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中文摘要： 
關鍵詞：新 Mathieu-van der Pol 系統，新 Ikeda- Mackey-Glass 系統，Mathieu 系統，Van der 
Pol 系統，Ikeda 系統，Mackey-Glass 系統，非耦合渾沌同步。 

渾沌系統之研究在物理、化學、生理學、各種工程等方面皆有日益重要之廣泛應用。

Van der Pol 系統、非線性 Mathieu 系統都是最重要的典型的渾沌系統。Ikeda 系統及

Mackey-Glass 系統則是最重要的典型的時滯系統。本計畫(第一年)採取適當的耦合方式構成

新創的 Mathieu-van der Pol 系統和 Ikeda- Mackey-Glass 系統，從而擴大了各原來單純系統

的研究範圍也深化了研究內容。 

 

目前渾沌同步皆取李氏函數為V 正定、V&負定，同步達成之時間較長控制品質不夠好。

現採指數漸進穩定理論研究誤差系統零解，使同步完成時間大為減小。再結合後步

(backstepping)設計可得三優點 1.同步完成時間大減 2.逐步選擇V 函數，減少選V 函數之難

度 3.減少控制器的數目。 

 

研究重點為： 

1.Mathieu-van der Pol 系統與 Ikeda- Mackey-Glass 系統的渾沌研究。用相圖、分歧圖、功率

譜圖、李雅普諾夫指數分析渾沌之行為。 

2.新式非耦合渾沌同步新方法。 

 

英文摘要： 

key words: New Mathieu-van der Pol system, new Ikeda- Mackey-Glass system, Mathieu system, 
Van der Pol system, Ikeda system, Mackey-Glass system, uncoupled chaos synchronization. 

In this project (first year), multichanneled various excitations(various time function, chaotic 
function, noise, etc)are used to increase the reliability of synchronization in the accident of 
interruption of part of the channels. 
    The point of research: 
1. The study of chaos of Mathieu-van der Pol system and Ikeda- Mackey-Glass system: By phase 

portraits, bifurcation diagrams, power spectra, Lyapunov exponents, the various chaotic 
behaviors of these systems will be studied. 

2. New uncoupled synchronization method. 
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報告內容： 

（一）前言及研究目的： 

    渾沌系統之研究除了在理論上的重要價值外，在物理、化學、生理學及各種工程等方

面皆有廣泛之應用。Van der Pol系統與非線性Mathieu系統都是重要的典型渾沌系統。Ikeda
系統是重要的典型光電或生理時滯系統，而Mackey-Glass系統則是著名的典型生理時滯系

統。對於這些重要系統的渾沌現象及渾沌同步都已有豐富的研究成果[1-35]。本計畫(第一

年)為了對這些著名系統，擴大其研究範圍並深化其研究內容，特提出混合的新系統，即新

Mathieu-van der Pol系統及新Ikeda- Mackey-Glass系統。極具實用價值，其渾沌現象值得仔

細研究。對上述二種新系統，首先證明其為渾沌系統，其次研究其渾沌行為。 
 

    渾沌同步在物理系統、化學系統、生物系統、各種工程系統、秘密通訊、神經網路、

自我組織系統等方面有長足之應用[36-86]。本計畫(第一年)提出一種新渾沌同步方法，對這

些新系統加以研究。 

（二）研究方法及文獻探討： 

（a）Mathieu-van der Pol系統及Ikeda- Mackey-Glass系統的渾沌研究 

         經典的非線性Mathieu系統為： 
             0)sin1()sin1( 3 =+++++ xaxtxtax &&& ωω  
或 
             21 xx =&  
             2

3
112 )sin1()sin1( axxtxtax −+−+−= ωω&  

其中 a為常數。 
 
         經典的van der Pol系統為： 
             0sin)1( 2 =−−++ tdxxcbxx ω&&&  
或 
             43 xx =&  

             tdxxcbxx ωsin)1( 2
3434 +−+−= &&  

其中b , c , d 為常數。現將第一系統中之 tωsin 與第二系統中的 td ωsin 中的 tωsin 交替換成對

方的狀態變量，即得本計劃新創造之混合的Mathieu-van der Pol系統： 

             21 xx =&  

             3
3
13132 )1()1( axxxxxax −+−+−=&  

             43 xx =&  

             1
2
3434 )1( dxxxcbxx +−+−= &&  

         經典的Ikeda系統為： 
             0sin =++ τxbaxx&  
其中 a ,b 為常數， )( ττ −= txx ，τ 為常數。此系統可用以表示有回授之B級雷射系統，其中

B級之典型代表為固態、半導體及低壓 2CO 雷射[21-22]，也可表示生理血液系統。 
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         經典的Mackey-Glass系統為： 

             rx
x

bxx n −+
=

τ

τ
1

&  

其中b , r 為常數，n為正整數， )( ττ −= txx ，τ 為常數。此系統可表示造血系統，其中 x為
t時刻之血液濃度，τ 為造血所須之延遲時間。白血患者之τ 值增加即引起血液濃度產生渾

沌變化[25-26]。Ikeda- Mackey-Glass系統為： 
             ττ κα yxmxx ++−= sin&  

             by
cyyy

τ

τβ
+

+−=
1

&  

對此新混合系統之研究，可說是對各單系統渾沌行為研究之延伸與深化，此混合系統比各

單系統顯然有更複雜之渾沌行為，值得本計劃加以研究。 
    （b）非耦合渾沌同步新方法及應用 
    目前文獻絕大部分渾沌同步皆採耦合同步或控制器中出現主從系統之狀態變量，實際

上也是耦合。以秘密通訊而言，耦合所須的主從系統狀態變量之傳送會造成失密及時滯之

不良後果。非耦合同步可消除這些缺點，目前國際文獻多採以第三系統之渾沌變量或噪音

對主從系統參數作用時激勵而獲同步。本計畫採多管道下之各種形式之激勵（各種時間週

期函數、渾沌函數、各種噪音）以保證同步之可靠性。 

    以Mathieu-van der Pol系統為例。兩個Mathieu-van der Pol系統： 

             21 xx =&  

             32
3
14142 )1()1( bxaxxxxxax −−+−+−=&  

             43 xx =&  

             14
2
334 )1( dxxdxcxx +−+−=&  

和 

21 yy =&  

             32
3
14142 )1()1( byayyyyyay −−+−+−=&  

             43 xy =&  

             14
2
334 )1( dyydycyy +−+−=&  

設有第三任何渾沌系統，為簡單計，即採用第三個Mathieu-van der Pol系統： 

21 zz =&  

             32
3
14142 )1()1( bzazzzzzaz −−+−+−=&  

             43 zz =&  

             14
2
334 )1( dzzdzczz +−+−=&  

用其任一渾沌變量， 1z 之任意給定函數 1kz 或 )( 1zf 、 1)( ztF （ )(tF 為任意給定函數）等等

取代第一及第二系統中對應的第四式末項中 1dx 、 1dy 中之 1d 而成為 11xkz 及 11 ykz 。調節 k 為
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適當值時第一、二系統即達成同步。將 1kz 換為以上各項乃可得許多豐富的同步之結果，本

計畫對眾多之激勵項用量化方法比較其優劣。 

結果與討論： 

Mathieu-van der Pol 系統與 Ikeda- Mackey-Glass 系統的渾沌行為與新式非耦合渾沌同步

新方法所得之結果如下： 

1. 採用諸多相圖、分歧圖、功率譜圖、參數圖及李亞普諾夫指數及碎形維度等研究而

獲得自治的新 Mathieu-van der Pol 系統與新 Ikeda- Mackey-Glass 系統之週期運動、準週

期運動、渾沌運動及超渾沌運動各種行為。 

 
                      (a)                           (b) 

 
                      (c)                           (d) 

Fig. 1 Phase portraits and Poincaré maps for autonomous new Mathieu-van der Pol system: 
(a) period 1 for 1.0=d , (b) period 2 for 1=d , (c) period 8 for 10=d , (d) chaotic for 

40d = . 

 

(a) 
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(b) 
Fig. 2 Bifurcation diagram for autonomous new Mathieu-van der Pol system: (a) d=0~45  

(b) d=15~25.  

 

(a) 

 

(b) 
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Fig. 3 Lyapunov exponents for autonomous new Mathieu-van der Pol system: (a) d=0~45  

(b) d=15~25. 
 

     
(a) (b) 

Fig. 4 Phase portraits and Poincaré maps for autonomous new Ikeda- Mackey-Glass system: 
(a) period 2 for 41.131 =K , (b) chaotic for 1.141 =K . 

 

Fig. 5 Bifurcation diagram for autonomous new Ikeda- Mackey-Glass system. 
 

2. 採用諸多相圖、分歧圖、功率譜圖、參數圖及李亞普諾夫指數及碎形維度等研究而

獲得非自治的新 Mathieu-van der Pol 系統與新 Ikeda- Mackey-Glass 系統之週期運

動、準週期運動、渾沌運動及超渾沌運動各種行為。 
3. 獲得新式非耦合渾沌同步新方法對自治的新 Mathieu-van der Pol 系統與新 Ikeda- 

Mackey-Glass 系統之應用。 
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Fig. 6 Phase portraits of error dynamics for autonomous new Mathieu-van der Pol system by 
GYC Partial Region Stability Theory. 

 

Fig. 7 Time histories of errors for autonomous new Mathieu-van der Pol system when 
generalized synchronization is obtained. 

 

Fig. 8 Time histories of x1, x2, x3, y1, y2, y3 for autonomous new Mathieu-van der Pol system 
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when generalized synchronization is obtained. 

 

Fig. 9 Phase portraits of error dynamics for autonomous new Ikeda- Mackey-Glass system by 
GYC Partial Region Stability Theory. 

 

Fig. 10 Time histories of errors for autonomous new Ikeda- Mackey-Glass system when 
generalized synchronization is obtained. 
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Fig. 8 Time histories of x1, x2, x3, y1, y2, y3 for autonomous new Ikeda- Mackey-Glass system 
when generalized synchronization is obtained. 

 
4. 獲得新式非耦合渾沌同步新方法對非自治的 Mathieu-van der Pol 系統與 Ikeda- 

Mackey-Glass 系統之應用。 
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Necessary and sufficient conditions for the stability of a sleeping top described by dynamic equations of six
state variables, Euler equations, and Poisson equations, by a two-degree-of-freedom system, Krylov equations,
and by a one-degree-of-freedom system, nutation angle equation, is obtained by the Lyapunov direct method,
Ge-Liu second instability theorem, an instability theorem, and a Ge-Yao-Chen partial region stability theorem
without using the first approximation theory altogether.
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I. INTRODUCTION

The stability of a sleeping top is a classical problem
which appears in the standard courses of classical mechanics
�1,2�. Routh �3�, Klein �4�, and Grammel �5� studied this
problem from various heuristic points of view. In 1946, Che-
taev �6,9� first strictly studied the problem described by a
two-degree-of-freedom system, Krylov equations �7�. By the
Lyapunov direct method, he obtained the sufficient condition
of conditional direction stability :

C2�2 � 4Amga , �1�

where C is the axial moment of inertia of the top about a
fixed point, A is the equatorial moment of inertia of the top
about the fixed point, � is the angular velocity of the top
about the symmetric axis of the vertical sleeping top, m is the
mass of the top, a is the distance between the center of grav-
ity of the top and the fixed point, and g is the gravity accel-
eration. In 1954, Chetaev �8,9� studied the same problem by
Euler equations and Poisson equations for six state variables
and obtained the same sufficient condition of unconditional
stability by the Lyapunov direct method. In 1979 using the
same equations, Ge �10,11� obtained the necessary and suf-
ficient condition of unconditional stability of a sleeping top

C2�2 � 4Amga �2�

by the Lyapunov direct method and first approximation
theory, and corrected the error of Loitsyanskii and Lurie
�12�, Rumjantsev �13�, and Magnus �14�. They declared that
the necessary and sufficient condition for stability of a sleep-
ing top is C2�2�4Amga.

In this paper, the necessary and sufficient condition for
unconditional stability and conditional direction stability of
the sleeping top is obtained by using Euler equations and
Poisson equations, and by using Krylov equations by the
Lyapunov direct method, Ge-Liu second instability theorem
�15�, Ge theorem for determining the definiteness of func-
tions �16�, and an instability theorem. The necessary and
sufficient condition of conditional nutation angle stability is
obtain by using the nutation angle equation by the Lyapunov
direct method and Ge-Yao-Chen �GYC� partial region stabil-
ity theorem �17,18�. In this paper, the first approximation
theory has not been used altogether.

This paper is organized as follows. In Sec. II, a necessary
and sufficient condition for unconditional stability of a sleep-
ing top by using Euler equations and Poisson equations is
obtained by the Lyapunov direct method and Ge-Liu second
instability theorem. In Sec. III, the same condition of condi-
tional direction stability is obtained by using Krylov equa-
tions by the Lyapunov direct method and an instability theo-
rem. In Sec. IV, the same condition of conditional nutation
angle stability is obtained by using a nutation angle equation
by the Lyapunov direct method and GYC partial region sta-
bility theorem. In Sec. V, conclusions are drawn.

II. STABILITY OF A SLEEPING TOP DESCRIBED BY
EULER EQUATIONS AND POISSON EQUATIONS

A. Euler equations and Poisson equations

In Fig 1, O is the fixed point of a symmetric top. Ox1y1z1
is an inertial frame with vertical axis z1. Oxyz is a body
frame fixed with the symmetric top and coincides with the
principal axes of inertia of the top. A, B, and C are the
principal moments of inertia of the top about the Ox, Oy, and
Oz axes, respectively. The conditions for a Lagrange top are

A = B, x = o, y = 0, z = a � 0, �3�

where x, y, and z are the coordinates of the center of gravity
of the Lagrange top in the Oxyz frame. Rigid body motion
about a fixed point with condition �3� is called a Lagrange
case. Let p, q, and r be the projections of the angular velocity
vector of the Lagrange top on three principal axes Ox, Oy,
and Oz, respectively, �1 ,�2 ,�3 be the direction cosines be-
tween Ox ,Oy ,Oz and the vertical axis Oz1, respectively. The

FIG. 1. Rigid body motion in the Lagrange case.
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dynamic equations for a Lagrange top are the combination of
Euler equations and Poisson equations:

A
dp

dt
+ �C − A�qr = mga�2,

A
dq

dt
+ �A − C�rp = − mga�1,

C
dr

dt
= 0,

d�1

dt
= r�2 − q�3,

d�2

dt
= p�3 − r�1,

d�3

dt
= q�1 − p�2. �4�

We shall study the stability of a solution, a vertical perma-
nent rotation:

p = 0, q = 0, r = �, �1 = 0,

�2 = 0, �3 = 1 �5�

of system �4�. A Lagrange top with condition �5� is called a
sleeping top. Let

p = �, q = �, r = � + � ,

�1 = 	, �2 = 
, �3 = 1 + � , �6�

where � , � , � , 	 , 
 , and � are the disturbances of six
state variables in Eq �4�.

B. Sufficient condition of unconditional stability

In the Lagrange case, the first integrals of Eq. �4� are

A�p2 + q2� + Cr2 + 2mga�3 = h ,

A�p�1 + q�2� + Cr�3 = k ,

�1
2 + �2

2 + �3
2 = 1,

r = � , �7�

where h, k, and � are constants determined by initial condi-
tions of Eq. �4�. For the differential equations of disturbances
�, �, �, 	, 
, and �, the corresponding first integrals are

V1 = A��2 + �2� + C��2 + 2��� + 2mag� ,

V2 = A��	 + �
� + C��� + �� + �� ,

V3 = 	2 + 
2 + �2 + 2��=0� ,

V4 = � . �8�

The positive definite Lyapunov function given by Chetaev
when C2�2�4Amga is

VI = V1 + 2�V2 − �mga + C���V3 + V4
2,

− 2�C� + C��V4 = A�2 + 2�A�	 ,

− �mga + C���	2 + A�2 + 2�A�B ,

− �mga + C���
2 + �C + ��2 + 2�C�� ,

− �mga + C����2, �9�

where = C�C−A� / A , �=−C� / 2A .

We have V̇I=0. By Lyapunov stability theorem, the null
solution of � ,� ,� ,	 ,
, and � is stable, i.e., the solution �5�
is stable. Equation �1� is the sufficient condition of stability
for a sleeping top, which is given by Chetaev �8,9�. Since six
disturbances correspond to the whole six states of dynamic
equations, Euler equations, and Possion equations, we call
this stability unconditional stability. In this case, both the
magnitude and the direction of the angular velocity vector
are stable.

When C2�2�4Amga, Ge �10,11� gave another positive
definite Lyapunov function

V = V� + VII, �10�

where

VII = C��V3 −
4

�
V4�2

= C��	2 + 
2 + �2 + 2� −
4

�
��2

�11�

is a positive semidefinite function of �, �, �, 	, 
, and �.

V̇=0 also. The Lyapunov stability theorem is satisfied, the
sufficient condition for stability of a sleeping top is now

C2�2 � 4Amga . �12�

When C2�2�4Amga, by first approximation theory, the
sleeping top is unstable. In this paper, instead of using first
approximation theory, the Ge-Liu second instability theorem
is used to prove that when C2�2�4Amga, the sleeping top is
unstable.

C. Ge-Liu second instability theorem

In 1999, Ge and Liu �15� gave two instability theorems.
The second of them is as follows.

Consider a nonautonomous vector differential equation

ẋ = f„t,x�t�… ∀ t � 0, �13�

where x�Rn and f :R+�Rn→Rn is continuous. Let x=0 be
an equilibrium point for the system described by Eq. �13�.
Then f�t ,0�=0, ∀ t�0. We can prove the following �15�.

Theorem. If there exists a Cn function V :R+�Rn→R, a
ball Br= �x�Rn , �x��r	, an open set ��Br, such that

�i� 0�V�t ,x��L��, for some L, ∀t� t0, ∀x��.
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�ii� 0��� �the boundary of ��.
�iii� V̇�t ,x��0, V̇�t ,x� is uniformly continuous in t, ∀t

� t0, ∀x��.
�iv� �a� There exists an even n�2, such that for some

nonempty set G����Br,

Vi�t,x� = 0 for 1 � i � n − 1,

∃� � 0, V�n��t,x� � �, ∀ t � t0, ∀ x � G .

�b� V�t ,x�=0, ∀ t� t0 , ∀x����Br−G,
Here V����t ,x� denotes the ���th time derivative of V with

respect to time. Then the equilibrium point 0 of the system
�13� is unstable.

D. Sufficient condition for instability and necessary and
sufficient condition for stability

Since C2�2�4Amga, choose

� = −
C�

4A
�14�

and let

b

c
=

C� � 
C2�2 + 4�4Amga − C2�2�
4A

,

d

e
=

C� � 
C2�2 + 4�4Amga − C2�2�
4C

. �15�

Since 4Amga�C2�2 ,b ,d are positive, and c ,e, are nega-
tive. Now

V� = A�� − b	��� − c	� + A�� − b
��� − c
� +
C2

A
�� − d����

− e��

is an indefinite function.
The positive definite Lyapunov function V is chosen as

V = VI
2 + 	2 + 
2 + �2, �16�

V̇ =
d

dt
�	2 + 
2 + �2� , �17�

since VI is a first integral. By the third equation of Eq. �8�,
the sixth equation of Eq. �4�, and Eq. �6�

V̇ = − 2
d�

dt
= − 2��	 − �
� = 2��
 − �	� �18�

is indefinite. There exists � in which �
��	, V�0, and

V̇�0, where 0���. Since V does not contain t explicitly,
conditions �i�–�iii� in the above theorem are satisfied. We

shall prove that �iv, a� is also satisfied. V̈ can be found as

V̈ = 2��
̇ + 
�̇ − �	̇ − 	�̇� = 2��2 −
C

A
��	 −

C

A
�
�

+
mga

A

2 + �2 +

mga

A
	2� + 2��2� − �	
 −

C

A

�� + �2�

−
�C − A�

A
	��� . �19�

On the boundary of �, ��, V̇=0, i.e.,

�
 − �	 = 0. �20�

We can prove that V̈�0 on ��. There are many cases satis-
fying Eq. �20�.

�a� �= f� ,
= f	, where f can take an arbitrary positive
value except zero. From Eq. �19�,

V̈ = 2�1 + f2���2 −
C

A
��	 +

mga

A
	2� + 2�1 + f2���2�

−
C

A
�	�� . �21�

Since 4Amga�C2�2, the second order terms of V̈ are a posi-

tive definite function of � ,	, while the third order terms of V̈

have no influence on the definiteness of V̈. Therefore V̈�0.
When �= f
, �= f	, or �= f
, �= f	, 
=	 it can be proved

similarly that V̈�0.
�b� 
=�=0. Now

V̈ = 2��2 −
C�

A
�	 +

mga

A
	2� + 2��2� −

C

A
	��� �22�

is a positive definite function of � ,	, i.e., V̈�0.
When 
=	=0; �=�=0 or �=	=0, it can also be easily

obtained that V̈�0.
�c� 
=	=�=0. Now

V̈ = 2�2 + 2�2� �23�

is a positive definite function of � , V̈�0. When 	=
=�=0,

=�=�=0, or 	=�=�=0 it can also be easily obtained that

V̈�0. By the above results, �iv,a� of the theorem is proved.
Since V is positive definite, ���Br−G=0, �iv,b� need

not be proved. V satisfies the Ge-Liu second instability theo-
rem, the sufficient condition of instability for the sleeping
top is

C2�2 � 4Amga . �24�

Together with the above result of Sec. II B, we conclude that
the necessary and sufficient condition for unconditional sta-
bility of the sleeping top is

C2�2 � 4Amga . �25�

NECESSARY AND SUFFICIENT CONDITIONS FOR THE … PHYSICAL REVIEW E 77, 046606 �2008�

046606-3



III. CONDITIONAL DIRECTION STABILITY OF A
SLEEPING TOP DESCRIBED BY KRYLOV EQUATIONS

A. Krylov equations

In Fig. 2, Ox1y1z1 is the inertial frame, where Oz1 is the
vertical axis. Oz is the dynamic symmetrical axis of the
sleeping top with center of gravity c, where Oc=a. The di-
rection of Oz is determined by two angles: 	1, the angle
between the projection of Oz on the Ox1z1 vertical plane, OJ,
and vertical axis Oz1; 
1 is the angle between OJ and Oz1.
The moving frame Oxyz does not participate in the spin mo-
tion of the sleeping top. The motion of Oz is described by 	̇1

and 
̇1. From Fig. 2, �x ,x1�=	1, �y ,y1�=
1. � is the spin
angle of the sleeping top about Oz. The angular velocity of
the sleeping top � is

� = �1 + �2 + �3, �26�

where �1= 	̇1, �2= 
̇1, and �3= �̇. The projections of � on
the principal axes Oz ,Ox ,Oy are, respectively,

p = �̇ + 	̇1 sin 
 ,

q = − 
̇1,r = 	̇1 cos 
1. �27�

The kinetic and potential energies of the top are

T = �C��̇ + 	̇1 sin 
1�2 + A�
̇1
2 + 	̇1

2 cos2 
1��/2, �28�

� = mga cos 	1 cos 
1, �29�

where �= �z ,z1�. By spherical trigonometry, cos �
=cos 	1 cos 
1. A first integral corresponding to cyclic coor-
dinate � is

GZ = Ap = A��̇ + 	̇1 sin 
1� = const, �30�

where Gz is the projection of the angular momentum G of
the top of the Oz axis. Only under condition �30�, two-
degree-of-freedom Lagrange equations for 	1 ,
1, Krylov
equations can be obtained:

A	̈1 cos 
1 − 2A	̇1
̇1 sin 
1 + C�
̇1 = mga sin 	1,

A
̈1 + A	̇1
2 sin 
1 cos 
1 − C�	̇1 cos 
1

= mga sin 
1 cos 	1. �31�

They correspond to four first order differential equations of

four state variables 	1, 
1, 	̇1, and 
̇1, which have zero so-

lution 	1=
1= 	̇1= 
̇1=0. This solution corresponds to un-
disturbed sleeping top motion. Therefore Eq. �31� is the dif-

ferential equation of disturbances 	1, 
1, 	̇1, and 
̇1.

B. Sufficient condition of conditional direction stability

There exist two other first integrals

T + � =
1

2
�C��̇ + 	̇1 sin 
1�2 + A�
̇1

2 + 	̇1
2 cos2 
1��

+ mga cos 	1 cos 
1 = const, �32�

Gz1
= C� cos 	1 cos 
1 + A�
̇ sin 	1

− 	̇ cos 	1 cos 
1 sin 
1� , �33�

where Gz1
is the projection of G on the Oz1 axis. Form the

other two first integrals by Eqs. �30�, �32�, and �33�:

W1 = T + � −
Gz

2

C
=

1

2
C�	̇1

2 cos 2
1 + 
̇1
2�

+ mga�cos 	1 cos 
1 − 1� = const, �34�

W2 = Gz1
= A�
̇1 sin 	1 − 	̇1 cos 	1 cos 
1 sin 
1�

+ C��cos 	1 cos 
1 − 1� = const. �35�

They become zero when the 	1=
1= 	̇1= 
̇1=0. Lyapunov
function is chosen as

V = W1 − �W2, �36�

where � is a constant to be determined to make V positive
definite. Express V in series:

V =
1

2
�A	̇1

2 + 2A�	̇1
1 + �C�� − mga�
1
2� +

1

2
�A
̇1

2

− 2A�
̇1	1 + �C�� − mga�	1
2� + H.O.T. �37�

The degrees of higher order terms �H.O.T.� are no less than
four. When � is chosen as

� = C�/2A �38�

V is a positive definite function of 	1, 
1, 	̇1, 
̇1, and V̇=0.
Lyapunov stability theorem is satisfied. Therefore when
C2�2�4Amga, the sleeping top is conditionally stable.

Since four disturbances 	1, 
1, 	̇1, and 
̇1 are not all arbi-
trary, condition �30�must be satisfied, so we call this stability
conditional stability. In this case only the direction of the
angular velocity vector of the sleeping top is proven to be
stable. When

C2�2 = 4Amga �39�

V becomes

FIG. 2. Sleeping top described by Krylov equations.
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V = V2 + V4 + H.O.T. =
1

2
A�	̇1 + C�
1/2A�2 +

1

2
A�
̇1

−
C�

2A
	1�2

+ V4 + H.O.T., �40�

where V2 is a second degree positive semidefinite function
and V4 is a fourth degree function. When

	̇1 = − �2
1, 
̇1 = �2	1 �41�

V2=0. Substituting Eq. �41� in V4, after a complicated calcu-
lation we obtain

V4 =
mga

8
�	1

2 + 
1
2�2. �42�

Now

V = mga�	1
2 + 
1

2�2/8 + H.O.T., �43�

where H.O.T. are terms of 	1 ,
1 of degree no less than six.
V4 in Eq. �42� is positive definite for 	1 ,
1. We can prove

that V in Eq. �40� is positive definite for 	1 ,
1 , 	̇1 , 
̇1 �16�.
Lyapunov stability theorem is satisfied. Therefore when
C2�2=4Amga, the sleeping top is stable. It is concluded that
the sufficient condition of conditional direction stability is
C2�2�4Amga.

When C2�2�4Amga, by Lyapunov first approximation
theory, the sleeping top is unstable. In this paper, instead of
using first approximation theory, a different instability theo-
rem is used to prove that when C2�2�4Amga, the sleeping
top is unstable.

C. Instability theorem

Consider an autonomous vector differential equation

ẋ = f„x�t�… ∀ t � 0, �44�

where x�Rn, and f :Rn→Rn is continuous. Let x=0 be an
equilibrium point for the system described by Eq. �44�. Then
f�0�=0, ∀t�0.

Theorem. If there exists a Cn positive definite function
V :Rn→R, a ball Br= �x�Rn�x��r	, and

�i� There exists an open set ��Br in which V̇�x�
= ��O�x�2���0.

�ii� O��� �the boundary ��.
�iii� For ���Br, V̇�x�=O��x�4�, V̈�x�= �O��x�2��,
then the equilibrium O of Eq. �24� is unstable.
Proof. For any trajectory initiated in �, we assume that it

can escape � by moving across ��. When a trajectory ap-

proaches and touches �� , V̇ diminishes from �O�x�2� to V̇

=O��x�4� by �i� and �iii�, i.e., V̈ is negative; but by �iii�, V̈
= �O��x�2���0. This shows that it is not true that x�t� leaves �
through ��.

Next we prove that x�t� must leave Br through the sphere
�x�=r. The initial point x0 is in the interior of � and V�x0�
=a�0. The trajectory x�t� starting from x�0�=x0 must
leave �. To prove this fact, we notice that as long as x�t�
is inside �, V�x��a, since V̇�x��0 in �. Let �

=min��V̇�x��x����� and V�x��a	 which exists since

the continuous function V̇�x� has a minimum over the com-
pact set �x����� and V�x��a	. Then ��0 and

V�x�t�� = V�x0� + �
0

t

V̇�x�s��ds � a + �
0

t

�ds = a + � .

�45�

This inequality shows that x�t� cannot stay forever in � be-
cause V is bounded on �. Hence x�t� must leave � through
the sphere �x�=r. The origin is unstable.

D. Sufficient condition for instability and the necessary and
sufficient condition for conditional direction stability

When C2�2�4Amga, choose �=−C� /4A and use b, c,
d, and e in Eq. �15�, where b, d are positive, while c, e are
negative. Now

V� = A�� − b	��� − c	� + A�� − b
��� − c
� +
C2

A
�� − d����

− e�� .

The positive definite Lyapunov function is chosen as

V = 	̇1
2 + 
̇1

2 + 	1
2 + 
1

2. �46�

Through Eq. �31�, indefinite

V̇ = 2
�mga + A�

A
�	1	̇1 + 
1
̇1� + O��	4�� �47�

is obtained. There exists � in which V̇= �O��	1�2���0. We
have

V̈ = 2
�mga + A�

A
mga�	1

2 + 
1
2�

A
+

C�

A
�
1	̇1 − 	1
̇1� + 	̇1

2

+ 
̇1
2� . �48�

In �, when 	1+�
1�0, 	̇1− 
̇1 /��0, where � takes any

positive value except 0, then V̇= �O��	1�2���0. On ��, 	1

+�
1=0 , 	̇1− 
̇1 /�=0, V̇=O��	1�4�, and V̈ becomes

V̈ = 2
�mga + A�

A
mga��2 + 1�

A

1

2

+
C�

A
�� +

1

�
�
1
̇1 + � 1

�2 + 1�
̇1
2� . �49�

By Sylvester theorem, since 4Amga�C2�2, V̈ is positive

definite, i.e., V̈�0 for any �. Similarly, when 	1−�
1

�0, 	̇1+ 
̇1 /��0; 	1+�
̇1�0, 	̇1−
1 /��0; 	1−�
̇1

�0, 	̇1+
1 /��0, we can also prove that V̈�0. The above
theorem is satisfied. When C2�2�4amg, the motion is un-
stable. It is concluded that the necessary and sufficient con-
dition for conditional direction stability of a sleeping top is
also C2�2�4Amga.
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IV. CONDITIONAL NUTATION ANGLE STABILITY FOR A
SLEEPING TOP DESCRIBED BY NUTATION ANGLE

EQUATION

A. Nutation angle equation

In Fig. 3, the symmetric top motion can be described by
the Lagrange equation of three generalized coordinates, pre-
cession angle �, spin angle �, and nutation angle �. Since
� ,� are cyclic coordinates, there are two corresponding first
integrals:

�I1 sin2 � + I3 cos2 ���̇ + I3�̇ cos � = const,

I3��̇ + �̇ cos �� = const, �50�

where I1 is the equatorial principal moment of inertia, and I3
is the axial principal moment of inertia. By Eq. �50�,
� , �̇ ,� , �̇ are absent in the only dynamic equation, nutation
angle equation. For the sleeping top case, the energy equa-
tion is �1�

u̇2 = �1 − u2��
�1 + u − a2�� , �51�

where u=cos � , 
= 2mga / A , a= C� / A . Taking the time
derivative of Eq. �51�, the nutation angle equation is ob-
tained:

ü = − �a2 + 
�u +
3

2

u2 + a2 −




2
. �52�

For the sleeping top, u=cos �=cos 0=1. Let u=1+u�, where
u� is disturbance, the standard form equations of distur-
bances become

u̇� = v�,

v̇� = �2
 − a2�u� +
3

2

u�2. �53�

B. GYC partial region stability theorem

Ge, Yao, and Chen �17,18� gave a stability theorem on the
partial region of the neighborhood �whole space for global
stability� of the origin.

Consider an autonomous differential equation

ẋ = f�x� , �54�

where x�Rn, and f :Rn→Rn is continuous and satisfies the
Lipschitz condition. Let x=0 be an equilibrium point for the
system described by Eq. �56�, and f�0�=0.

We are only interested in stability of this zero solution on
the partial region � �including the boundary� of the neigh-
borhood of the origin which in general may consist of sev-
eral subregions as shown in Fig. 4. It is stipulated that the
state point cannot go out of �.

Definition. The equilibrium point x=0 of Eq. �54� is stable
on � if for each ��0 there is �=�����0 such that

�x�0�� � � ⇒ �x�t�� � � ∀ t � 0, �55�

where x�0 is any point in �.
Let us consider a continuously differentiable function

V�x� given on �1=��H where H is the region �x��h�0.
If V�x��0 in �1 and V�0�=0 expect at origin, V�x� is posi-
tive definite. If V�x�� in �1 and V�0�=0, V�x� is positive
semidefinite.

Theorem. If V�x� is positive definite, V̇�x� through Eq.
�54� is negative semidefinite, x=0 is stable in �.

The proof of this theorem is similar to that of the
Lyapunov stability theorem �19�.

C. Necessary and sufficient condition for conditional nutation
angle stability

There are three cases.
�a� 	2−2
�0.
The positive definite Lyapunov function is chosen as

V =
v�2

2
+

�	2 − 2
�u�2

2
−


u�3

2
. �56�

The time derivative of V̇ through any solution of Eq. �53� is

V̇ = v��2
 − 	2�u� +
3
u�2

2
� − �2
 − 	2�u� +

3
u�2

2
�v�

= 0.

By Lyapunov stability theorem, the motion is stable.
�b� 	2−2
=0.
Equation �53� becomes

FIG. 3. Three generalized coordinates � , �, and �. FIG. 4. Partial regions � and �1.
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u̇� = v�,

v̇� =
3
u�2

2
. �57�

Since u=cos 0=1 is the maximum value of cos �, u�=u−1
is always negative. The partial region is the left half plane of
the u�v� plane as shown in Fig. 5.

The partial region positive definite Lyapunov function is
chosen as

V =
v�2

2
−


u�3

2
. �58�

The time derivative of V through any solution of Eq. �57� is

V̇ =
3v�
u�2

2
−

3
u�2v�

2
= 0. �59�

By GYC partial region stability theorem, the motion is
stable.

�c� 	2−2
�0.
The indefinite Lyapunov function is chosen as

V = u�v�. �60�

The time derivation of V through any solution of Eq. �53� is

V̇ = v�u�̇ + v�̇u� = v�2 + u��2
 − 	2�u� +
3
u�2

2
� = v�2

+ �2
 − 	2�u�2 +
3
u�3

2
, �61�

which is positive definite. By Lyapunov first instability theo-
rem, the motion is unstable.

From above results, we obtain that the necessary and suf-
ficient condition for conditional nutation angle stability is
also

C2�2 � 4Amga . �62�

Since two conditions in Eq. �50� must be satisfied, the sta-
bility is called the conditional nutation angle stability.

V. CONCLUSIONS

The necessary and sufficient condition for the stability of
a sleeping top described by three forms of dynamic equations
is obtained. For dynamic equations of six stable variables,
Euler equations, and Poisson equations, unconditional stabil-
ity is obtained by the Lyapunov direct method and the Ge-
Liu second instability theorem. For dynamic equations of a
two-degree-of-freedom system, Krylov equations, condi-
tional direction stability is obtained by the Lyapunov direct
method and a different instability theorem. For dynamic
equations of a one-degree-of-freedom system, a nutation
angle equation, conditional nutation angle stability is ob-
tained by the Lyapunov direct method and GYC partial re-
gion stability theorem. The necessary and sufficient condi-
tion for a sleeping top obtained from the above three cases is
the same:

C2�2 � 4Amga . �63�

By using the direct method, unconditional instability, condi-
tional direction stability for C2�2�4Amga, conditional di-
rection instability, and three cases for conditional nutation
angle stability and instability, the results were obtained in
this paper.

The classical problem of classical mechanics has been
studied for more than 100 years and is solved in this paper
by the direct method only without the use of first approxi-
mation theory.
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