
√
ΥeiΦΞ +

√
ΥH̃Ξ + Z (139)

L

=
(

‖di‖
√
ΥΞ+

√
ΥH̃Ξ + Z

)

eiΦ (140)

L

=
∣
∣
∣‖di‖

√
ΥΞ+

√
ΥH̃Ξ + Z

∣
∣
∣

︸ ︷︷ ︸

,Ri

eiΦ (141)

where “
L

=” denotes “equal in probability law.” Hence, we see that dT

iXi+HT

iXi+Z
is circularly symmetric with a magnitude Ri that, conditional on Ξ = 0, is Rayleigh
and, conditional on Ξ = 1, Rician distributed. The probability density function of
R2

i is given by (36).

C Proof of Proposition 7

Fix some E0 > 0 and let

U ,

{

1 if ∃ i : ‖Xi‖2 ≥ E0
m

0 if ‖Xi‖2 < E0
m , ∀ i.

(142)

Further we define
µ , Pr[U = 1] . (143)

To prove Proposition 7, we need to show that

lim
E↑∞

µ = 1. (144)

To that goal, note the following:

I(QE) = I(X1, . . . ,Xm;Y ) (145)

= I(X1, . . . ,Xm, U ;Y ) (146)

= I(U ;Y ) + I(X1, . . . ,Xm;Y |U) (147)

= I(U ;Y ) + I(X1, . . . ,Xm;Y |U = 0)Pr[U = 0]

+ I(X1, . . . ,Xm;Y |U = 1)Pr[U = 1] (148)

≤ log 2 + I(X1, . . . ,Xm;Y |U = 0)

+ µI(X1, . . . ,Xm;Y |U = 1) (149)

≤ log 2 + CMISO,av,nT
(E0) + µCMISO,av,nT

(E
µ

)

. (150)

Here (149) follows because U is a binary random variable and because Pr[U = 0] ≤ 1.
To justify the subsequent inequality (150), we note that because conditional on
U = 0, ‖Xi‖2 < E0

m for all i, i.e.,

E

[
m∑

i=1

‖Xi‖2
∣
∣
∣
∣
∣
U = 0

]

≤ E0 (151)
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we can upper-bound the MAC situation by full-cooperation MISO:

I(X1, . . . ,Xm;Y |U = 0) ≤ CMISO,av,nT
(E0). (152)

Moreover, by total expectation,

E

[
m∑

i=1

‖Xi‖2
]

= µE

[
m∑

i=1

‖Xi‖2
∣
∣
∣
∣
∣
U = 1

]

+ (1− µ)E

[
m∑

i=1

‖Xi‖2
∣
∣
∣
∣
∣
U = 0

]

︸ ︷︷ ︸

≥0

(153)

≥ µE

[
m∑

i=1

‖Xi‖2
∣
∣
∣
∣
∣
U = 1

]

(154)

from which follows that

E

[
m∑

i=1

‖Xi‖2
∣
∣
∣
∣
∣
U = 1

]

≤ E
[∑m

i=1 ‖Xi‖2
]

µ
≤ E

µ
(155)

and hence, again allowing full-cooperation,

I(X1, . . . ,Xm;Y |U = 1) ≤ CMISO,av,nT

(E
µ

)

. (156)

Next, let En be a sequence with En ↑ ∞, let {QEn}n be a family of joint input
distributions for the multiple-access Rician fading channel (3) such that

lim
n↑∞

I(QEn)

log log En
= 1 (157)

and define

µn , QEn

({

‖X1‖2 ≥
E0
m

}

∪ · · · ∪
{

‖Xm‖2 ≥ E0
m

})

.

(158)

By contradiction, assume µn → µ∗ < 1. Then there must exist some µ0 < 1 such
that

µn < µ0, n sufficiently large. (159)

From (150) we have

I(QEn)

log log En
︸ ︷︷ ︸

→1

≤ log 2 + CMISO,av,nT
(E0)

log log En
︸ ︷︷ ︸

→0

+
CMISO,av,nT

(
En
µn

)

log log
(

En
µn

)

︸ ︷︷ ︸

→1

·
µn log log

(
En
µn

)

log log En
. (160)

Here the limiting behavior of the left-hand side (LHS) follows from (157); the limiting
behavior of the first term on the RHS is because CMISO,av,nT

(E0) < ∞; the second
term on the RHS tends to one because En ↑ ∞ implies En/µn ↑ ∞ and because of
(38). Hence, when n ↑ ∞ we obtain

1 ≤ lim
n↑∞

µn log log
(

En
µn

)

log log En
(161)

≤ lim
E↑∞






sup

µ∈(0,µ0]

µ log log
(
E
µ

)

log log E






(162)
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where the first inequality follows from (160) and the second inequality follows from
(159). This, however, is a contradiction to the fact that

lim
E↑∞






sup

µ∈(0,µ0]

µ log log
(
E
µ

)

log log E






< 1, ∀ 0 < µ0 < 1. (163)

Hence, we must have that µn → 1, which proves the claim.

D Proof of Lemma 9

The derivation of this result is based on (114). We start by bounding the following
expressions:

E
[
log
(
‖X‖2 + σ2

)]
≥ log σ2 (164)

E
[
‖X‖2 + σ2 + |dTX|2

]
≤ E + σ2 + ‖d‖2E (165)

(1− α)ǫν ≤ ǫν (166)

and

E

[

log

( |dTX|2
‖X‖2 + σ2

)

− Ei

(

− |dTX|2
‖X‖2 + σ2

)]

≥ −γ. (167)

Here (165) follows from Cauchy-Schwarz (58) and the fact that the input needs to
satisfy the power-sharing average-power constraint (13); and (167) follows because
log ξ − Ei (−ξ) ≥ −γ where γ ≈ 0.57 denotes Euler’s constant.

Plugging these bounds into (114) and applying once more Jensen’s inequality to
ξ 7→ log ξ − Ei (−ξ) now yields

I(X;Y ) ≤ log

(

E

[ |dTX|2
‖X‖2

])

− Ei

(

−E

[ |dTX|2
‖X‖2

])

− 1

+ α
(
log β − log σ2 + γ

)
+ log Γ

(

α,
ν

β

)

+ ǫν

+
ν

β
+

1

β

(
(1 + ‖d‖2)E + σ2

)
. (168)

We will now make the following choices of the free parameters α and β:

α ,
ν

log ((1 + ‖d‖2)E + σ2)
(169)

β ,
1

α
e

ν
α (170)

for some constant ν ≥ 0. This leads to the following asymptotic behavior:

lim
E↑∞

{

log Γ

(

α,
ν

β

)

− log

(
1

α

)}

= log
(
1− e−ν

)
(171)

lim
E↑∞

α
(
log β − log σ2 + γ

)
= ν (172)

lim
E↑∞

{
1

β

(
(1 + ‖d‖2)E + σ2

)
+

ν

β

}

= 0 (173)

and

lim
E↑∞

{

log

(
1

α

)

− log

(

1 + log

(

1 +
E
σ2

))}

= − log ν. (174)
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(Compare with [1, Appendix VII], [12, Sec. B.5.9].)
Hence, using the definition of the MAC fading number (42) and the definition of

the sum-rate capacity (15), we have derived the following upper bound on the MAC
fading number:

χMAC = lim
E↑∞

{

CMAC(E)− log

(

1 + log

(

1 +
E
σ2

))}

(175)

= lim
E↑∞







sup
QX

independent users
power constraint (13)

I(X;Y )− log

(

1 + log

(

1 +
E
σ2

))







(176)

= lim
E↑∞

{

sup
QE∈A

I(X;Y )− log

(

1 + log

(

1 +
E
σ2

))}

(177)

≤ lim
E↑∞

{

sup
QE∈A

{

log

(

E

[ |dTX|2
‖X‖2

])

− Ei

(

−E

[ |dTX|2
‖X‖2

])

− 1

}

+ α
(
log β − log σ2 + γ

)
+ log Γ

(

α,
ν

β

)

+ ǫν +
ν

β

+
1

β

(
(1 + ‖d‖2)E + σ2

)
− log

(

1 + log

(

1 +
E
σ2

))}

(178)

= lim
E↑∞

sup
QE∈A

{

log

(

E

[ |dTX|2
‖X‖2

])

− Ei

(

−E

[ |dTX|2
‖X‖2

])

− 1

}

+ ǫν + ν + log
(
1− e−ν

)
− log ν. (179)

Here, in (177) we make use of Proposition 7; (178) follows from (168); and the last
equality is due to (171)–(174).

By letting ν tend to zero which makes sure that ǫν → 0 (as can be seen from
(103) and (113)) the claim follows.
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