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Chaos systems have obtained wide applications in physics, chemistry, physiology, biology
and various engineerings. Duffing system, van der Pol system and nonlinear Mothieu system all
are paradigmatic chaotic systems in chaotic dynamics. In this project, by suitable coupling, four
new systems, namely, Duffing-van der Pol system, Mathieu-Duffing system are given.

Pragmatical adaptive chaos control for different systems is proposed in this project (the
second year). Traditional chaos control and anticontrol only work for the same system. The new
method extends the chaos control and anticontrol to other different systems, greatly increases its
effectiveness.

The point of research:

1. The study of chaos of Duffing-van der Pol system and Mathieu-Duffing system: By  phase
portraits, bifurcation diagrams, power spectra, Lyapunov exponents, the various chaotic
behaviors of these systems will be studied. The regions and shapes of the strange attractors,
hyperchaos, ect will also be studied.

2. New pragmatical adaptive chaos control method for different systems. pragmatical
asymptotical stability theory by probability concept is used to prove the estimated parameters

must approach the unknown parameters.
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Fig. 2 Bifurcation diagram for autonomous new Mathieu-van der Pol system f=0~50.
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Fig. 4 Power spectrum for autonomous new Duffing-van der Pol system.
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Fig. 7 Time history of errors for autonomous new Duffing-van der Pol system by pragmatical

asymptotical stability theorem is obtained.
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Fig. 8 Time histories of the differences of uncertain parameters and Estimated parameters for
autonomous new Duffing-van der Pol system by pragmatical asymptotical stability theorem

is obtained.
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Fig. 9 Time history of errors for autonomous new Mathieu-Duffing system by pragmatical

asymptotical stability theorem is obtained.
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Article history: In this paper, a new strategy by using GYC partial region stability theory is proposed to

Received 21 March 2008 achieve chaos control. Using the GYC partial region stability theory, the new Lyapunov

Accepted 18 February 2009 function used is a simple linear homogeneous function of error states and the lower
order controllers are much more simple and introduce less simulation error. Numerical

Keywords: simulations are given for new Mathieu-Van der Pol system and new Mathieu-Duffing

Chaos control

Partial region stability theory
New Mathieu-Van der Pol system
New Mathieu-Duffing system

system to show the effectiveness of this strategy.
© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Since Ott et al. [1] gave the famous OGY control method in 1990, the applications of the various methods to control a
chaotic behavior in natural sciences and engineering are well known. For example, the adaptive control [2-5], the method
of chaos control based on sampled data [6], the method of pulse feedback of systematic variable [7], the active control [8,9]
and linear error feedback control [ 10,11]. However, when Lyapunov stability of zero solution of states is studied, the stability
of solutions on the whole neighborhood region of the origin is demanded.

In this paper, a new strategy to achieve chaos control by GYC partial region stability theory is proposed [12,13]. Using
the GYC partial region stability theory, the new Lyapunov function is a simple linear homogeneous function of error states
and the lower order controllers are much more simple and introduce less simulation error.

The layout of the rest of the paper is as follows. In Section 2, chaos control scheme by GYC partial region stability theory
is proposed. In Section 3, new Mathieu-Van der pol system and new Mathieu-Duffing system are presented. In Section 4,
three simulation examples are given. In Section 5, conclusions are drawn. The partial region stability theory is enclosed in
Appendix.

2. Chaos control scheme

Consider the following chaotic system
x = f(t, x) (2.1)

where X = [x1, X, ..., xn]" € R"is a state vector, f : R, x R" — R"is a vector function.
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The goal system which can be either chaotic or regular, is

y=g(t,y (2.2)

wherey = [y1,y2, ..., ¥s]" € R"is astate vector, g : R, x R* — R" is a vector function.
In order to make the chaos state x approaching the goal state y, define e = x — y as the state error. The chaos control is
accomplished in the sense that [13-22]:
lime= lim(x—y) =0. (2.3)
t—00 t—00
In this paper, we will use examples in which the error dynamics always happens in the first quadrant of coordinate
system and use GYC partial region stability theory which is enclosed in the Appendix. The Lyapunov function is a simple
linear homogeneous function of error states and the controllers are simpler because they are in lower order than that of
traditional controllers.
3. New Chaotic Mathieu-Van der pol system and new chaotic Mathieu-Duffing system

This section introduces new Mathieu-van der Pol system and new Mathieu-Duffing system, respectively.

3.1. New Mathieu-Van der Pol system

Mathieu equation and van der Pol equation are two typical nonlinear nonautonomous systems:

=% (3.1)
X = —(a+ bsinwt)x; — (a + bsinwt)x] — cx, + dsin ot :
)'(3 = X4

{)'c4 = —ex3+f(1— xg)x4 + g sinwt. (32)

Exchanging sin wt in Eq. (3.1) with x5 and sin wt in Eq. (3.2) with x;, we obtain the autonomous new Mathieu-Van der Pol
system:

)'(1 =X
Xy = —(a+ bx3)x; — (@ + bx3)x3 — cxy + dx3 (33)
).(3 = X4 .

Xy = —ex3 + (1 — X5)x4 + 8%

where a, b, c, d, e, f, g are uncertain parameters. This system exhibits chaos when the parameters of system are a = 10,
b=3,c=0.4,d=70,e=1,f =5,g = 0.1and theinitial states of system are (x19, X20, X30, X40) = (0.1, —0.5, 0.1, —0.5).
Its phase portraits are shown in Fig. 2.
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Fig. 2. Chaotic phase portraits for new Mathieu-Van der Pol system.

3.2. New Mathieu-Duffing system

Mathieu equation and Duffing equation are two typical nonlinear nonautonomous systems:

Z'l =2 (3 4)
z; = —(a; + by sinwt)z; — (a; + by sin a)t)zf — €12y + dq sinwt )
23 =124

{24 = —Z3 — Zg —e1z4 + fisinwt. (3:3)

Exchanging sin wt in Eq. (3.4) with z3 and sin wt in Eq. (3.5) with z;, we obtain the autonomous master new Mathieu-Duffing
system:

Z'1 =2

2y = —(a1 + b1z3)z1 — (a1 + b1Z3)Z;j —C1z; +diz3 (356)
23 =24 .
24 = —23— 23 — eiza + izy

where a4, by, c1, di, e; and f; are uncertain parameters. This system exhibits chaos when the parameters of system are
a; = 20.30,b; = 0.5970,c; = 0.005,d; = —24.441,e; = 0.002, f; = 14.63 and initial states is (—2, 10, —2, 10). Its phase
portraits are shown in Fig. 3.

4. Numerical simulations

The following chaotic system

5{1 =Xy — 200

%, = —(a+ b(x3 — 200))(x; — 200) — (a + b(x3 — 200))(x; — 200)* — c(x, — 200) + d(x3 — 200)

T (4.1)
X3 = (X4 — 200)

X3 = —e(x3 — 200) + f(1 — (x3 — 200)%) (x4 — 200) + g(x; — 200)

is the new Mathieu-Van der pol system of which the old origin is translated to (x1, x2, X3, X4) = (200, 200, 200, 200)
in order that the error dynamics happens always in the first quadrant of error state coordinate system. This
translated new Mathieu-Van der pol system presents chaotic motion when initial conditions is (x19, X20, X30, X40) =
(210.1, 209.5, 210.1, 209.5) and the parametersarea = 10,b=3,c =04,d =70,e=1,f =5,g = 0.1.

In order to lead (x1, X3, X3, X4) to the goal, we add control terms u1, Uy, u3 and uy4 to each equation of Eq. (4.1), respectively.

).(] = X3 —200+U1

% = —(a+ b(xs — 200))(x; — 200) — (a + b(x3 — 200))(x; — 200)> — c(x; — 200) + d(x3 — 200) + uy
)'(3 = (X4 — 200) + u3

X4 = —e(x3 — 200) + f(1 — (x3 — 200)?) (x4 — 200) + g(x; — 200) + uy.

(4.2)
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Fig. 4. Phase portrait of error dynamics for Case I.

CASE I. Control the chaotic motion to zero.
In this case we will control the chaotic motion of the new Mathieu-Van der pol system (4.1) to zero. The goal isy = 0.
The state errorise; = x; — y; = x;, (i = 1, 2, 3, 4) and error dynamics becomes

é1 =).(1 = X2 —200+U1
éz = )'(2 = —(a + b(X3 — 200))(X1 — 200) — ((1 + b(X3 — 200))(}(1 — 200)3
— C(x2 —200) + d(x3 — 200) + u,
é3 = )'(3 = (X4 — 200) + uj
6y = X4 = —e(x3 — 200) + f(1 — (x3 — 200)%) (x4 — 200) + g(x; — 200) + 1.
In Fig. 4, we can see that the error dynamics always exists in first quadrant.

By GYC partial region asymptotical stability theorem, one can easily choose a Lyapunov function in the form of a positive
definite function in first quadrant as:
V=e +e+e+ey. (44)
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Fig. 5. Time histories of errors for Case I.

Its time derivative through error dynamics (4.3) is
V=26 46 +é+é4
= (x — 200 + uy) + (—(a + b(x3 — 200))(x; — 200)
— (@ + b(x3 — 200))(x; — 200)> — c(x; — 200) + d(x3 — 200) + uy) + (x4 — 200 + u3)
+ (—e(x3 — 200) + f (1 — (x3 — 200)%) (x4 — 200) + g(x; — 200) + uy). (4.5)
Choose
up, = —(X2 — 200) — €1
uy = (—(a+ b(xs — 200))(x; — 200) — (a + b(x3 — 200))(x; — 200)> — c(x, — 200) + d(x3 — 200)) — e,
us = —(X4 — 200) — €3
Uy = (—e(x3 — 200) + f(1 — (x3 — 200)?) (x4 — 200) + g(x; — 200)) — ey.

We obtain

(4.6)

V:€]+€2+€3+€4 <0
which is negative definite function in first quadrant. The numerical results are shown in Fig. 5. After 10 s, the error trajectories
approach the origin.
CASE II. Control the chaotic motion to a regular function.

In this case we will control the chaotic motion of the new Mathieu-Van der pol system (4.1) to regular function of time.
The goal is y; = Fes"“t, (i = 1, 2, 3, 4). The error equation

e =x—yi=x—Fe" (i=1,2,34) (4.7)
lim e; = lim (x; — Fe"“) =0, (i=1,2,3,4)
t—00 t—>00

whereF; = F, =F3 =F,=F = 10and w = 0.5.
The error dynamics is

&1 = xp — 200 + u; — Fi0e’™“ (cos wt)
&y = —(a+ b(xs — 200))(x; — 200) — (a + b(x3 — 200))(x; — 200)>

—¢(%, — 200) + d(x3 — 200) + Uy — Fwe "t (cos wt) (4.8)
3 = (x4 — 200) + u3 — F30e"™“ (cos wt)

es = —e(x3 —200) 4+ f(1 — (x3 — 200)?) (x4 — 200) +g(x; —200) + uy — Fywesin®t (cos wt).

In Fig. 6, the error dynamics always exists in first quadrant.
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Fig. 6. Phase portraits of error dynamics for Case II.

By GYC partial region asymptotical stability theorem, one can easily choose a Lyapunov function in the form of a positive
definite function in first quadrant as:

V=e+e +es+ey
Its time derivative is
V =2614+6 +é+es= (X — 200 + u; — Fiwes"® (cos wt)) + (—(a + b(x3 — 200))(x; — 200)

— (a4 b(x3 — 200))(x; — 200)> — c(x, — 200) + d(x3 — 200) + U, — F,we’ ™! (cos wt))
+ ((x4 — 200) + u3 — F30e ™ (cos wt)) + (—e(x3 — 200) + f (1 — (x5 — 200)?) (x4 — 200)

+g(%; — 200) + ug — Fswe™™“ (cos wt)). (4.9)
Choose
Uy = —(xo — 200 — Fiwe* " (cos wt)) — e;
Uy = —(—(a+ b(xs — 200))(x; — 200) — (a + b(x3 — 200))(x; — 200)>
— c(x; — 200) + d(x3 — 200) — Fwe"™“! (cos wt)) — e, (4.10)
U3 = —((x4 — 200) — F3we""“! (cos wt)) — e3

Uy = —(—e(x3 — 200) + f(1 — (x3 — 200)%) (x4 — 200) + g(x; — 200) — F4wes" ! (cos wt)) — ey.
We obtain
V=—€1—€2—€3—€4<0

which is a negative definite function in first quadrant. The numerical results are shown in Figs. 7 and 8. After 10 s, the errors
approach zero and the chaotic trajectories approach to regular motion.

CASE I11. Control the chaotic motion of the new Mathieu-Van der pol system to chaotic motion of the new Mathieu-Duffing
system.

In this case we will control chaotic motion of the new Mathieu-Van der pol system (4.1) to that of the new chaotic
Mathieu-Duffing system. The goal system for control is new Mathieu-Duffing system with initial states (—2, 10, —2, 10),
system parameters a; = 20.30, b; = 0.5970, c; = 0.005, d; = —24.441,e; = 0.002 and f; = 14.63.

21 =2

2y = —(a; + b1z3)zy — (a1 + b123)213 — 1z +diz3 (4.11)
23 =24 .

74 = =23 — Zg — ez + frza.

The error equationise; = x; — z;, (i = 1, 2, 3, 4). Our aimis lim;. o, e; = 0,(i = 1, 2, 3, 4).
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Fig. 7. Time histories of errors for Case II.

The error dynamics becomes

é] :5(] —Z"l = (Xz —200—22)+U]
éz = 5(2 — 2"2 = (—(a + b(X3 — 200))(X] — 200) — (a + b(X3 — 200))()(] — 200)3
—c(x, — 200) + d(x3 — 200) — (—(ar + biz3)z1 — (a1 + b123)Z;] — 122 + diz3)) + Uy
é3 :5(3 —23 = (X4—200—Z4)+U3
&4 = X4 — 24 = (—e(x3 — 200) 4 f(1 — (x3 — 200)*) (x4 — 200)
+g(X; —200) — (—z3 — z; — €124 + f121)) + Ua.

(4.12)

In Fig. 9, the error dynamics always exists in first quadrant.

By GYC partial region asymptotical stability theorem, one can easily choose a Lyapunov function in the form of a positive
definite function in first quadrant as:

V=e+e +es+ey
Its time derivative is

V =é+é&+eé+és = ((xa — 200 — ) + 1) + ((—(a + b(x3 — 200))(x; — 200)
— (@ + b(x3 — 200))(x; — 200)* — c(x, — 200) + d(x3 — 200) — (—(a; + b1z3)z; — (a1 + b123)Z3
— €123 4+ 123)) + 1) + (X — 200 — 24) + u3) + ((—e(xs — 200) + f(1 — (x3 — 200)) (x4 — 200)
+g(x — 200) — (—23 — Z;’ — €124 +f1Z1)) + u4). (4]3)

Choose

up, = —(Xz — 200 — Zz) — €1

Uy = —(—(a+ b(xs — 200))(x; — 200) — (a + b(x3 — 200))(x; — 200)> — c(x, — 200)
+d(x3 — 200) — (—(ar + b1z3)z1 — (a1 + b123)Z} — €125 + d123)) — €3 (4.14)
Us = —(X4 — 200 — Z4) — €3

u3 = —(—e(x3 — 200) + f(1 — (x3 — 200)%) (x4 — 200) + g(x; — 200) — (—2z3 — 23 — 124 + f121)) — ea.
We obtain

V=—e —e—e3—e <0
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Fig. 9. Phase portraits of error dynamics for Case III.

which is negative definite function in first quadrant. The numerical results are shown in Figs. 10 and 11. After 10 s, the
errors approach zero and the chaotic trajectories of the new Mathieu-Van der pol system approach to that of the new
Mathieu-Duffing system.

5. Conclusions

In this paper, a new strategy by using GYC partial region stability theory is proposed to achieve chaos control. Using the
GYC partial region stability theory, the new Lyapunov function used is a simple linear homogeneous function of states and
the lower order controllers are much more simple and introduce less simulation error. The new chaotic Mathieu-Van der
pol system and new chaotic Mathieu-Duffing system system are used as simulation examples which confirm the scheme
effectively.
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Appendix. GYC partial region stability theory

A.1. Definition of the stability on partial region

Consider the differential equations of disturbed motion of a nonautonomous system in the normal form

dx;
@ =Xs(t, X1, ..., %), (s=1,...,n)

where the function X; is defined on the intersection of the partial region £2 (shown in Fig. 1) and

fofH
S

(A1)

(A2)

and t > to, where ty and H are certain positive constants. X; which vanishes when the variables x; are all zero, is a real-
valued function of t, xq, . . ., x,,. It is assumed that X, is smooth enough to ensure the existence, uniqueness of the solution
of the initial value problem. When X; does not contain t explicitly, the system is autonomous.
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Obviously, xs = 0 (s = 1, ..., n) is a solution of Eq. (A.1). We are interested to the asymptotical stability of this zero
solution on partial region £2 (including the boundary) of the neighborhood of the origin which in general may consist of
several subregions (Fig. 1).

Definition 1. For any given number ¢ > 0, if there exists a § > 0, such that on the closed given partial region §2 when

Yoy <s =1,....n (A.3)
N

forall t > ty, the inequality
Y xk<e (s=1,....n) (A4)
N

is satisfied for the solutions of Eq. (A.1) on 2, then the zero solutionx; = 0(s = 1, ..., n) is stable on the partial region 2.

Definition 2. If the undisturbed motion is stable on the partial region £2, and there exists a ' > 0, so that on the given
partial region £2 when

foofy, (s=1,...,m). A5)
N
The equality
. 2\
= (Xs: XS) -° (A6)
is satisfied for the solutions of Eq. (A.1) on £2, then the zero solutionx; = 0 (s = 1, ..., n) is asymptotically stable on the

partial region £2.

The intersection of §2 and region defined by Eq. (A.5) is called the region of attraction.

Definition of functions V (t, xq, ..., x;;): Let us consider the functions V (¢, X1, ..., X;) given on the intersection §2; of the
partial region £2 and the region
Y x<h (s=1.....n (A7)
S

fort > ty > 0, where t; and h are positive constants. We suppose that the functions are single-valued and have continuous
partial derivatives and become zero whenx; = - -- = x, = 0.

Definition 3. If there exist t; > 0 and a sufficiently small h > 0, so that on partial region £2; and t > t5, V > 0 (or <0),
then V is a positive (or negative) semidefinite, in general semidefinite, function on the §£2; and t > ¢,.

Definition 4. If there exists a positive (negative) definite function W (x; ... x,) on 21, so that on the partial region £2; and

t>ty

V—-W=>0(r—V-—-W >0), (A.8)
then V(t, x4, . . ., x,) is a positive definite function on the partial region £2; and t > to.
Definition 5. If V(t, x4, ..., x,) is neither definite nor semidefinite on £2; and t > to, then V (¢, x4, .. ., X,,) is an indefinite
function on partial region £2; and t > t,. That is, for any small h > 0 and any large t, > 0, V(t, X1, ..., X,) can take either

positive or negative value on the partial region £2; and t > t,.

Definition 6. Bounded function V.
If there exist to > 0, h > 0, so that on the partial region £2;, we have

|V(tax1a LR 7Xn)| <L

where L is a positive constant, then V is said to be bounded on £2;.

Definition 7. Function with infinitesimal upper bound.
If V is bounded, and for any A > 0, there exists u > 0, so that on £2; when ), X52 < um,andt > ty, we have

|V(t,X], .o 7Xﬂ)| < A

then V admits an infinitesimal upper bound on £2;.
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A.2. GYC theorem of stability and asymptotical stability on partial region

Theorem 1. If there can be found a definite function V (t, x4, . . ., X,) on the partial region for Eq. (A.1), and the derivative with
respect to time based on these equations are:

v av U174

— = — 4 _
dt 9t £ 0xs

X;. (A9)

Then, it is a semidefinite function on the partial region whose sense is opposite to that of V, or if it becomes zero identically, then
the undisturbed motion is stable on the partial region.

Proof. Let us assume for the sake of definiteness that V is a positive definite function. Consequently, there exists a
sufficiently large number ty and a sufficiently small number h < H, such that on the intersection §2; of partial region
£2 and

fofh, (s=1,...,n)
N

and t > t, the following inequality is satisfied
VIt X1, .oy %) = Wy, .., Xn),

where W is a certain positive definite function which does not depend on t. Besides that, Eq. (A.9) may assume only negative
or zero value in this region. O

Let & be an arbitrarily small positive number. We shall suppose that in any case & < h. Let us consider the aggregation of
all possible values of the quantities x1, . . ., x,, which are on the intersection w, of £2; and

Y X=e, (A.10)

s

and let us designate by | > 0 the precise lower limit of the function W under this condition. By virtue of Eq. (A.8), we shall
have

V(t,X1,...,%) =1 for(xq,...,x,) 0nw,. (A11)

We shall now consider the quantities xs as functions of time which satisfy the differential equations of disturbed motion.
We shall assume that the initial values x of these functions for t = t; lie on the intersection £2; of £2; and the region

Y ok <s, (A.12)
S
where § is so small that
V(fo,on, ...,Xno) <. (A]3)
By virtue of the fact that V (¢, 0, ..., 0) = 0, such a selection of the number § is obviously possible. We shall suppose that
in any case the number § is smaller than ¢. Then the inequality
Y X<e (A.14)
S

being satisfied at the initial instant will be satisfied, in the very least, for a sufficiently small t — ty, since the functions x(t)
very continuously with time. We shall show that these inequalities will be satisfied for all values t > ¢,. Indeed, if these
inequalities were not satisfied at some time, there would have to exist such an instant t = T for which this inequality would
become an equality. In other words, we would have

Y XM =e¢,
S

and consequently, on the basis of Eq. (A.11)

V(T,x(T), ..., xy(T)) > L (A.15)
On the other hand, since ¢ < h, the inequality (Eq. (A.7)) is satisfied in the entire interval of time [ty, T], and consequently,
in this entire time interval ((jT‘t/ < 0. This yields

V(T, x1(T), ..., x(T)) < V(to, %10, - - - , Xno),
which contradicts Eq. (A.14) on the basis of Eq. (A.13). Thus, the inequality (Eq. (A.4)) must be satisfied for all values of t > to,
hence follows that the motion is stable.

Finally, we must point out that from the view-point of mathematics, the stability on partial region in general does not

relate logically to the stability on the whole region. If an undisturbed solution is stable on a partial region, it may be either

stable or unstable on the whole region and vice versa. In specific practical problems, we do not study the solution starting
within £2; and running out of £2.
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Theorem 2. Ifin satisfying the conditions of Theorem 1, the derivative ‘31—‘[/ is a definite function on the partial region with opposite

sign to that of V and the function V itself permits an infinitesimal upper limit, then the undisturbed motion is asymptotically stable
on the partial region.

Proof. Let us suppose that V is a positive definite function on the partial region and that consequently, (:T‘t/ is negative
definite. Thus on the intersection §2; of £2 and the region defined by Eq. (A.7) and t > t, there will be satisfied not only the
inequality (Eq. (A.8)), but the following inequality as well:

E < —W1(X1,...,Xn), (A16)
where W is a positive definite function on the partial region independent of t.

Let us consider the quantities x; as functions of time which satisfy the differential equations of disturbed motion assuming
that the initial values x;o = x;(to) of these quantities satisfy the inequalities (Eq. (A.12)). Since the undisturbed motion is
stable in any case, the magnitude § may be selected so small that for all values of t > t, the quantities x; remain within £2;.
Then, on the basis of Eq. (A.16) the derivative of function V (t, x1(t), ..., x,(t)) will be negative at all times and, consequently,
this function will approach a certain limit, as t increases without limit, remaining larger than this limit at all times. We shall
show that this limit is equal to some positive quantities different from zero. Then for all values of t > ty the following
inequality will be satisfied:

V(t, x1(8), ..., x (b)) > (A17)

where o > 0.
Since V permits an infinitesimal upper limit, it follows from this inequality that

YR =x (s=1,....m), (A.18)

where A is a certain sufficiently small positive number. Indeed, if such a number X did not exist, that is, if the quantity ) " x,(t)
is smaller than any preassigned number no matter how small, then the magnitude V (¢, x,(t), ..., x,(t)), as follows from
the definition of an infinitesimal upper limit, would also be arbitrarily small, which contradicts Eq. (A.17).

If for all values of t > tj the inequality (Eq. (A.18)) is satisfied, then Eq. (A.16) shows that the following inequality will be
satisfied at all times:

dv

— < -,

de
where [y is a positive number different from zero which constitutes the precise lower limit of the function
Wi (t, x1(t), ..., x,(t)) under condition (Eq. (A.18)). Consequently, for all values of t > t, we shall have:

tdv
V(t,x1(t), ..., X, (t)) = V(to, X10, - - - , Xno) + f Edt < V(to, X10, - - -, Xno) — L1 (t — to),
to

which is, obviously, in contradiction with Eq. (A.17). The contradiction thus obtained shows that the function

V(t, x1(t), ..., x,(t)) approaches zero as t increases without limit. Consequently, the same will be true for the function
W (x1(t), ..., x,(t)) as well, from which it follows directly that

lim x(t) =0, (s=1,...,n),

t—00

which proves the theorem. O
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1. Introduction

Chaos synchronization has been widely investigated and many effective methods have been presented recently. Thus, as a
key technique of secret communication, chaos synchronization has become a very important goal. Since Pecora and Corrall
discovered the synchronization of chaotic systems [1-5], many synchronization methods have been developed [6-9]. For
chaos synchronization of practical engineering systems, the control cost must be taken into account. Optimal control method
is preferable in such cases [10-13].

In this paper, a quadratic optimal regulator is used for chaos synchronization. In practical system, it is difficult to obtain the
precise mathematical model, so in practical applications the investigators would like to employ simple and efficient controllers.
Therefore, how to design a simple controller with limited information of a chaotic system is still an open problem [20-26].

As numerical example, recently developed Quantum Cellular Neural Network (Quantum-CNN) chaotic oscillator in series
form is used. Quantum-CNN oscillator equations are derived from a Schrodinger equation taking account of quantum dots
cellular automata structures to which in the last decade a wide interest has been devoted, with particular attention towards
quantum computing [19].

Furthermore, chaotization is studied. Chaotization aims at creating or enhancing the system complexity. Chaotization of
Quantum-CNN system is accomplished by an optimal control method.

This paper is organized as follows. In Section 2, a linearly coupled chaos synchronization scheme by optimum control is
given. In Section 3, numerical results of the synchronization of two Quantum-CNN oscillator systems by unidirectional and
by mutual linear coupling are presented, respectively. In Section 4, chaotization of Quantum-CNN chaotic system and
simulation results are obtained. Finally, conclusions are given in Section 5.

2. Linearly coupled chaos synchronization scheme by optimum control

The optimum control is defined as a method by which the specified performance index of a system has optimum value
when the desired control assignment is fulfilled.
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The state equation of a linear system is
x(t) = Ax(t) + Bu(t), (1)

where x(t) is an n-dimensional state variable of the system, A is an n x n dimensional constant matrix and B is an appropriate
n x r dimensional constant matrix. The matrix [A B] is controllable entirely and u(t) is an r-dimensional control input of the
system. Assuming that u(t) has no restriction and u(0) = 0, the performance index is

= / " (X Qx + uRu)dt. 2)
0

In Eq. (2), Q is an n x n dimensional positive semidefinite real symmetric constant matrix; R is an r x r dimensional po-
sitive definite real symmetric constant matrix. The choice of the weighting matrix Q or R is based on eclectic considerations
which can enhance the control performance and reduce the control energy consumption. The aim of the optimum control is
to get u(t) = Kx(t) and then make the performance index Eq. (2) to be minimum, where Kalman gain K is an r x n dimensional
matrix.

So the design of the optimum control system is simplified to get the elements of matrix K. By stability theory, the opti-
mization of the quadratic performance index indicated by Eq. (2) can be solved.

The feedback gain matrix K of the quadratic optimal regulator is obtained as follows [29]:

K=RTB'S. 3)
The matrix S in Eq. (3) is a positive definite matrix and must satisfy the following Riccati equation [9]:
A"S+SA—SBR'B'S+Q =0. (4)
Then the following nonlinear chaotic system is considered:
X(t) = Ax(t) + F(t, x) + Bua (t), (5)
where A is an n xn dimensional constant matrix, x=(xy,Xa,...,X;,) €R" is the state variable of the system,

F(x) = (Fy,F,, ... ,F,)T is the nonlinear terms of the chaotic system and u(t) = kq(y(t) — x(t)) is an r-dimensional control input
where k, is a constant vector. The second chaotic system is

y(t) = Ay(t) + F(ty) + By (1), (6)

where B is an appropriate constant matrix, ux(t) = k{(x(t) — y(t)) is an r-dimensional control input where k; is also a constant
vector.
Define error vector e = x — y. From Eqs. (5) and (6), the error system is

é(t) = [A— B(ks + ka)le + F(t,x) — F(t,y). (7)

In current schemes of chaos synchronization, maximum values of states must be determined by simulation [15-18]. They
are half analytic method but not pure analytic method. In [14] F(t,x) — F(t,y) nonlinear item is ignored. This is incorrect since
there exist linear terms of e in F(t,x) — F(t,y), which cannot be ignored. In this paper, the series expansion analysis offers a
correct method.

The series expansion form of Eq. (7) is

e =[A+M(x(t),y(t)) — Bks + ka)le + H(x(t), y(t), ), (8)

where M(x(t),y(t))e + H(x(t),y(t),e) = F(t,x) — F(t,y). The elements of M(x(t),y(t)) depend on state vectors x, y, and all of them
are bounded convergent infinite series of x, y. H(x(t),y(t),e) contains higher degree terms of e only.

If we choose appropriate k, and ks to make A + M(x(t),y(t)) — B(ks + k,) asymptotically stable, then by first approximation
theory, the zero solution e = 0 of Eq. (8) is asymptotically stable, i.e., systems (5) and (6) are synchronized.

Now we construct an optimal regulator, which is used to synchronize chaotic systems according to the theory of the qua-
dratic optimal regulator, respectively, and the aim is to get the feedback gain matrices k, and k; of system (5) and of system
(6), respectively. The steps to get matrices k, and ks are: (a) selecting an n x n dimensional positive semidefinite real sym-
metric constant matrix Q, an r x r dimensional positive definite real symmetric constant matrix R and a constant matrix B,
with the constant matrix A we can get a Riccati equation as shown in Eq. (4). Then, we should solve this equation to get ma-
trix S. If the positive definite matrix S exists, the matrix A + M(x(t),y(t)) — B(ks + k;) is asymptotically stable and the design of
control for the synchronization of two systems is successful. Otherwise we should reselect Q, R and B and calculate again. (b)
Putting the matrix S in Eq. (3), we can get the gain matrices k, and k; of the regulators. After getting the matrices k, and ks
according to the above steps, we put kg, ks and the matrix B in Eqgs. (5) and (6). Then we get two synchronized systems.

3. Numerical results of the synchronization of two Quantum-CNN oscillator systems by unidirectional and by mutual
linear coupling

Case L. The synchronization by unidirectional linear coupling.

Please cite this article in press as: Ge Z-M, Yang C-H. Chaos synchronization and chaotization of complex chaotic systems in series form by
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For a two-cell Quantum-CNN, the following differential equations are obtained [19]:

X1 =-2a;1/1 —x2sinx,,

5{ = —CO1(X1 —X3) +2a; 2=

X3 = —2ay4/1 — X2 sinXxy,

Xg = —Wr(X3 — X1) + 2a2\/%7 COS X4,
3

COS X;,

F

where x; and x5 are polarizations, x, and x4 are quantum phase displacements, a; and a, are proportional to the inter-dot
energy inside each cell and w, and w, are parameters that weigh effects on the cell of the difference of the polarization
of neighboring cells, like the cloning templates in traditional CNNs. Let a; = a, = 2.47, w; = 1, w, = 1, chaos is obtained for this
system [20,23,24].

Two Quantum-CNN chaotic systems using the unidirectional linear coupling can be written as

X1 =-2a;4/1 —x2sinx,,
Xy = —1 (X1 — X3) + 201 —2= COS X7,
2 1( 1 3) ‘lﬂ 2 (10)

X3 = —2a4/1 — X2 sinXxy,

Xg = —a(X3 —X1) + 20, \/%7 COS X4
3

and

= 72alﬂsiny2 +ki(x1 — 1),

V2 = —o1(y; — ys) + 2a; \/_ cosy, + ka(x, — y3),

Vs = =20\/1 ~ y3siny, + ks(xs — ys),

Ya=—a(y; —y1) +20—72= \/— COS Yy + ka(xs — yy4).

(11)

The initial values for these linearly coupled Quantum-CNN systems are taken as x;(0)=0.8, x,(0) = —0.77, x3(0) = —0.72,
x4(0)=0.57, ¥1(0) = —0.2, y»(0) = 0.41, y5(0) = 0.25 and y,(0) = — 0.81.
Expand the right hand sides of Eqs. (10) and (11) into power series:

o = 201 (e + 8 — b+~ B i ),
Xy = —01(X1 — X3) + 201 (X1 — 303 + 4 xixG + 31X — XX 323X + ), a2)
X3 = =205 (—1x3x4 + 53X5 — 1x3X4 + X4 — 3X5 + 56X5 + ),
Xy = —3(X3 —X1) + 25 (X3 — 1x3%5 + Lxaxf +1x3 —18x3 + 33+ +)
and
V1= =201 (= gYia + YV3 — Y2+ Y2 —Yi tads o) Hha =),
V2= —1(y1 —¥3) + 201 (Y1 = 301Y5 +5qV1V5 +3V: —2ViV3 +3Y5 + ) +ka(X2 = ¥a), 13)
V3= =205 (=3Y3Va+ 55Y3Vi —5YVa+Ya— VitV + o) +Ka(Xs —ys),
Va=—0a(ys = ¥1) + 20> (V3 — 3Y3V3 +2Y3Va +3Y3 —4V3Va +3V5 + ) + Ka(Xa = Ya).
From Egs. (12) and (13), the error dynamics is:
e=[A+M(x(t),y(t)) — BkiJe + H(x.y.e), (14)
where e = (y1 — X1,Y2 — X2,3 — X3,Ya — Xa)" and
My, —2a; +Mn 0 0
2a; + My, My, 0 0
M(x(t),y(t)) =
(x(t), (1)) 0 0 Mss 24, 1+ My
0 0 2(12 +M34 M44

in which

1 1
My = a1 |2x1y, — gx1y§ + Z(’W%J’z +3x1y1Y,) +

and H(x,y,e) contains higher degree terms of e only.
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The infinite power series of the first element of M, i.e., My, is

1 1
201, — X3 + 4 (XYY, +3Ky1y,) + - (15)

It is well-known [28] that a necessary and sufficient condition for the convergence of the infinite series
Up+Up+-+ U+
is that for any previously assigned positive ¢ there exists an N such that, for any n > N and for positive p,
[Unir + Unio + - Unip| <& (16)
From Fig. 1, we know that
x| <1, |yl <1 (i=1,2,3,4). (17)

Therefore, M7, and series contained in other elements of M(x(t),y(t)) are convergent series and they have bounded sums.
We can get the optimum gain k, = [k;,k», ks, k4]” by the method of constructing a quadratic optimal regulator. With

0O 0 0 O

—W 0 W1 0

A= 0O 0 0 O

(005} 0 —-w, O

we choose
1 0 0O
020 2
— T. — . —
B=[0 0 0 1] R=[ Q=|4 7 { o (18)

0 2 0 2

After solving the corresponding Riccati equation, we get the gain matrix kg = [k, k2, k3, k4]7=1[0,1,0,1]".

From the simulation results of Fig. 1, it is shown that master system and slave system reach the synchronization state
after they are controlled by the quadratic optimal regulator. It is noticed that the synchronization effect is good.

Case II. The synchronization by mutual linear coupling.

Two Quantum-CNN systems with mutual linear coupling are given:

X] = —201\/1 —X% SiHX2 +k11(y1 —X1)7

)‘(2 = — (X] —X3) + 2a1 X1 COS Xy + k]z(yz —Xz)

Vi 7 (19)

Xy = ,QGZMSinM +ki3(y3 — X3),

Xg = —y(X3 —X1) + ZaZ\/%z. CoS X4 + k14 (Y4 — Xa)
3

and
Vi = —2a \/1——‘3/‘%siny2 + ka1 (X1 — 1),
V2 = =1y — Y3) + 201 = c0S Y, + ko2 (X2 — V),

= (20)
y3 = —2a21/1 —y% Sln_V4 + k23(x3 _y3)7
Va=—ma(y3 =) + Zazﬁ COS Yy + Kkaa(X4 — Yy).
Expand the right hand sides of Egs. (19) and (20) into power series:

X1 = =201 (—3X5% + 15 X735 — gX{X2 + X2 — X3 + 33555 + ) + ki (v — x1),
Yo = —1 (X —X3) 4201 (1 — X1 +35%1% + 35 — XD + 5K + ) + Kiz0 — %), 21
X3 = 72(12(,%)(%)(4 +%X§X431 — %x§x4 + X4 f%xi +11%X2 + - ) + ki3(y3 — x3),
Xg = —a(X3 —X1) + 202 (X3 — 3X3X] + 55 X3X4 +3X3 — 4X3XF +3%5 + ) + Kia(Vy — Xa)

and
1= =201 (— 393, + Y3 — Ayivs + Y, — V3 ey 4 ) k(- ),
Yo = =01y = ¥3) + 201 (1 = 3Y1Y3 +2a0V5 3] - iV I ) k(e = 32, (22)
V3 = =202 (= 3V3Va + 5 Y3VE — $VAVa + Ve — Y3+ Vi o) + ke (xs - ),
Va=—2(y3 = Y1) +202(V3 = 3¥3Y5 +25Y3V4 +3V3 —1Y3Vi +3Y3 + ) + kaa(Xa — Ya).
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Fig. 1. Time histories of states, state errors for unidirectional linear coupling case.
From Egs. (21) and (22), the error dynamics is:
& = A+ M(X(0),y(6) ~ B(ks + k)Je + H(x.y,e), (23)

where e = (y1 — X1,Y2 — X2,Y3 — X3,Y4 — X4)' and

M(x(t),y(t)) =

My —2a; + My 0 0
2a1 + My My, 0 0
0 0 M33 —2a; + Mys
0 0 2a; + M3y My
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in which

1 1
M = a1 |2x1y, — Exly% + Z("l)’%)’z +3X{Y1Y,) +

Similar to Case |, from Fig. 2, |x;| <1, |y;|<1(i=1,2,3,4), the infinite power series elements of M(x(t),y(t)) are all convergent
and have bounded sums [27,28].

The optimum gains kq = [K11,K12,K13,k14]" and ks = [Ka1, K22, k23, k24]" can be obtained by the method of constructing a qua-
dratic optimal regulator. With

(a)1 . . . . . . . . . (b)1 - - - - - - - - -
0.8 1 0.8 =3
0.6 T 0.6
0.4 1 04
= 02 ﬁt £ 02
], g .
02 1 02 \
04 1 0.4
-0.6 ] -0.6
-0.8 L L L v . > . . . 0.8 s s s s s s s s s
0 5 10 15 20 25 30 35 40 45 50 - S 10 15 20 25 30 35 40 a5 30
Time (sec) Time (sec)
(©) 0 ()05
0.6 1 0.6
0.4 1 0.4W H
0.2 0.2
= 0 By 0
502 g -02
-0.4 -0.4
0.6 — 0.6 —
—y3 4
0.8 08
1 1

0 5 10 15 20. 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Time (SCC) Time (SCC)

—el

—e3
—ed
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Fig. 2. Time histories of states, state errors for mutual linear coupling case.
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After solving the corresponding Riccati equation, we then get two gain matrices kq = [k11, k12, k13, k14]7 = [0,0.5,0,0.5]" and
ks = [k21,k22,k23,k24]T = [O,OS,O,OS]T

From the simulation results of Fig. 2 two systems reach the synchronization state after they are controlled by the qua-
dratic optimal regulator. It is noticed that the synchronization effect is also satisfactory.

4. Chaotization of Quantum-CNN chaotic system scheme and simulation

Optimal control is a well-established engineering control strategy, and is useful for both linear and nonlinear system with
linear or nonlinear controllers [3]. Now, we use a typical optimal control for the chaotization of Quantum-CNN system. Con-
sider the system (9) with a controller u and define the Hamilton function:

H(X1,X2,X3,X4,U,p) = P"F(Xy, X3, X3,X4,1,D);

(25)
P’ = [p) P, D3 Pal,

where p is a Lagrange multiplier, called a co-state vector, F is the right hand side of Eq. (9). Following the variational principle
of optimal control, we can obtain

X ) X
Dy | —1(x1 — X3) + 2a; —=— cOS X, +p3<—2a2,/l—x§smx4>+p4 — (X3 — X;) + 20 ——— c0SX4 | =0,

\/1-x2 \J1-x2

(26)
—2(11 .
D, ——=sinx; = 0. (27)
J1-x2
This yield a non-trivial solution for (p,,ps,p4) if and only if
—201_ Ginx, — 0. (28)

=

Lyapunov exponent.

“0 02 04 06 08 1 12 14 16 18 2
ke x10™*

Fig. 3. Lyapunov exponents of controlled Quantum-CNN system.
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It gives an optimal surface singularly in the state space. This type of control assumes values on the two allowable bound-
aries (27) and (28) alternatively according to a switching surface. Locating system trajectories on the surface, a typical feed-
back control in the form

u = —kysgn 24 sinx, (29)

\/1-x2

can be used. By adjusting the value of k;, from zero initial value to k, = 1.6 x 10~ in the above controller with the signum
function

1 if v>0,
sgnjv] =< 0 if v=0, (30)
-1 ifv<O

the chaotic motion with one positive Lyapunov exponent can be controlled to chaotic motion with two positive Lyapunov
exponents as shown by the simulation result in Fig. 3.

5. Conclusions

Two chaotic Quantum-CNN systems are synchronized in two cases: unidirectional linear coupling by optimum control,
mutual linear coupling by optimum control. The number of controllers for optimum control is less than that for synchroni-
zation only by linear couplings. This results in lower cost. In chaos synchronization cases, by a theorem of convergent series,
we prove that all infinite power series elements of A + M(x(t),y(t)) — B(ks + k,) are convergent and have bounded sums. This
synchronization of chaos systems can be used to increase the security of communication. Next, the optimum control is used
for chaotization, i.e., to enhance original chaotic state to more complex chaotic state. Numerical simulations are used to ver-
ify the effectiveness of the proposed scheme.
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