
Ultrasonic Sensor Data 
integration and its 

Appiicatiun to 
Envimmnt Perception . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . .  

Charles C. Chang 
Kai-Tai Song* 
Department of Control Engineering 
National Chiao Tung University 
1001 Ta Hsueh Road 
Hsinchu 300, Taiwan, R.O.C. 

Received October 14, 1994, revised November 13, 1995; 
accepted May 20, 1996 

To move in an unknown or uncertain environment, a mobile robot must collect informa- 
tion from various sensors and use it to construct a representation of the external world. 
Ultrasonic sensors can provide range data for this purpose in a simple and cost-effective 
way. However, most ultrasonic sensors are not sufficient for environment recognition 
because of their large beam opening angles. In this article the beam-opening-angle 
problem is solved by fusing data from multiple ultrasonic sensors. We propose two 
methods for sensor data fusion. One uses an artificial neural network (ANN), and the 
other is based on a mathematical model. Simulations and experiments show that the 
mathematical model is more accurate when there is no noise in the sensor readings, 
but the ANN method is better when the sensors are subject to much noise. To extract 
line segments from the ultrasonic image, we develop a line extractor that is more 
efficient than traditional line fitting methods in this application. Experimental results 
show that this method is effective for environment perception in a robotic system. 
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1. INTRODUCTION 

To enable a mobile robot to navigate in an unstruc- 
tured or frequently changing environment, it is nec- 
essary to apply sensors to recognize the environ- 
ment. However, a single sensor provides only 
incomplete information about the environment. 
Since each sensor can take only a single type of obser- 
vation over a limited range, information must be 
combined from many sensors. It has been shown 
that using more sensors will almost always improve 
the estimation.' A survey paper by Luo and Kay2 
discussed various aspects of the problem of integrat- 
ing multiple sensors. Sensor fusion can be imple- 
mented on the data level,2 feature l e ~ e l , ~ - ~  or deci- 
sion l e ~ e l . ~ , ~  In this article, we develop a scheme for 
data level fusion of multiple ultrasonic sensors. From 
our results concerning data-level fusion, useful fea- 
tures can be extracted. 

The sensors used in this article are ultrasonic 
sensors, which provide range data in a simple and 
cost-effective way. However, these sensors are not 
sufficient for environment perception, mainly be- 
cause of their wide beam opening angle. Elfes used 
a probability-grid map to deal with sensor uncer- 
tainty. lo This method solved the beam-opening- 
angle problem at the stage of sonar-mapping, but 
the grid itself is a source of uncertainty. Crowley 
estimated the object's direction using scanning 
data.'' This method is simple, but suffers from noise 
and cannot eliminate the beam-angle problem with 
only a couple of sensor readings. Nagashima and 
Yuta used a sensor system that consisted of one 
transmitter and two receivers to estimate the normal 
direction of walls.12 This method, however, uses an 
approximation in the estimate formula. On the other 
hand, Barshan and Kuc analyzed the physical model 
of ultrasonic sensors and derived a method that can 
estimate the inclination angle between the sensor 
orientation and the normal direction of a wall.13 

The sensor fusion methods developed in this 
article eliminate the beam-angle problem with a sin- 
gle observation from a multi-sensor system. Our 
method does not limit the maximum incident angle 
of an ultrasonic wave to a plane. Therefore, if the 
plane to be detected is not mirror-like, our method 
will have a larger usable range than the methods 

proposed by Barshan and Kuc13 and Nagashima and 
Yuta.I2 The next section describes the use of an arti- 
ficial neural network (ANN) to find a better estima- 
tion of ultrasonic sensor images. In section 3, a math- 
ematical model is developed to solve the same 
problem, and its results are compared with those of 
the ANN method. After a good estimation of the 
distance measurement is found, a line-extraction al- 
gorithm is used to extract line segments. Although 
several line-fitting algorithms have been pro- 

they tend to be slow for ultrasonic im- 
aging because there are too many split operations 
(especially around corners) requiring too much re- 
calculation. We have developed a new line extractor, 
which will be described in section 4. Our conclusions 
are presented in section 5. 

2. SENSOR DATA FUSION USING ANN 

The ultrasonic range sensor is a time-of-flight system 
that gives a range value when the echo first exceeds 
a certain threshold level. The echo amplitude de- 
pends on the inclination angle of the returned 
wave. l3 Therefore, the sensor model can be simpli- 
fied to detect the shortest distance to objects within 
a fixed beam opening angle. This simplified model 
was also used by Crowley." However, the ultrasonic 
sensor may not detect a plane because the wave 
reflects away for large incident angles. The maxi- 
mum incident angle depends on the texture of the 
plane. For a wooden board, the maximum incident 
angle is about 22.5'; for a brick wall, it can be as 
large as 70". In the simulations in this article, we 
assumed the maximum incident angle to be 40". Al- 
though there is more sensory information in this 
case than in the case of a mirror-wall, the information 
is not accurate because of the beam-opening angle. 

As shown in Figure 1, when the sensor turns 
away from the normal direction, it reads the first 
returned echo caused by the side of the beam instead 
of the center. This leads to difficulties in understand- 
ing the environment. However, by examining the 
geometrical relation of the measured distance to the 
actual distance, we thought this problem could be 
solved by arranging multiple sensors at different lo- 
cations in different directions. The problem then be- 
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Figure 1. Measurement error due to beam opening angle 
of ultrasonic transducers. 

comes that of mapping the geometrical relation be- 
tween the raw sensor data and the desired distance. 
Such a mapping may be highly nonlinear and we 
have no specific way to follow to analyze it. In this 
case, it might be better to take advantage of the 
ANN, which is model-free and suitable for nonlinear 
mapping problems. 

2.1. Design of ANN 

An arrangement of the sensor platform is illustrated 
in Figure 2. We place two ultrasonic transducers on 
the platform so that their center lines are parallel. 
Each transducer works as a transmitter as well as a 
receiver. It transmits ultrasonic waves and receives 
its own returned echo. To prevent the waves from 
interfering with each other, the transducers are fired 
sequentially. These sensor readings are very often 
contaminated by the beam-opening-angle effect. To 
simplify the problem, it is assumed that the objects 
in the environment were of long-wall outline. Sensor 
readings from these two transducers are fused into 
the ANN for a better estimation of the actual dis- 
tance. The inputs of the ANN are the two sensor 
readings. The output is the distance from the center 
of the sensor platform to the obstacle in the direction 
of the platform heading (see Fig. 2). The ANN 
adopted here is a feed-forward network trained by 
a back-propagation a1g0rithm.I~ 

In simulations, both one- and two-hidden-layer 
ANNs were tried. It was found that using a two- 
hidden-layer neural network was necessary because 
the mapping function might be complex. After sev- 
eral tests, it was determined that the ANN should 
use 25 processing elements for each hidden layer. 
The sensor data were generated by a model of the 
ultrasonic sensor with a beam opening angle of 22". 

In this model, the reading of the sensor was assumed 
to be the shortest distance from the sensor to the 
obstacle within that angle. The effective range of the 
sensor was from 0.3 to 4.5 m. The training data were 
randomly generated within the effective range and 
with the incident angle varying between 0" and 40" 
(because of symmetry, the results can be extended 
to the angle between 0" to -40"). The whole set of 
training data for the ANN consisted of two thousand 
sets of sensor readings. Initial weights were set be- 
tween 1.0 and - 1.0 randomly. During the training, 
every item of training data was put into the ANN 
and then the weights were adjusted iteratively. All 
the training data were used cyclically until the output 
error of the ANN converged. Because the initial 
weights might affect the results due to the local error 
minimum problem, several sets of initial weights 
were tried. 

We noticed that the ultrasonic sensor does not 
suffer from the beam-opening-angle problem around 
the zero incident angle. Therefore, around the zero 
incident angle it is better to use a single sensor than 
to have the readings be processed by the ANN, 
which only obtains a good approximation. The ANN 
actually can learn well around zero incident angle, 
but we just should take advantage of the ultrasonic 
sensor characteristics. Because our sensor system 
has no transducer at the center of the platform, 
where the desired distance was measured, we used 
the average of the two sensor readings to estimate 
the desired distance around the zero incident angle. 
For larger incident angles, ANN fusion is still useful 
for obtaining a reliable estimate. For clarity, we call 
this method partial ANN fusion to distinguish it from 
pure ANN fusion. 

Figure 2. Sensor arrangement for data fusion. 



666 Journal of Robotic Systems-1996 

I I 1 I 

0 
0 100 200 300 400 5 

Epoch 

Figure 3. Learning curve of ANN 

2.2. Simulation Results for ANN Fusion 

Figure 3 shows the learning curve of the ANN. The 
learning was fast in the beginning, then it slowed 
down and took much time to achieve the minimum 
error state. We demonstrate the mapping results by 
scanning a flat wall. Figure 4 shows the simulation 
results. In Figure 4(a), a single sensor cannot pro- 
duce good scanning results because of the 22" beam 
angle. Figure 4(b) is the scanning result obtained by 
applying pure ANN fusion. This result fits the actual 
wall well. Comparing Figure 4(a) and Figure 4(b), 
we find the so-called "around zero" incident angle 
is the incident angle smaller than about 5.7". We 
derive the following criterion to identify this situa- 
tion in the raw sensor data: 

where d ,  and d2 are the two sensor readings. The 
value 3 cm is the difference between the distance of 
the two sensors to the wall when the inclination 
angle is 5.7" and the distance between the two sen- 
sors is 30 cm. As described in the previous para- 
graph, we take the average of the two sensor read- 
ings in this case, instead of applying ANN fusion. 
Figure 4(c) shows the result obtained by using the 
partial ANN fusion. It is obvious this result is better 

than that of the pure ANN method around the zero 
incident angle. 

2.3. Experimental Results for ANN Fusion 

A practical test was carried out in the laboratory to 
verify this sensor fusion method. We installed two 
Polaroid ultrasonic sensors in parallel on a platform 
that could be rotated by a step motor. The system 
was programmed to scan a flat wooden wall ahead 
of it. The measured range data were taken every 
1.8". Figure 5(a) shows a scanning image from the 
right-side sensor. The sensor data near the middle 
of the wall (around the zero incident angle) are still 
good. This is because the beam-opening-angle prob- 
lem does not occur here. It also shows that the raw 
sensor data were contaminated by noise. Figure 5(b) 
shows the result with the partial ANN fusion. An 
obvious improvement can be observed in the fu- 
sion result. 

3. FUSION USING A MATHEMATICAL MODEL 

Although we hypothesized that there existed a geo- 
metrical relation between the data of the two sensors 
and the desired estimation, this relation was not 
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2.4 r n  

However, after careful examination, we also derived 
a mathematical formula as described below. 

The difference between the readings of the two 
sensors (see Fig. 6) is 

where d, and d, are the sensor readings and 6,, is 
the difference in the distance indicated by the two 
sensors. The incident angle I3 can be calculated with 
6, by the law of cosines and the law of sines. Assume 

I3 z -, as shown in Figure 6(a). Then one can first 

calculate 8 by 

ff 

2 

and 
~ 

Figure 4(a). Scanning image of single sensor. 
(4) 8 d  - Y -- 

sin I3 sin(n-/2 - ai2) 

obvious and we did not have a known procedure 
to follow for mathematical analysis. Therefore, the 
ANN method, which is model-free and suitable for 
mapping problem, was first applied to this problem. 

where x is the distance between the two sensors and 
a! is the beam opening angle. If the calculated 0 is 

greater than -, then it is correct (to be proved in the ff 

2 

Figure 4(b). Scanning image after pure ANN sensor 
fusion. 

Figure 4(c). 
fusion. 

Scanning image after partial ANN sensor 
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Figure 5(a). 
gle sensor. 

Experimental result of scanning image of sin- 

Appendix) and the desired distance D is 

d,,, C O S ( ~  - (~12) 
D =  

cos 6 (5) 

where do,, is the average of d ,  and d,. 

If the calculated 6 is not greater than ?, then 6' 

is smaller than - (see the Appendix), as shown in 

Figure 6(b). The 6 should be re-calculated by 

2 
a 
2 

X - 

sin6 sinn-12 ' 

The desired D is then 

To cope with noise, more sensors can be added 
without causing much extra computational load. For 
example, if a five-sensor system is used, then 

Figure 5(b). Experimental result of scanning image after 
partial ANN sensor fusion. 

I (13) 
d, + d ,  + d3 + d4 + d5 

5 daw = 

where d, , d,, d 3 ,  d,, and d ,  are the readings of the five 
sensors. If is used instead of 6, in the previous 
formulation, the desired D can be calculated out the 
same way. Because and d,,, are the average of 
multiple data, the noise is also averaged and so the 
effect of noise is reduced. Figure 7 shows experimen- 
tal result of a test using the mathematical model. 
The mathematical model yields even better fusion re- 
sults. 

3.1. Comparison of ANN Method and 
Mathematical Model 

To compare the above sensor fusion methods, we 
define the fusion error of an observation as the 
real normal distance from the sensor unit to the wall 
minus the average normal distance of the estimated 
data. We also investigated the effect of noise on the 
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a 
Figure 6(a). Mathematical model: 6 2 -. 2 

distance 

Y 

sensor platform --c/ 

Figure 6(b). Mathematical model: 6 < E, 
2 

fusion methods. Ultrasonic sensor data sometimes 
contain Gaussian noise. There are two kinds of noise: 
in the first, the standard deviation is proportional to 
the distance that the wave has travelled; in the sec- 
ond, the standard deviation is fixed. In a harsh envi- 

ronment, the noise can be on the order of a few 
percent. For example, temperature is a predominant 
noise source. There is 3.5% difference in ultrasonic 
sensor measurements when the temperature is 5" C 
and 25" C. 
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Figure 7. 
sor fusion by mathematical model. 

Experimental result of scanning image after sen- 

Table I and Table I1 summarize the mean error 
and the mean square error of the simulations. For 
simulation with noise, the error in the tables is the 
average value of several trials. From Table I, it can 
be seen that the mean errors are almost equal. How- 
ever, from Table 11, we find that when noise is absent 
the mathematical model is of zero mean square error 
and better than the ANN method. When the noise 
is of 1% distance-proportional standard deviation 
plus 1 cm standard deviation, the two methods per- 
form almost equally well. When the noise is in- 
creased to have 3% distance-proportional standard 
deviation plus 3 cm standard deviation, the ANN 
method has much less mean square error than the 
mathematical model. The less mean square error, 
the more likely to distinguish whether two data are 
from the same feature. Therefore, one can obtain 
better feature-level information with the ANN fusion 

Table 1. 
(unit: cm). 

Comparison of methods in terms of $d,ilur 

Without 1% +lcm 3% +3cm 
noise dev. dev. 

Math. Model 0 0 5 
Partial ANN -1 -1 4 

Table II. 
(unit: cm2). 

Comparison of methods in terms of $:,,,, 

Without 1%+lcm 3%+3cm 
noise dev. dev. 

Math. Model 0 33 306 
Partial ANN 2 29 194 

data when the sensor data contain excessive noise. 
The anti-noise capacity of the ANN method is ex- 
plained below. Under the larger noise circumstance, 
many input patterns are out of the work space. For 
the ANN method, it learns to generalize the mapping 
for the interested operation space. If an input pattern 
is a little beyond the work space, it will be mapped 
to a value close to the desired one because of the 
generalization property of ANN. However, the 
mathematical model will always give an answer no 
matter how inappropriate the input pattern is. This 
will result in a large deviation. In conclusion, the 
mathematical model is better for a small noise envi- 
ronment, while the ANN method is more suitable 
for an environment with large noise. For the environ- 
ment of the previously shown experiment, the two 
methods give practically the same results, as shown 
in Table 111. 

4. LINE EXTRACTOR FOR 
ENVIRONMENT PERCEPTION 

It is very often desirable to represent the environ- 
ment using high-level features such as the edges of 
objects. In this article, only two-dimensional repre- 
sentation is considered. The previous fusion results 
can be used to extract lines that are the edges of 
objects. The line-fitting or line extraction methods 
have been paid much attention for the last decades 
because of the development of vision systems. In 
the vision field, Hough transform is the most often 
used method for line extraction.I6 This method is, 

Table 111. Experimental results for different 
methods. 

Math. Model 0.5 0.8 
Partial ANN 0.4 0.9 
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however, computationally time-consuming. Sup- 
pose each axis of the parameter space of Hough 
transform is quantized into K values (this quantiza- 
tion also limits the precision of results) and there are 
n image points, then nK computations are required. 
For our ultrasonic fusion results, a line is apparently 
constituted by the neighboring points in the data 
set, which is different from the case in vision data. 
Accordingly, we developed a faster method which 
needs only n computations. Our line extractor is 
based on the basic line-fitting f0rmu1a.l~ Suppose 
the line equation is expressed as 

and 

s, = 2 xi 
% 

(24) 

In addition, the variance of these points relative to 
the line is Then we have 

e, = /sin . x, -t- cos 4 . y, - dJ,  (15) 

where e, is the Euclidean distance between (x,, y,) 
and the line. Define the error norm E, for a point 
set S ,  to the extracted line as 

where E, can be expressed as 

E, = 2 e;.  
Sk 

4.1. Application to Feature Recovery 

In previous sections, the system obtains estimated 
distances from the mobile robot to obstacles by sen- 
sor fusion models. These distances are derived from 
sequential scanning readings. The system then 
transforms these distances into point positions. 
These points are also in sequential order, and the 
line-extracted algorithm is applied to them. First, we 
determine the parameters q, s:, and no. The parame- 
ter n, is the minimum number of points that construct 
a line with s: < s:, which is the limit of the acceptable 
s3 value. The parameter no determines the extent of 
an outlier. The choice of these parameters depends 
on the type of sensor and the environment. For the 
scanning image after the fusion of ultrasonic sensors, 
we chose n, as 10 (covers 18"), sf as 0.0004 m2, and 
12,  as 3. Let the system start with the first point in 
the raw data memory. Then the procedure can be 
summarized as follows: 

The best approximate line can be defined as the line 
minimizing E, . To calculate the approximate line 
equation, we can use the following formula: 

where, if there are Nk points in S,, 

s, v -- 
- Nk 

s2, vx, = s,, - - 
N k  

1. Put the izl consecutive points from memory 
into a new data set, and find the fitting line 
equation and the corresponding variance. If 
s ;<s f ,  then this data set constructs a line 
and continue to step 2; else, remove the first 
point in the data set and add the next point 

sx S Y  v,, = s,, - __ 
N k  
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from memory into the data set, then repeat 
this step. 

2. Check whether the next point is an outlier or 
not. The checking method is as follows: 
Suppose the next point is ( x i ,  yi) and the line 
equation determined earlier was 

(31) sin C#Ik - x + cos (bk. y = d. 

We will have error ei 

If ei is larger than nos,, then the system con- 
cludes the point (xi, yi) is an outlier. If the 
point is an outlier, the previous line segment 
ends up at the last point and go to step 1; 
else, put this point into the data set and go 
to step 3. 

3. Find the new extracted line for the new data 
set. If s: < s:, then the new equation for the 
line is acceptable and go to step 2; else, the 
line segment ends up at the last point and go 
to step 1. 

These steps are repeated until all points in memory 
are processed. The system will find the line segments 
in the environment. 

After the lines are extracted, an operation of line 
combination will still be needed because adjacent lines 
separated by outliers may be on the same line (edge). 
If the parameters ($ and d) of the equations of the 
adjacent lines differ only by a small value, the new 
line equation will be re-calculated for the points used 
to construct the original line segments. 

Comparing our method with the conventional 
method such as proposed by Pavlidis and Horo- 
witz,14 we find their method requires much re-calcu- 
lation because many erroneous data in the ultrasonic 
image lead to many iterations of split-and-merge op- 
erations. This means some data points should be 
calculated many times for checking if a split is 
needed. In contrast, in the method we proposed, 
each data point is considered only once. Although 
in our method the line equation should be calculated 
every time a point is added to a line, the core compu- 
tation ((24)-(28)) can be updated easily. Therefore, 
our method will be more efficient for ultrasonic mea- 
surements. For a mobile robot to navigate in an un- 
structured environment, this increase in efficiency 
will be very important for real-time performance of 
dynamic map building. 

4.2. Experiment on Environment Perception 

In this experiment, the feature recovery capability of 
the sensor system was tested using the line extractor. 
The experiment was implemented in a room with 
four walls. The position of the sensor system was at 
the origin, and the four vertices of the walls were at 
(-1.28 m, -0.85 m), (0.79 m, -0.84 m), (0.71 m, 
0.73 m), and (-1.35 m, 0.73 m). Each wall was con- 
structed either of wooden board or of cartons. Be- 
cause the environment was closed, the recognition 
of the environment could be realized by connecting 
the lines extracted by our algorithm. (However, if 
the environment to be detected is not closed, we can 
use other sensors to determine the end points of a 
line or integrate observations from different scan- 
ning points.) The sensor system was the same as 
that described in the previous section. Figure 8 is 
the scanning image using only one sensor. In this 
figure, there are erroneous data at the right side 
and there are some specular reflections around the 
corner. Because of the beam-opening angle and mul- 
tiple reflection, the lines extracted from the single 
sensor data do not match the environment well (see 
Fig. 9). 

The fusion result using the ANN method is pre- 
sented in Figure 10. This result shows a better estima- 
tion around the small incident angle, while the erro- 
neous data area is more uncertain. This type of result 
helps the line extractor find the correct lines and 
estimate them more accurately. This is because when 
the erroneous data are amplified, they will not be 
misjudged as correct ones. Therefore, the extracted 
line will not be contaminated by the erroneous data. 

The result of applying the line-extracted algo- 
rithm is shown in Figure 11. In this figure, lines are 
extracted around the small incident angles, where 
there are many scanned data points that are linearly 
distributed. Although it seems a line exists in the 
lower-left area, there are only about 7 points in that 
region, which are not adequate to extract a line. As 
described previously, at least 10 data points are re- 
quired to extract a line in our algorithm. The result 
shown in Figure 11 is more acceptable than that in 
Figure 9. A similar result was obtained by using the 
mathematical model to fuse the sensor data. How- 
ever, since the effect of noise was not serious, the 
mathematical model produced a better fusion result 
(see Fig. 12, especially around the small incident 
angle). Therefore, the features recovered from its 
scanning image were more accurate (see Fig. 13). 
Figure 14 summarizes the features recovered from 
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Figure 8. Scanning image of single sensor for a room. 
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Figure 9. Features recovered from Figure 8 after line extraction. 
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Figure 10. Scanning image after ANN fusion for a room. 
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Figure 11. Features recovered from Figure 10 after line extraction. 
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Figure 19. Scanning image after sensor fusion by mathematical model for a room. 
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Figure 14. Features recovered using various scanning images. 

different scanning images. These results indicate our 
fusion methods and the line extractor are effective. 

5. CONCLUSIONS 

In this article, we propose two methods for the fu- 
sion of ultrasonic sensor data, one based on the ANN 
structure and the other on mathematical analysis. 
The mathematical model is suitable for situations 
with little noise, while ANN fusion is more suitable 
for cases with much noise. Both methods yield ac- 
ceptable results. A line-extraction algorithm is devel- 
oped to extract line segments efficiently. It is more 
efficient than the traditional line fitting method be- 
cause it does not use repeated split and merge opera- 
tions, which are often needed with ultrasonic im- 
ages. Therefore the proposed method is effective for 
environment perception. 

One limitation of the proposed methods is that 
the end points of a line segment cannot be identified 
when the environment is not closed. We have not 
yet considered how to detect the corners in this arti- 
cle. In our future work we will attempt to find a 

fusion scheme to identify corners, and to use other 
types of sensors to compensate for the limitations of 
the ultrasonic sensor. 

The authors are grateful for valuable suggestions from 
the referees. This work was supported by the National 
Science Council, Taiwan, ROC, under contract 
NSC81-0404-E-009-022. 

APPENDIX: PROOF OF ANGULAR CONDITIONS 
IN THE MATHEMATICAL MODEL 

We stated that if we first assume 8 z - and calculate ff 

2 
8 by (3) and (4), then if the calculated 8 2 - a .  it is 

correct; if the calculated 8 is smaller than -, ff we con- 
2’  

2 
clude that 8 is actually smaller than and must be 
re-calculated by (6). To prove this statement, we 
note, in Figure 6(a), that 

2 
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where /3 can be derived from x, y, and S d .  The H 
calculated from this equation is exactly the same as 
that from (4). Denote the real 6, by 6, and the H calcu- 
lated from ( 3 )  and (33) by 6 .  Then 

(34) 
a a d r 2 - I + H = $  >-  
2 I - 2  

If 6' < d 2 ,  e uation (6) holds. However, if (3) and 
(337 are used% find 8, the y calculated from (3) is 
erroneous and then p is not equal to -. Comparing 
(6) and (33),  we have 

T 

2 

a 
H , < - + H < d , . < E .  

2 2 

(Note: The range of 6 is from 0" to 90".) 
From (34) and (35), we have 

(35) 

(37) 

a CY Therefore, if 0 2 -, then H > -, so 0 is correct. It, 
2 ' - 2  

otherwise, H < -, then 6, < - and 6 is wrong, so it 

needs to be re-calculated by (6). Obviously, the state- 
ment holds. Similarly, we can prove it is proper to 
assume H < first when using the mathematical 
model to find D. 

a a 
2 2 

2 
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