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中文摘要 

本研究計畫研究公開式廣播加密系統，現今

最好的公開式廣播加密系統的私密金鑰大

小、公開金鑰和傳輸量能無法和私密式的廣

播系統相比，我們覺得可以使之達到更佳的

效率：分別為 O(r), O(log n) 和 O(1)，同

時計算量也可控制在合理的範圍之內，不像

BGW的方法需要 O(n)。 

  第一年度我們發展出兩個公開廣播加密

協定，第一個協定可以達到 O(r)密文長度，

O(log n)私密金鑰及 O(1)公開金鑰，計算量

需要 O(r)。第二個協定可以達到 O(r)密文長

度，O(log2 n)私密金鑰及 O(1)公開金鑰，計

算量只需要 O(1)。論文已在 2008 的 PKC 會

議上發表。第二年度我們將協定修改，加強

其安全度達到 IND-CCA2的等級，目前投稿到

知名的期刊，正在審稿中。 

第二年度，我們還進行了有關感測網路

金鑰建立的問題，我們提出一個和現有論文

完全不同的攻擊模型，再據此提出一個安全

的金鑰建立協定並探討其安全性，結果發表

在 IEEE Trans.Wireless Communications

上。 

第三年度我們對 permutation code（PC）

做了詳細的研究，提出許多 PC碼的性質及好

的編解碼方法，結果發表在 IEEE Trans. 

Information Theory上。 

關鍵詞：廣播加密、公開金鑰、排序碼、金

鑰建立。 

英文摘要 

In this project we study the public-key 

broadcast encryption system, in which one can 

broadcast to a set of authorized users. To our 

best knowledge, the best public-key broadcast 

encryption system is not very efficient in the 

size of the header, public key and private key of 

users, compared to the secret-key broadcast 

encryption system. One of the goals of this 

research is to design and analyze efficient 

public-key broadcast encryption schemes. 

In 2008, we we designed two efficient 

public-key broadcast encryption schemes. The 

first scheme achieves O(1) public-key size, O(r) 

header size and O(log n) private keys per user. 

The decryption time is reasonably O(r). Our 

second scheme achieves O(1) public-key size, 

O(r) header size and O(log
2
 n) private keys per 

user. Although the private key size is less 

efficient than the first one, its decryption time 

is remarkably O(1). The paper of these results 

has been published in prestigious PKC 

conference. In 2009, we improve one of our 

designed schemes to achieve the IND-CCA2 

security and give a very strict proof. We have 

submitted the improved result to a prestigious 

journal. 

In 2009, we also spent time on the 

problem of key establishment problem in the 

wireless sensor networks. We explore a very 

novel security model in which the adversary is 

instead storage-bounded, not computing-power 

constraint. By this model, we propose a very 

simple and secure key establishment protocol. 

The protocol does not require the sensors to 

pre-load secret. This result has been accepted 

and published in IEEE Trans. Wireless 

Communications. 

In 2010, we studied the error correcting 

coding problem for permutation codes. We 

found many interesting properties and proposed 

efficient decoding algorithms. The result has 

been accepted by IEEE Trans. Information 

Theory. 

Keywords: Broadcast encryption, public key 

system, permutation code, key establishment. 

一、 計畫緣起及目的 
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廣播加密是一種有效率的金鑰管理及訊

息傳播機制。對於大量的使用者，管理中心

可以傳播訊息給任意指定(未被註銷)的使用

者，指定的使用者收到訊息後，可依表頭的

內容解開資訊；而被註銷的使用者，即使共

謀也無法從中得到資訊。廣播加密在生活上

有很多應用，如付費電視、線上影片等。廣

播加密的正式討論最早是在 1993 年由 Fiat 

和 Naor 所提出，在廣播加密的機制中，一

開始管理中心會分配每位使用者 u 一些金鑰

k。廣播時，中心首先會使用一把金鑰 SK 對

欲傳送的訊息 M 做加密，接著依照接收使用

者的集合，使用某些 k 對金鑰 SK 做加密，

此為表頭，連結欲傳送之加密訊息，形成下

列的廣播格式： 

      
 )() , . . . ;(),(

21
MESKESKE SKkk  

使用者接收到訊息後，首先利用表頭和所擁

有的金鑰來解出 SK，接著用 SK 即可還原訊

息 M。 

根據使用者一開始所分配的金鑰改變與

否，廣播加密可分為有狀態加密機制 

(stateful)和無狀態加密機制 (stateless)，在無

狀態加密機制中，使用者的金鑰分配完成後

即不再更改，此法符合許多裝置的限制，大

幅的提升了廣播加密的應用性，如使用在

DVD 和 VCD 分區上。無狀態加密機制方法

中，又可再區分為私密式廣播加密  及公開

式廣播加密系統，其中差別在於私密式廣播

加密系統，只有知道所有使用者秘鑰 (如設

置中心)才可廣播，而公開式廣播加密則是每

人皆可廣播，並只有擁有相對秘鑰者才可解

開訊息。 

Naor 和 Naor 等人於 2001 年所提出一個

可行性高的無狀態私密金鑰廣播加密機制演

算法，他們把廣播加密轉換成為 Subset Cover 

問題的想法，同時在擬亂數產生器是安全的

假設下，利用擬亂數產生器來衍生金鑰，大

幅減少使用者金鑰儲存的數量，並突破了原

本 Luby 所計算出在完全（unconditionally）

安全性上傳輸量和計算量關係的下限。後來

許多學者提出了各種架構來改進廣播加密的

方法。 

公開金鑰廣播加密系統的成果比較少，

最早的論文為 Boneth and Franklin 提出，之

後Tzeng and Tzeng提出用多項式插值的技術

來達到剔除使用者與追蹤背叛者 (traitor)的

功能，後來 Kurosawa and Yoshida 將其推廣到

使用任何 linear error correcting code 皆可。最

近 Boneth, Gentry and Waters 提出廣播量和

儲存金鑰量都很少的公開金鑰廣播加密的方

法，缺點是公開金鑰的量非常大。2003 年，

Dodis and Fazio 提 出 了 利 用 IBE 

(identity-based encryption)系統把私密式廣播

加密系統轉化成公開式廣播加密的系統的方

法，轉換出來的系統的各項參數和原來的私

密金鑰系統的皆相同。 

在廣播加密之中，重要的參數有下列幾

個，第一個是表頭大小 t (Header size)也就是

傳輸量，第二則是金鑰的儲存量，第三則是

每個使用者所需的計算量。在一些研究中，

某些方法會限制註銷使用者共謀的個數，然

而在此篇文章中，我們著重在探討無限制註

銷者共謀(collusion resistant)的方法。關於金

鑰分配和傳輸量之間的關係，直覺的想法，

假設現在有 n 位使用者，每位使用者擁有一

把自己專屬的金鑰，則當我們註銷掉任意 r

位使用者時，我們需要對其餘 n-r 位使用者一

一加密，因此，此方法所需的傳輸量為 n-r，

每位使用者金鑰的儲存量則為 1，計算量方

面，由於使用者收到後可直接使用金鑰解開

表頭，因此計算量也為 1 (以上這種方法我們

取名為(a)列於下表之中)。相反的，若我們分

給每位使用者 2n-1 把金鑰，每把金鑰分別代

表自己之外其餘 n-1 個使用者註銷的情形，

則當我們註銷 r 個使用者時，我們所需的傳

輸量為 1，每位使用者金鑰儲存量即為 2n-1 

(以上這種方法我們取名為 (b)列於下表之

中)，且我們需要 O(n)的金鑰查詢時間。 
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由上述兩種方法我們觀察可得知，當每

個使用者金鑰儲存量少的時候，傳輸量多；

當儲存量少之時，所需傳輸量就大，而如何

能有個好方法能在這兩者間取得平衡？亦或

是使這兩者參數皆小，並在計算量上所需最

小，便是我們研究的主要課題。 

二、 研究成果 

第一年度我們發展出兩個公開廣播加密

協定，第一個協定可以達到 O(r)密文長度，

O(log n)私密金鑰及 O(1)公開金鑰，計算量

需要 O(r)。第二個協定可以達到 O(r)密文長

度，O(log2 n)私密金鑰及 O(1)公開金鑰，計

算量只需要 O(1)。論文已在 2008 的 PKC 會

議上發表。第二年度我們將協定修改，加強

其安全度達到 IND-CCA2的等級，目前投稿到

知名的期刊，正在審稿中。 

第二年度，我們進行了有關感測網路金

鑰建立的問題，我們提出一個和現有論文完

全不同的攻擊模型，再據此提出一個安全的

金鑰建立協定並探討其安全性。這篇論文主

要是探討 storage-bounded 攻擊者的模式

下，建立節點間金鑰的方法，我們發現節點

間不需要事先載入秘密值就可建立安全的通

訊金鑰，我們使用了機率式的分析方法來討

論金鑰的安全行，我們是第一個在感測網路

上使用這個分析方法。結果發表在 IEEE 

Trans.Wireless Communications上。 

第三年度我們對 permutation code（PC）

做了詳細的研究，提出許多 PC碼的性質及好

的編解碼方法，結果發表在 IEEE Trans. 

Information Theory上。 

三、 計畫成果自評 

本計劃我們發表了四篇高水準的會議及

期刊論文，還有一篇在審稿中，以成果來看，

我們達成了計劃的預定目標。 
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Abstract. In this paper we propose three public key BE schemes that
have efficient complexity measures. The first scheme, called the BE-PI
scheme, has O(r) header size, O(1) public keys and O(log N) private keys
per user, where r is the number of revoked users. This is the first public
key BE scheme that has both public and private keys under O(log N)
while the header size is O(r). These complexity measures match those of
efficient secret key BE schemes.

Our second scheme, called the PK-SD-PI scheme, has O(r) header
size, O(1) public key and O(log2 N) private keys per user. They are
the same as those of the SD scheme. Nevertheless, the decryption time
is remarkably O(1). This is the first public key BE scheme that has
O(1) decryption time while other complexity measures are kept low.
The third scheme, called, the PK-LSD-PI scheme, is constructed in the
same way, but based on the LSD method. It has O(r/ε) ciphertext size
and O(log1+ε N) private keys per user, where 0 < ε < 1. The decryption
time is also O(1).

Our basic schemes are one-way secure against full collusion of revoked
users in the random oracle model under the BDH assumption. We can
modify our schemes to have indistinguishably security against adaptive
chosen ciphertext attacks.

Keywords: Broadcast encryption, polynomial interpolation, collusion.

1 Introduction

Assume that there is a set U of N users. We would like to broadcast a message
to a subset S of them such that only the (authorized) users in S can obtain the
message, while the (revoked) users not in S cannot get information about the
message. Broadcast encryption is a bandwidth-saving method to achieve this
goal via cryptographic key-controlled access. In broadcast encryption, a dealer
sets up the system and assigns each user a set of private keys such that the

� Research supported in part by NSC projects 96-2628-E-009-011-MY3, 96-3114-P-
001-002-Y (iCAST), and 96-2219-E-009-013 (TWISC).

R. Cramer (Ed.): PKC 2008, LNCS 4939, pp. 380–396, 2008.
c© International Association for Cryptologic Research 2008
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broadcasted messages can be decrypted by authorized users only. Broadcast en-
cryption has many applications, such as pay-TV systems, encrypted file sharing
systems, digital right management, content protection of recordable data, etc.

A broadcasted message M is sent in the form 〈Hdr(S, m), Em(M)〉, where
m is a session key for encrypting M via a symmetric encryption method E. An
authorized user in S can use his private keys to decrypt the session key m from
Hdr(S, m). Since the size of Em(M) is pretty much the same for all broadcast
encryption schemes, we are concerned about the header size. The performance
measures of a broadcast encryption scheme are the header size, the number of
private keys held by each user, the size of public parameters of the system (public
keys), the time for encrypting a message, and the time for decrypting the header
by an authorized user. A broadcast encryption scheme should be able to resist
the collusion attack from revoked users. A scheme is fully collusion-resistant if
even all revoked users collude, they get no information about the broadcasted
message.

Broadcast encryption schemes can be stateless or stateful. For a stateful
broadcast encryption scheme, the private keys of a user can be updated from
time to time, while the private keys of a user in a stateless broadcast encryption
scheme remain the same through the lifetime of the system. Broadcast encryp-
tion schemes can also be public key or secret key. For a public key BE scheme,
any one (broadcaster) can broadcast a message to an arbitrary group of autho-
rized users by using the public parameters of the system, while for a secret key
broadcast encryption scheme, only the special dealer, who knows the system
secrets, can broadcast a message.

In this paper we refer ”stateless public key broadcast encryption” as ”public
key BE”.

1.1 Our Contribution

We propose three public key BE schemes that have efficient complexity measures.
The first scheme, called the BE-PI scheme (broadcast encryption with polyno-
mial interpolation), has O(r) header size, O(1) public keys, and O(log N) private
keys per user1, where r is the number of revoked users. This is the first public
key BE scheme that has both public and private keys under O(log N) while the
header size is O(r). These complexity measures match those of efficient secret
key BE schemes [11,20,21]. The idea is to run log N copies of the basic scheme
in [17,19,22] in parallel for lifting the restriction on a priori fixed number of
revoked users. Nevertheless, if we implement the log N copies straightforwardly,
we would get a scheme of O(N) public keys. We are able to use the properties
of bilinear maps as well as special private key assignment to eliminate the need
of O(N) public keys and make it a constant number.

Our second scheme, called the PK-SD-PI scheme (public key SD broadcast en-
cryption with polynomial interpolation), is constructed by combining the polyno-
mial interpolation technique and the subset cover method in the SD scheme [16].

1 log is based on 2 if the base is not specified.
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Table 1. Comparison of some fully collusion-resistant public key BE schemes

header size public-key size private-key size decryption cost�

PK-SD-HIBE† O(r) O(1) O(log2 N) O(log N)
BGW-I [4] O(1) O(N)� O(1) O(N − r)
BGW-II [4] O(

√
N) O(

√
N)� O(1) O(

√
N)

BW[5] O(
√

N) O(
√

N)� O(
√

N) O(
√

N)
LHL§ [15] O(rD) O(2C)� O(D) O(C)
P-NP, P-TT, P-YF‡ O(r) O(N) O(log N) O(r)
Our work: BE-PI O(r) O(1) O(log N) O(r)
Our work: PK-SD-PI O(r) O(1) O(log2 N) O(1)
Our work: PK-LSD-PI O(r/ε) O(1) O(log1+ε N) O(1)

N - the number of users.
r - the number of revoked users.
† - the transformed SD scheme [6] instantiated with constant-size HIBE [2].
‡ - the parallel extension of [17,19,22].
� - the public keys are needed for decrypting the header by a user.
§ - N = CD.
� - group operation/modular exponentiation and excluding the time for scanning the
header.

The PK-SD-PI scheme has O(r) header size, O(1) public key and O(log2 N) pri-
vate keys per user. They are the same as those of the SD scheme. Nevertheless,
the decryption time is remarkably O(1). This is the first public key broadcast en-
cryption scheme that has O(1) decryption time while other complexity measures
are kept low. The third scheme, called the PK-LSD-PI scheme, is constructed in
the same way, but based on the LSD method. It has O(r/ε) ciphertext size and
O(log1+ε N) private keys per user, where 0 < ε < 1. The decryption time is also
O(1).

Our basic schemes are one-way secure against full collusion of revoked users in
the random oracle model under the BDH assumption. We modify our schemes to
have indistinguishably security against adaptive chosen ciphertext attacks. The
comparison with some other public key BE schemes with full collusion resistance
is shown in Table 1.

1.2 Related Work

Fiat and Naor [8] formally proposed the concept of static secret key broadcast
encryption. Many researchers followed to propose various broadcast encryption
schemes, e.g., see [11,12,16,17,20].

Kurosawa and Desmedt [13] proposed a pubic-key BE scheme that is based
on polynomial interpolation and traces at most k traitors. The similar schemes
of Noar and Pinkas [17], Tzeng and Tzeng [19], and Yoshida and Fujiwara [22]
allow revocation of up to k users. Kurosawa and Yoshida [14] generalized the
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polynomial interpolation (in fact, the Reed-Solomon code) to any linear code for
constructing public key BE schemes. The schemes in [7,13,14,17,19,22] all have
O(k) public keys, O(1) private keys, and O(r) header size, r ≤ k. However, k is
a-priori fixed during the system setting and the public key size depends on it.
These schemes can withstand the collusion attack of up to k revoked users only.
They are not fully collusion-resistant.

Yoo, et al. [21] observed that the restriction of a pre-fixed k can be lifted by
running log N copies of the basic scheme with different degrees (from 20 to N) of
polynomials. They proposed a scheme of O(log N) private keys and O(r) header
size such that r is not restricted. However, their scheme is secret key and the
system has O(N) secret values. In the public key setting, the public key size is
O(N).

Recently Boneh, et al. [4] proposed a public key BE scheme that has O(1)
header size, O(1) private keys, and O(N) public keys. By trading off the header
size and public keys, they gave another scheme with O(

√
N) header size, O(1)

private keys and O(
√

N) public keys. Lee, et al. [15] proposed a better trade-off
by using receiver identifiers in the scheme. It achieves O(1) public key, O(log N)
private keys, but, O(r log N) header size. Boneh and Waters [5] proposed a
scheme that has the traitor tracing capability. This type of schemes [4,5,15]
has the disadvantage that the public keys are needed by a user in decrypting the
header. Thus, the de-facto private key of a user is the combination of the public
key and his private key.

It is possible to transform a secret key BE scheme into a public key one.
For example, Dodis and Fazio [6] transformed the SD and LSD schemes [12,16]
into public key SD and LSD schemes, shorted as PK-SD and PK-LSD. The
transformation employs the technique of hierarchical identity-based encryption
to substitute for the hash function. Instantiated with the newest constant-size
hierarchical identity-based encryption [2], the PK-SD scheme has O(r) header
size, O(1) public keys and O(log2 N) private keys. The PK-LSD scheme has
O(r/ε) header size, O(1) public keys and O(log1+ε N) private keys, where 0 <
ε < 1 is a constant. The decryption costs of the PK-SD and PK-LSD schemes
are both O(log N), which is the time for key derivation incurred by the original
relation of private keys. If we apply the HIBE technique to the secret key BE
schemes of O(log N) or O(1) private keys [1,11,20], we would get their public
key versions with O(N) private keys and O(N) decryption time.

2 Preliminaries

Bilinear map. We use the properties of bilinear maps. Let G and G1 be two
(multiplicative) cyclic groups of prime order q and ê be a bilinear map from
G × G to G1. Then, ê has the following properties.

1. For all u, v ∈ G and x, y ∈ Zq, ê(ux, vy) = ê(u, v)xy.
2. Let g be a generator of G, ê(g, g) = g1 �= 1 is a generator of G1.
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BDH hardness assumption. The BDH problem is to compute ê(g, g)abc from given
(g, ga, gb, gc). We say that BDH is (t, ε)-hard if for any probabilistic algorithm
A with time bound t, there is some k0 such that for any k ≥ k0,

Pr[A(g, ga, gb, gc) = ê(g, g)abc : g
u← G; a, b, c

u← Zq] ≤ ε.

Broadcast encryption. A public key BE scheme Π consists of three probabilistic
polynomial-time algorithms:

- Setup(1z , Id, U). Wlog, let U = {U1, U2, . . . , UN}. It takes as input the
security parameter z, a system identity Id and a set U of users and outputs
a public key PK and N private key sets SK1, SK2, . . . , SKN , one for each
user in U .

- Enc(PK, S, M). It takes as input the public key PK, a set S ⊆ U of au-
thorized users and a message M and outputs a pair 〈Hdr (S, m), C〉 of the
ciphertext header and body, where m is a randomly generated session key
and C is the ciphertext of M encrypted by m via some standard symmetric
encryption scheme, e.g., AES.

- Dec(SKk,Hdr(S, m), C). It takes as input the private key SKk of user Uk,
the header Hdr(S, m) and the body C. If Uk ∈ S, it computes the session
key m and then uses m to decrypt C for the message M . If Uk �∈ S, it cannot
decrypt the ciphertext.

The system is correct if all users in S can get the broadcasted message M .

Security. We describe the indistinguishability security against adaptive chosen
ciphertext attacks (IND-CCA security) for broadcast encryption as follows [4].
Here, we focus on the security of the session key, which in turn guarantees
the security of the ciphertext body C. Let Enc∗ and Dec∗ be like Enc and Dec
except that the message M and the ciphertext body C are omitted. The security
is defined by an adversary A and a challenger C via the following game.

Init. The adversary A chooses a system identity Id and a target set S∗ ⊆ U
of users to attack.
Setup. The challenger C runs Setup(1z, Id, U) to generate a public key PK
and private key sets SK1, SK2, . . . , SKN . The challenger C gives SKi to A,
where Ui �∈ S∗.
Query phase 1. The adversary A issues decryption queries Qi, 1 ≤ i ≤ n, of
form (Uk, S, Hdr(S, m)), S ⊆ S∗, Uk ∈ S, and the challenger C responds with
Dec∗(SKk, Hdr(S, m)), which is the session key encrypted in Hdr(S, m).
Challenge.ThechallengerC runsEnc∗(PK, S∗) andoutputsy=Hdr(S∗, m),
where m is randomly chosen. Then, C chooses a random bit b and a random
session keym∗ and setsmb = m andm1−b = m∗.C gives (m0, m1,Hdr(S∗, m))
to A.
Query phase 2. The adversary A issues more decryption queries Qi, n+1 ≤
i ≤ qD, of form (Uk, S, y′), S ⊆ S∗, Uk ∈ S, y′ �= y, and the challenger C
responds with Dec∗(SKk, y′).
Guess. A outputs a guess b′ for b.
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In the above the adversary A is static since it chooses the target set S∗ of
users before the system setup. Let Advind-cca

A,Π (z) be the advantage that A wins
the above game, that is,

Advind-cca
A,Π (z) = 2 · Pr[AO(PK, SKU\S∗ , m0, m1,Hdr(S∗, m)) = b :

S∗ ⊆ U , (PK, SKU) ← Setup(1z, Id, U),

Hdr(S∗, m) ← Enc∗(PK, S∗), b u← {0, 1}] − 1,

where SKU = {SKi : 1 ≤ i ≤ N} and SKU\S∗ = {SKi : Ui �∈ S∗}.

Definition 1. A public key BE scheme Π=(Setup, Enc, Dec) is (t, ε, qD)-IND-
CCA secure if for all t-time bounded adversary A that makes at most qD decryp-
tion queries, we have Advind-cca

A,Π (z) < ε.

In this paper we first give schemes with one-way security against chosen plaintext
attacks (OW-CPA security) and then transform them to have IND-CCA security
via the Fujisaki-Okamoto transformation [9]. The OW-CPA security is defined
as follows.

Init. The adversary A chooses a system identity Id and a target set S∗ ⊆ U
of users to attack.
Setup. The challenger C runs Setup(1z, Id, U) to generate a public key PK
and private key sets SK1, SK2, . . . , SKN . The challenger C gives SKi to A,
where Ui �∈ S∗.
Challenge. The challenger C runs Enc∗(PK, S∗) and outputs Hdr(S∗, m),
where m is randomly chosen.
Guess. A outputs a guess m′ for m.

Since A can always encrypt a chosen plaintext by himself, the oracle of en-
crypting a chosen plaintext does not matter in the definition. Let Advow-cpa

A,Π (z)
be the advantage that A wins the above game, that is,

Advow-cpa
A,Π (z) = Pr[A(PK, SKU\S∗,Hdr(S∗, m)) = m : S∗ ⊆ U ,

(PK, SKU) ← Setup(1z, Id, U),Hdr(S∗, m) ← Enc∗(PK, S∗)].

Definition 2. A public key BE scheme Π=(Setup, Enc, Dec) is (t, ε)-OW-CPA
secure if for all t-time bounded adversary A, we have Advow-cpa

A,Π (z) < ε.

3 The BE-PI Scheme

Let G and G1 be the bilinear groups with the pairing function ê, where q is
a large prime. Let H1, H2 : {0, 1}∗ → G1 be two hash functions and E be a
symmetric encryption with key space G1.

The idea of our construction is as follows. For a polynomial f(x) of degree
t, we assign each user Ui a share f(i). The secret is f(0). We can compute the
secret f(0) from any t+1 shares. If we want to revoke t users, we broadcast their
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shares. Any non-revoked user can compute the secret f(0) from his own share
and the broadcasted ones, totally t + 1 shares. On the other hand, any collusion
of revoked users cannot compute the secret f(0) since they have t shares only,
including the broadcasted ones. If less than t users are revoked, we broadcast
the shares of some dummy users such that t shares are broadcasted totally. In
order to achieve O(r) ciphertexts, we use log N polynomials, each for a range of
the number of revoked users.

1. Setup(1z, Id, U): z is the security parameter, Id is the identity name of the
system, and U = {U1, U2, . . . , UN} is the set of users in the system. Wlog,
let N be a power of 2. Then, the system dealer does the following:
– Choose a generator g of group G, and let lg = logg and g1 = ê(g, g).
– Compute hi = H1(Id‖i) for 1 ≤ i ≤ log N .
– Compute ga

(i)
j = H2(Id‖i‖j) for 0 ≤ i ≤ log N and 0 ≤ j ≤ 2i.

Remark. The underlying polynomials are, 0 ≤ i ≤ log N ,

fi(x) =
2i∑

j=0

a
(i)
j xj (mod q).

The system dealer does not know the coefficients a
(i)
j = lg H2(Id‖i‖j).

But, this does not matter.
– Randomly choose a secret ρ ∈ Zq and compute gρ.
– Publish the public key PK = (Id, H1, H2, E, G, G1, ê, g, gρ).
– Assign a set SKk = {sk,0, sk,1, . . . , sk,log N} of private keys to user Uk,

1 ≤ k ≤ N , where

sk,i = (grk,i , grk,ifi(k), grk,ifi(0)hρ
i )

and rk,i is randomly chosen from Zq, 1 ≤ i ≤ log N .
2. Enc(PK, S, M): S ⊆ U , R = U\S = {Ui1 , Ui2 , . . . , Uil

} is the set of re-
voked users, where l ≥ 1. M is the sent message. The broadcaster does the
following:
– Let α = log l� and L = 2α.
– Compute hα = H1(Id‖α).
– Randomly select distinct il+1, il+2, . . . , iL > N . These Uit , l+1 ≤ t ≤ L,

are dummy users.
– Randomly select a session key m ∈ G1.
– Randomly select r ∈ Zq and compute, 1 ≤ t ≤ L,

grfα(it) = (
L∏

j=0

H2(Id‖α‖j)ij
t )r.

– The ciphertext header Hdr(S, m) is

(α, mê(gρ, hα)r, gr, (i1, grfα(i1)), (i2, grfα(i2)), . . . , (iL, grfα(iL))).

– The ciphertext body is C = Em(M).
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3. Dec(SKk,Hdr(S, m), C): Uk ∈ S. The user Uk does the following.
– Compute b0 = ê(gr, grk,αfα(k)) = g

rrk,αfα(k)
1 .

– Compute bj = ê(grk,α , grfα(ij)) = g
rrk,αfα(ij)
1 , 1 ≤ j ≤ L.

– Use the Lagrange interpolation method to compute

g
rrk,αfα(0)
1 =

L∏

j=0

b
λj

j , (1)

where λj = (−i0)(−i1)···(−ij−1)(−ij+1)···(−iL)
(ij−i0)(ij−i1)···(ij−ij−1)(ij−ij+1)···(ij−iL) (mod q), i0 = k.

– Compute the session key

mê(gρ, hα)r · grrk,αfα(0)
1

ê(gr, grk,αfα(0)hρ
α)

=
mê(gρ, hα)r · g

rrk,αfα(0)
1

ê(gr, hρ
α) · grrk,αfα(0)

1

= m. (2)

– Use m to decrypt the ciphertext body C to obtain the message M .

Correctness. We can easily see that the scheme is correct by Equation (2).

3.1 Performance Analysis

For each system, the public key is (Id, H1, H2, E, G, G1, ê, g, gρ), which is of
size O(1). Since all systems can use the same (H, E, G, G1, ê, g), the public key
specific to a system is simply (Id, gρ). Each system dealer has a secret ρ for
assigning private keys to its users. Each user Uk holds private keys SKk =
{sk,0, sk,1, . . . , sk,log N}, each corresponding to a share of polynomial fi in the
masked form, 0 ≤ i ≤ log N . The number of private keys is O(log N). When r
users are revoked, we choose the polynomial fα of degree 2α for encrypting the
session key, where 2α−1 < r ≤ 2α. Thus, the header size is O(2α) = O(r). It is
actually no more than 2r.

To prepare a header, the broadcaster needs to compute one pairing function,
2α+2 hash functions, and 2α+2 modular exponentiations, which is O(r) modular
exponentiations.

For a user in S to decrypt a header, with a little re-arrangement of Equation
(1) as

L∏

j=0

b
λj

j = bλ0
0 · ê(grk,α ,

L∏

j=1

(grfα(ij))λj ),

the user needs to perform 3 pairing functions and 2α modular exponentiations,
which is O(r) modular exponentiations. The evaluation of λj ’s can be done in
O(L) = O(2r) if the header consists of

λ̃j =
(−i1) · · · (−ij−1)(−ij+1) · · · (−iL)

(ij − i1) · · · (ij − ij−1)(ij − ij+1) · · · (ij − iL)
mod q, 1 ≤ j ≤ L.

The user can easily compute λj ’s from λ̃j ’s. Inclusion of λ̃j ’s in the header does
not affect the order of the header size.
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3.2 Security Analysis

We show that it has OW-CPA security in the random oracle model under the
BDH assumption.

Theorem 1. Assume that the BDH problem is (t1, ε1)-hard. Our BE-PI scheme
is (t1 − t′, ε1)-OW-CPA secure in the random oracle model, where t′ is some
polynomially bounded time.

Proof. We reduce the BDH problem to the problem of computing the session key
from the header by the revoked users. Since the polynomials fi(x) =

∑L
j=0 a

(i)
j xj

and secret shares of users for the polynomials are independent for different i’s,
we simply discuss security for a particular α. Wlog, let R = {U1, U2, . . . , UL} be
the set of revoked users and the target set of attack be S∗ = U\R. Note that
S∗ was chosen by the adversary in the Init stage. Let the input of the BDH
problem be (g, ga, gb, gc), where the pairing function is implicitly known. We set
the system parameters as follows:

1. Randomly select τ, κ, μ1, μ2, . . . , μL, w1, w2, . . . , wL ∈ Zq.
2. Set the public key of the system:

(a) Let the input g be the generator g in the system.
(b) Set gρ = ga.
(c) The public key is (Id, H1, H2, E, G, G1, ê, g, ga).
(d) The following is implicitly computed.

– Set fα(i) = wi, 1 ≤ i ≤ L.
– Let ga

(α)
0 = gfα(0) = ga · gτ = ga+τ .

– Compute ga
(α)
i , 1 ≤ i ≤ L, from ga

(α)
0 and gfα(j) = gwj , 1 ≤ j ≤ L,

by the Lagrange interpolation method over exponents.
– Set hα = gb · gκ = gb+κ.
– For j �= α, choose a random polynomial fj(x) and set hj = gzj ,

where zj is randomly chosen from Zq.
3. Set the secret keys (gri,j , gri,jfj(i), gri,jfj(0)hρ

j ), 0 ≤ j ≤ log N , of the revoked
user Ui, 1 ≤ i ≤ L, as follows:
(a) For j = α, let gri,α = g−b+μi , gri,αfα(i) = (gri,α)wi , and

gri,αfα(0)hρ
α = g(−b+μi)(a+τ)(gb+κ)a = ga(μi+κ)−bτ+μiτ .

(b) For j �= α, randomly choose ri,j ∈ Zq and compute gri,j , gri,jfj(i) and
gri,jfj(0)hρ

j = gri,jfj(0)(ga)zj .
4. Set the header (α, mê(gρ, hα)r, gr, (1, grfα(1)), (2, grfα(2)), . . ., (L, grfα(L)))

as follows:
(a) Let gr = gc.
(b) Compute grfα(i) = (gc)wi , 1 ≤ i ≤ L.
(c) Randomly select y ∈ G1 and set mê(gρ, hα)r = y. We do not know what

m is. But, this does not matter.

Assume that the revoked users together can compute the session key m. Dur-
ing computation, the users can query H1 and H2 hash oracles. If the query is of
the form H2(Id‖i‖j) or H1(Id‖i), we set them to be ga

(i)
j and hi, respectively.



Public Key Broadcast Encryption with Low Number of Keys 389

If the query has ever been asked, we return the stored hash value for the query.
For other non-queried inputs, we return random values in G.

We should check whether the distributions of the parameters in our reduction
and those in the system are equal. We only check those related to α since the
others are correctly distributed. Since τ, w1, w2, . . . , wL are randomly chosen,
ga

(α)
i , 0 ≤ i ≤ L are uniformly distributed over GL+1. Due to the random oracle

model, their corresponding system parameters are also uniformly distributed
over GL+1. Since κ, μ1, μ2, . . . , μL are randomly chosen, the distribution of hα

and gri,α , 1 ≤ i ≤ L, are uniform over GL+1, which is again the same as that
of the corresponding system parameters. The distributions of gr in the header
and gρ in the public key are both uniform over G since they are set from the
given input gc and ga, respectively. Since the session key m is chosen randomly
from G1, mê(gρ, hα)r is distributed uniformly over G1. We set it to a random
value y ∈ G1. Even though we don’t know about m, it does not affect the
reduction. Other parameters are dependent on what have been discussed. We
can check that they are all computed correctly. So, the reduction preserves the
right distribution.

If the revoked users compute m from the header with probability ε, we can
solve the BDH problem with the same probability ε1 = ε by computing the
following:

y · m−1 · ê(ga, gc)−κ = ê(gρ, hα)r · ê(g, g)−acκ

= ê(ga, gb+κ)c · ê(g, g)−acκ

= ê(g, g)abc. (3)

Let t′ be the time for this reduction and the solution computation in Equation
(3). We can see that t′ is polynomially bounded. Thus, if the collusion attack of the
revoked users takes t1 − t′ time, we can solve the BDH problem within time t1.

4 The BE-PI Scheme with IND-CCA Security

In Theorem 1, we show that the session key in the header is one-way secure
against any collusion of revoked users. There are some standard techniques of
transforming OW-CPA security to IND-CCA security. Here we present such a
scheme Π ′ based on the technique in [9].

The IND-CCA security of the Fujisaki-Okamoto transformation depends only
on the OW-CPA security of the public key encryption scheme, the FG security
of a symmetric encryption scheme E , and the γ-uniformity of the public key
encryption scheme. The FG-security is the counterpart of the IND-security for
symmetric encryption. A public key encryption scheme is γ-uniform if for every
key pair (pk, sk), every message x, and y ∈ {0, 1}∗, Pr[Epk(x) = y] ≤ γ. Before
applying the transformation, we check the following things:

1. The transformation applies to public key encryption, while ours is public key
broadcast encryption. Nevertheless, if the authorized set S is fixed, our public



390 Y.-R. Liu and W.-G. Tzeng

key broadcast encryption scheme is a public key encryption scheme with
public key pk = (PK, S). In the definition of IND-CCA security (Definition
1), the adversary A selects a target set S∗ of users to attack in the Init
stage and S∗ is fixed through the rest of the attack. Thus, we can discuss
the attack of A with a fixed target set S∗. Note that A is a static adversary.

2. Let S be a fixed authorized set of users. For every m and every y ∈ {0, 1}∗,
Pr[Hdr(S, m) = y] is either 0 or 1/q � 1/2z, where z is the security pa-
rameter (the public key size). Thus, our broadcast encryption scheme is
2−z-uniform if the authorized set is fixed.

Let E : K × G1 → G1 be a symmetric encryption scheme with FG-security,
where K is the key space of E . Let H3 : G1 × G1 → Zq and H4 : G1 → K be
two hash functions. The modification of Π for Π ′ is as follows.

– In the Setup algorithm, add E , H3, H4 to PK.
– In the Enc algorithm,

Hdr (S, m) = (gr, σê(gρ, hα)r, EH4(σ)(m),

(i1, grfα(i1)), (i2, grfα(i2)), . . . , (iL, grfα(iL))),

where σ is randomly chosen from G1 and r = H3(σ, m).
– In the Dec algorithm, we first compute σ̄ as described in the BE-PI scheme.

Then, we compute the session key m̄ from EH4(σ)(m) by using σ̄. We check
whether σê(gρ, hα)r = σ̄ê(gρ, hα)H3(σ̄,m̄) and grfα(ij) = gfα(ij)H3(σ̄,m̄), 1 ≤
j ≤ L. If they are all equal, m̄ is outputted. Otherwise, ⊥ is outputted.

Let qH3 , qH4 and qD be the numbers of queries to H3, H4 and the decryption
oracles, respectively. Our scheme Π ′ is IND-CCA-secure.

Theorem 2. Assume that the BDH problem is (t1, ε1)-hard and the symmetric
encryption E is (t2, ε2) FG-secure. The scheme Π ′ is (t, ε, qH3 , qH4 , qD)-IND-
CCA secure in the random oracle model, where t′ is some polynomially bounded
time,

t = min{t1 − t′, t2} − O(2z(qH3 + qH4)) and

ε = (1 + 2(qH3 + qH4)ε1 + ε2)(1 − 2ε1 − 2ε2 − 2−z+1)−qD − 1.

This theorem is proved by showing that if Π ′ is not IND-CCA-secure, then either
Π is not OW-CPA-secure or E is not FG-secure directly. The OW-CPA security
of Π is based on the BDH assumption. We note that the application of the
transformation to other types of schemes could be delicate. Galindo [10] pointed
out such a case. Nevertheless, the problem occurs in the proof and is fixable
without changing the transformation or the assumption. The detailed proof will
be given in the full version of the paper.

5 A Public Key SD Scheme

In the paradigm of subset cover for broadcast encryption [16], the system chooses
a collection C of subsets of users such that each set S of users can be covered by
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the subsets in C, that is, S = ∪w
i=1Sw, where Si ∈ C are disjoint, 1 ≤ i ≤ w. Each

subset Si in C is associated with a private key ki. A user is assigned a set of keys
such that he can derive the private keys of the subsets to which he belongs. The
subset keys ki cannot be independent. Otherwise, each user may hold too many
keys. It is preferable that the subset keys have some relations, for example, one
can be derived from another. Thus, each user Uk is given a set SKk of keys so
that he can derive the private key of a subset to which he belongs. A subset-cover
based broadcast encryption scheme plays the art of choosing a collection C of
subsets, assigning subset and user keys, and finding subset covers.

5.1 The PK-SD-PI Scheme

We now present our PK-SD-PI scheme, which is constructed by using the poly-
nomial interpolation technique on the collection of subsets in [16]. The system
setup is similar to that of the BE-PI scheme. Consider a complete binary tree T
of log N + 1 levels. The nodes in T are numbered differently. Each user in U is
associated with a different leaf node in T . We refer to a complete subtree rooted
at node i as ”subtree Ti”. For each subtree Ti of η levels (level 1 to level η from
top to bottom), we define the degree-1 polynomials

f
(i)
j (x) = a

(i)
j,1x + a

(i)
j,0 (mod q),

where a
(i)
j,0 = lg H2(Id‖i‖j‖0) and a

(i)
j,1 = lg H2(Id‖i‖j‖1), 2 ≤ j ≤ η. For a user

Uk in the subtree Ti of η levels, he is given the private keys

sk,i,j = (grk,i,j , grk,i,jf
(i)
j (ij), grk,i,jf

(i)
j (0)hρ)

for 2 ≤ j ≤ η, where nodes i1, i2, . . . , iη are the nodes in the path from node i
to the leaf node for Uk (including both ends). We can read sk,i,j as the private
key of Uk for the jth level of subtree Ti. In Figure 1, the private keys (in the
unmasked form) of U1 and U3 for subtree Ti with η = 4 are given. Here, we use
hρ in all private keys in order to save space in the header.

Recall that in the SD scheme, the collection C of subsets is

{Si,t : node i is a parent of node t, i �= t},

where Si,t denotes the set of users in subtree Ti, but not in subtree Tt. By our
design, if the header contains a masked share for f

(i)
j (t), where node t is in the

j-th level of subtree Ti, only user Uk in Si,t can decrypt the header by using his
private key sk,i,j , that is, the masked form of f

(i)
j (s), for some s �= t. In Figure 1,

the share f
(i)
3 (t) is broadcasted so that only the users in Si,t can decrypt the

header.
For a set R of revoked users, let Si1,t1 , Si2,t2 , . . ., Siz ,tz be a subset cover for

U\R, the header is

(mê(gρ, h)r, gr, (i1, t1, g
rf

(i1)
j1

(t1)), . . . , (iz, tz, grf
(iz)
jz

(tz))),

where node tk is in the jk-th level of subtree Tik
, 1 ≤ k ≤ z.
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i=i1

f2
(i)(x)

f3
(i)(x)

t

i2

i3

f4
(i)(x)

U1 U2 U3 U4 U5 U6 U7 U8

– U1 holds masked shares of f2
(i)(i2), f3

(i)(i3), f4
(i)(i4)

– U3 holds masked shares of f2
(i)(i2), f3

(i)(t), f4
(i)(v)

– For subset Si,t ,  a masked share of f3
(i)(t) is broadcasted so that

U3 and U4 cannot decrypt, but others can.

i4 v

Fig. 1. Level polynomials, private keys and broadcasted shares for subtree Ti

For decryption, a non-revoked user finds ik, tk, g
rf

(ik)
jk

(tk) (corresponding to
Sik,tk

where he is in) from the header and applies the Lagrange interpolation to
compute the session key m.

Performance. The public key is O(1), which is the same as that of the BE-PI
scheme. Each user belongs to at most log N + 1 subtrees and each subtree has
at most log N +1 levels. For the subtree of η levels, the user in the subtree holds
η − 1 private keys. Thus, the total number of shares (private keys) held by each
user is

∑log N
i=1 i = O(log2 N). According to [16], the number z of subsets in a

subset cover is at most 2|R| − 1, which is O(r).
When the header streams in, a non-revoked user Uk looks for his containing

subset Sij ,tj to which he belongs. With a proper numbering of the nodes in T , this
can be done very fast, for example, in O(log log N) time. Without considering
the time of scanning the header to find out his containing subset, each user
needs to perform 2 modular exponentiations and 3 pairing functions. Thus, the
decryption cost is O(1).

Security. We first show that the scheme is one-way secure.

Theorem 3. Assume that the BDH problem is (t1, ε1)-hard. Our PK-SD-PI
scheme is (t1 − t′, ε1)-OW-CPA secure in the random oracle model, where t′ is
some polynomially bounded time.

Proof. The one-way security proof for the PK-SD-PI scheme is similar to that for
the BE-PI scheme. In the PK-SD-PI scheme, all polynomials f

(i)
j (x) are of degree

one. Let (g, ga, gb, gc) be the input to the BDH problem. Let Si1,t1 , Si2,t2 , . . . , Siz ,tz

be a subset cover for S∗ = U\R. Due to the random oracle assumption for H1
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and H2, all polynomials are independent. Thus, we can simply consider a partic-
ular Sα,t in the subset cover for S∗ = U\R, where t is at level β of subtree Tα.
The corresponding polynomial is f(x) = f

(α)
β (x) = a1x + a0 (mod q). Wlog, let

{U1, U2, . . . , Ul} be the set of revoked users that have the secret share about f(t).
The reduction to the BDH problem is as follows. Recall that the public key of the
PK-SD-PI method is (Id, H1, H2, E, G, G1, ê, g, gρ).

1. Let g be the generator in the system and gρ = ga.
2. Set f(t) = w and compute gf(t) = gw, where w is randomly chosen from Zq.
3. Let ga0 = gf(0) = ga · gτ , where τ is randomly chosen from Zq.
4. Compute ga1 from gf(t) and ga0 via the Lagrange interpolation.
5. The (random) hash values H2(Id‖α‖β‖0) and H2(Id‖α‖β‖1) are set as ga0

and ga1 respectively.
6. Set h = gb · gκ, where κ is randomly chosen from Zq.
7. The f(x)-related secret share of Ui, 1 ≤ i ≤ l, is computed as (gri , grif(t),

grif(0)hρ), where gri = g−b · gμi and μi is randomly chosen from Zq. Note
that grif(0)hρ = ga(μi+κ)−bτ+μiτ can be computed from the setting in the
previous steps.

8. The non-f(x)-related secret shares of Ui, 1 ≤ i ≤ l, can be set as follows.
Let f ′ be a polynomial related to subtree α′ and level β′, where t′ is in the
β′-th level and Ui ∈ Sα′,t′ . The secret share (gr′

i , gr′
if

′(t′), gr′
if

′(0)hρ) of Ui is
computed from (gri , grif(t), grif(0)hρ). Let f ′(t′) = w′, f ′(0) = f(0)+ a′ and
r′i = ri + r′, where w′, a′, and r′ are randomly chosen from Zq. Thus, gr′

i =
gri ·gr′

, gr′
if

′(t′) = (gr′
i)w′

and gr′
if

′(0)hρ = (grif(0)hρ)·gr′f(0)·gria
′ ·gr′a′

. Note
that the hash values H2(Id‖α′‖β′‖0) and H2(Id‖α′‖β′‖1) can be answered
accordingly.

9. Set the challenge as

(y, gc, (i1, t1, g
cf

(i1)
j1

(t1)), (i2, t2, g
cf

(i2)
j2

(t2)), . . . , (iz, tz, gcf
(iz)
jz

(tz))),

where y is randomly chosen from G and thought as mê(gρ, h)c. Note that

g
cf

(ik)
jk

(tk)
, 1 ≤ k ≤ z, can be computed since f

(ik)
jk

(tk) is a number randomly
chosen from Zq, as described in Step 2.

If the revoked users U1, U2, . . . , Ul can together compute the session key m
from the challenge with probability ε1, we can compute

y · m−1 · ê(ga, gc)−κ = ê(gρ, h)c · ê(g, g)−acκ

= ê(ga, gb+κ)c · ê(g, g)−acκ = ê(g, g)abc (4)

with the same probability ε1. This contradicts the BDH assumption.
Let t′ be the time for the reduction and solution computation in Equation

(4), where t′ is polynomially bounded. Thus, if the collusion attack takes t1 − t′,
we can solve the BDH problem in time t1.

Similarly, we can modify our PK-SD-PI scheme to have IND-CCA security like
Section 4
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5.2 The PK-LSD-PI Scheme

The LSD method is an improvement of the SD method by using a sub-collection
C′ of C in the SD method. The basic observation is that Si,t can be decomposed
to Si,k ∪ Sk,t. The LSD method delicately selects C′ such that each Si,t ∈ C is
either in C′ or equal to Si,k ∪Sk,t, where Si,k and Sk,t are in C′. The subset cover
found for U\R in the SD method is used except that each Si,t in the cover, but
not in C′, is replaced by two subsets Si,k and Sk,t in C′. Thus, each user belongs
to a less number of Si,t’s in C′ such that it holds a less number of private keys.

We consider the basic case of the LSD method, in which each user holds
(log n)3/2 private keys. There are

√
log n ”special” levels in T . The root is at a

special level and every level of depth k ·
√

log n, 1 ≤ k ≤
√

log n, is special. A
layer is the set of the levels between two adjacent special levels. Each layer has√

log n levels. The collection C′ of the LSD method is

{Si,t : nodes i and t are in the same layer, or node i is at a special level}.

There are two types of Si,t’s in C′. The first type is that node i is in a special
level and the second type is that nodes i and t are in the same layer. Every
non-revoked set U\R can be covered by at most 4|R| − 2 disjoint subsets in C′.

Our PK-LSD-PI scheme is as follows. Since C′ is just a sub-collection of C
in the SD method, our PK-LSD-PI scheme is almost the same as the PK-SD-
PI scheme except that some polynomials for type-2 Si,t ∈ C′ are unnecessary.
Consider a user Uk (or its corresponding leaf node). For his ancestor node i
at a special layer (type-1 Si,t’s), Uk is given the private keys (corresponding
to subtree Ti) by the same way as the PK-SD-PI method. There are

√
log n

such i’s and each Ti has at most log n levels. In this case, Uk holds (log n)3/2

private keys. For his ancestor node i and nodes t in the same layer (type-2
Si,t’s), choose degree-1 polynomials for the levels between i and its (underneath)
adjacent special level only. There are at most

√
log n such polynomials and Uk

is assigned corresponding
√

log n private keys as the PK-SD-PI scheme does. In
this case, Uk holds at most log n·

√
log n private keys since Uk has log n ancestors.

Overall, each user Uk holds at most 2(log n)3/2 private keys.
Security. We show that the scheme described in this subsection is one-way

secure.

Theorem 4. Assume that the BDH problem is (t1, ε1)-hard. Our PK-LSD-PI
scheme is (t1 − t′, ε1)-OW-CPA secure in the random oracle model, where t′ is
some polynomially bounded time.

Proof. The collection of Si,t’s for covering U\R in the LSD method is a sub-
collection of that in the SD method. The way of assigning private keys to users
is the same as that of the PK-SD-PI scheme except that we omit the polynomials
that are never used due to the way of choosing a subset cover in the LSD method.
In the random oracle model, we can simply consider a particular Sα,t in the
subset cover for U\R. Since all conditions are the same, the rest of proof is the
same as that in Theorem 3.
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With the same extension in [12], we can have a PK-LSD-PI scheme that
has O(1) public keys and O(log1+ε) private keys, for any constant 0 < ε < 1.
The header size is O(r/ε), which is O(r) for a constant ε. The decryption cost
excluding the time of scanning the header is again O(1).

6 Conclusion

We have presented very efficient public key BE schemes. They have low public
and private keys. Two of them even have a constant decryption time. Our results
show that the efficiency of public key BE schemes is comparable to that of
private-key BE schemes.

We are interested in reducing the ciphertext size while keeping other com-
plexities low in the future.
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Abstract. The way of transmitting the encrypted digital content to
the legitimate subscribers over a broadcast channel has wide commer-
cial applications, such as Pay-TV, DVD, etc. In order to discourage
the legitimate subscribers from giving away their decryption keys, the
traitor tracing scheme comes up. In this paper, we propose a public-key
traitor tracing scheme that has optimal transmission rate. In other words,
our scheme enables everyone to transmit the encrypted digital contents
almost without any redundancy. As for tracing, our scheme supports
black-box tracing, i.e., identifying colluders without opening the pirate
decoder. Moreover, in our scheme, the storage requirement for legitimate
subscribers and digital content broadcasters is smaller than that of pre-
vious schemes.

Keywords: Traitor tracing, transmission rate, fingerprinting code.

1 Introduction

Consider the scenario that a data supplier distributes the digital content over
a broadcast channel. The data supplier gives a secret key to each legitimate
subscriber. Then the data supplier broadcasts the encrypted digital content and
the legitimate subscribers decrypt the digital content by their secret keys. The
protection for some Pay-TV, CD-ROM, DVD, and online databases is based on
this scenario. However, some malicious subscribers (called traitors) might give
copies of their secret keys to illegitimate users (called pirates). Then the pirates
decrypt the digital content for free. In order to solve the problem above, the
traitor tracing scheme comes up.

The goal of traitor tracing schemes is to discourage legitimate subscribers from
giving away their secret keys. One approach is to give each subscriber a unique
set of secret keys that both decrypt the encrypted digital content and identify
(“trace”) the subscribers. To avoid being traced by a tracer, the traitors may
collude to obfuscate their secret keys and generate a new secret key set (called
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pirate key). We call a traitor tracing scheme t-collusion resistant if at least one
of the traitors can be identified when t traitors collude to generate a pirate key
in this way. If t is the number of all legitimate users, the traitor tracing scheme
is called fully-collusion resistant. Note that the traitors may embed the pirate
keys into a “tamper-resistant” hardware (called pirate decoder) to prevent the
tracer from reading any data inside. So, during the tracing, the tracer has to
treat the pirate decoder as a black box – only the outcome of a pirate decoder
can be examined.

In many previous traitor tracing schemes, the overhead of broadcasting the
encrypted digital content is proportional to the number of legitimate subscribers.
But in some applications, such as Pay-TV, the number of legitimate subscribers
might be up to millions. This is a great burden. The approach of public-key
traitor tracing schemes is to enable everyone (e.g. Pay-TV stations) to broad-
cast the encrypted digital content. The public traceability of a traitor tracing
scheme allows everyone with a pirate decoder to trace the traitors. In order to
measure the efficiency of traitor tracing schemes, we consider the “transmission
rate” of encrypted digital content (“ciphertext”), that is, the ratio of the size
of ciphertext to the size of the digital content. We also care about the storage
requirements of subscribers’ secret keys, and the broadcast keys.

Related work. The traitor tracing scheme was first introduced by Chor, Fiat
and Naor [9], and later refined in [15,10]. The concept of public-key traitor tracing
schemes was proposed in Kurosawa and Desmedt [14], and Boneh and Franklin
[2]. The traitor tracing schemes in [2,3,8,12,11,14,13,16,18,21,22] are public-key
traitor tracing schemes. In [8], Chabanne, Phan, and Pointcheval proposed the
concept of public traceability. A class of traitor tracing schemes relying on the us-
age of fingerprinting codes [5,20] was introduced by Kiayias and Yung [13]. They
showed that if the plaintexts are large (e.g. multimedia content), it is possible to
obtain constant transmission rate. For example, the schemes in [8,18,17,11] have
constant transmission rate. While considering the transmission rate, we have two
main categories in the traitor tracing schemes:

– Schemes with no constant transmission rate [2,4]: These schemes are well-
suited to encrypt small digital content (usually using for the session-key
exchanges in the “hybrid encryption”). The user-key size and the public-key
size are often relatively small in these schemes. But the transmission rate in
these schemes is often linear or sublinear to the maximal number of colluders.

– Schemes with constant transmission rate [13,8,11] (including ours): These
schemes are well-suited to encrypt large digital content (e.g. multimedia
content). They are all constructed by using the fingerprinting codes. One
advantage of these schemes is that they often have efficient black-box trac-
ing algorithms. Nevertheless, the user-key size and the public-key size are
often relatively large (according to the codeword length in the fingerprinting
codes).

Our Contributions. We propose a public-key traitor tracing schemes with effi-
cient black-box tracing and the optimal transmission rate. The storage
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Table 1. Scheme Comparison

transmission user-key public-key black-box traceability
rate size size tracing

BF99 [2] 2t + 1 2t 2t + 1 inefficient private

BSW06 [4] 6
√

N 1 4
√

N + 2 O public

KY02 [13] ∼ 3 2� 4� O private

CPP05 [8] ∼ 1 2� � + 1 X private

FNP07 [11] ∼ 1 2� 10� O private

Ours ∼ 1 � + 2 2� + 1 O private
† �: the codeword length in fingerprinting code
† N : the total number of legitimate subscribers

requirements in our scheme for user-keys and pubic-keys are smaller than previ-
ous schemes that have the constant (or optimal) transmission rate. Our scheme
is based on a fingerprinting code, and an all-or-nothing transformation [6,7,19].
The idea is to encrypt a block of the output of an all-or-nothing transformation
by a special public-key scheme. The encryption does not entail much overhead
and allows us to feed indistinguishable messages for tracing. The comparison
with other related schemes is given in Table 1. We show that our scheme is se-
mantically secure based on the DDH assumption and the indistinguishability of
PKE-AONT. We also show that our traitor tracing scheme is t-collusion resistant
under the DDH assumption.

2 Preliminaries

Notations. A function f : N→ R is negligible if for every constant c ∈ N, there
exists an integer k0 ∈ N such that f(k) ≤ k−c for all k ≥ k0, denoted by neg(k).

We use x
$←− X to denote that x is chosen from the set X uniformly. LetM be

the plaintext space.

Fingerprinting Codes. The fingerprinting technique with fingerprinting codes
embeds a specific fingerprint (codeword) to each document copy so that one can
identify which copy of document by examining the embedded fingerprint. The
codeword is a collection of some alphabets. The traitors will collude and try to
modify their codewords to avoid being identified. However, the coalition of the
traitors is restricted by the marking assumption: the traitors are only able to com-
pare their codewords and make a modification from their respective codewords
differing in some positions. Under the marking assumption, the possible modified
codeword set from t traitor’s codewords set W is called a feasible set of W .

– For a codeword w ∈ {0, 1}�, we write w = w1w2...w�, where wi ∈ {0, 1}.
– Let W = {w(1), ..., w(t)} ⊆ {0, 1}�. We say that a codeword w̄ is feasible for

W if ∀i ∈ {1, 2, ...�} ∃j ∈ {1, 2, ..., t} s.t. w̄i = w
(j)
i . For example, if W =

{0101, 1111}, the codewords {0101, 0111, 1101, 1111} are feasible for W .
– For a codeword set W ⊆ {0, 1}�, we say that the feasible set of W , denoted

by F (W ), is the set of all codewords that are feasible for W .
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Table 2. Length of the fingerprinting codes with respect to the number N of codewords

t-collusion resistant fully-collusion resistant

BS98 [5] � = O(t4 log(N/ε) log(1/ε)) � = O(N3 log(N/ε))

T03 [20] � = O(t2 log(N/ε)) � = O(N2 log(N/ε))

A fingerprinting code scheme consists of two probabilistic polynomial-time al-
gorithms: the codeword generation algorithm G and the codeword tracing algo-
rithm T. Algorithm G generates codeword set Γ = {w(1), ..., w(N)} ∈ ({0, 1}�)N

for some � > 0 and the trace-key tk. By taking a pirate codeword w̄ and tk as
input, algorithm T outputs at least one of the traitors who collude to gener-
ate w̄. The fingerprinting codes enable a data supplier to distribute an “object”
with many fingerprinting copies. Assume Γ ∈ ({0, 1}�)N is a codeword set gen-
erated by the algorithm G, and denote a L-length object to be distributed by P .
First we partition the object P into � blocks and embed exactly one “mark” in
each block. Let Pj,s be the j-th block which contains the j-th mark with state
s ∈ {0, 1}. For each block, choose a random key Kj,s, the distributed data will
be {fKj,s(Pj,s)|1 ≤ j ≤ �, s ∈ {0, 1}}, where f is an encryption scheme. Let
w(u) ∈ Γ be the codeword in Γ and associated with user u. The private user-key
for u is {K

1,w
(u)
1

, K
2,w

(u)
2

, ..., K
�,w

(u)
�

}, and P (w(u)) = P
1,w

(u)
1
||P

2,w
(u)
2
||...||P

�,w
(u)
�

will be the copy of P implied by w(u).
Boneh and Shaw [5] constructed a fully-collusion resistant fingerprinting code

as well as t-collusion resistant secure codes. Tardos [20] proposed a shorter code.
The comparison of their codeword lengths is in Table 2, where N is the number
of codewords, and ε is the security parameter.

All-Or-Nothing Transformation. An all-or-nothing transformation (AONT)
Σ is an efficient, unkeyed, and randomized transformation with the property
that it is hard to invert unless the entire output is known [19]. Σ maps an �′-
block sequence x, together with a random string ρ to an �-block sequence y with
the following properties:

– Given x and ρ, y
$←− Σ(x; ρ) can be computed efficiently.

– Given all blocks of y, x← Σ−1(y) can be computed efficiently.
– It is infeasible to get any information about x if any block of y is missing.

Notice that the AONT expands plaintext size by roughly 1 + 1/�. This results
in an asymptotical unitary ciphertext-to-plaintext ratio.

Decisional Deffie-Hellman (DDH) Assumption. For a cyclic group� with
a generator g. Let V be the distribution {(g, gu, gv, guv)} and R be the distribu-
tion {(g, gu, gv, gw)}. For any polynomial time adversary A, A distingishes the
two distributions V and R with negligible function of λ, i.e., |Pr[A(X) = 1 :
X ∈ V ]− Pr[A(X) = 1 : X ∈ R]| = neg(|�|).
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3 The Notion for Public-Key Traitor Tracing Scheme

A public-key traitor tracing scheme is a 4-tuple of probabilistic polynomial-time
algorithms (Setup, Encrypt, Decrypt, Trace), where

Setup(1λ, N). The setup takes as input a security parameter λ and N , the
number of users in the system. The algorithm outputs a public broadcast-key
BK, a secret trace-key TK, and the private user-key SKu for each legitimate
subscriber u.

Encrypt(BK, M). The encryption algorithm takes as input the public broadcast-
key BK and a message M ∈ M. The algorithm outputs a ciphertext C.

Decrypt(SKu, C). The decryption algorithm takes as input the private user-key
SKu of user u and a ciphertext C. The algorithm outputs a message M or
⊥.

TraceD(TK). The tracing algorithm takes as input the private trace-key TK and
queries the pirate decoder D as a black-box oracle. The algorithm outputs a
traitor set S which is a subset of {1, ..., N}.

Moreover, the scheme must satisfy the correctness property as follows:

For all u ∈ {1, ..., N} and for all M ∈ M: if 〈BK, TK, (SK1, ..., SKN )〉 $←−
Setup(1λ, N) and C

$←− Encrypt(BK, M), then Decrypt(SKu, C) = M .

Semantic Security Game

– Setup. The challenger runs Setup, and gives BK to the adversary.
– Challenge. The adversary chooses two plaintexts M0, M1 ∈ M to the chal-

lenger. Then the challenger flips a coin b ∈ {0, 1}, and gives a ciphertext

Cb
$←− Encrypt(BK, Mb) to the adversary.

– Guess. The adversary returns a guess b′ ∈ {0, 1} of b to the challenger.

The advantage of winning this game by the adversary is AdvTTS
SS := |Pr[b′ =

b]− 1
2 |

Definition 1 (Semantically secure). An N -user public-key traitor tracing
scheme is semantically secure if for all polynomial time adversaries A, AdvTTS

SS

is a negligible function of the security parameter.

Traceable against t-collusion Game

– Setup. The challenger runs Setup and gives BK to the adversary. The ad-
versary chooses a traitor set T = {u1, ..., ut} ⊆ {1, ..., N} to the challenger.
Then the challenger gives the adversary SKu1 , ..., SKut to produce a pirate
decoder D.

– Trace. By taking a pirate decoder D as a decryption oracle, the challenger
runs the algorithm TraceD(TK) to obtain a traitor set S ⊆ {1, ..., N}.

The adversary wins this game if (1) D decrypts all valid ciphertext with a con-
stant probability δ, i.e., Pr[D(Encrypt(BK, M)) = M ] ≥ δ, and (2) S ∩ T �= ∅.

The probability of adversary winning this game is AdvTTS
TR .
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Definition 2 (Traceable against t-collusion). An N -user pubic-key traitor
tracing scheme is traceable against t-collusion if for all polynomial time adver-
saries A of corrupting t users and any constant δ > 0, AdvTTS

TR is a negligible
function of the security parameter.

4 A Public-Key Traitor Tracing Scheme for Two Users

In this section, we give a construction of a public-key traitor tracing scheme for
two users. Then we show that this scheme is semantically secure and traceable
against 1-collusion. Indeed, this scheme will be a subscheme in the construction
of our public-key traitor tracing scheme for N users in section 5.

4.1 Our Construction

Our public-key traitor tracing scheme for two users is 2-PK-TTS = (2-Setup, 2-
Encrypt, 2-Decrypt, 2-Trace), where

2-Setup(1λ) Given a security parameter λ, the algorithm generates a λ-bit prime
q, a cyclic group � of order q, and a generator g of �. Then the algorithm
chooses f(x) = a0 + a1x (mod q), where a0, a1

$←− Z
∗
q and sets

– Public broadcast-key bk := 〈g, (ga0 , ga1)〉
– Secret trace-key tk := 〈f(x)〉
– User-key skσ := 〈iσ, f(iσ)〉, where iσ ∈ Z

∗
q , ∀σ ∈ {0, 1}

2-Encrypt(bk, m) Given bk and a plaintext m ∈M, the algorithm chooses r, j
$←−

Z
∗
q , where j �= i0 or i1, computes grf(j) = (ga0(ga1)j)r and outputs the

ciphertext c := 〈mgra0 , gr, (j, grf(j))〉.
2-Decrypt(skσ, c) Given a ciphertext c = 〈A, R, (j, W )〉 and a user-key skσ,

the algorithm computes the plaintext based on the lagrange interpolation:
m = A/W

−iσ
j−iσ Rf(iσ) −j

iσ−j .
2-TraceD(tk) Given a pirate decoder D that decrypts all valid ciphertext per-

fectly as a decryption oracle. The algorithm does:
1. 2-TrEncrypt(bk, m) The algorithm chooses r, r̂, j

$←− Z
∗
q and computes a

probe ciphertext ĉ
$←− 〈A = mgra0 , R = gr, (j, Ŵ = gr̂f(j))〉.

2. ∀σ ∈ {0, 1}, pre-compute Vσ = Ŵ
−iσ

j−iσ Rf(iσ) −j
iσ−j .

3. ∀σ ∈ {0, 1}, if D(ĉ) = A/Vσ, output S = {σ}; else output S = {0, 1}.

4.2 Security Analysis of our 2-PK-TTS scheme

Theorem 1. The 2-PK-TTS scheme is semantically secure under the DDH as-
sumption.

Proof. By contradiction, assume that there exists a 2-PK-TTS scheme adversary
A that wins the semantic security game with a non-negligible advantage ε >
0. We construct an algorithm B that breaks the DDH assumption with non-
negligible advantage ε as follows:
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– Setup. Algorithm B is given as input an instance (g, gu, gv, X) of the DDH
assumption, and it wants to determine whether X = guv or X is a random
element in � (� has prime order q). B chooses a0, a1

$←− �∗
q and sets bk =

〈g, (gu, ga1)〉 to A. (we see that f(x) = u + a1x (mod q))
– Challenge. A chooses two plaintexts m0, m1 ∈ M to B, then B flips a coin

b ∈ {0, 1}, and sets the challenge cb = 〈mbX, gv, (j, X(gv)a1j)〉 to A, where

j
$←− �∗

q .
– Guess. A outputs b′ ∈ {0, 1} to B. If b′ = b, B answers that X = guv; else B

answers that X is a random element in �.

If X = guv, A gets a valid ciphertext cb = 〈mbg
uv, gv, (j, gv(u+a1j))〉. Therefore,

A answers b′ = b successfully with probability 1
2 + ε;

If X is a radom element in �, A gets an invalid ciphertext. In this case, A
answers b′ = b successfully with probability 1

2 .
Hence, B solves the DDH problem with non-negligible advantage ε. This is a

contradiction to the DDH assumption. So we conclude that such adversary A
does not exist.

Theorem 2. The 2-PK-TTS scheme is traceable against 1-collusion under the
DDH assumption.

Proof. By contradiction, assume that there exists an adversary A that, given
the public-key bk and one of user-keys skσ in 2-PK-TTS scheme, A produces
a pirate decoder D that decrypts all valid ciphertexts perfectly, i.e., Pr[D(2-

Encrypt(bk, m)) = m : D $←− A(bk, skσ), σ ∈ {0, 1}] = 1. But when given a probe
ciphertext ĉ, D outputs a different value from the pre-computed values in 2-Trace
algorithm with non-negligible probabilistic ε > 0, i.e., Pr[D(ĉ) �= A/Vσ] = ε. We
construct an algorithm B that breaks the DDH assumption with non-negligible
advantage ε

2 as follows:

– Setup. Algorithm B is given as input an instance (g, gu, gv, X) of DDH as-
sumption, and it wants to determine whether X = guv or X is a random
element in �. B chooses i, z

$←− �∗
q and gives A bk = 〈g, (gu, ga1 = ( gz

gu )i−1
)〉.

A chooses a traitor set T = {0} or {1} to B. Then B gives A sk = 〈i, z〉 to
produces a pirate decoder D.

– Trace. By taking a pirate decoder D as a decryption oracle, B runs the
modified 2-Trace as follows:
1. Choose A

$←− � , and j
$←− �∗

q , where j �= i. Compute W = X( (gv)z

X )ji−1

and set the ciphertext as c̄← 〈A, gv, (j, W )〉.
2. Pre-compute V ←W

−i
j−i (gv)z −j

i−j .
3. If D(c̄) = A/V , B answers that X = guv or X is a random element in �

randomly; else B answers that X is a random element in �.

If X = guv, ciphertext c̄ is a valid ciphertext, since

X(
(gv)z

X
)ji−1

= guv(
(gv)z

guv
)ji−1

= guv((
gz

gu
)i−1

)vj = guv(ga1)vj = gv(u+a1j).

In this case, D(c̄) = A/V , B gives the correct answer with probability 1
2 ;
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If X is a random element in �, ciphertext c̄ is an invalid ciphertext. In this
case, D(c̄) �= A/V with probability ε, and D(c̄) = A/V with probability 1 − ε.
Therefore, B gives the correct answer with probability ε + 1

2 (1− ε) = 1
2 + ε

2 .
Hence, B solves the DDH problem with non-negligible advantage ε

2 . This is
a contradiction to the DDH assumption. So we conclude that such adversary A
does not exist.

5 A Public-Key Traitor Tracing Scheme for N Users

Our construction is based on the use of our 2-PK-TTS scheme, an AONT Σ and
a fingerprinting code Γ = {w(1), ..., w(N)} over {0, 1}�. At a high level, the idea is
to “concatenate” � instance of 2-PK-TTS scheme according to the code Γ . Each
legitimate subscriber u ∈ {1, ..., N} is associated to a codeword w(u) in Γ and
assigned a private user-key set SKu = {sk

1,w
(u)
1

, ..., sk
�,w

(u)
�

}, where w
(u)
j is the

j-th bit of the codeword w(u), and skj,0, skj,1 are the keys for the j-th instance of
the 2-PK-TTS scheme. For example, let � = 3. If the codeword corresponding to
legitimate subscriber u is 011, its user-key set is {sk1,0, sk2,1, sk3,1}. For tracing,
we use the j-th 2-PK-TTS to identify the j-th symbol of the pirate codeword, for
all j ∈ {1, 2, ..., �}. Finally, by the tracing algorithm in the fingerprinting code,
we find the collusion codeword set for constructing a pirate codeword, i.e., we
find the collusion traitor set.

In order to achieve the optimal transmission rate, we notice the cryptosystem
PKE-AONT proposed by Zhang, Hanaoka, and Imai [23]. It encrypts some bits
of the output of an AONT by a public-key encryption scheme. Given an AONT
Σ and a public-key encryption scheme (G, E, D), PKE-AONT first transforms the
original message M ′ into an all-or-nothing message M = m1||...||m� by Σ and
then randomly chooses a block of M to encrypt it as C = m1||...||mk−1||E(pk, mk)
||mk+1||...||m�. For decrypting the ciphertext C, the decryption algorithm first
decrypts the k-th block to recover M and compute the original message M ′

by Σ.

5.1 Our Construction

For convenience, we introduce some notations in our scheme:

– Let Σ be an AONT that maps an �′-block sequence together with a random
string to an �-block sequence.

– MINUSk(M) Given an �λ-bit message M = m1||...||m� and a position index
k ∈ {1, ..., �}, the algorithm “minus” the k-th block of M , i.e., MINUSk(M) =
m1||...||mk−1||mk+1||...||m�.

– COMBk(Y, m) Given an (�−1)λ-bit message Y = y1||...||y�−1, a λ-bit message
m and a position index k ∈ {1, ..., � − 1}, the algorithm first splits Y into
X1||X2, where X1 is the front (k − 1)λ bits of Y and X2 is the rest bits of
Y . The algorithm “combines” and outputs the messages with order X1, m,
and X2, i.e. COMBk(Y, m) = y1||...||yk−1||m||yk||...||y�−1.
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Our traitor tracing scheme for N users Π = (Setup, Encrypt, Decrypt, Trace) is
as follows:

Setup(1λ, N). Given a security parameter λ and user number N , the algorithm
generates a fingerprinting code Γ = {w(1), ..., w(N)} ∈ ({0, 1}�)N for some �.
Then it runs 2-Setup � times to generate the keys 〈(bki, tki, (sk0,i, sk1,i))N

i=1〉
(but use the same q,�, g, i0, i1) and sets
– Public broadcast-key BK := 〈g, (ga0,j , ga1,j )�

j=1〉
(we denote the k-th key of BK by BKk = (g, (ga0,k, ga1,k)))

– Secret trace-key TK := 〈(fj(x))�
j=1〉

– User-key SKu := 〈w(u), i0, i1, (fj(iw(u)
j

)�
j=1〉, ∀u ∈ {1, 2, ..., N}

(we denote k-th key of SKu by SKu,k = (i
w

(u)
k

, fk(i
w

(u)
k

)))

Encrypt(BK, M ′). Given BK and a plaintext M ′ ∈M�′ , the algorithm chooses a

random string ρ
$←− {0, 1}τ , and computes Σ(M ′; ρ) = M = m1||...||m�. Then

it chooses a position index k
$←− {1, 2, ..., �}, and computes the ciphertext

C
$←− 〈k, 2-Encrypt(BKk, mk), MINUSk(M)〉.

Decrypt(SKu, C). Given a ciphertext C = 〈k, ck, Y 〉, user u computes mk ←
2-Decrypt(SKu,k, ck) and M ′ = Σ−1(COMBk(Y, mk)).

TraceD(TK). Given a pirate decoder D that decrypts all valid ciphertext per-
fectly as a decryption oracle. The algorithm does:
– For each position index k ∈ {1, 2, ..., �},

1. Compute Σ(M ′; ρ) = M = m1||m2||...||m�, where M ′ $←− M�′ and

ρ
$←− {0, 1}τ .

2. Call 2-TrEncrypt(BKk, mk) $−→ ĉk = 〈Ak = mkgra0,k , R=gr, (j, Ŵk =

gr̂fk(j)))〉. Set the probe ciphertext as Ĉ
$←− 〈k, ĉk, Y = MINUSk(M)〉.

3. ∀σ ∈ {0, 1}, pre-compute Mk,σ = COMBk(Y, Ak/Ŵ
−iσ

j−iσ

k Rfk(iσ) −j
iσ−j ).

4. ∀σ ∈ {0, 1}, if Σ(D(Ĉ); ρ) = Mk,σ, set w∗
k = σ; else set w∗

k = 0 for
convenience.

– Recover w∗ = w∗
1w∗

2 ...w∗
� , then call the tracing algorithm in fingerprint-

ing code by taking w∗ as the input to obtain collude codewords. Finally,
output the corresponding traitor set S.

5.2 Security Analysis of Our Scheme

Theorem 3. The scheme Π is semantically secure under the semantic security
of 2-PK-TTS and the indistingushability of PKE-AONT.

Proof. For each position index k ∈ {1, 2, ..., �}, we use two games to bound the
advantage of semantically secure in Π with Adv2-PK-TTS

SS and AdvPKE-AONT
ind as

follows:

Game G0. Define G0 as the original semantic security game and let S0 be the
event where b′ = b, i.e., AdvΠ

SS := |Pr[S0]− 1
2 |.
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Game G1. This game is identical to G0 except that in the Encrypt, rather than
being set Ak = mkgra0,k , in G1 Ak is a random λ-bit string, i.e., C

$←− 〈Ak
$←−

{0, 1}λ, R = gr, (j, Wk = grfk(j))〉, and we let S1 be the event that b′ = b in this
game.

Claim: |Pr[S0]− Pr[S1]| ≤ 2Adv2-PK-TTS
SS .

By reduction, if there exists an adversary A that distinguishes the challenge
of G0 and G1 with non-negligible probability ε > 0, we use A to construct
an adversary B for breaking the semantic security of 2-PK-TTS scheme with
non-negligible advantage as follows:

– Setup. Algorithm B is given as input an instance bk = 〈g, (ga0 , ga1)〉 of 2-PK-
TTS scheme and wants to determine whether the challenge C is construct
by G0 or G1. B chooses a0,j , a1,j

$←− �∗
q , ∀j ∈ {1, 2, ..., �}\{k}, lets ga0,k =

ga0 , ga1,k = ga1 , and sets BK = 〈g, (gao,j , ga1,j )�
j=1〉 to A.

– Challenge. A chooses two plaintexts M0, M1 ∈ M�′ to B, then B flips a coin
b′ ∈ {0, 1}, and it calls Σ(Mb′ ; ρ) = mb′,1||mb′,2||...||mb′,�, lets m1−b′,k

$←−
{0, 1}λ, and sends mb′ = mb′,k, m1−b′ = m1−b′,k to 2-PK-TTS scheme chal-
lenger. Then 2-PK-TTS scheme challenger flips a coin b ∈ {0, 1} and sets

the challenge cb
$←− 2-Encrypt(bk, mb) to B. Finally, B sends A the challenge

Cb′ = 〈k, cb, Y = mb′,1||...||mb′,k−1||mb′,k+1||...||mb′,�〉.
– Guess. A outputs b̂ ∈ {0, 1} to B. Then B gives b̂ as its guess to 2-PK-TTS

scheme challenger.

By the above construction, we see that B “interpolates” between G0 and G1 for
A:

- If b′ = b, A gets a challenge in G0;
- If b′ = 1− b, A gets a challenge in G1.

Thus, it holds that Pr[S0] = Pr[b̂ = b′|b′ = b] and Pr[S1] = Pr[b̂ = b′|b′ = 1− b],
and we get

Pr[b̂ = b] = Pr[b̂ = b|b′ = b] Pr[b′ = b] + Pr[b̂ = b|b′ = 1− b] Pr[b′ = 1− b]

=
1
2
(Pr[b̂ = b|b′ = b] + Pr[b̂ = b|b′ = 1− b])

=
1
2
(Pr[b̂ = b|b′ = b] + 1− Pr[b̂ = 1− b|b′ = 1− b])

=
1
2

+
1
2
(Pr[b̂ = b′|b′ = b]− Pr[b̂ = b′|b′ = 1− b])

=
1
2

+
1
2
(Pr[S0]− Pr[S1]).

It follows that |Pr[S0]− Pr[S1]| = 2|Pr[b̂ = b]− 1
2 | = 2Adv2-PK-TTS

SS .
To conclude the proof, due to indistinguishability of PKE-AONT, the adver-

sary distinguishes the ciphertexts in G1 and the random bit string (as the same
length with ciphertexts) with probability 1

2 + AdvPKE-AONT
ind .
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Hence, by the discussion above and the triangle inequality,

|Pr[S0]| = |Pr[S0]− Pr[S1] + Pr[S1]|
≤ |Pr[S0]− Pr[S1]|+ |Pr[S1]|
= 2Adv2-PK-TTS

SS + AdvPKE-AONT
ind +

1
2
.

Since Adv2-TTS
SS and AdvPKE-AONT

ind are two negligible functions of λ, we conclude
that the advantage of A winning the semantic security game is bounded by a
negligible function of λ.

Theorem 4. The scheme Π is traceable against t-collusion under the DDH as-
sumption.

Proof. By contradiction, assume that there exists an adversaryA that, given the
public key BK, t of user keys {SKu1 , SKu2 , ..., SKut} and an AONT Σ, produces
a pirate decoder D that decrypts all valid ciphertexts perfectly. But when given
a probe ciphertext, D outputs a different value from the pre-computed values
in Trace algorithm with non-negligible probabilistic ε > 0, i.e., Pr[Σ(D(Ĉ); ρ) �=
Mk,σ] = ε. We construct an algorithm B that breaks the DDH assumption with
non-negligible advantage ε

2 as follows:

– Setup. Algorithm B is given as input an instance (g, gu, gv, X) of DDH
assumption, and it wants to determine whether X = guv or X is a ran-
dom element in � (� has prime order q). B chooses a position index k

$←−
{1, 2, ..., �}, chooses fj(x) = a0,j + a1,jx (modq), where a0,j, a1,j

$←− �∗
q , ∀j ∈

{1, 2, ..., �}, chooses i0, i1, z
$←− �∗

q and gives A BK = 〈g, (ga0,j , ga1,j )�
j=1〉

but repalces ga0,k by gu and ga1,k by ( gz

gu )i−1
σ , where σ

$←− {0, 1}. A chooses
a traitor set T ⊆ {1, ..., N} of size t to B. Then B chooses t codewords

w(u1), w(u2), ..., w(ut) $←− Γ (even if Γ is public, the information of which user
get which codeword can be hiden, so B can choose t codewords by his own)
satisfy w

(u1)
k = w

(u2)
k = ... = w

(ut)
k = σ (the existence of these codewords is

guaranteed by the fingerprinting codes) and sets A the keys

SKu1 = 〈w(u1), i0, i1, (f1(i
w

(u1)
1

), ..., fk−1(i
w

(u1)
k−1

), z, fk+1(i
w

(u1)
k+1

), ..., f�(i
w

(u1)
�

))〉,
SKu2 = 〈w(u2), i0, i1, (f1(i

w
(u2)
1

), ..., fk−1(i
w

(u2)
k−1

), z, fk+1(i
w

(u2)
k+1

), ..., f�(i
w

(u2)
�

))〉,
...
SKut = 〈w(ut), i0, i1, (f1(i

w
(ut)
1

), ..., fk−1(i
w

(ut)
k−1

), z, fk+1(i
w

(ut)
k+1

), ..., f�(i
w

(ut)
�

))〉,
to produces a pirate decoder D.

– Trace. By taking a pirate decoder D as a decryption oracle, B runs the
modified Trace algorithm as follows:
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1. Compute M
$←− Σ(M ′; ρ), where M ′ $←−M�′ , ρ

$←− {0, 1}τ .

2. Choose j
$←− �∗

q , where j �= i0 or i1. Compute c̄ ← 〈Ak = mkX, R =
gv, (j, Wk = X( (gv)z

X )ji−1
σ )〉 and set the ciphertext as C̄ ← 〈k, c̄, Y =

MINUSk(M)〉.
3. If Σ(D(C̄); ρ) = COMBk(Y, Ak/W

−iσ
j−iσ

k Rfk(iσ) −j
iσ−j ), B answers X = guv

or X is a random element in � randomly; else B answers X is a random
element in �.

If X = guv, ciphertext c̄ is a valid ciphertext, since

X(
(gv)z

X
)ji−1

σ = guv(
(gv)z

guv
)ji−1

σ = guv((
gz

gu
)i−1

σ )vj = guv(ga1,k)vj = gv(u+a1,kj).

In this case, Σ(D(C̄); ρ) = M ′
k,σ, B gives the correct answer with probability 1

2 ;
If X is a random element in �, the ciphertext C̄ is an invalid ciphertext.

In this case, Σ(D(C̄); ρ) �= M ′
k,σ with probability ε, and Σ(D(C̄); ρ) = M ′

k,σ

with probability 1 − ε. Therefore B gives the correct answer with probability
ε + 1

2 (1− ε) = 1
2 + ε

2 .
Hence, B solves the DDH problem with non-negligible advantage ε

2 . This is
a contradiction to the DDH assumption. So we conclude that such adversary A
does not exist.

6 Conclusion

We propose a fully-collusion resistant public-key traitor tracing schemes with
efficient black-box tracing. It achieves the asympototically optimal transmission
rate for ciphertexts. The storage requirement of each user-key and each public-
key are � + 2 and 2� + 1 respectively, where � is the codeword length of the
fingerprinting codes. We show that our scheme is semantically secure based on
the DDH hardness assumption and the indistinguishability of the cryptosystem
PKE-AONT. Also, our scheme is t-collusion resistant.

There are two open problems. First, How to improve the storage requirements
of the user-keys and public-keys further? Second, Billet and Phan [1] proposed
a general attack “Pirate 2.0” to attack the code-base traitor tracing schemes. In
Pirate 2.0, traitors only give away “part” of user-keys away such that a tracer
can trace them with a small probability only. This probability is controlled by
traitors according to a specific set of given away keys. How to avoid such attack
is also an important problem to make the code-base traitor tracing schemes more
practical.
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Key Establishment Schemes Against
Storage-Bounded Adversaries in Wireless Sensor

Networks
Shi-Chun Tsai, Wen-Guey Tzeng, Kun-Yi Zhou

Abstract—In this paper we re-examine the attacking scenario
about wireless sensor networks. It is generally assumed that the
adversary picks up all radio communications of sensor nodes
without any loss and stores the eavesdropped messages for later
use. We suggest that in some situations the adversary may not
be able to pick up all radio communications of sensor nodes.
Therefore, we propose the storage-bounded adversary model for
wireless sensor networks, in which the adversary’s storage is
bounded.

We propose two key establishment schemes for establishing
shared keys for neighboring sensor nodes in the storage-bounded
adversary model. The first scheme needs special beacon nodes
for broadcasting random bits. In the second scheme, some sensor
nodes play the role of beacon nodes. Our results are theoretical
in some sense. Nevertheless, we can adjust them for realistic
consideration.

Index Terms—Bounded-storage model, key establishment, un-
conditional security, wireless sensor network.

I. INTRODUCTION

A wireless sensor network usually consists of a large
number of small autonomous sensor nodes. Each sensor node
has some level of computing power, a limited size of storage,
a set of sensors for exploring the environment and a small
antenna for communicating with the outside world. One way of
deploying a wireless sensor network is to scatter senor nodes in
the field randomly. Then, these sensor nodes form a network
autonomously via their built-in programs. Due to restriction
of small antenna, each sensor node can communicate with its
geographic neighbors only. We say that two sensor nodes are
neighbored if they can communicate with each other via radio
directly. In some situations, we may deploy a set of special
nodes, called beacon nodes, for broadcasting instructions and
data to the sensor nodes. A beacon node is more powerful so
that its radio signal could cover a larger area.

There are some security issues about wireless sensor net-
works, such as, communication security, message authentica-
tion, node authentication, etc. We are concerned about the key
establishment problem, which is to establish a shared (secret)
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key for two neighboring sensor nodes via the public radio link.
The established key is later used for secure communication
(encryption) or authentication. The key establishment problem
for wireless sensor networks has been studied actively. In this
paper we re-examine the attacking scenario about wireless
sensor networks. It is generally assumed that the adversary
picks up all radio communications of sensor nodes without any
loss and stores the eavesdropped messages for later use. We
suggest that this may not be the case. For example, the radio
quality of a sensor node is not very good and its coverage area
is small. It is hard for the adversary to get all communications
between sensor nodes. Therefore, we propose the storage-
bounded adversary model for wireless sensor networks to
capture the nature of incomplete eavesdropping. In this model,
the adversary cannot eavesdrop all communications of the
sensor nodes. We could conceptually think that the adversary’s
storage is limited so that it cannot store all communications.
The storage-bounded adversary model has been studied in
the cryptographic field for its advanced view. It explores the
possibility of encryption in the era of quantum computation.
We bring the model to wireless sensor networks for exploring
an alternative adversary model.

By considering the storage-bounded adversary, we propose
two key establishment schemes. The first scheme needs some
special beacon nodes for broadcasting random bits. In the
second scheme, some sensor nodes play the role of beacon
nodes. Our results are theoretical in some sense. Nevertheless,
we can adjust them for realistic consideration.

Our key establishment schemes have the following prop-
erties. Firstly, they do not pre-load secrets to sensor nodes.
This saves quite a lot of setup work before sensor nodes
are deployed to the field. Secondly, the connectivity rate of
neighboring sensor nodes is very high and the probability
of repeated keys is very low. Thirdly, even if the adversary
captures a large fraction of the deployed sensor nodes, almost
all of the shared keys of un-compromised links remain secure.
We note that most key pre-distribution schemes allow only
a small fraction of sensor nodes to be compromised by the
adversary. Finally, the shared keys in the first scheme are
unconditionally secure. Furthermore, since all shared keys are
generated in the field without pre-loaded secrets in sensor
nodes, shared keys can be updated from time to time.

We do not consider the adversary that applies other types
of attacks, such as node impersonation, node replication, etc.
There have been many proposed countermeasures [5]–[7]. If
we need them, we can simply use them without too much
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effort.
Related work. Maurer [8] first proposed the storage-bounded

adversary model. Cachin and Maurer [2] proposed a complete
solution for encryption under the storage-bounded adversary
model.

For key pre-distribution, Blom [1] proposed a scheme for
multiple parties to establish pairwise keys. Eschenauer and
Gligor [6] proposed to assign a random subset of the key space
to each sensor node. They showed that two neighboring nodes
can establish a shared key from their own key pools with a
reasonable probability. Chan, et al. [3], Du, et al. [5], and Liu
and Ning [7] improved the basic random key pre-distribution
scheme of Eschenauer and Gilgor by using multiple random
key pools for each sensor node. Ren, et al. [12] discussed how
to pre-distribute keys in large scale.

Miller and Vaidya [9] proposed a key pre-distribution
scheme by assuming that the communication channels be-
tween sensor nodes use the orthogonal frequency-division
multiplexing technology. They considered that these channels
cannot be eavesdropped all together. Thus, each sensor node
broadcasts its pre-loaded secrets to its neighboring nodes
through these channels randomly. Due to the characteristics of
the channels, only a part of broadcasted secrets are obtained by
the adversary. Then, two neighboring sensor nodes can use the
common secrets to establish their shared key. The essence of
their assumption is similar to incomplete eavesdropping. But,
they used it in designing a key pre-distribution scheme. Our
schemes are not key pre-distributed. Furthermore, our analysis
technique is quite different.

II. PRELIMINARIES

We assume that the sensor nodes are scattered to the
field randomly. Each sensor node has no post-deployment
knowledge about the other sensor nodes. All it can do is to
use its antenna to communicate with its neighboring sensor
nodes.

The adversary can eavesdrop all communications of sensor
nodes. But, due to storage limitation it can store only a fraction
of the eavesdropped messages. After that, the adversary com-
promises a fraction of the sensor nodes (compromised sensor
nodes) and gets the secrets inside them. Then, the adversary
tries to infer the shared key held by two neighboring sensor
nodes that are not compromised.

Our first key establishment scheme is called Key Establish-
ment with Beacons in the Storage-Bounded Model, denoted
as KEB-SB. The beacon nodes are deployed like the sensor
nodes, but with a much less number. Each beacon node
broadcasts random bits that are received by the sensor nodes
within its radio range. Then, two neighboring sensor nodes
use the received bits to establish their shared key.

The second key establishment scheme is called Key Estab-
lishment in the Storage-Bounded Model, denoted as KE-SB.
KE-SB needs no beacon nodes. Each sensor node can play
the role of a beacon node. Unlike KEB-SB, a sensor node
that broadcasts random bits establishes shared keys with its
neighboring sensor nodes.

The used parameters and notations of the schemes are
shown in Table I.

TABLE I
THE USED PARAMETERS AND NOTATIONS.

• n: the number of deployed sensor nodes in a wireless sensor network.
Assume that the sensor node set is {V1, V2, . . . , Vn}.

• α: the number of broadcasted random bits by a beacon node.
• β: the number of stored bits, with respect to each beacon or beaming

node, by the adversary.
• γ: the number of broadcasted random bits by a beaming node.
• κ: the length of the shared keys established among neighboring sensor

nodes. Typically, κ is 128-bit long.
• µ = 2

√
κα: the number of randomly stored bits of a sensor node for

each beacon node in the KEB-SB scheme.
• Ki,j : the shared key computed by sensor node Vi for its neighbor Vj

within a bacon or beaming node.
• pcomplete: the probability of forming a complete network.
• H: a cryptographic hash function with κ-bit output.
• G: a pseudorandom generator that stretches a short random bit string

to a very long pseudorandom bit string.
• |S|: the number of elements in set S.
• a ¿ b: a is much smaller than b.

B1

B2
B3

V1V2

V3

V7

Fig. 1. Deployment of sensor and beacon nodes in a field. Each beacon node
uses a different frequency to broadcast random bits and each sensor receives
and stores some of them.

In our analysis, we use a Chernoff bound to derive a closed
form for approximating security probabilities [11]. Let Xi

be identical and independent Boolean random variables with
expectation E(Xi) = θ, 1 ≤ i ≤ t. Then, almost all values of∑t

i=1 Xi are around its mean E(
∑t

i=1 Xi) = tθ, that is, for
any 0 < ε ≤ 1,

Pr[
t∑

i=1

Xi ≥ (1 + ε)tθ] ≤ e−tθε2/3.

III. SCHEME: KEB-SB

Assume that the field deployment of sensor and beacon
nodes is like that in Figure 1, in which a dot is a sensor
node and a triangle is a beacon node. We assume that there
are z beacon nodes B1,B2, . . . ,Bz . We shall determine an
appropriate z later. Without loss of generality, we only present
steps for beacon node B1 and sensor nodes V1, V2, . . . , Vm

within its radio range. The adversary gets a fraction of the
broadcasted random bits of B1.

The Scheme. The sensor nodes within B1 use the steps in
Figure 2 to establish their shared keys. Those within other
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1) B1 generates and broadcasts α random bits on the fly.
2) Each Vi, 1 ≤ i ≤ m, randomly stores µ bits

ri1ri2 · · · riµ . Let Si = {i1, i2, . . . , iµ}.
3) Each Vi, 1 ≤ i ≤ m, does the following:

a) Exchange Si with each of its neighbors Vj via their
direct radio link;

b) Let Si,j = Si ∩ Sj = {s1, s2, . . . , sl}. If |Si,j | =
l ≥ κ, compute Ki,j = H(rs1rs2 · · · rsl

).
c) Erase the stored bits ri1ri2 · · · riµ from its memory.

Fig. 2. KEB-SB: Steps of establishing shared keys between neighboring sensor
nodes within the radio range of the beacon node B1.

beacon nodes do the same thing. The idea is that B1 broadcasts
α random bits and each sensor node randomly stores µ bits.
Then, two neighboring sensor nodes exchange the indices of
their stored bits and find their common bits. Finally, they
compute the shared key from the common bits by taking
the hash value of the common bits. It is easy to check that
Ki,j = Kj,i since Vi and Vj found their common bits from
the publicly exchanged indices.

It is critical that some sensor nodes V lie within the radio
coverage areas of many beacon nodes, say, B1,B2, . . . ,Bτ .
Assume that Bi’s use different frequencies for broadcasting
so that they won’t interfere with each other. In this case,
V establishes shared keys with its neighboring sensor nodes
within various beacon nodes Bk, 1 ≤ k ≤ τ . Thus, a network
that connects all sensor nodes can be formed. For example, the
sensor node V1 has a shared key K1,3 with V3 within B1 and a
shared key K1,7 with V7 within B3. V1 plays as a connecting
node between the sensor nodes within B1 and the sensor nodes
within B3.

Probability of Establishing Shared Keys. In the scheme
each sensor node within a beacon node stores µ = 2

√
κα

broadcasted bits randomly. Two neighboring sensor nodes
within a beacon node will have 4κ common bits on average.
Furthermore, the probability that two neighboring sensor nodes
have at least κ common bits is 1−e−κ/4 at least. For κ = 128,
1−e−κ/4 ≈ 1. The following lemma shows this fact, where S
and T are the sets of indices of stored bits by two neighboring
sensor nodes, respectively.

Lemma 1 ( [4]): If S and T are randomly chosen from
the 2

√
κα-element subsets over {1, 2, . . . , α}, then, for suf-

ficiently large α,

Pr
S,T

[|S ∩ T | < κ] < e−κ/4.

Security of Shared Keys. Assume that the adversary stores
β = δα bits of the broadcasted α bits, where δ < 1 is a
constant. The security of shared keys depends on δ and κ. Two
neighboring sensor nodes within a beacon node have l = 4κ
common bits on average and the adversary gets a fraction
δl of them on average. Although the number l of common
stored bits is a random variable, we take the average l = 4κ
for simplifying analysis. We show that the probability that the
adversary gets up to (δ + ε)l common bits is very low, where
δ + ε < 1.

Let A ⊂ {1, 2, . . . , α} be the set of indices of the stored
bits by the adversary, |A| = β, and B the set of indices of
the commonly stored bits by two neighboring sensor nodes,
|B| = l. We fix A first. The probability that the adversary
stores (δ + ε)l common bits is, for δ + ε < 1 and integer
l(δ + ε),

Pr
B

[|A ∩B| ≥ (δ + ε)l] =
l∑

i=(δ+ε)l

(
β
i

)(
α−β
l−i

)
(
α
l

) .

It is hard to derive a closed form for the above equation.
Nevertheless, we can compute a pretty tight upper bound. In
the above computation the elements in B are randomly chosen
one by one from {1, 2, . . . , α} without replacement. However,
if α is much larger than l, we can think that the elements are
randomly chosen one by one with replacement. Let B′ be a
multi-set with l elements randomly chosen one by one from
{1, 2, . . . , α} with replacement. Since α is indeed much large
than l in our schemes, we can safely say that

Pr
B

[|A ∩B| ≥ (δ + ε)l] ≈ Pr
B′

[|A ∩B′| ≥ (δ + ε)l],

which is bounded by the following lemma.
Lemma 2: Let A be a fixed subset of {1, 2, . . . , α} with

|A| = β and B′, |B′| = l ¿ β, a multi-subset randomly
chosen from {1, 2, . . . , α} with replacement. It holds that

Pr
B′

[|A ∩B′| ≥ (δ + ε)l] ≤ e−lε2/(3δ).

Proof: Let Xi be the indicator random variable for
whether the ith chosen element of B′ is in A, 1 ≤ i ≤ l.
We have |A ∩ B′| =

∑l
i=1 Xi and E(

∑l
i=1 Xi) = δl. Since

Xi’s are independent, by the Chernoff bound, we have

Pr
B′

[|A ∩B′| ≥ (δ + ε)l] = Pr[
l∑

i=1

Xi ≥ (δ + ε)l]

= Pr[
l∑

i=1

Xi ≥ δl(1 + ε/δ)] ≤ e−δl(ε/δ)2/3

= e−lε2/(3δ).

Since the above holds for any fixed A, the probability holds
no matter how the adversary stores broadcasted bits. For κ =
128, δ = 2/3, ε = 1/4, we have

Pr
B′

[|A ∩B′| ≥ (11/12)l] < e−16.

In this case, the adversary does not know at least (1−δ−ε)l ≈
43 common bits of two neighboring sensor nodes within a
beacon node.

Probability of Complete Connectivity. We now compute the
number of beacon nodes that are needed for high pcomplete.
The most important factor for pcomplete is the size of the
overlapping area of radio coverage since the sensor nodes
within the overlapping area connect sensor nodes within
different beacon nodes. Let R be the radius of the field and r
be the radius of the radio coverage of a beacon node. Recall
that there are z beacon nodes. We take a very conservative
and ideal estimate for the required z. Here, we assume that
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each overlapping area is shared by three beacon nodes. For
each beacon node, the overlapping area of coverage is at least

(πr2z − πR2)/2z,

where r2z −R2 > 0. If we want the number of sensor nodes
within the overlapping area of a beacon node to be at least c,
we need

n

πR2
(
πr2z − πR2

2z
) ≥ c,

which implies

z ≥ nR2

nr2 − 2cR2
(1)

With these c connecting sensor nodes within each beacon
node, the probability that the sensor nodes within the beacon
node are isolated from the whole network is at most (2e−κ/4)c.

There are n/z sensor nodes within each beacon node on
average. The probability that any one of them fails to connect
to another sensor node is at most (n/z)e−κ/4. Since there are
z beacon nodes, the probability pcomplete that all sensor nodes
are connected is at least

1− z((n/z)e−κ/4 + (2e−κ/4)c),

which is very close to 1 for a relatively large n, say, n = 1000.
Our analysis is based on idealistic assumptions, such as a

good frequency management and the coverage of the random
deployment is reasonably well. For practical consideration,
please see, e.g., [10].

IV. SCHEME: KE-SB

In the situation that no beacon nodes exist, we let some
sensor nodes play the role of broadcasting random bits. We
call these sensor nodes as beaming nodes. Assume that each
sensor node becomes a beaming node with probability p
independently, where p will be determined later. The choice of
p is to have enough beaming nodes to cover the whole field.
A field deployment is shown in Figure 3, in which V1 to V9,
denoted as triangles, are the beaming nodes. Note that since
a beaming node uses a seed to generate pseudorandom bits,
the adversary’s computing power should be polynomial-time
bounded, instead of unboundedness.

The Scheme. The KE-SB scheme is shown in Figure 4. A
beaming node Vj broadcasts γ pseudorandom bits G(sj) =
rj,1rj,2 . . . rj,γ and each sensor node Vi within its radio range
stores 4κ bits of them randomly. Then, the sensor node Vi

sends the indices (j, j1), (j, j2), . . . , (j, j4κ) of the stored bits
to Vj and computes the shared key Ki,j which is the hash value
of its stored bits. Vj computes the stored bits of Vi from the
random seed sj and the shared key Kj,i in the same way. It is
necessary that a beaming node uses a pseudorandom generator
to generate pseudorandom bits since these pseudorandom bits
are used later for computing shared keys with its neighboring
sensor nodes.

Security of Shared Keys. The security analysis of a shared
key is the same as that of the KEB-SB scheme. Recall that an
adversary has a storage of β bits. By Lemma 2, the probability
that the adversary gets l(δ + ε) of the stored bits of a sensor
node is less than

e−4κε2γ/(3β).

V1

V2

V9

V4

V5

V6

V7

V8

V3

Fig. 3. Deployment of sensor nodes in a field. Some sensor nodes become
beaming nodes for broadcasting random bits.

- Each Vi, 1 ≤ i ≤ n, randomly acts a beam-
ing node with probability p. Without loss of gen-
erality, let V1, V2, . . . , Vτ be the beaming nodes and
Vτ+1, Vτ+2, . . . , Vn be the non-beaming sensor nodes.

1) Each beaming node Vj , 1 ≤ j ≤ τ , generates a secret
seed sj randomly and broadcasts γ pseudorandom bits
G(sj) = rj,1rj,2 · · · rj,γ .

2) Each non-beaming sensor node Vi, τ + 1 ≤ i ≤ n, does
the following. Assume that Vi is within radio range of
beaming nodes V1, V2, . . . , Vρ, wlog.

a) Randomly store 4κ bits rj,j1rj,j2 · · · rj,j4κ from
each Vj , 1 ≤ j ≤ ρ. Let Si,j =
{(j, j1), (j, j2), . . . , (j, j4κ)}, 1 ≤ j ≤ ρ.

b) Send Si,j to Vj , 1 ≤ j ≤ ρ.
c) Compute the shared key Ki,j =

H(rj,j1rj,j2 · · · rj,j4κ) with Vj , 1 ≤ j ≤ ρ.
3) Each beaming node Vj , 1 ≤ j ≤ τ , computes

the shared key Kj,i = H(rj,j1rj,j2 · · · rj,j4κ) by Si,j

with each of its neighboring sensor nodes Vi, where
rj,j1rj,j2 · · · rj,j4κ is re-computed from its random seed
sj .

4) Each beaming node Vj erases its random seed sj from
its memory, 1 ≤ j ≤ τ .

Fig. 4. KE-SB: Steps of establishing shared keys between beaming nodes and
their neighboring sensor nodes.
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Density of Beaming Nodes. The larger p is, the higher
pcomplete is. Nevertheless, we want to have a smaller p so
that the expected number np of beaming nodes is as small
as possible. Assume that r is the radius of radio range of a
beaming node and R is the radius of the deployment field.
Note that this r is smaller than that of a beacon node in the
KEB-SB scheme. The expected number of beaming nodes is
np, which is equivalent to z, the number beacon nodes. By
Equation (1), we need

z = np ≥ nR2

nr2 − 2cR2
,

where c is the expected number of connecting nodes in the
overlapping area of two beaming nodes. Thus, we have

p ≥ R2

nr2 − 2cR2
.

V. DISCUSSION

Our schemes are designed on an abstract model of wireless
sensor networks. Many details are omitted. Comparison be-
tween the conventional and storage-bounded adversary model
is uncalled-for since their basic assumptions are fundamentally
different. Even though our schemes are theoretical, we can
use some techniques to improve their performance on energy
consumption, storage requirement and computation cost.

1) No re-send: It is possible that a sensor node does not
receive some random bits from beacon or beaming
nodes. The sensor node can simply ignore a lost bit
and continues to wait for the next one. This does not
affect its functionality since only a very small fraction
of broadcasted bits are stored by each sensor node. Thus,
the beacon and beaming nodes can broadcast in a ”raw”
mode.

2) Sleeping: In our schemes, random bits are broadcasted
for a relatively long period of time. But, the sensor
nodes do not store all of them. Thus, the sensor nodes
can use the random sleeping technique to reduce energy
consumption. Each sensor node stays in a state of very
low energy consumption for most time and wakes up to
receive bits from time to time.
Furthermore, when a sensor node needs to receive broad-
casted random bits from different beacon or beaming
nodes in different frequencies, it can switch to a different
frequency in each wake-up. Thus, the beacon or beaming
nodes can broadcast random bits at different frequencies
without worrying about whether their neighboring sensor
nodes can receive them simultaneously.

3) Pseudorandomness: In our schemes, all kinds of nodes
need some random bits. Beacon and beaming nodes
need to generate random bits for broadcasting and sensor
nodes need to generate random indices for picking up
broadcasted random bits. In fact, pseudorandom bits can
replace random bits for better efficiency. A node can
sample a short random seed s from the environment
and uses the pseudorandom bit generator G to generate
pseudorandom bits G(s).
It should be noted that if we use pseudorandom bits in
the scheme, the storage-bounded adversary should be

polynomial-time bounded also, instead of computing-
unboundedness. This is because a computing-unlimited
adversary can search the seed by the eavesdropped
pseudorandom bits and the pseudorandom generator G.

In reality, an adversary may jam the media to block the
process of key establishment. It is hard for wireless commu-
nications to resist this kind of denial of service attacks. Due
to sensor nodes’ low hardware profile, it is not practical for
them to receive the random bits from a satellite. In the above
we only discuss how to establish shared keys for the sensor
nodes that are within the radio range of beacon and beaming
nodes. For others that are neighbored can establish direct link
through the path-key finding process.

VI. CONCLUSIONS

We have introduced the storage-bounded adversary model to
wireless sensor networks and proposed two key establishment
schemes in this model. We are interested in improving effi-
ciency of the schemes for practicability in the future. We are
also interested in proposing different kinds of security schemes
for wireless sensor networks in this model.
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Abstract—An (n, d) permutation array (PA) is a subset of Sn

with the property that the distance (under some metric) between
any two permutations in the array is at least d. They became
popular recently for communication over power lines. Motivated
by an application to flash memories, in this paper the metric used
is the Chebyshev metric. A number of different constructions are
given as well as bounds on the size of such PA.

Index Terms—Permutation arrays, Chebyshev distance, flash
memory, code constructions, bounds

I. INTRODUCTION

Let Sn denote the set of all permutations of length n. A
permutation array of length n is a subset of Sn. Recently,
Jiang et. al [5], [6] showed an interesting new application
of permutation arrays for flash memories, where they used
different distance metrics to investigate efficient rewriting
schemes. Under the multi-level flash memory model, we find
the metric induced by the l∞ norm very appropriate for
studying the recharging and error correcting issues. This metric
is known as the Chebyshev metric. We consider a noisy
channel where pulse amplitude modulation (PAM) is used with
different amplitude levels for each permutation symbol. The
noise in the channel is an independent Gaussian distribution
with zero mean for each position. The received sequence is
the original permutation distorted by Gaussian noise, and its
ranking can be seen as a permutation, which can be different
from the original one.

To study the correlations between ranks, several metrics on
permutations were introduced, such as the Hamming distance,
the minimum number of transpositions taking one permutation
to another, etc. [3], [7]. For instance, Stoll and Kurz [14]
investigated a detection scheme of permutation arrays using
Spearman’s rank correlation. Chadwick and Kurz [2] studied
the permutation arrays based on Kendall’s tau.

Under the model of additive white Gaussian noise (AWGN)
[4], there is a probability for any amplitude level to deviate
from the original one, which may yield a large Hamming
distance but with a rather small Chebyshev distance. Mean-
while, the original rank may still be in good shape even
after some perturbation. Observe that two permutations with a
large Hamming distance can actually have a small Chebyshev
distance and vice versa. They appear to complement each other
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in some sense. This inspired us to use the Chebyshev distance.
Technically, with l∞ norm, we find it is much easier to encode,
decode and estimate the sphere size of permutation arrays than
with the other lp norms.

In this paper, we give a number of constructions of PAs. For
some we give efficient decoding algorithms. We also consider
encoding from vectors into permutations.

II. NOTATIONS

We use [n] to denote the set {1, . . . , n}. Sn denotes the set
of all permutations of [n]. For any set X , Xn denotes the set
of all n-tuples with elements from X .

Let idn denote the identity permutation in Sn. The Cheby-
shev distance between two permutations π, σ ∈ Sn is

dmax(π, σ) = max{|πj − σj | | 1 ≤ j ≤ n}.

An (n, d) permutation array (PA) is a subset of Sn with the
property that the Chebyshev distance between any two distinct
permutations in the array is at least d. We sometimes refer to
the elements of a PA as code words.

The maximal size of an (n, d) PA is denoted by P (n, d).
Let V (n, d) denote the number of permutations in Sn within
Chebyshev distance d of the identity permutation. Since
dmax(idn, σ) = dmax(π, πσ), the number of permutations in
Sn within Chebyshev distance d of any permutation π ∈ Sn
will also be V (n, d). Bounds on P (n, d) and V (n, d) will be
considered in Sec. IV.

III. CONSTRUCTIONS

In this section we give a number of constructions of PAs,
one explicit and some recursive.

A. An explicit construction

Let n and d be given. Define

C = {(π1, . . . , πn) ∈ Sn|πi ≡ i (mod d) for all i ∈ [n]}.

Theorem 1: If n = ad+ b, where 0 ≤ b < d, then C is an
(n, d) PA and

|C| = ((a+ 1)!)b(a!)d−b.

Proof: Let 1 ≤ m ≤ d and u = b(n−m)/dc. For π ∈ C,
we see that (πm, πm+d, πm+2d, . . . , πm+ud) is a permutation
of the set {m,m+ d,m+ 2d, . . . ,m+ ud}. This set contains
(a + 1) elements if 1 ≤ m ≤ b and so there are (a + 1)!
possible choices for (πm, πm+d, πm+2d, . . . , πm+ud) and all
can used. Similarly, there are a! choices if m > b. Hence the
total number of permutations in C is ((a+ 1)!)b(a!)d−b.

In particular, we get the following bound.
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Theorem 2: If n = ad+ b, where 0 ≤ b < d, then

P (n, d) ≥ ((a+ 1)!)b(a!)d−b.

Example 1: For d = 2, we get

P (2a, 2) ≥ (a!)2.

We note that if 2d > n, then a = 1 and b = n − d and
so |C| = 2n−d. If 2d = n, then a = 2, b = 0, and we
have |C| = 2d = 2n−d as well. However, if 2d < n, then
|C| > 2n−d. Especially, when d is small relative to n, |C|
is much larger than 2n−d. For example, for n = 30, d = 2,
|C|/2n−d ≈ 6.37× 1015.

This construction has a very simple error correcting algo-
rithm. For d ≥ 2t + 1, we can correct error up to size t
in any coordinate. For coordinate i, the codeword has value
πi ≡ i (mod d). Suppose that this coordinate is changed into
σ = πi + u, where |u| ≤ t. Then πi is the integer congruent
to i which is closest to σ. Therefore, decoding of position i
is done by first computing

a ≡ i− σ (mod d),

where −(d − 1)/2 ≤ a ≤ (d − 1)/2. Then a = −u, and so
we decode into σ + a = πi.

B. First recursive construction

Let C be an (n, d) PA of size M , and let r ≥ 2 be an
integer. We define an (rn, rd) PA, Cr, of size Mr as follows:
for each multi-set of r code words from C,

(π(j)
1 , . . . , π(j)

n ), j = 0, 1, . . . , r − 1,

let

ρj = (rπ(j)
1 − j, . . . , rπ(j)

n − j), j = 0, 1, . . . , r − 1,

and include (ρ0|ρ1| . . . |ρr−1) as a codeword in Cr. It is clear
that under this construction the distance between any two
distinct ρj , ρj′ is at least rd. It is also easy to check that
(ρ0|ρ1| . . . |ρr−1) ∈ Srn. Hence |Cr| = Mr. In particular, we
get the following bound.

Theorem 3: If n > d and r ≥ 2, then

P (rn, rd) ≥ P (n, d)r.

Proof: Let C be an (n, d) PA of size P (n, d). Then
the construction above gives an (rn, rd) PA of Cr. Hence
P (rn, rd) ≥ |Cr| = |C|r = P (n, d)r.

C. Second recursive construction

For a permutation π = (π1, π2, . . . , πn) ∈ Sn and an integer
m, 1 ≤ m ≤ n+ 1 define

ϕm(π) = (m,π′1, π
′
2, . . . , π

′
n) ∈ Sn+1

by
π′i = πi if πi ≤ m,
π′i = πi + 1 if πi > m.

Let C be an (n, d) PA, and let

1 ≤ s1 < s2 < · · · < st ≤ n+ 1

be integers. Define

C[s1, s2, . . . , st] = {ϕsj
(π) | 1 ≤ j ≤ t, π ∈ C}.

Theorem 4: If C is an (n, d) PA of size M and

sj + d ≤ sj+1 for 1 ≤ j ≤ t− 1,

then C[s1, s2, . . . , st] is an (n+ 1, d) PA of size tM .
Theorem 5: If C is an (n, d) PA of size M and n ≤ 2d,

then C[d] is an (n+ 1, d+ 1) PA of size M .
Proof: If j > j′, then

dmax(ϕsj
(π), ϕsj′ (σ)) ≥ sj − sj′ ≥ d.

Next, consider j′ = j. If π, σ ∈ C, π 6= σ, then w.l.o.g, there
exist an i such that πi ≥ σi + d. Hence

dmax(ϕsj (π), ϕsj (σ)) ≥
{
πi − σi + 1 > d if πi > sj ≥ σi,
πi − σi ≥ d otherwise.

This proves Theorem 4. To complete the proof of Theorem 5
we note that

πi ≥ σi + d ≥ d+ 1 > d,

and
σi ≤ πi − d ≤ n− d ≤ d.

Hence πi > d ≥ σi and so

dmax(ϕsj
(π), ϕsj

(σ)) ≥ d+ 1.

The constructions imply bounds on P (n, d).
Theorem 6: If n > d ≥ 1, then

P (n+ 1, d) ≥
(⌊n
d

⌋
+ 1
)
P (n, d).

Proof: Let t = bn/dc + 1. Then (t − 1)d + 1 ≤ n + 1.
If C is an (n, d) PA of size P (n, d), then Theorem 4 implies
that C[1, d+ 1, 2d+ 1, . . . , (t− 1)d+ 1] is an (n+ 1, d) PA
of size tP (n, d). Hence P (n+ 1, d) ≥ tP (n, d).

Example 2: In Example 1 we showed that the explicit con-
struction implied that P (2a, 2) ≥ (a!)2. Combining Theorem
6 and search, we can improve this bound. We have found that
P (7, 2) ≥ 582, see the table at the end of the next section.
From repeated use of Theorem 6 we get

P (2a, 2) ≥ (a(a− 1) · · · 5)2 · 4P (7, 2) ≥ 97
24

(a!)2.

Theorem 5 implies the following bound.
Theorem 7: If d < n ≤ 2d, then

P (n+ 1, d+ 1) ≥ P (n, d).

Proof: Let C be an (n, d) PA of size P (n, d). By Theorem
5, C[d] is an (n+ 1, d+ 1) PA of size P (n, d). Hence

P (n+ 1, d+ 1) ≥ |C[d]| = P (n, d).

Theorem 7 shows in particular that for a fixed r,

P (d+ 1 + r, d+ 1) ≥ P (d+ r, d) for d ≥ r. (1)

We will show that P (d + r, d) is bounded. We show the
following theorem.
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Theorem 8: For fixed r, there exist constants cr and dr such
that P (d+ r, d) = cr for d ≥ dr. Moreover,

cr ≤ 22r (2r)! (2)

and
dr ≤ 1 + (2r − 1)cr − r. (3)

Remark. The main point of Theorem 8 is the existence of
cr and dr. The actual bounds given are probably quite weak in
general. For example, Theorem 8 gives the bounds c1 ≤ 8 and
d1 ≤ 8. In Theorem 9 below, we will show that c1 = 3 and
d1 = 2. Theorem 8 gives c2 ≤ 384 and d2 ≤ 1151, whereas
numerical computation indicate that c2 = 9 and d2 = 5.

We split the proof of Theorem 8 into three lemma.
Lemma 1: If d ≥ r, then P (d+ r, d) ≤ 22r (2r)!.

Proof: Suppose that there exists an (d + r, d) PA C of
size M > 22r (2r)!. We call the integers

1, 2, . . . , r and d+ 1, d+ 2, . . . , d+ r

potent, the first r smaller potent, the last r larger potent.
Two potent integers are called equipotent if both are smaller
potent or both are larger potent. If the distance between two
permutations (π1, π2, . . . , πn), (ρ1, ρ2, . . . , ρn) is at least d,
then there exists some position i such that, w.l.o.g, πi−ρi ≥ d,
Then πi is a larger potent element and ρi is smaller potent.
Each permutation in Sd+r contains 2r potent elements and we
call the set of positions of these the potency support χ(π) of
the permutation, that is, the potency support of π is

χ(π) = {i | 1 ≤ πi ≤ r} ∪ {i | d+ 1 ≤ πi ≤ d+ r}.

The potency support of C is the union of the potency support
of the permutations in C, that is

χ(C) ={i | 1 ≤ πi ≤ r for some π ∈ C}
∪ {i | d+ 1 ≤ πi ≤ d+ r for some π ∈ C}.

Let π ∈ C. For each ρ ∈ C, ρ 6= π, we have d(π, ρ) ≥
d. Hence there exists some i ∈ χ(π) such that ρi is potent.
Therefore, the set

{(ρ, i) | ρ ∈ C and i ∈ χ(π)}

contains at least 2r+ (M − 1) > M elements. Hence there is
an i ∈ χ(π) such that

|{ρ ∈ C | ρi is potent}| > M/(2r) > 22r(2r − 1)!.

Since

{ρ ∈ C | ρi is potent} ={ρ ∈ C | ρi is smaller potent}
∪{ρ ∈ C | ρi is larger potent},

there exists a subset C1 ⊂ C such that

|C1| > 22r−1(2r − 1)!

and the elements in position i1 = i are equipotent.
We can now repeat the procedure. Let π ∈ C1. There must

exist an i2 ∈ χ(π) \ {i1} such that

|{ρ ∈ C1 | ρi2 is potent}| ≥ |C1|/(2r − 1) > 22r−1(2r − 2)!.

Hence we get subset C2 ⊂ C1 such that

|C2| > 22r−2(2r − 2)!

and the elements in position i2 are equipotent (and the
elements in position i1 are equipotent).

Repeated use of the same argument will produce for each
j, 1 ≤ j ≤ 2r a set Cj such that

|Cj | > 22r−j (2r − j)!

and for j positions i1, i2, . . . ij , the elements in those positions
are all equipotent. In particular, |C2r| > 1, all permutations
in C2r have the same potency support {i1, i2, . . . , i2r}, and
for each of these positions, all the elements in that position
are equipotent. This is a contradiction since the distance
between two such permutations must be less than d. Hence
the assumption that a PA of size larger than 22r (2r)! exists
leads to a contradiction.

Lemma 1 combined with (1) proves the existence of cr and
dr and gives the bound (2).

Lemma 2: If C is a (d+ r, d) PA of size M where

d > r and d+ r > |χ(C)|,

then there exists a (d−1+r, d−1) PA of size M . In particular,
if M = P (d+ r, d), then

P (d− 1 + r, d− 1) = P (d+ r, d).

Proof: Replace all elements in range r + 1, r + 2, . . . , d
in the permutations of C by a star ∗ which will denote
”unspecified”. The permutations in C is transformed into
vectors containing the potent elements and d−r stars. Note that
if we replace the unspecified elements in each vector by the
integers r+1, r+2, . . . , d in some order, we get a permutation,
and the distance between two such permutations will be at least
d since we have not changed the potent elements.

Since the length d + r of C is larger than |χ(C)|, there
exists a position where all the vectors contains a star. Remove
this position from each vector and reduce all the larger potent
elements by one. This given a set of M vectors of length
d − 1 + r and such that the distance between any two is at
least d − 1. Replacing the d − 1 − r stars in each vector by
r+1, r+1, . . . , d−1 in some order, we get a (d−1+r, d−1)
PA of size M .

If M = P (d+ r, d), then we get

P (d− 1 + r, d− 1) ≥ P (d+ r, d).

Since P (d − 1 + r, d − 1) ≤ P (d + r, d) by (1), the lemma
follows.

Lemma 3: If C is a (d + r, d) PA of size M and d ≥ r,
then

|χ(C)| ≤M(2r − 1) + 1.

Proof: Each permutation has potency support of size 2r.
The potency support of any two permutations in C must over-
lap since their distance is at least d. Hence each permutation
after the first will contribute at most 2r − 1 new elements to
the total potency support. Therefore,

|χ(C)| ≤ 2r + (M − 1)(2r − 1).
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Remark. By a more involved analysis, we can improve
this bound somewhat. For example, we see that two new
permutations can contribute at most 4r−3 to the total support.

We can now complete the proof of Theorem 8. Let C be a
(d+r, r) code of size cr. By Lemma 3, |χ(C)| ≤ cr(2r−1)+1.
If d > 1 + cr(2r − 1) − r, then d + r > |χ(C)|. Hence,
by Lemma 2, P (d − 1 + r, d − 1) = P (d + r, d). Therefore,
dr ≤ 1+cr(2r−1)−r, that is, (3) is satisfied. This completes
the proof of Theorem 8.

Theorem 9: We have P (d+ 1, d) = 3 for d ≥ 2.
Proof: We use the same notation as in the proof of Lemma

2. Let C be an (d + 1, d) PA. The only potent elements are
1 and n. W.lo.g. we may assume the first permutation in C
is (1, n, ∗, ∗, . . .) where ∗ denotes some unspecified integer in
the range 2, 3, . . . , d. W.l.o.g, a second permutation has one
of three forms:

(n, 1, ∗, ∗, . . .), (n, ∗, 1, ∗, . . .), (∗, 1, n, ∗, . . .).

We see that if the second permutation is of the first form, there
cannot be more permutations. If the second permutation is of
the form (n, ∗, 1, ∗, . . .), then there is only one possible form
for a third permutation, namely (1, ∗, n, ∗, . . .). Hence we see
that P (d+ 1, d) ≤ 3 and that P (d+ 1, d) = 3 for d ≥ 2.

To determine P (d + r, d) along the same lines for r ≥ 2
seems to be difficult because of the many cases that have to be
considered. Even to determine P (d+2, d) will involve a large
number of cases. For example for the second permutation there
are 138 essentially different possibilities for the four positions
in the potency support of the first permutation. For each of
these there are many possible third permutations, etc.

D. Encoding/decoding of some PA constructed by the second
recursive construction

Suppose we start with the PA

Cd = {(1, 2, 3, . . . , d)}.

For ν = d, d+ 1, . . . , n− 1 let

Cν+1 = Cν [1, ν + 1].

Then Cn is an (n, d) PA of size 2n−d. For some applica-
tions, we may want to map a set of binary vectors to a
permutation array. One algorithm for mapping a binary vector
(x1, x2, . . . , xn−d) into Cn would be to use the recursive con-
struction of Cn by mapping (x1, x2, . . . , xi) into a permutation
π in Cd+i. Recursively, we can then map (x1, x2, . . . , xi, 0)
to ϕ1(π) and (x1, x2, . . . , xi, 1) to ϕd+i+1(π).

However, there is an alternative algorithm which requires
less work. Retracing the steps of the construction, we see
that given some initial part of length less than n − d of a
permutation in Cn, there are exactly two possibilities for the
next element, one ”larger” and one ”smaller”. More precisely,
induction shows that if the initial part of length i− 1 contains
exactly t ”smaller” elements, then element number i is either
t+1 (the ”smaller”) or n− i+ t+1 (the ”larger”). This is the
basis for a simple mapping from Zn−d2 to Cn. We give this
algorithm in Figure 1.

Input: (x1, . . . , xn−d) ∈ Zn−d2

Output: (π1, . . . , πn) ∈ Cn
for i← n− d+ 1 to n do xi ← 0;
t← 0; //* t is the number of zeros seen so far.*//
for i← 1 to n do

if xi = 0
then {πi ← t+ 1; t← t+ 1;}
else {πi ← n− i+ t+ 1;}

Fig. 1. Algorithm mapping Zn−d
2 to Cn

We see that the difference between the larger and the smaller
element in position i ≤ n − d is n − i. Hence we can
recover from any error of size less than (n− i)/2 by choosing
the closest of the two possible values, and the corresponding
binary value. We give the decoding algorithm in Figure 2.

Input: (π1, . . . , πn) ∈ [n]n

Output: (x1, . . . , xn−d)
t← 0; //* t is number of zeros determined. *//
for i← 1 to n− d do

if πi < (n− i)/2 + t+ 1
then {xi ← 0; t← t+ 1;}
else {xi ← 1;}

Fig. 2. Decoding algorithm recovering the binary preimage from a corrupted
permutation in Cn.

Without going into all details, we see that we can get a
similar mapping from q-ary vectors. Now we start with the
PA

C(q−1)d = {(1, 2, 3, . . . , (q − 1)d)}.

For (q− 1)d ≤ ν ≤ n− 1 let sj = (j− 1)bν/(q− 1)c+ 1 for
1 ≤ j ≤ q − 1 and sq = ν + 1. Let

Cν+1 = Cν [s1, s2, . . . , sq].

Then Cn is an (n, d) PA of size qn−(q−1)d. Encoding and
decoding correcting errors of size at most (d−1)/2, based on
the recursion, is again relatively simple.

IV. FURTHER BOUNDS ON P (n, d)
A. General bounds

Since dmax(π, σ) ≤ n−1 for any two distinct permutations
in Sn, we have P (n, n) = 1. Therefore, we only consider
d < n.

Since the spheres of radius d in Sn all have size V (n, d),
we can get a Gilbert type lower bound on P (n, d).

Theorem 10: For n > d ≥ 2 we have

P (n, d) ≥ n!
V (n, d− 1)

.

Proof: It is clear that the following greedy algorithm pro-
duces a permutation array with cardinality at least n!/V (n, d−
1).
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1) Start with any permutation in Sn.
2) Choose a permutation whose distance is at least d to all

previous chosen permutations.
3) Repeat step 2 as long as such a permutation exists.

Let C be the permutation array produced by the above greedy
algorithm. Once the algorithm stops, Sn will be covered by
the |C| spheres of radius d− 1 centered at the code words in
C. Thus n! ≤ |P | · V (n, d− 1) which implies our claim.

Similarly, we get a Hamming type upper bound in the usual
way.

Theorem 11: If n > d ≥ 1, then

P (n, d) ≤ n!
V (n, b(d− 1)/2c)

.

Proof: Let C be an (n, d) PA of size P (n, d). The
spheres of radius b(d − 1)/2c around the permutations in C
are pairwise disjoint. The union of these spheres is a subset
of Sn. Hence

P (n, d)V (n, b(d− 1)/2c) = |C|V (n, b(d− 1)/2c) ≤ n!

and the bound follows.
If n ≤ 2d and d is even, we can combine the bound in

Theorem 11 with Theorem 7 to get the following bound which
is stronger than the ordinary Hamming bound, at least in the
cases we have tested.

Theorem 12: If d is even and 2d ≥ n > d ≥ 2, then

P (n, d) ≤ (n+ 1)!
V (n+ 1, d/2)

.

Proof:

P (n, d) ≤ P (n+ 1, d+ 1) ≤ (n+ 1)!
V (n, d/2)

.

Example 3: For n = 11 and d = 6, Theorem 11 gives

P (11, 6) ≤
⌊

11!
V (11, 2)

⌋
=
⌊

11!
11854

⌋
= 3367

whereas Theorem 12 gives

P (11, 6) ≤
⌊

12!
V (12, 3)

⌋
=
⌊

12!
563172

⌋
= 850.

Remark. We can of course use Theorem 7 repeatedly r times
and then Theorem 11 to get

P (n, d) ≤ (n+ r)!
V (n+ r, b(d+ r − 1)/2c)

for all r ≥ 0. However, it appears we get the best bounds for
r = 1 when d is even and r = 0 when d is odd.

In general, no simple expression of V (n, d) is known. A
survey of known results as well as a number of new results
on V (n, d) were given by Kløve [8]. See also Kløve [9] and
[10]. Here we briefly give some main results.

As observed by Lehmer [11], V (n, d) can be expressed as
a permanent. The permanent of an n× n matrix A is defined
by

perA =
∑
π∈Sn

a1,π1 · · · an,πn
.

In particular, if A is a (0, 1)-matrix, then

perA = |{π ∈ Sn : ai,πi
= 1 for all i}|.

Let A(n,d) be the n×n matrix with a(n,d)
i,j = 1 if |i−j| ≤ d

and a(n,d)
i,j = 0 otherwise.

Lemma 4: V (n, d) = perA(n,d).
Proof:

V (n, d) =|{π ∈ Sn : dmax(id, π) ≤ d}|
=|{π ∈ Sn : |πi − i| ≤ d for all i}|
=|{π ∈ Sn : a(n,d)

i,πi
= 1 for all i}|

=perA(n,d).

For fixed d, V (n, d) satisfies a linear recurrence in n. A proof
is given in [13] (Proposition 4.7.8 on page 246). For 1 ≤ d ≤ 3
these recurrences were determined explicitly by Lehmer [11],
and for 4 ≤ d ≤ 6 by Kløve [8]. In particular, this implies
that

lim
n→∞

V (n, d)1/n = µd,

where µd is the largest root of the minimal polynomial
corresponding to the linear recurrence of V (n, d). Lehmer [11]
determined µd approximately for d = 1, 2, 3 and Kløve [8] for
d ≤ 8.

For an n × n (0, 1)-matrix it is known (see Theorem 11.5
in [16]) that

perA ≤
n∏
i=1

(ri!)1/ri ,

where ri is the number of ones in row i.
For A(n,d) we clearly have ri ≤ 2d+ 1 for all i. Hence

V (n, d) ≤ [(2d+ 1)!]n/(2d+1) for all n (4)

and
µd ≤ [(2d+ 1)!]1/(2d+1).

In Table I we give µd and this upper bound.

TABLE I
µd AND ITS UPPER BOUND.

d µd [(2d+ 1)!]1/(2d+1) µd/(2d+ 1)
1 1.61803 1.81712 0.53934
2 2.33355 2.60517 0.46671
3 3.06177 3.38002 0.43739
4 3.79352 4.14717 0.42150
5 4.52677 4.90924 0.41152
6 5.26082 5.66769 0.40468
7 5.99534 6.42342 0.39969
8 6.73016 7.17704 0.39589

We note that for large d, µd/(2d+ 1) ≈ 1/e ≈ 0.36788.
Combining Theorem 10 and (4) we get
Corollary 1: For n > d ≥ 1, we have

P (n, d) ≥ n!
[(2d− 1)!]n/(2d−1)

.
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Combining equations (33) and (34) in Kløve [8] we get the
following lower bound on V (n, d):

V (n, d) ≥ n! (2d+ 1)n

22d nn
. (5)

For d odd, (5) gives

V (n, b(d− 1)/2c) = V (n, (d− 1)/2) ≥ n! dn

2d−1 nn
.

Combining this with Theorem 11 we get the following explicit
upper bound on P (n, d).

Corollary 2: For d odd and n > d ≥ 1, we have

P (n, d) ≤ 2d−1nn

dn
.

Similarly, for d even, combining Theorem 11 and Theorem 12
with (5), we get the following.

Corollary 3: For d even and n > d ≥ 2, we have

P (n, d) ≤ min
{

2d−2nn

(d− 1)n
,
2d(n+ 1)n+1

(d+ 1)n+1

}
.

The bounds on V (n, d), both the upper and the lower, are
in most cases quite weak and so the bounds on P (n, d) also
become quite weak.

B. Table of bounds on P (n, d)
We have used the following greedy algorithm to find an

(n, d) PA C: Let the identity permutation in Sn be the
first permutation in C. For any set of permutations chosen,
choose as the next permutation in C the lexicographically
next permutation in Sn with distance at least d to the chosen
permutations in C if such a permutation exists. The size of
the resulting PA is of course a lower bound on P (n, d).

The lower bounds in Table II were in most cases found by
this greedy algorithm. For n = 8, d = 5, the greedy algorithm
gave a PA of size 26. However,

P (8, 5) ≥ P (7, 4) ≥ 28

by Theorem 7. Similarly,

P (10, 7) ≥ P (9, 6) ≥ P (8, 5) ≥ 28.

Some other of the lower bounds are also determined using
Theorem 7. They are marked by ∗. The upper bound is the
Hamming type bound in Theorem 11 or it’s modified bound in
Theorem 12. Since P (n, 1) = n! for all n, this is not included
in the table.

V. CONCLUSION

We give a number of constructions of permutations ar-
rays under the Chebyshev distance, some with efficient error
correction algorithms. We also consider an explicit mapping
of vectors to permutations with efficient encoding/decoding.
Finally, we give some bounds on the size of PAs under the
Chebyshev distance.

Tamo and Schwartz [15] independently considered this
problem and gave, among other results, a construction equiv-
alent to our first construction as well as some other construc-
tions.

TABLE II
BOUNDS ON P (n, d).

d = 2 d = 3 d = 4
n = d+ 1 3 3 3
n = d+ 2 6− 24 9 9− 12
n = d+ 3 29− 120 20− 34 28− 43
n = d+ 4 90− 720 84− 148 68− 166
n = d+ 5 582− 5040 401− 733 283− 4077

d = 5 d = 6 d = 7
n = d+ 1 3 3 3
n = d+ 2 9− 12 9− 18 9− 18
n = d+ 3 28∗ − 43 28∗ − 60 28∗ − 60
n = d+ 4 95− 166 95∗ − 216 95∗ − 216
n = d+ 5 236− 714 236∗ − 850 236∗ − 850
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