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In this project (first year), multichanneled various excitations(various time function, chaotic
function, noise, etc)are used to increase the reliability of synchronization in the accident of
interruption of part of the channels.

The point of research:
1. The study of chaos of Mathieu-van der Pol system and Ikeda- Mackey-Glass system: By phase
portraits, bifurcation diagrams, power spectra, Lyapunov exponents, the various chaotic
behaviors of these systems will be studied.

2. New uncoupled synchronization method.
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Fig. 1 Phase portraits and Poincaré maps for autonomous new Mathieu-van der Pol system:
(a) period 1 for d =0.1, (b) period 2 for d =1, (c) period 8 for d =10, (d) chaotic for
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Fig. 2 Bifurcation diagram for autonomous new Mathieu-van der Pol system: (a) d=0~45
(b) d=15~25.

ot N T e T T L

' g T : e | iy
2
-3
wi
_I-I
5

& =

& -

- L [l | L Il | L

5 [ 15 EX] F 0 * an

il - -/.N‘—/-—u;-_‘l':va*:.‘“rv?m =3 w___\(/,___\__ — _“Y — o
VW Y | - Tl e
a5
L
o
1k |
15k 4
- L I 1 i I I i
15 16 7 18 19 D 7] 7 T >

Q. H-

(b)



Fig. 3 Lyapunov exponents for autonomous new Mathieu-van der Pol system: (a) d=0~45
(b) d=15~25.
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Fig. 4 Phase portraits and Poincaré maps for autonomous new Ikeda- Mackey-Glass system:
(a) period 2 for K, =13.41, (b) chaotic for K, =14.1.

Fig. 5 Bifurcation diagram for autonomous new Ikeda- Mackey-Glass system.
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Fig. 6 Phase portraits of error dynamics for autonomous new Mathieu-van der Pol system by
GYC Partial Region Stability Theory.

120 150
1) ol e g 1 [
] i 100
— o ™ o
[} o @ |||I
Pl \ i \
0 %
By El ] ] w0 m g E &0 &0 a0 ]
t t
il ! . 120 )
100 iy 100
@0 F} &0
o ® ; 0
® w 3,
o 0 AN
o ] o &0 W 0 G ] 0 & ® I}

Fig. 7 Time histories of errors for autonomous new Mathieu-van der Pol system when

generalized synchronization is obtained.
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Fig. 8 Time histories of x;, X2, X3, Y1, y2, y3 for autonomous new Mathieu-van der Pol system



when generalized synchronization is obtained.

Fig. 9 Phase portraits of error dynamics for autonomous new Ikeda- Mackey-Glass system by
GYC Partial Region Stability Theory.
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Fig. 10 Time histories of errors for autonomous new lkeda- Mackey-Glass system when

generalized synchronization is obtained.
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Fig. 8 Time histories of x;, X2, X3, Y1, Y2, y3 for autonomous new Ikeda- Mackey-Glass system

when generalized synchronization is obtained.

4. EWEATN 24 £ ko AT 2§42 p 5 ih Mathieu-van der Pol ik st#2 lkeda-
Mackey-Glass & vz 5 * o

342t

1. E. L. Mathieu, 1868, “Mémoire sur le mouvement vibratoire d’une membrane de forme
elliptique”, J. Math. Pures Appl., Vol. 13, pp. 137-203.

2. M. Mond, G. Cederbaum, P. B. Khan, and Y. Zarmi, 1993, “Stability Analysis Of The
Non-Linear Mathieu Equation”, Journal of Sound and Vibration, Vol. 167, pp. 77-89.

3. J. W. Norris, 1994, “The Nonlinear Mathieu Equation”, International Journal of Bifurcation
and Chaos, Vol. 4, pp. 71-86.

4. Yusry O. El-Dib, 2001, “Nonlinear Mathieu Equation and Coupled Resonance Mechanism”,
Chaos, Solitons and Fractals, Vol. 12, pp. 705-720.

5. Leslie Ng and Richard Rand, 2002, “Bifurcations in a Mathieu Equation with Cubic
Nonlinearities”, Chaos, Solitons and Fractals, Vol. 14, pp. 173-181.

6. Zheng-Ming Ge and Chang-Xian Yi, 2007, “Chaos in a Nonlinear Damped Mathieu System,
in a Nano Resonator System and in Its Fractional Order Systems”, Chaos, Solitons and
Fractals, Vol. 32, pp. 42-61.

7. Zheng-Ming Ge and Chang-Xian Yi, 2006, “Parameter Excited Chaos Synchronization of
Integral and Fractional Order Nano Resonator System”, accepted by Mathematical Methods,
Physical Models and Simulation in Sicience & Technology.

8. B. van der Pol, 1920, “A Theory of the Amplitude of Free and Forced Triode Vibrations”,
Radio Review, Vol. 1, 701-710.

9. B. van der Pol and J. van der Mark, 1927, “Frequency Demultiplication”, Nature, Vol. 120, pp.
363-364.

10. B. van der Pol, 1927, “Forced Oscillations in a Circuit with Non-Linear Resistance
(Reception with Reactive Triode)”, The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science Ser. 7, Vol. 3, pp. 65-80.

11.Y. Ashkenazy, C. Goren, and L. P. Horwitz, 1998, “Chaos of the Relativistic Parametrically
Forced van der Pol Oscillator”, Physics Letters A, Vol. 243, pp. 195-204.

12. Gamal M. Mahmoud, Ahmed A. M. Farghaly, 2004, “Chaos Control of Chaotic Limit Cycles
of Real and Complex van der Pol Oscillators”, Chaos, Solitons and Fractals, Vol. 21, pp.
915-924.

13. Munehisa Sekikawa, Naohiko Inaba, and Takashi Tsubouchi, 2004, “Chaos via Duck Solution
Breakdown in a Piecewise Linear van der Pol Oscillator Driven by an Extremely Small
Periodic Perturbation”, Physica D, Vol. 194, pp. 227-249.

14. F. M. Moukam Kakmeni, Samuel Bowong, Clement Tchawoua, and Ernest Kaptouom, 2004,
“Chaos Control and Synchronization of a ®6-van der Pol Oscillator”, Physics Letters A, Vol.
322, pp. 305-323.

15. M. Siewe Siewe, F. M. Moukam Kakmeni, C. Tchawoua, and P. Woafo, 2005, “Bifurcations
8



16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

and Chaos in the Triple-Well Formula Not Shown -van der Pol Oscillator Driven by External
and Parametric Excitations”, Physica A, Vol. 357, pp. 383-396.

Cristina Stan, C. P. Cristescu, and M. Agop, 2007, “Golden Mean Relevance for Chaos
Inhibition in a System of Two Coupled Modified van der Pol Oscillators”, Chaos, Solitons
and Fractals, Vol. 31, pp. 1035-1040.

Zheng-Ming-Ge and An-Ray Zhang, 2005, “Chaos in a Modified Van der Pol System and in
Its Fractional Order Systems”, accepted by Chaos, Solitons amd Fractals.

Zheng-Ming Ge and An-Ray Zhang, 2006, “Anticontrol of Chaos of Fractional Order
Modified Van der Pol Systems”, accepted by Applied Mathematics and Computation.
Zheng-Ming Ge and Mao-Yuan Hsu, 2006, “Chaos Excited Chaos Synchronizations of
Integral and Fractional Oredr Generalized Van der Pol Systems”, accepted by Chaos, Solitons
and Fractals.

Zheng-Ming Ge and Mao-Yuan Hsu, 2006, “Chaos in a Generalized Van der Pol System and
in Its Fractional Order System”, accepted by Chaos, Solitons and Fractals.

K. Ikeda, 1979, “Multiple-Valued Stationary State and Its Instability of the Transmitted Light
by a Ring Cavity System”, Optics Communications, Vol. 30, pp. 257-261.

K. Ikeda, H. Daido, and O. Akimoto, 1980, “Optical Turbulence: Chaotic Behavior of
Transmitted Light from a Ring Cavity”, Physical Review Letters, Vol. 45, pp. 709-712.

J. Garcia-Ojalvo and R. Roy, 1997, “Intracavity Chaotic Dynamics in Ring Lasers with an
Injected Signal”, Physics Letters A, Vol. 229, pp. 362-366.

E. M. Shahverdiev, R. A. Nuriev, R. H. Hashimov, and K. A. Shore, 2005, “Parameter
Mismatches, Variable Delay Times and Synchronization in Time-Delayed Systems”, Chaos,
Solitons and Fractals, Vol. 25, pp. 325-331.

M. C. Mackey and L. Glass, 1977, “Oscillation and Chaos in Physiological Control Systems”,
Science, Vol. 197, pp. 287-289.

L. Glass and M. C. Mackey, 1988, From Clocks to Chaos: The Rhythms of Life, Princeton
University Press.

A. Namajunas, K. Pyragas, and A. TamasSevicius, 1995, “Stabilization of an Unstable Steady
State in a Mackey-Glass System”, Physics Letters A, Vol. 204, pp. 255-262.

A. Namajunas, K. Pyragas, and A. TamaSevicius, 1995, “An Electronic Analog of the
Mackey-Glass System”, Physics Letters A, Vol. 201, pp. 42-46.

E. Liz, E. Trofimchuk, S. Trofimchuk, 2002, “Mackey—Glass Type Delay Differential
Equations Near the Boundary of Absolute Stability”, Journal of Mathematical Analysis and
Applications, Vol. 275, pp. 747-760.

E. M. Shahverdiev, R. A. Nuriev, L. H. Hashimova, E. M. Huseynova, and R. H. Hashimov,
2005, “Chaos Synchronization in the Multifeedback Mackey-Glass Model”, International
Journal of Modern Physics B, Vol. 19, pp. 3613-3618.

L. Berezansky and E. Braverman, 2006, “Mackey-Glass Equation with Variable Coefficients”,
Computers and Mathematics with Applications, Vol. 51, pp. 1-16.

Zheng-Ming Ge and Yu-Ting Wong, 2006, “Chaos in Integral and Fractional Order Double
Mackey-Glass Systems”, accepted by Mathematical Methods, Physical Models and



33

34

35

36.

37.

38.

39.

40.

41.

42.

43

44,

45.

46.

47.

48.

49.

Simulation in Sicience & Technology.

. E. M. Shahverdiev, 2004, “Synchronization in Systems with Multiple Time Delays”, (Ikeda

Systems), Physical Review E, Vol. 70, pp. 067202.

. E. M. Shahverdiev and K. A. Shore, 2005, “Generalized Synchronization in Time-Delayed

Systems”, (Ikeda Systems), Physical Review E, Vol. 71, pp. 016201.

. E. M. Shahverdiev et al, 2006, “Inverse Chaos Synchronization in Linearly Coupled Systems

with Multiple Time-Delays”, (Ikeda Systems), Chaos, Solitons, and Fractals, Vol. 29, pp.
838-844.

Chil-Min Kim, Won-Ho Kye, Sunghwan Rim, and Soo-Young Lee, 2004, “Communication
Key Using Delay Times in Time-Delayed Chaos Synchronization”, Physics Letters A Vol. 333,
pp. 235-240.

Atsushi Uchida and Shigeru Yoshimori, 2004, “Synchronization of Chaos in Microchip
Lasers and Its Communication Applications”, Comptes Rendus Physique, Vol. 5, pp. 643-656.
E. N. Sanchez, L. J. Ricalde, 2003, “Chaos Control and Synchronization, with Input
Saturation, via Recurrent Neural Networks”, Neural Networks, Vol. 16, pp. 711-717.
Yao-Chen Hung, Ming-Chung Ho, Jiann-Shing Lih, and I[-Min Jiang, 2006, ‘“Chaos
Synchronization of Two Stochastically Coupled Random Boolean Networks”, Physics Letters
A, Vol. 356, pp. 35-43.

A. Raffone and C. van Leeuwen, 2003 “Dynamic Synchronization and Chaos in an
Associative Neural Network with Multiple Active Memories”, Chaos, Vol. 13, pp. 1090-104.
Kanako Suzuki, Yoh Imai, 2004, “Periodic Chaos Synchronization in Slave Subsystems
Using Optical Fiber Ring Resonators”, Optics Communications, Vol. 241, pp. 507-512.
Er-Wei Bai, Karl E. Lonngren, and J. C. Sprott, 2002, “On the Synchronization of a Class of
Electronic Circuits that Exhibit Chaos”, Chaos, Solitons and Fractals, Vol. 13, pp. 1515-1521.

. Y. Zhang, S. Q. Hu, and G. H. Du, 1999, “Chaos Synchronization of Two Parametrically

Excited Pendulums”, Journal of Sound and Vibration, Vol. 223, pp. 247-254.

A. Uchida, S. Kinugawa, and S. Yoshimori, 2003, “Synchronization of Chaos in Two
Microchip Lasers by Using Incoherent Feedback Method”, Chaos, Solitons and Fractals, Vol.
17, pp. 363-368.

Fan Zhang and Pak L. Chu, 2004, “Effect of Coupling Strength on Chaos Synchronization
Generated by Erbium-Doped Fiber Ring Laser”, Optics Communications, Vol. 237, pp.
213-219.

Yan-Ni Li, Lan Chen, Zun-Sheng Cai, and Xue-zhuang Zhao, 2004, “Experimental Study of
Chaos Synchronization in the Belousov—Zhabotinsky chemical system”, Chaos, Solitons and
Fractals, Vol. 22, pp. 767-771.

A. Ucar, K. E. Lonngren, and Er-Wei Bai, 2007, “Chaos Synchronization in RCL-Shunted
Josephson Junction via Active Control”, Chaos, Solitons and Fractals, Vol. 31, pp. 105-111.

Y. Imai, H. Murakawa, and T. Imoto, 2003, “Chaos Synchronization Characteristics in
Erbium-Doped Fiber Laser Systems”, Optics Communications, Vol. 217, pp. 415-420.

R. McAllister, A. Uchida, R. Meucci, R. Roy, 2004, “Generalized Synchronization of Chaos:
Experiments on a Two-Mode Microchip Laser with Optoelectronic Feedback”, Physica D,

10



50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Vol. 195, pp. 244-262.

Z.-M. Ge and T.-N. Lin, 2001, “Chaos, Chaos Control and Synchronization of Gyrostat
System”, Journal of Sound and Vibration, Vol. 251, pp.519-542.

Zheng-Ming Ge, Tsung-Chih Yu and Yen-Sheng Chen, 2003, “Chaos Synchronization of a
Horizontal Platform System”, Journal of Sound and Vibration, Vol. 268, pp. 731-749.

Z-M. Ge and T.-N. Lin, 2003, “Chaos, Chaos Control and Synchronization of
Electro-Mechanical Gyrostat System”, Journal of Sound and Vibration, Vol.259, pp. 585-603.
Z.-M. Ge and Hong-Wen Wu, 2004, "Chaos Synchronization and Chaos Anticontrol of a
Suspended Track with Moving Loads", Journal of Sound and Vibration, Vol. 270, pp.
685-712.

Zheng-Ming Ge and Yen-Sheng Chen, 2004, “Synchronization of Unidirectional Coupled
Chaotic Systems via Partial Stability”, Chaos, Solitons and Fractals, Vol. 21, pp. 101-111.
Zheng-Ming Ge, Chia-Yang Yu and Yen-Sheng Chen, 2004, “Chaos Synchronization and
Anticontrol of a Rotationally Supported Simple Pendulum”, JSME International Journal,
Series C, Vol. 47, No. 1, pp. 233-241.

Zheng-Ming Ge and Wei-Ying Leu, 2004, “Anti-Control of Chaos of Two-degrees-of-
Freedom Louderspeaker System and Chaos Synchronization of Different Order Systems”,
Chaos, Solitons &Fractals, Vol. 20, pp.503-521

Zheng-Ming Ge and Chien-Cheng Chen, 2004, “Phase Synchronization of Coupled Chaotic
Multiple Time Scales Systems”, Chaos, Solitons & Fractals, Vol. 20, pp. 639-647.

Z.-M. Ge and C.-M. Chang, 2004, “Chaos Synchronization and Parameters Identification of
Single Time Scale Brushless DC Motors”, Chaos, Solitons and Fractals, Vol. 20, pp. 883-903.
Zheng-Ming Ge and Wei-Ying Leu, 2004, “Chaos Synchronization and Parameter
Identification for Loudspeaker System”, Chaos, Solitons & Fractals, Vol. 21, pp. 1231-1247.
Zheng-Ming Ge, Chui-Chi Lin and Yen-Sheng Chen, 2004, “Chaos, Chaos Control and
Synchronization of Vibrometer System”, Journal of Mechanical Engineering Science, Vol.218,
pp-1001-1020.

Zheng-Ming Ge, Jui-Wen Cheng and Yen-Sheng Chen, 2004, “Chaos Anticontrol and
Synchronization of Three Time Scales Brushless DC Motor System”, Chaos, Solitons &
Fractals Vol. 22, pp.1165-1182.

Zheng-Ming Ge and Jui-Kai Lee, 2005, “Chaos Synchronization and Parameter Identification
for Gyroscope System”, Applied Mathematics and Computation, Vol. 163, pp. 667-682.

Z.-M. Ge and C.-I Lee, 2005, “Anticontrol and Synchronization of Chaos for an Autonomous
Rotational Machine System with a Hexagonal Centrifugal Governor”, Journal of Sound and
Vibration Vol. 282, pp. 635-648.

Zheng-Ming Ge and Ching-I Lee, 2005, “Control, Anticontrol and Synchronization of Chaos
for an Autonomous Rotational Machine System with Time-Delay”, Chaos, Solitons and
Fractals Vol.23, pp.1855-1864.

Zheng-Ming Ge and Jui-Wen Cheng, 2005, “Chaos Synchronization and Parameter
Identification of Three Time Scales Brushless DC Motor System”, Chaos, Solitons and
Fractals Vol. 24, pp.597-616.

11



66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

Zheng-Ming Ge, Cheng-Hsiung Yang, 2005, “Generalized Synchronization of Quantum-CNN
Chaotic Oscillator with Different Order Systems”, accepted by Chaos, Solitons and Fractals.
Zheng-Ming Ge, Yen-Sheng Chen, 2005, “Adaptive Synchronization of Unidirectional and
Mutual Coupled Chaotic Systems”, Chaos, Solitons and Fractals. Vol. 26, pp. 881-888.

Z.-M. Ge, C.-M. Chang, Y.-S. Chen, 2006, “Anti-Control of Chaos of Single Time Scale
Brushless DC Motor and Chaos Synchronization of Different Order Systems”, Chaos,
Solitons and Fractals, Vol. 27, pp.1298-1315

Zheng-Ming Ge and Guo-Hua Lin, 2005, “Complete, Lag and Anticipated Synchronization of
a BLDCM Chaotic System”, accepted by Chaos, Solitons and Fractals.

Zheng-Ming Ge and Yen-Sheng Chen, 2005, “Synchronization of Mutual Coupled Chaotic
Systems via Partial Stability Theory”, accepted by Chaos, Solitons and Fractals.
Zheng-Ming-Ge and Wei-Ren Jhuang, 2005, “Chaos, Its Control and Synchronization of a
Fractional Order Rotational Mechanical System with a Centrifugal Governor”, accepted by
Chaos, Solitons and Fractals.

Zheng-Ming Ge and Cheng-Hsiung Yang, 2006, “Synchronization of Complex Chaotic
Systems in Series Expansion”, accepted by Chaos, Solitons and Fractals.

M.T.Yassen, 2005, “Controlling chaos and synchronization for new chaotic system using
linear feedback control”, Chaos, Solitons and Fractals, Vol. 26, pp. 913-920.

Cristina Morel, Marc Bourcerie and FranAAois Chapeau-Blondeau, 2005, “Generating
independent chaotic attractors by chaos anticontrol in nonlinear circuits “, Chaos, Solitons
and Fractals, Vol. 26, pp. 541-549.

Hongtao Lu and Xinzhen Yu, 2005, “Local bifurcations in delayed chaos anticontrol systems”,
Journal of Computational and Applied Mathematics, Vol. 181, pp. 188-199.

Yan Li and Xu Zhang, 2006, “Controlling localized spatiotemporal chaos using feedback
control method”, Physics Letters A, Vol. 357, pp. 209-212.

Yinping Zhang and Jitao Sun, 2005, “Controlling chaotic Lu systems using impulsive
control”, Physics Letters A, Vol. 342, pp. 256-262.

Yuxia Li, Xinzhi Liu and Hongtao Zhang, 2005, “Dynamical analysis and impulsive control
of a new hyperchaotic system”, Mathematical and Computer Modelling, Vol. 42, , pp.
1359-1374.

Niranjan Chakravarthy, Kostas Tsakalis , Leon D lasemidis and Andreas Spanias, 2006, ” A
multi-dimensional scheme for controlling unstable periodic orbits in chaotic systems”,
Physics Letters A, Vol. 349, pp. 116-127.

Chaohai Tao, Chunde Yang, Yan Luo, Hongxia Xiong and Feng Hu, 2005, “Speed feedback
control of chaotic system”, Chaos, Solitons and Fractals, Vol. 23, pp. 259-263.

Ju H. Park, 2005, “Controlling chaotic systems via nonlinear feedback control”, Chaos,
Solitons and Fractals, Vol. 23, pp. 1049-1054.

Aria Alasty and Hassan Salarieh, 2007, “Nonlinear feedback control of chaotic pendulum in
presence of saturation effect”, Chaos, Solitons and Fractals, Vol. 31, pp. 292-304.

Jia Hu, Shihua Chen and Li Chen, 2005, “Adaptive control for anti-synchronization of Chua's
chaotic system”, Physics Letters A, Vol. 339, pp. 455-460.

12



84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

Zheng-Ming Ge and Ching-I Lee, 2005, “Control, anticontrol and synchronization of chaos
for an autonomous rotational machine system with time-delay”, Chaos, Solitons and Fractals,
Vol. 23, pp. 1855-1864.

Jun Guo Lu, 2006, “Chaotic behavior in sampled-data control systems with saturating
control”, Chaos, Solitons and Fractals, Vol. 30, pp. 147-155.

R. Yamapi and S. Bowong, 2006, “Dynamics and chaos control of the self-sustained
electromechanical device with and without discontinuity”, Communications in Nonlinear
Science and Numerical Simulation, Vo. 11, pp. 355-375.

Zheng-Ming Ge, 1999, Motion Stability of Classical Gyroscopes, pp.1-391, Gau Lih Book
Company, Taipei, R.O.C.

Zheng-Ming Ge, 1999, Nonlinear and Chaotic Dynamics of Satellites, pp.1-376, Gau Lih
Book Company, Taipei, R.O.C.

Zheng-Ming Ge, 2000, Nonlinear and Chaotic Dynamics of Gyroscopes, pp.1-458, Gau Lih
Book Company, Taipei, R.O.C.

Zheng-Ming Ge, 2000, Motion Stability of Nonclassical Gyroscopes, pp.1-406, Gau Lih
Book Company, Taipei, R.O.C.

Zheng-Ming Ge, 2001, Bifurcation, Chaos and Chaos Control of Mechnical Systems,
pp-1-505, Gau Lih Book Company, Taipei, R.O.C.

Zheng-Ming Ge, 2001, Developing Theory of Motion Stability, pp.1-510, Gau Lih Book
Company, Taipei, R.O.C.

Zheng-Ming Ge, 2002, Advanced Dynamics for Variable Mass Systems with Topics on
Dynamics, pp.1-418, Gau Lih Book Company, Taipei, R.O.C.

Zheng-Ming Ge, 2002, Chaos Control for Rigid Body Systems, pp.1-494, Gau Lih Book
Company, Taipei, R.O.C.

Zheng-Ming Ge and Chien-Chih Fang, 2001, "Dynamic Analysis and Control of Chaos for a
Suspended Track with Moving Load", Transactions of Canadian Society for Mechanical
Engineering. Vol. 25, No. 1. (SCI)

Z.-M. Ge and P.-C. Tsen, 2001, "Nonlinear Dynamic Analysis and Control of Chaos for a
Two-Degree-of-Freedom Physical Pendulum with Vibration Support", Journal of Sound and
Vibration Vol. 240, No.2. (SCI, Impact Factor: 0.898)

Z.-M. Ge and C.-H. Yang, H.-H. Chen and S.-C. Lee, 2001, "Nonlinear Dynamics and Chaos
Control of a Physical Pendulum with Vibrating and Rotating Support", Journal of Sound and
Vibration, Vol. 242, No. 2. (SCI, Impact Factor: 0.898)

Zheng-Ming Ge and Jung-Kui Yu, 2001, "Pragmatical Asymtopical Stability of Spacecrafts",
Journal of the CSME, Vol. 22, No.1. (EI)

Zheng-Ming Ge, Jia-Haur Leu and Tsung-Nan Lin, 2001, "Regular and Chaotic Dynamic
Analysis for a Vertically Vibrating and Rotating Elliptic Tube Containing a Particle",
International Journal of JSME, Series C, Vol. 44, No. 3. (SCI)

100. Z.-M. Ge and T.-N. Lin, 2001, “Chaos, Chaos Control and Synchronization of Gyrostat

System”, Journal of Sound and Vibration Vol. 253, No. 3. (SCI, Impact Factor: 0.898)

101. Z.-M. Ge, 2001, "An Error in Gauss’ and Appell’s Proof of Gauss’ Principle of Least

13



Constraint", Journal of CSME, Vol. 22, No. 4. (EI)

102. Z.-M. Ge and J.-S. Shiue, 2002, "Nonlinear Dynamics and Control of Chaos for
Tachometer", Journal of Sound and Vibration Vol. 253, No. 4. (SCI, Impact Factor: 0.898)
103. Z.-M. Ge, S.-C. Lee and P.-C. Tzen, 2002, "Parametric Analysis and Fractal-like Basins of
Attraction by Modified Interpolates Cell Mapping", Journal of Sound and Vibration Vol. 253,

No. 3. (SCI, Impact Factor: 0.898)

104. Zheng-Ming Ge and Li-Wei Chu, 2002, "The Caculation of Real- and the Design of
Robust Stabilizing Controllers Using Interval Method”, Journal of the Chinese Institute of
Electrical Engineering, Vol. 9, No. 1. (EI)

105. Zheng-Ming Ge, Tsung-Chih Yu and Yen-Sheng Chen, 2003, “Chaos Synchronization of a
Horizontal Platform System”, Journal of Sound and Vibration Vol., 2003, pp.731-749. (SCI,
Impact Factor: 0.898)

106. Z.-M. Ge and C.-I. Lee, 2003, "Nonlinear Dynamics and Control of Chaos for a Rotational
Machine with a Hexagonal Centrifugal Governor with a Spring", Journal of Sound and
Vibration, Vol.262, pp845-864, (SCI, Impact Factor: 0.898).

107.Z.-M. Ge and T.-N. Lin, 2003, “Chaos, Chaos Control and Synchronization of
Electro-Mechanical Gyrostat System”, Journal of Sound and Vibration, Vol.259, No.3 (SCI,
Impact Factor: 0.898).

108. Zheng-Ming Ge and Hong-Wen Wu, 2004, “Chaos Synchronization and Chaos Anticontrol
of a Suspended Track with Moving Loads”, Journal of Sound and Vibration Vol.270,
pp-685-712. (SCI, Impact Factor: 0.898)

109. Zheng-Ming Ge, Chia-Yang Yu and Yen-Sheng Chen, 2004, “Chaos Synchronization and
Anticontrol of a Rotational Supported Simple Pendulum”, JSME International Journal, Series
C, Vol.47, No.1, pp.233-241 (SCI, Impact Factor: 0.219).

110. Z.-M. Ge and S.-C. Lee, 2004, "Parameters Used and Accuracies Obtained in MICM Global
Analyses (Authors’ Reply)", Journal of Sound and Vibration, Vol.272, pp.1079-1085 (SCI,
Impact Factor: 0.898).

111. Zheng-Ming Ge and Yen-Sheng Chen, 2004, “Synchronization of Unidirectional Coupled
Chaotic Systems via Partial Stability”, Chaos, Solitons & Fractals Vol.21, pp.101-111. (SCI,
Impact Factor: 1.938)

112. Zheng-Ming Ge and Wei-Ying Leu, 2004, “Anti-Control of Chaos of
Two-degrees-of-Freedom Louderspeaker System and Chaos Synchronization of Different
Order Systems”, Chaos, Solitons & Fractals Vol.20, pp.503-521 (SCI, Impact Factor: 1.938).

113. Zheng-Ming Ge and Wei-Ying Leu, 2004, “Chaos Synchronization and Parameter
Identification for Loudspeaker System”, Chaos, Solitons & Fractals Vol.21, pp.1231-1247
(SCI, Impact Factor: 1.938).

114. Zheng-Ming Ge and Chien-Cheng Chen, 2004, “Phase Synchronization of Coupled Chaotic
Multiple Time Scales Systems”, Chaos, Solitons & Fractals Vol.20, pp.639-647. (SCI, Impact
Factor: 1.938).

115. Z.-M. Ge and C.-M. Chang, 2004, “Chaos Synchronization and Parameters Identification of
Single Time Scale Brushless DC Motors”, Chaos, Solitons and Fractals Vol.20, pp.883-903.

14



(SCI, Impact Factor: 1.938).

116. Zheng-Ming Ge, Shi-Hung Lee and Ching-I Lee, 2004, “Regular and Chaotic Dynamic
Analysis and Control of Chaos for a Vertically Vibrating and Rotating Circular Tube
Containing a Particle”, Transaction of Canadian Society of Mechanical Engineering Vol. 28,
No. 3-4, pp. 445-475. (SCI)

117. Zheng-Ming Ge, Chui-Chi Lin and Yen-Sheng Chen, 2004, “Chaos, Chaos Control and
Synchronization of Vibrometer System”, Journal of Mechanical Engineering Science, Vol.218,
pp-1001-1020. (SCI, Impact Factor: 0.277).

118. Zheng-Ming Ge, Jui-Wen Cheng and Yen-Sheng Chen, 2004, “Chaos Anticontrol and
Synchronization of Three Time Scales Brushless DC Motor System”, Chaos, Solitons &
Fractals Vol. 22, pp.1165-1182. (SCI, Impact Factor: 1.938).

119. Zheng-Ming Ge and Jui-Kai Lee, 2005, “Chaos Synchronization and Parameter
Identification for Gyroscope System”, Applied Mathematics and Computation, Vol. 163, pp.
667-682. (SCI, Impact Factor: 0.688).

120. Z.-M. Ge and C.-I Lee, 2005, “Anticontrol and Synchronization of Chaos for an
Autonomous Rotational Machine System with a Hexagonal Centrifugal Governor”, Journal of
Sound and Vibration Vol. 282, pp. 635-648. (SCI, Impact Factor: 0.828).

121. Zheng-Ming Ge, Chun-Lai Hsiao and Yen-Sheng Chen, 2005, “Nonlinear Dynamics and
Chaos Control for a Time Delay Duffing System”, Int. J. of Nonlinear Sciences and
Numerical Simulation Vol. 6, No. 2, pp. 187-199. (SCI, Impact Factor: 2.345).

122. Zheng-Ming Ge and Ching-I Lee, 2005, “Control, Anticontrol and Synchronization of Chaos
for an Autonomous Rotational Machine System with Time-Delay”, Chaos, Solitons and
Fractals Vol.23, pp.1855-1864. (SCI, Impact Factor: 1.938).

123. Zheng-Ming Ge and Jui-Wen Cheng, 2005, “Chaos Synchronization and Parameter
Identification of Three Time Scales Brushless DC Motor System”, Chaos, Solitons and
Fractals Vol. 24, pp.597-616. (SCI, Impact Factor: 1.938).

124. Zheng-Ming Ge, Cheng-Hsiung Yang, 2005, “The Generalized Synchronization of
Quantum-CNN Chaotic Oscillator with Different Order Systems”, accepted by Chaos,
Solitons and Fractals. (SCI, Impact Factor: 1.938).

125. Zheng-Ming Ge, Yen-Sheng Chen, 2005, “Adaptive Synchronization of Unidirectional and
Mutual Coupled Chaotic Systems”, Chaos, Solitons and Fractals. Vol. 26, pp. 881-888. (SCI,
Impact Factor: 1.938).

126. Z.-M. Ge, C.-M. Chang, Y.-S. Chen, 2006, “Anti-Control of Chaos of Single Time Scale
Brushless DC Motor and Chaos Synchronization of Different Order Systems”, Chaos,
Solitons and Fractals, Vol. 27, pp.1298-1315 (SCI, Impact Factor: 1.938).

127. Hsien-Keng  Chen, Zheng-Ming Ge, 2005, “Bifurcation and Chaos of a
Two-Degree-of-Freedom Dissipative Gyroscope”, Chaos, Solitons and Fractals. Vol. 24, pp.
125-136. (SCI, Impact Factor: 1.938).

128. Zheng-Ming Ge and Guo-Hua Lin, 2005, “Complete, Lag and Anticipated Synchronization
of a BLDCM Chaotic System”, accepted by Chaos, Solitons and Fractals. (SCI, Impact Factor:
1.938).

15



129. Zheng-Ming Ge and Yen-Sheng Chen, 2005, “Synchronization of Mutual Coupled Chaotic
Systems via Partial Stability Theory”, accepted by Chaos, Solitons and Fractals. (SCI, Impact
Factor: 1.938).

130. Zheng-Ming Ge and Chang-Xian Yi, 2005, “Chaos in a Nonlinear Damped Mathieu System,
in a Nano Resonator System and in Its Fractional Order Systems”, accepted by Chaos,
Solitons and Fractals.(SCI, Impact Factor: 1.938).

131. Zheng-Ming Ge and Chan-Yi Ou,2005, “Chaos in a Fractional Order Modified Duffing
System”, accepted by Chaos, Solitons and Fractals. (SCI, Impact Factor: 1.938).

132. Zheng-Ming-Ge and An-Ray Zhang, 2005, “Chaos in a Modified Van der Pol System and in
Its Fractional Order Systems”, accepted by Chaos, Solitons amd Fractals. (SCI, Impact factor:
1.938).

133. Zheng-Ming-Ge and Wei-Ren Jhuang, 2005, “Chaos, Its Control and Synchronization of a
Fractional Order Rotational Mechanical System with a Centrifugal Governor”, accepted by
Chaos, Solitons and Fractals. (SCI, Impact factor: 1.938).

134. Zheng-Ming-Ge and Kun-Wei Yang, 2005, “Chaotic Ranges of a Unified Chaotic System
and Its Chaos for Five Periodic Switch Cases”, accepted by Chaos, Solitons amd Fractals.
(SCI, Impact factor: 1.938).

135. Zheng-Ming Ge and Mao-Yuan Hsu, 2006, “Chaos in a Generalized Van der Pol System and
in Its Fractional Order System”, accepted by Chaos, Solitons and Fractals. (SCI, Impact factor:
1.938).

136. Zheng-Ming Ge and Cheng-Hsiung Yang, 2006, “Synchronization of Complex Chaotic
Systems in Series Expansion Form”, accepted by Chaos, Solitons and Fractals. (SCI, Impact
factor: 1.938).

137. Zheng-Ming Ge and Chan-Yi Ou, 2006, “Chaos Synchronization of Fractional Order
Modified Duffing Systems with Parameters Excited by a Chaotic Signal”, accepted by Chaos,
Solitons and Fractals. (SCI, Impact factor: 1.938).

138. Zheng-Ming Ge, Chun-Lai Hsiao, Yen-Sheng Chen, and Ching-Ming Chang, 2006, “Chaos
and Chaos Control for a Two-Degree-of-Freedom Heavy Symmetric Gyroscope”, accepted by
International Journal of Nonlinear Sciences and Numerical Simulation. (SCI, Impact Factor:
2.345).

139. Zheng-Ming Ge and Pu-Chien Tsen, 2006, “The Theorems of Unsynchronizability and
Synchronization for Coupled Chaotic System”, accepted by International Journal of
Nonlinear Sciences and Numerical Simulation. (SCI, Impact Factor: 2.345)).

140. Zheng-Ming Ge and Mao-Yuan Hsu, 2006, “Chaos Excited Chaos Synchronizations of
Integral and Fractional Oredr Generalized Van der Pol Systems”, accepted by Chaos, Solitons
and Fractals. (SCI, Impact factor: 1.938).

141. Zheng-Ming Ge and An-Ray Zhang, 2006, “Anticontrol of Chaos of Fractional Order
Modified Van der Pol Systems”, accepted by Applied Mathematics and Computation. (SCI,
Impact Factor: 0.688).

142. Zheng-Ming Ge, Ching-Ming Chang and Yen-Sheng Chen, 2006, “Anti-control of Chaos

of Single Time Scale Brushless DC Motor” , Invited paper, Philosophical Transactions of the

16



Royal Society A, Vol. 364, No. 1846, pp. 2449-2462. (SCI, Impact Factor: 2.2) (= % § & *
MrFrm < et FA g &),

143. Zheng-Ming Ge and Chang-Xian Yi, 2006, “Parameter Excited Chaos Synchronization of
Integral and Fractional Order Nano Resonator System”, accepted by Mathematical Methods,
Physical Models and Simulation in Science & Technology.

144. Zheng-Ming Ge and Yu-Ting Wong, 2006, “Chaos in Integral and Fractional Order Double
Mackey-Glass Systems”, accepted by Mathematical Methods, Physical Models and
Simulation in Science & Technology.

145. Zheng-Ming Ge and Cheng-Hsiung Yang, 2006, “Chaos Control of New MEMS”, submitted
to Chaos, Solitons and Fractals. (SCI, Impact Factor: 1.938)

146. Zheng-Ming Ge and Cheng-Hsiung Yang, 2006, “Chaos Control of the Quantum CNN
Systems”, submitted to Chaos, Solitons and Fractals. (SCI, Impact Factor: 1.938)

147. Zheng-Ming Ge and Cheng-Hsiung Yang, 2006, “Chaos Control of Quantum-CNN System
by Additive Terms”, submitted to Chaos, Solitons and Fractals. (SCI, Impact Factor: 1.938)
148. Zheng-Ming Ge and Cheng-Hsiung Yang, 2006, “Hyperchaos of Four State Autonomous
System with Three Positive Lyapunov Exponents”, submitted to Europhysics Letters. (SCI,

Impact Factor: 2.237)

149. Zheng-Ming Ge and Cheng-Hsiung Yang, 2006, “The symplectic Synchronization of
Different Chaotic Systems”, submitted to Chaos, Solitons and Fractals. (SCI, Impact Factor:
1.938)

FR(F-E)FE P

Y m

Mathieu % %t ~ van der Pol % 3t ~ Ikeda, % L% Mackey-Glass & st 5 S8 2. % %o 537
Wz Bk & ¥ JE{F p J#TMathieu-van der Pol i %t» p ;s #7lkeda-Mackey Glass % 5u7r
¥ {8 2L p ;520 #7Mathieu-van der Pol & %u22 2L g ;5 #7lkeda-Mackey Glass 4 v+ * #+ 1 5§
LERH R R A AR o ARTH LTSRN S 2R G R PR R B R
DB BT IR S B RS P23 h o Y CRBAAA T 0
B SR S WM Z REF LR E - o
1. Zheng-Ming Ge, Yu-Ting Wong and Shih-Yu Li “Temporary Lag and Anticipated

Synchronization and Anti-synchronization of Uncoupled Time-delayed”, 2008, accepted by
Journal of Sound and Vibration. (SCI, Impact Factor: 0.898)

2. Zheng-Ming Ge, Shoh-Chung Li, Shih-Yu Li and Ching-Ming Chang “Pragmatical Adaptive
Chaos Control from Double Van der Pol System to Double Duffing System”, 2008, accepted
by Applied Mathematics and Computation. (SCI, Impact Factor: 0.688)

3. Zheng-Ming Ge and Shih-Yu Li “Chaos Generalized Synchronization of New Mathieu-Van
der Pol Systems with New Duffing-Van der Pol systems as Functional system by GYC Partial
Region Stability Theory” submitted to Applied Mathematics and Computation.

4. Zheng-Ming Ge and Shih-Yu Li “Chaos Control of New Mathieu-Van der Pol Systems with
New Mathieu -Duffing Systems as Functional System by GYC Partial Region Stability
Theory” submitted to Nonlinear Analysis: Theory, Methods, and Applications.

5. Zheng-Ming Ge and Chun-Yen Ho, “Chaos Synchronization of the Two Identical

17



Ikeda-Mackey-Glass Systems without Any Controller” submitted to Applied Mathematics and
Computation.
6. Zheng-Ming Ge and Chun-Yen Ho, “Chaos Control of New Ikeda-Lorenz Systems by GYC
Partial Region Stability Theory” submitted to Mathematical Methods in the Applied Sciences.
7. Zheng-Ming Ge and Kai-Ming Hsu, “Pragmatical Chaotic Symplectic Synchronization of
New Duffing-Van der Pol Systems with Different Order System as Functional System by
New Dynamic Surface Control and Adaptive Control”, submitted to Nonlinear Differential

Equations and Applications.
AR TR REF LR - Ko L
e

1. Zheng-Ming Ge “Necessary and Sufficient Condition of the Stability of a Sleeping Top
Described by Three Forms of Dynamic Equations”, PHYSICAL REVIEW E (2008).

18



PHYSICAL REVIEW E 77, 046606 (2008)

Necessary and sufficient conditions for the stability of a sleeping top described by three forms
of dynamic equations

Zheng-Ming Ge
Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
(Received 31 October 2007; revised manuscript received 28 January 2008; published 15 April 2008)

Necessary and sufficient conditions for the stability of a sleeping top described by dynamic equations of six
state variables, Euler equations, and Poisson equations, by a two-degree-of-freedom system, Krylov equations,
and by a one-degree-of-freedom system, nutation angle equation, is obtained by the Lyapunov direct method,
Ge-Liu second instability theorem, an instability theorem, and a Ge-Yao-Chen partial region stability theorem

without using the first approximation theory altogether.

DOI: 10.1103/PhysRevE.77.046606

I. INTRODUCTION

The stability of a sleeping top is a classical problem
which appears in the standard courses of classical mechanics
[1,2]. Routh [3], Klein [4], and Grammel [5] studied this
problem from various heuristic points of view. In 1946, Che-
taev [6,9] first strictly studied the problem described by a
two-degree-of-freedom system, Krylov equations [7]. By the
Lyapunov direct method, he obtained the sufficient condition
of conditional direction stability :

C*w® > 4Amga, (1)

where C is the axial moment of inertia of the top about a
fixed point, A is the equatorial moment of inertia of the top
about the fixed point, w is the angular velocity of the top
about the symmetric axis of the vertical sleeping top, m is the
mass of the top, a is the distance between the center of grav-
ity of the top and the fixed point, and g is the gravity accel-
eration. In 1954, Chetaev [8,9] studied the same problem by
Euler equations and Poisson equations for six state variables
and obtained the same sufficient condition of unconditional
stability by the Lyapunov direct method. In 1979 using the
same equations, Ge [10,11] obtained the necessary and suf-
ficient condition of unconditional stability of a sleeping top

C’w® = 4Amga (2)

by the Lyapunov direct method and first approximation
theory, and corrected the error of Loitsyanskii and Lurie
[12], Rumjantsev [13], and Magnus [14]. They declared that
the necessary and sufficient condition for stability of a sleep-
ing top is C*w?>4Amga.

In this paper, the necessary and sufficient condition for
unconditional stability and conditional direction stability of
the sleeping top is obtained by using Euler equations and
Poisson equations, and by using Krylov equations by the
Lyapunov direct method, Ge-Liu second instability theorem
[15], Ge theorem for determining the definiteness of func-
tions [16], and an instability theorem. The necessary and
sufficient condition of conditional nutation angle stability is
obtain by using the nutation angle equation by the Lyapunov
direct method and Ge-Yao-Chen (GYC) partial region stabil-
ity theorem [17,18]. In this paper, the first approximation
theory has not been used altogether.

1539-3755/2008/77(4)/046606(8)
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This paper is organized as follows. In Sec. II, a necessary
and sufficient condition for unconditional stability of a sleep-
ing top by using Euler equations and Poisson equations is
obtained by the Lyapunov direct method and Ge-Liu second
instability theorem. In Sec. III, the same condition of condi-
tional direction stability is obtained by using Krylov equa-
tions by the Lyapunov direct method and an instability theo-
rem. In Sec. IV, the same condition of conditional nutation
angle stability is obtained by using a nutation angle equation
by the Lyapunov direct method and GYC partial region sta-
bility theorem. In Sec. V, conclusions are drawn.

II. STABILITY OF A SLEEPING TOP DESCRIBED BY
EULER EQUATIONS AND POISSON EQUATIONS

A. Euler equations and Poisson equations

In Fig 1, O is the fixed point of a symmetric top. Ox;y,z;
is an inertial frame with vertical axis z;. Oxyz is a body
frame fixed with the symmetric top and coincides with the
principal axes of inertia of the top. A, B, and C are the
principal moments of inertia of the top about the Ox, Oy, and
Oz axes, respectively. The conditions for a Lagrange top are

A=B, x=0, y=0, z=a>0, (3)

where x, y, and z are the coordinates of the center of gravity
of the Lagrange top in the Oxyz frame. Rigid body motion
about a fixed point with condition (3) is called a Lagrange
case. Let p, ¢, and r be the projections of the angular velocity
vector of the Lagrange top on three principal axes Ox, Oy,
and Oz, respectively, v;, ¥, Y3 be the direction cosines be-
tween Ox, Oy, Oz and the vertical axis Oz, respectively. The

FIG. 1. Rigid body motion in the Lagrange case.
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dynamic equations for a Lagrange top are the combination of
Euler equations and Poisson equations:

d
Ad—IZ +(C—-A)gr=mgay,,

d
Ad—ctl + (A= C)rp=-mgavy,,

dr
c—=0,
dr
Ny
dt ’}/2 Q3’
5 P T
dys
=gy, - py,. 4
P A 2! (4)

We shall study the stability of a solution, a vertical perma-
nent rotation:

p=0, ¢g=0, r=w, v, =0,

72=07 73=1 (5)

of system (4). A Lagrange top with condition (5) is called a
sleeping top. Let

p=§& q=m r=ow+s,

Y =a, 72=B9 73:l+5’ (6)

where &€, 7, s, «, B, and § are the disturbances of six
state variables in Eq (4).

B. Sufficient condition of unconditional stability

In the Lagrange case, the first integrals of Eq. (4) are
A(P* + ¢ + Cr* + 2mgay,=h,

Alpy+qy) + Crys =k,
K+ vh+vi=1,

r=ow, )

where h, k, and w are constants determined by initial condi-
tions of Eq. (4). For the differential equations of disturbances
& m, s, a, B, and &, the corresponding first integrals are

Vi=A(& + 17) + C(s® + 2wé) + 2mag ¥,
Vo=A(éa+ 5B) + C(5s + wd+5),

Vi=a’+ B2+ 5 +28(=0),
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V4:§. (8)

The positive definite Lyapunov function given by Chetaev
when C?w?>4Amga is

Vi=V, +2\V, - (mga + Co\) Vs + uV3,
-2(Cow+ CNV,=AE + 2\Aéa,
— (mga+ Cw\)a? + A? + 2\A 7B,
— (mga + Co\) B+ (C + w)s? + 2\Cés,

- (mga+ Co\) &, )

where u=C(C-A)/A, \=—Cw/2A.

We have VI=0. By Lyapunov stability theorem, the null
solution of &, 7,s,a,3, and & is stable, i.e., the solution (5)
is stable. Equation (1) is the sufficient condition of stability
for a sleeping top, which is given by Chetaev [8,9]. Since six
disturbances correspond to the whole six states of dynamic
equations, Euler equations, and Possion equations, we call
this stability unconditional stability. In this case, both the
magnitude and the direction of the angular velocity vector
are stable.

When C?w’>=4Amga, Ge [10,11] gave another positive
definite Lyapunov function

V= VI+VH, (10)

where
4 2 4 2
Vi = Cw(V3 - —v4) = cw(a2 + B+ 5 +25- —g)
w w

(11)
is a positive semidefinite function of &, #, s, a, B, and o.

V=0 also. The Lyapunov stability theorem is satisfied, the
sufficient condition for stability of a sleeping top is now

C*w® = 4Amga. (12)

When C?w?<4Amga, by first approximation theory, the
sleeping top is unstable. In this paper, instead of using first
approximation theory, the Ge-Liu second instability theorem
is used to prove that when C?>w* <4Amga, the sleeping top is
unstable.

C. Ge-Liu second instability theorem

In 1999, Ge and Liu [15] gave two instability theorems.
The second of them is as follows.
Consider a nonautonomous vector differential equation

x=f(tx(t) Vi=0, (13)

where x€R" and f:R, X R"— R" is continuous. Let x=0 be
an equilibrium point for the system described by Eq. (13).
Then f(¢,0)=0, V¢=0. We can prove the following [15].
Theorem. If there exists a C" function V:R, XR"—R, a
ball B,={x ER",|x| <r}, an open set QC B,, such that
(i) 0<V(t,x)=L<oo, for some L, Vi=t,, VxE ).
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(ii) 0€ Q) (the boundary of ().

(iii) V(z,x)>0,V(r,x) is uniformly continuous in 7, V¢
=1y, Vx€.

(iv) (a) There exists an even n=2, such that for some
nonempty set GC QAN B,,

Vi(t,x)=0 for 1=i=n-1,

Vi (t,x) = v, VxEG.

(b) V(¢,x)=0, Vi=1,, Vx€/QNB,-G,

Here V¥)(¢,x) denotes the (+)th time derivative of V with
respect to time. Then the equilibrium point O of the system
(13) is unstable.

Jy>0, Y it= 1,

D. Sufficient condition for instability and necessary and
sufficient condition for stability

Since C?w?<4Amga, choose

Cw
A= — 14
4A (14)
and let
b Co* \Cw?+ 4(4Amga — C*w?)
c 4A ’
d Co=*\Cw*+ 4(4Amga — C*w?) (15)

e 4C

Since 4Amga > C2w?,b,d are positive, and c, e, are nega-
tive. Now

2
Vi= A= ba)(E-ca) + Aly=bP) - cB) + (s ~dd)(s
—ed)

is an indefinite function.
The positive definite Lyapunov function V is chosen as

V=Vit P+ B+ &, (16)

_i 2 2 D
V= dt(a + B+ 8, (17)

since V; is a first integral. By the third equation of Eq. (8),
the sixth equation of Eq. (4), and Eq. (6)

. ds
V==2—=-2(na-&B)=2({§6 - na) (18)

dt
is indefinite. There exists () in which 8> na, V>0, and

V> 0, where 0 € 0€). Since V does not contain ¢ explicitly,
conditions (i)—(iii) in the above theorem are satisfied. We

shall prove that (iv, a) is also satisfied. V can be found as

PHYSICAL REVIEW E 77, 046606 (2008)

V=2(63+ Bé - ni— an) =2(§2— Agwéa— Agwﬂn

+ %ﬁz + 77+ %cf) +2(§26— EaB— %ﬁm + 778
- (C;A) a§§>. (19)

On the boundary of ), d(}, V=0, iec.,
EB—ma=0. (20)

We can prove that V>0 on d€). There are many cases satis-
fying Eq. (20).

(a) p=f&,B=fa, where f can take an arbitrary positive
value except zero. From Eq. (19),

V=201 +f2)<§2 - §w§a+ %az) +2(1 +f2)<§25

C
- chm). (21)

Since 4Amga > C2w?, the second order terms of V are a posi-
tive definite function of &, &, while the third order terms of 1%
have no influence on the definiteness of V. Therefore V> 0.
When 7=fB, é=fa, or {=fB, n=fa, B=« it can be proved
similarly that V> 0.

(b) B=75=0. Now

V= 2(52 - %gm %&) + 2(525— %afé) (22)

is a positive definite function of &, «, i.e., V>0.

When B=a=0; £é=7=0 or {=a=0, it can also be easily
obtained that V=>0.

(c) B=a=75=0. Now

V=28 +286 (23)

is a positive definite function of £,V>0. When a=B=£=0,
B=£&=1=0, or a=£&=7=0 it can also be easily obtained that
V>0. By the above results, (iv,a) of the theorem is proved.

Since V is positive definite, dQ N B,—G=0, (iv,b) need
not be proved. V satisfies the Ge-Liu second instability theo-
rem, the sufficient condition of instability for the sleeping
top is

C*w’® < 4Amga. (24)
Together with the above result of Sec. II B, we conclude that
the necessary and sufficient condition for unconditional sta-

bility of the sleeping top is

C*w® = 4Amga. (25)
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FIG. 2. Sleeping top described by Krylov equations.

III. CONDITIONAL DIRECTION STABILITY OF A
SLEEPING TOP DESCRIBED BY KRYLOV EQUATIONS

A. Krylov equations

In Fig. 2, Ox,y,z; is the inertial frame, where Oz; is the
vertical axis. Oz is the dynamic symmetrical axis of the
sleeping top with center of gravity ¢, where Oc=a. The di-
rection of Oz is determined by two angles: «;, the angle
between the projection of Oz on the Ox,z; vertical plane, OJ,
and vertical axis Ozy; B is the angle between OJ and Oz;.
The moving frame Oxyz does not participate in the spin mo-
tion of the sleeping top. The motion of Oz is described by «;
and B3,. From Fig. 2, (x,x))=ay, (v,y)=p;. ¢ is the spin
angle of the sleeping top about Oz. The angular velocity of
the sleeping top (1 is

Q=w1+w2+w3, (26)

where w;=q, w2=,81, and wy=¢. The projections of ) on
the principal axes Oz,Ox, Oy are, respectively,

p=d+a, sin B,

q:—Bl,rzdl cos B;. (27)

The kinetic and potential energies of the top are

T=[C(d+ c sin B))> +A(B + & cos® B)))/2, (28)

IT=mga cos a; cos By, (29)

where  y=(z,z;). By spherical trigonometry, cos y
=cos «a; cos Bi. A first integral corresponding to cyclic coor-
dinate ¢ is

G,=Ap=A(¢+ a, sin B,) = const, (30)

where G, is the projection of the angular momentum G of
the top of the Oz axis. Only under condition (30), two-
degree-of-freedom Lagrange equations for «;,[;, Krylov
equations can be obtained:

Adi; cos B; - 2Ad, By sin B, + CwfB =mga sin a,

PHYSICAL REVIEW E 77, 046606 (2008)

ABI +Adf sin B cos B; — Cwa; cos B,
=mga sin B; cos «;. (31)

They correspond to four first order differential equations of
four state variables «, B, ¢;, and ,81, which have zero so-

lution a;=p,=c;=B;=0. This solution corresponds to un-
disturbed sleeping top motion. Therefore Eq. (31) is the dif-

ferential equation of disturbances a;, B, @, and .

B. Sufficient condition of conditional direction stability

There exist two other first integrals
1 . .
T+11=[C(¢+ é sin B1)* +A(BT + 7 cos® By)]
+mga cos «; cos B = const, (32)

G, =Cw cos a; cos B +A(B sin
— @ cos a; cos B sin B)), (33)

where G is the projection of G on the Oz, axis. Form the
other two first integrals by Egs. (30), (32), and (33):

Gzz. Lo > 2
W1=T+H—?=5C(a, cos B + Bi)

+ mga(cos a; cos B; — 1) = const, (34)

W,=G_ =A(B, sin a; — d; cos a, cos B, sin B;)
+ Cw(cos a; cos B; — 1) =const. (35)
They become zero when the a=8,=a,= ,81=O. Lyapunov
function is chosen as
V=W, - \W,, (36)

where A is a constant to be determined to make V positive
definite. Express V in series:

1 _ 1.
= E[Aa% +2ANé, B, + (Co\ —mga) 1]+ E[A,B%

—2ANB,a; + (Co\ —mga)ai]+ H.O.T. (37)

The degrees of higher order terms (H.O.T.) are no less than
four. When A is chosen as

AN=Cw/2A (38)

V is a positive definite function of «;, B3, &, B, and V=0.
Lyapunov stability theorem is satisfied. Therefore when
C’w’>4Amga, the sleeping top is conditionally stable.

Since four disturbances «y, B, &, and Bl are not all arbi-
trary, condition (30)must be satisfied, so we call this stability
conditional stability. In this case only the direction of the
angular velocity vector of the sleeping top is proven to be
stable. When

C’w? =4Amga (39)

V becomes
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1 , 1.
V= V2 + V4 + HOT = EA(CZI + Ca),Bl/ZA) + EA Bl

Co )2 V,+HO.T (40)
-— +V,;+H.O.T.,
24 M) T

where V, is a second degree positive semidefinite function
and V, is a fourth degree function. When

a=-NB1,  Bi=Ma (41)

V,=0. Substituting Eq. (41) in V,, after a complicated calcu-
lation we obtain

=" &+ B (42)

Now
V= mga(a% + ,8%)2/8 +H.O.T., (43)

where H.O.T. are terms of «;,3; of degree no less than six.
V4 in Eq. (42) is positive definite for a;,B;. We can prove

that V in Eq. (40) is positive definite for a;,B;,d;,B; [16].
Lyapunov stability theorem is satisfied. Therefore when
C’w?=4Amga, the sleeping top is stable. It is concluded that
the sufficient condition of conditional direction stability is
C’w’*=4Amga.

When C?w?<4Amga, by Lyapunov first approximation
theory, the sleeping top is unstable. In this paper, instead of
using first approximation theory, a different instability theo-
rem is used to prove that when C’w? <4Amga, the sleeping
top is unstable.

C. Instability theorem

Consider an autonomous vector differential equation

x=f(x(1)

where xER", and f:R"— R" is continuous. Let x=0 be an
equilibrium point for the system described by Eq. (44). Then
f(0)=0, Vt=0.

Theorem. If there exists a C" positive definite function
V:R"—R, a ball B,={xER"||x||<r}, and

(i) There exists an open set Q) CB,
=|(0xP)[>0.

(ii) O C 9Q) (the boundary ).

(iii) For 40N B,, V(x)=0(|x[*), V(x)=

then the equilibrium O of Eq. (24) is unstable.

Proof. For any trajectory initiated in (), we assume that it
can escape () by moving across d€). When a trajectory ap-

Vt=0, (44)

in which V(x)

proaches and touches 92, V diminishes from |O[x|?| to V
=0(|x]*) by (i) and (iii), i.e., V is negative; but by (iii), V
=|0(|x[*)| > 0. This shows that it is not true that x(z) leaves ()
through dQ).

Next we prove that x(r) must leave B, through the sphere
|x||=7. The initial point x, is in the interior of € and V(x)
=a>0. The trajectory x(¢) starting from x(0)=x, must
leave (). To prove this fact, we notice that as long as x(z)

is inside Q, V(x)=a, since V(x)>0 in Q. Let v

PHYSICAL REVIEW E 77, 046606 (2008)

=min{ V(x)|x€ QU iQ
the continuous function V(x) has a minimum over the com-
pact set {x€QUJQ and V(x)=a}. Then y>0 and

and V(x)=a} which exists since

VIx(t)] = V(xp) + ft Vix(s)]lds = a+ ft vds=a+ .
0 0

(45)

This inequality shows that x(7) cannot stay forever in {) be-
cause V is bounded on ). Hence x(7) must leave () through
the sphere ||x||=r. The origin is unstable.

D. Sufficient condition for instability and the necessary and
sufficient condition for conditional direction stability

When C?w’><4Amga, choose A\=—Cw/4A and use b, c,
d, and e in Eq. (15), where b, d are positive, while c, e are
negative. Now

2
=A(é-ba)(é-ca) +A(n-bP)(n—cP) + %(s —dd)(s

—ed).
The positive definite Lyapunov function is chosen as
V=di+pi+a+ B (46)
Through Eq. (31), indefinite

(mga+A)(alal +,3131)+0(|a4|) (47)

is obtained. There exists Q in which V=|0(|ay|?)|>0. We
have

V=

2(mga+A){mga(a%+,81) Cw a131)+d%

N A _(,Blal

+ [ﬁ] (48)

In Q, when a,+&B,>0, &,—f3,/&>0, where & takes any
positive value except 0, then V=|0(|a;|?)|>0. On 9Q, a,
+&B,=0, @,-B;/£=0, V=0(|ey|*), and V becomes

2(mg(j‘+ A) [ mga(j2 + 1),8%

V=

+C—(§+ )Bﬁ ( +1>B} (49)
N ¢ 161+ 2 1

By Sylvester theorem, since 4Amga> C2w?, V is positive
definite, i.e., V>0 for any & Similarly, when a;—£&B,
>0, @ +B1/E>0; aj+&3>0, a-Bi/E>0; aj—EB,
>0, @,+fB;/£>0, we can also prove that V>0. The above
theorem is satisfied. When C2w2<4amg, the motion is un-
stable. It is concluded that the necessary and sufficient con-

dition for conditional direction stability of a sleeping top is
also C’w?>=4Amga.
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FIG. 3. Three generalized coordinates ¢, , and 6.

IV. CONDITIONAL NUTATION ANGLE STABILITY FOR A
SLEEPING TOP DESCRIBED BY NUTATION ANGLE
EQUATION

A. Nutation angle equation

In Fig. 3, the symmetric top motion can be described by
the Lagrange equation of three generalized coordinates, pre-
cession angle ¢, spin angle , and nutation angle 6. Since
¢, ¢ are cyclic coordinates, there are two corresponding first
integrals:

(1, sin® 6+ I; cos® 0) ¢ + Iy cos 6= const,

L(+ ¢ cos ) = const, (50)

where 1, is the equatorial principal moment of inertia, and /5
is the axial principal moment of inertia. By Eq. (50),

&, ., are absent in the only dynamic equation, nutation
angle equation. For the sleeping top case, the energy equa-
tion is [1]

W= -u?)[B( +u-ad?)], (51)

where u=cos 0, B=2mga/A, a=Cw/A. Taking the time
derivative of Eq. (51), the nutation angle equation is ob-
tained:

ii:—(a2+,8)u+gﬁu2+a2—§. (52)

For the sleeping top, u=cos #=cos 0=1. Let u=1+u’, where
u' is disturbance, the standard form equations of distur-

bances become

v'=2B-aMu’ + %Bu’z. (53)

B. GYC partial region stability theorem

Ge, Yao, and Chen [17,18] gave a stability theorem on the
partial region of the neighborhood (whole space for global
stability) of the origin.

Consider an autonomous differential equation

PHYSICAL REVIEW E 77, 046606 (2008)

FIG. 4. Partial regions ) and ;.

x=flx), (54)

where x ER", and f:R"— R" is continuous and satisfies the
Lipschitz condition. Let x=0 be an equilibrium point for the
system described by Eq. (56), and f(0)=0.

We are only interested in stability of this zero solution on
the partial region ) (including the boundary) of the neigh-
borhood of the origin which in general may consist of sev-
eral subregions as shown in Fig. 4. It is stipulated that the
state point cannot go out of ().

Definition. The equilibrium point x=0 of Eq. (54) is stable
on () if for each £>0 there is =8&(e) >0 such that

[x(0)]| < 6= |x(r)| <e Vt=0, (55)

where x# 0 is any point in ().

Let us consider a continuously differentiable function
V(x) given on Q;=Q N H where H is the region |[x|| <h>0.
If V(x)>0 in Q, and V(0)=0 expect at origin, V(x) is posi-
tive definite. If V(x)= in ; and V(0)=0, V(x) is positive
semidefinite.

Theorem. If V(x) is positive definite, V(x) through Eq.
(54) is negative semidefinite, x=0 is stable in Q.

The proof of this theorem is similar to that of the
Lyapunov stability theorem [19].

C. Necessary and sufficient condition for conditional nutation
angle stability

There are three cases.
(a) &?=28>0.
The positive definite Lyapunov function is chosen as

v/2 (a2_2ﬁ)u12 Bu/3
-+ = .
2 2 2

V= (56)

The time derivative of V through any solution of Eq. (53) is

3Bur2
2

3ﬁu12
2

v/

V=v'| 2B-aP)u' + ]—{(ZB—az)u’+

=0.

By Lyapunov stability theorem, the motion is stable.
(b) &*-23=0.
Equation (53) becomes
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’.R

FIG. 5. Partial region.

3Bu/2
)

v'=

(57)

Since u=cos 0=1 is the maximum value of cos 6, u'=u—1
is always negative. The partial region is the left half plane of
the u'v’ plane as shown in Fig. 5.

The partial region positive definite Lyapunov function is
chosen as

v12 Bul3

V=—"- 2 (58)

The time derivative of V through any solution of Eq. (57) is
V_3UIBM/2 3,814,21), ~
= S =

0. (59)

By GYC partial region stability theorem, the motion is
stable.

(c) &?-28<0.
The indefinite Lyapunov function is chosen as
V=u'v'. (60)
The time derivation of V through any solution of Eq. (53) is
. . . 38u'?
V=v'u'+v'u' =v"*+u'| 2B-P)u’ + 32 =v”
o, 3"
+(2B-a)u'"+ (61)

2 9
which is positive definite. By Lyapunov first instability theo-
rem, the motion is unstable.

PHYSICAL REVIEW E 77, 046606 (2008)

From above results, we obtain that the necessary and suf-
ficient condition for conditional nutation angle stability is
also

C*w® = 4Amga. (62)

Since two conditions in Eq. (50) must be satisfied, the sta-
bility is called the conditional nutation angle stability.

V. CONCLUSIONS

The necessary and sufficient condition for the stability of
a sleeping top described by three forms of dynamic equations
is obtained. For dynamic equations of six stable variables,
Euler equations, and Poisson equations, unconditional stabil-
ity is obtained by the Lyapunov direct method and the Ge-
Liu second instability theorem. For dynamic equations of a
two-degree-of-freedom system, Krylov equations, condi-
tional direction stability is obtained by the Lyapunov direct
method and a different instability theorem. For dynamic
equations of a one-degree-of-freedom system, a nutation
angle equation, conditional nutation angle stability is ob-
tained by the Lyapunov direct method and GYC partial re-
gion stability theorem. The necessary and sufficient condi-
tion for a sleeping top obtained from the above three cases is
the same:

C*w” = 4Amga. (63)

By using the direct method, unconditional instability, condi-
tional direction stability for C2w224Amga, conditional di-
rection instability, and three cases for conditional nutation
angle stability and instability, the results were obtained in
this paper.

The classical problem of classical mechanics has been
studied for more than 100 years and is solved in this paper
by the direct method only without the use of first approxi-
mation theory.
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